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Abstract: Recently, Bonato et al. (2024) introduced a new graph parameter, which is the cooling
number of a graph G, denoted as CL(G). In contrast with burning which seeks to minimize the number
of rounds to burn all vertices in a graph, cooling seeks to maximize the number of rounds to cool
all vertices in the graph. Cooling number is the compelling counterpart to the well-studied burning
number, offering a new perspective on dynamic processes within graphs. In this paper, we showed that
the cooling number of a classic cubic graph, the generalized Petersen graphs P(n, k), is

⌊
n
2k

⌋
+

⌊
k+1

2

⌋
+

O(1) by the use of vertex-transitivity and combinatorial arguments. Particularly, we determined the
exact values for CL(P(n, 1)) and CL(P(n, 2)).
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1. Introduction

Burning number can be used to study the spread of contagion in a network, see [1, 3, 4]. In the past
few years, burning number has been widely studied for some families of graphs, for example, circulant
graphs [7], generalized Petersen graphs [19], caterpillars [9,14], grid and interval graphs [8], t-unicyclic
graphs [22], hypercube [18], theta graphs [16], Q-graph [13], and spiders and path forests [5, 6, 15].
Mitsche, Prałat, and Roshanbin investigated the burning number of graph products in [18] and they also
focused on the probabilistic aspects of the burning number in [17]. A graph G is said to be m-burnable
if the burning number of G is at most m. Bonato and Lidbetter [5] and Das et al. [6] proved that every
spider of order m2 is m-burnable. A tight upper bound on the order of a spider to guarantee that it is
m-burnable was then determined by Tan and Teh [20]. They have also studied the burnability of double
spiders and path forests in [21].

Recently, Bonato et al. [2] introduced a new graph parameter, which is the cooling number. In
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contrast with burning that aims to minimize the number of rounds to burn all vertices in a graph,
cooling attempts to maximize the number of rounds to cool all vertices in the graph. The cooling
process on a finite simple, undirected graph G is a discrete-time process. Throughout the cooling
process, vertices in G may be either uncooled or cooled.

Initially, in the first round, all vertices are uncooled. At each round t ≥ 1, one new uncooled vertex
is chosen to cool if such a node is available. We call such a chosen vertex a source. If a vertex is cooled,
then it remains in that state until the end of the process. Once a vertex is cooled on round t, in round
t +1, its uncooled neighbors become cooled. The source chosen in round t +1 cannot be the immediate
neighbor of cooled vertex in round t. This means that distance between two consecutive sources must
be of distance at least 2. If at the beginning of round t+1, all uncooled vertices are immediate neighbor
(or neighbor) of a cooled vertex in round t, then no source is chosen in round t + 1 and the process ends
at round t + 1. The process ends in a given round when all vertices of G are cooled.

We define the cooling number of G, written CL(G), to be the maximum number of rounds
for the cooling process to end. Give a graph with CL(G) = c and let (x1, x2, . . . ) be a set of
sources chosen during cooling. To completely cool G, it may have c cooling sources in a sequence
(x1, x2, . . . , xc) or c − 1 cooling sources, which we write, (x1, x2, . . . , xc−1, [xc]). We call (x1, x2, . . . , xc)
or (x1, x2, . . . , xc−1, [xc]) the cooling sequence for G with CL(G) = c. The latter implies that the whole
graph may only be completely cooled in c rounds without positioning the c-th cooling source. We
have that the burning number of G, b(G) ≤ CL(G). Note that a choice of sources that burns the graphs
gives an upper bound to the burning number, and a choice of sources that cools the graph gives a lower
bound to the cooling number.

In [2], Bonato et al. showed the following results on the cooling number of some basic graphs. For
all graphs with diameter at most 2, we have that the burning number of G, b(G) = CL(G).

Theorem 1.1. [2] For a graph G on n vertices, we have that

CL(G) ≤
⌈
n + 1

2

⌉
.

Let u, v ∈ V(G), and d(u, v) is the distance between u and v. Then the diameter of G, denoted by
diam(G), is the max{d(v, u) : u, v ∈ V(G)}.

Theorem 1.2. [2] For a graph G, we have that⌈
diam(G) + 2

2

⌉
≤ CL(G) ≤ diam(G) + 1. (1.1)

For the path Pn and cycle Cn of order n, it has been shown in [2] that

Theorem 1.3. [2]

CL(Pn) =

⌈
n + 1

2

⌉
=

⌈
diam(Pn) + 2

2

⌉
.

Theorem 1.4. [2]

CL(Cn) =

⌈
n + 2

3

⌉
.
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For the complete caterpillar of length d and n = 2d − 2, denoted as CCd, (see [2]), then

CL(CCd) =

⌈
n + 1

2

⌉
= diam(Pn) + 1.

Theorem 1.5. [2] Let T be a spider with 2m legs, each of length r. If we have that m <
⌈
log2 r + 1

⌉
,

then

CL(T ) ≤ 2
∑

1≤i≤m

⌊
r + 1

2i

⌋
(1 − 1/2m)2r.

They also derived the cooling number of Cartesian grids and studied the cooling number in graphs
generated by the iterated local transitivity model for social networks, see [2].

In this paper, we determine completely the cooling number for the generalized Petersen graphs.
The generalized Petersen graphs is a classic family of cubic graphs. The Petersen graph is not only
the smallest bridgeless 3-regular graph, but it is also a remarkable configuration that serves as a
counterexample to many optimistic predictions about what might be true for graphs in general [11].
Let n ≥ 3 and k ≥ 1 be integers such that 1 ≤ k ≤

⌊
n
2

⌋
. The generalized Petersen graph P(n, k) is

defined to be the graph on 2n vertices with vertex set

V(P(n, k)) = {ai, bi : i = 0, 1, 2, . . . , n − 1}

and edge set

E(P(n, k)) = {aiai+1, aibi, bibi+k : i = 0, 1, 2, . . . , n − 1},

where subscripts are taken modulo n. Let D1 = {ai : i = 0, 1, 2, . . . , n − 1} and D2 = {bi : i =

0, 1, 2, . . . , n − 1}. The subgraph induced by D1 is called the outer rim while the subgraph induced by
D2 is called the inner rim. A spoke of P(n, k) is an edge of the form aibi for some 0 ≤ i ≤ n − 1.

For a graph G, for each integer j ≥ 0, we set

N j(x) = {y ∈ V(G) : the distance from y to x in G is at most j} ,

and
N j[x] = N j(x) ∪ {x}.

Note that if N(x) is the set of vertices adjacent to x in G, then

N(x) = {y ∈ V(G) : y is adjacent to x in G} = N1(x).

Furthermore, N0(x) = ∅ and N0[x] = {x}.

2. Main results

It is worth noting that the main difference when choosing a choice of sources to completely burn or
cool a graph is such that we need to carefully choose a cooling source compared to a burning source
because the cooling source cannot be a neighbor of a cooled vertex in that particular round, whereas
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the burning source can be a neighbor of a burned vertex in that round. In the burning number case,
where we aim to minimize the number of sources, we just need to make sure a particular vertex that we
want is unburned and the choice of vertex will maximize the newly burned vertices at the end of each
round. However, in the cooling process, where we aim to maximize the number of sources, we need to
carefully choose the cooling sources so that the chosen vertex will minimize the newly cooled vertices
at the end of each round. Furthermore, to recall, two consecutive cooling sources cannot be immediate
neighbors.

In general, to obtain the lower bound, we can choose a choice of cooling sources in a sequence such
that the (t + 1)-th cooling source is chosen, at best, at distance 2 from the t-th cooling source. Besides
that, the (t + 1)-th cooling source, xt+1 is best to be chosen with as many neighbors as possible that are
contained in N1(xt), i.e.,

|N1(xt+1) ∩ N1(xt)| = max {|N1(y) ∩ N1(xt)| : y is uncooled at round t + 1
and it is not a neighbour of a cooled vertex

}
.

This will reduce the cooling spread to uncooled vertices in the (t + 1)-th round.

2.1. Case for k = 1

Note that it is fairly straightforward to see that the diameter of P(n, 1) is n
2 + 1 if n is even and

⌈
n
2

⌉
if

n is odd.

Theorem 2.1. If n ≥ 3, then CL(P(n, 1)) =
⌊

2n+4
5

⌋
+ 1.

Proof. Let G = P(n, 1) with CL(G) = k and (x1, x2, . . . , xk−1, [xk]), or (x1, x2, . . . , xk) be a cooling
sequence of G.

First, we show that k ≤
⌊

2n+4
5

⌋
+ 1. Suppose k > 2n+9

5 . Note that G is vertex-transitive. The first
cooling source x1 can be placed at an arbitrary vertex, and we consider the spread of cooling from x1

in k rounds. At the end of the first round, only the vertex x1 is cooled. At the end of the second round,
N1(x1) which consists of 3 vertices are cooled. Regardless where vertex x2 is positioned, a total of 5
vertices (which are the vertices in N1[x1] ∪ {x2}) are cooled at the end of the second round. After two
rounds, it is observed that at the end of each i-th round for all 3 ≤ i ≤ k − 1, at least 5 new uncooled
vertices are cooled. In fact, at the beginning of the i-th round, the cooled vertices are just the vertices
contained in ⋃

1≤ j≤i−1

Ni−1− j[x j].

Recall that xi cannot be a neighbor of a cooled vertex. Therefore,

xi <
⋃

1≤ j≤i−1

Ni− j[x j].

This implies that

N1[xi] ∩

 ⋃
1≤ j≤i−1

Ni−1− j[x j]

 = ∅.
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Since i ≤ k−1, there is still another round before all the vertices are cooled. So, there are four uncooled
vertices excluding xi, where two of them are contained in the inner rim and the other two in the outer
rim. Thus, at the end of the i-th round, at least 5 new uncooled vertices are cooled.

At the k-th round, at least one uncooled vertex is cooled. Following this, we have that the number
of cooled vertices is at least

5 + 5 (k − 3) + 1 = 5k − 9 > 5
(
2n + 9

5

)
− 9 = 2n,

a contradiction, as |V(P(n, 1))| = 2n. Thus, k ≤ 2n+9
5 . Since k is an integer, we have k ≤

⌊
2n+9

5

⌋
=⌊

2n+4
5

⌋
+ 1.

For the lower bound, we give a choice of sources (x1, x2, . . . , xc, xc+1) or (x1, x2, . . . , xc, [xc+1]) where
c =

⌊
2n+4

5

⌋
to cool G. Note that all vertices will be cooled at c + 1 round and xc+1 may not need to be

positioned in some cases. Without loss of generality, we first place x1 at a1 and x2 at b2. At the end of
the second round, a0, a1, a2, b1, b2 are cooled.

Suppose
⌊

2n+4
5

⌋
is odd. Let S 2 j+1 = {a3 j, b3 j, a3 j+1, b3 j+1, a3 j+2, b3 j+2} for each 1 ≤ j ≤ 1

2

(⌊
2n+4

5

⌋
− 1

)
.

We set

x2 j+1 = b3 j+1;
x2 j+2 = a3 j+2,

for 1 ≤ j ≤ 1
2

(⌊
2n+4

5

⌋
− 1

)
− 1 and

x2 j0+1 = b3 j0+1,

where j0 = 1
2

(⌊
2n+4

5

⌋
− 1

)
.

At the end of the third round, a3 and b3 are cooled as they are adjacent to a2 and b2, respectively.
Similarly, for each j, by the choices of x2 j+1 and x2 j+2, all the vertices in S 2 j+1 are cooled. In fact, a3 j

and b3 j are cooled from a3 j−1 ∈ S 2 j−3 and b3 j−1 ∈ S 2 j−3, respectively; a3 j+1 and b3 j+2 are cooled from
b3 j+1.

Now, at the end of the (2 j0 + 1)-th rounds, all the following vertices are cooled:

a1, a2, a3, . . . , a3 j0;
b1, b2, b3, . . . , b3 j0 , b3 j0+1.

Besides that, sourced from x1 = a1, moving toward the opposite direction, the vertices in
{a0, an−1, an−2, . . . , an−(c−2), b0, bn−1, bn−2, . . . , bn−(c−3)} are cooled at the end of the c-th round.

Since
⌊

2n+4
5

⌋
is odd, 3 j0 + 1 = 1.5

(⌊
2n+4

5

⌋
− 1

)
+ 1 is an integer. We shall show that by taking

c =
⌊

2n+4
5

⌋
,

1 ≤
(
n − (c − 3) − 1.5

(⌊
2n + 4

5

⌋
− 1

)
− 1

)
− 1 ≤ 2. (2.1)

In fact, the lower bound follows from(
n − (c − 3) − 1.5

(⌊
2n + 4

5

⌋
− 1

)
− 1

)
− 1
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=n −
(⌊

2n + 4
5

⌋
− 3

)
− 1.5

(⌊
2n + 4

5

⌋
− 1

)
− 2

=n − 2.5
⌊
2n + 4

5

⌋
+ 2.5

≥n − 2.5
(
2n + 4

5

)
+ 2.5 = 0.5,

and the fact that
(
n − (c − 3) − 1.5

(⌊
2n+4

5

⌋
− 1

)
− 1

)
− 1 is an integer, whereas the upper bound follows

from (
n − (c − 3) − 1.5

(⌊
2n + 4

5

⌋
− 1

)
− 1

)
− 1 = n − 2.5

⌊
2n + 4

5

⌋
+ 2.5

< n − 2.5
(
2n + 4

5
− 1

)
+ 2.5 = 3.

So, we conclude that the number of uncooled vertices in the inner rim is at most 2 at the end of the
(2 j0 + 1)-th round. Therefore, there are two possibilities at the end of the (2 j0 + 1)-th round,

(a) all vertices are cooled except

a3 j0+1,

b3 j0+2,

in this case, there is exactly one vertex b3 j0+2 between b3 j0+1 and bn−(c−3).
(b) all vertices are cooled except

a3 j0+1, a3 j0+2,

b3 j0+2, b3 j0+3,

in this case, there are exactly two vertices b3 j0+2, b3 j0+3 between b3 j0+1 and bn−(c−3).

In either case, all these uncooled vertices are adjacent to some cooled vertices. So, no xc+1 can be
placed and we have the cooling sequence (x1, x2, . . . , xc, [xc+1]). Hence, k ≥

⌊
2n+4

5

⌋
+ 1.

Suppose
⌊

2n+4
5

⌋
is even. Let S 2 j+1 = {a3 j, b3 j, a3 j+1, b3 j+1, a3 j+2, b3 j+2} for each 1 ≤ j ≤ 1

2

(⌊
2n+4

5

⌋
− 2

)
.

We set

x2 j+1 = b3 j+1;
x2 j+2 = a3 j+2,

for 1 ≤ j ≤ 1
2

(⌊
2n+4

5

⌋
− 2

)
.

At the end of the third round, a3 and b3 are cooled as they are adjacent to a2 and b2, respectively.
Similarly, for each j, by the choices of x2 j+1 and x2 j+2, all the vertices in S 2 j+1 are cooled. In fact, a3 j

and b3 j are cooled from a3 j−1 ∈ S 2 j−3 and b3 j−1 ∈ S 2 j−3, respectively; a3 j+1 and b3 j+2 are cooled from
b3 j+1.

Now, at the end of the (2 j0 + 2)-th rounds where j0 = 1
2

(⌊
2n+4

5

⌋
− 2

)
, all the following vertices are

cooled:

a1, a2, a3, . . . , a3 j0 , a3 j0+1, a3 j0+2;
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b1, b2, b3, . . . , b3 j0 , b3 j0+1, b3 j0+2.

Besides that, sourced from x1 = a1, moving toward the opposite direction, the vertices in
{a0, an−1, an−2, . . . , an−(c−2), b0, bn−1, bn−2, . . . , bn−(c−3)} are cooled at the end of the c-th round.

Since
⌊

2n+4
5

⌋
is even, 3 j0 + 2 = 3

(
1
2

(⌊
2n+4

5

⌋
− 2

))
+ 2 = 1.5

(⌊
2n+4

5

⌋
− 2

)
+ 2 is an integer. We shall

show that by taking c =
⌊

2n+4
5

⌋
,

0 ≤
(
n − (c − 2) − 1.5

(⌊
2n + 4

5

⌋
− 2

)
− 2

)
− 1 ≤ 2. (2.2)

In fact, the lower bound follows from(
n − (c − 2) − 1.5

(⌊
2n + 4

5

⌋
− 2

)
− 2

)
− 1

=n −
(⌊

2n + 4
5

⌋
− 2

)
− 1.5

(⌊
2n + 4

5

⌋
− 2

)
− 3

=n − 2.5
⌊
2n + 4

5

⌋
+ 2

≥n − 2.5
(
2n + 4

5

)
+ 2 = 0,

whereas the upper bound follows from(
n − (c − 2) − 1.5

(⌊
2n + 4

5

⌋
− 2

)
− 2

)
− 1 = n − 2.5

⌊
2n + 4

5

⌋
+ 2

< n − 2.5
(
2n + 4

5
− 1

)
+ 2 = 2.5.

So, we conclude that the number of uncooled vertices in the outer rim is at most 2 at the end of the
(2 j0 + 2)-th round. Therefore, there are three possibilities at the end of the (2 j0 + 2)-th round,

(a) all vertices are cooled except

b3 j0+3,

in this case, there are no vertices between a3 j0+2 and an−(c−2).
(b) all vertices are cooled except

a3 j0+3,

b3 j0+3, b3 j0+4,

in this case, there are exactly one vertex a3 j0+3 between a3 j0+2 and an−(c−2).
(c) all vertices are cooled except

a3 j0+3, a3 j0+4,

b3 j0+3, b3 j0+4, b3 j0+5,

in this case, there are exactly two vertices a3 j0+3, a3 j0+4 between a3 j0+2 and an−(c−2).
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For cases (a) and (b), all these uncooled vertices are adjacent to some cooled vertices. So, no xc+1 can
be placed and we have the cooling sequence (x1, x2, . . . , xc, [xc+1]). Hence, k ≥ c + 1 =

⌊
2n+4

5

⌋
+ 1. For

case (c), we can only set xc+1 = b3 j0+4 because all other uncooled vertices are adjacent to some cooled
vertices. So, we have the cooling sequence (x1, x2, . . . , xc, xc+1). Hence, k ≥ c + 1 =

⌊
2n+4

5

⌋
+ 1.

This completes the proof of the theorem. �

2.2. Case for k = 2

Proposition 2.1. Let 3 ≤ n ≤ 5. Then CL(P(n, 2)) = 3.

Proof. Note that diam(P(3, 2)) = diam(P(4, 2)) = diam(P(5, 2)) = 2, and, hence, by Eq (1.1),
CL(P(3, 2)) ≤ 3, CL(P(4, 2)) ≤ 3 and CL(P(5, 2)) ≤ 3.

For n = 3, 4, 5 the proposition can be verified easily by having a choice of cooling sources, see
Table 1. Recall that the cooling sequence of a P(n, k) with c sources may only completely cooled the
graph in (c + 1) rounds and, hence, CL(P(n, k)) = c + 1.

Table 1. Cooling number of P(n, 2) for n = 3, 4, 5.

Cooling sequence Graph CL(P(n, 2))
(a1, b2, [x3]) P(3, 2) = P(3, 1) 3
(b1, a0, b2) P(4, 2) 3
(a1, b3, [x3]) P(5, 2) 3

This completes the proof. �

For the rest of the section, we used a similar isomorphic graph of P(n, 2), say H(n, 2), as defined
in [19] (see Figures 1 and 2).

a0 a1

a2

a3

a4a5

an−2

an−1

b1

b3

b5

bn−1

a1

a3

a5

an−1

a0

a2

a4

an−2

b0

b2

b4

bn−2

P(n, 2) H(n)

Figure 1. H(n) is isomorphic to P(n, 2) where n is even.
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a0

a1

a2

a3

a4an−4

an−3

an−2

an−1

b1

b3

b5

bn−2

a1

a3

a5

an−2

a0

a2

a4

an−3

b0

b2

b4

bn−3

an−1

bn−1

P(n, 2) H(n)

Figure 2. H(n) is isomorphic to P(n, 2) where n is odd.

It has been shown in [10] and [12] that diameter of P(n, 2) is O
(

n
4

)
. Here, we show the exact value.

Let d(x, y) be the distance between two vertices x and y.

Lemma 2.1. Let n ≥ 6. Then the diameter of P(n, 2) is
⌈

n
4

⌉
+ 2 if n is even and

⌈
n−1

4

⌉
+ 2 if n is odd.

Proof. Suppose n is even and n
2 is even. By referring to H(n), if we consider only vertices of the outer

rim, one of the maximum distances is d(a0, a n
2
) = 1 + n

4 + 1 = n
4 + 2 by first going to b0 and going to

in steps of 2 to b n
2

and then going to a n
2
. Note that d(a0, a n

2
) = d(a0, a n

2−1) = d(a0, a n
2 +1) = n

4 + 2. If we
consider one vertex from the outer rim, say a0 with another vertex bi, one of the maximum distances is
d(a0, b n

2 +1) = 2+ n
4 by first going through the path a1, then b1, and going to in steps of 2 in the inner rim

to b n
2 +1. If we consider only any two vertices of the two cycles in the inner rim, one of the maximum

distances is d(b0, b n
2−1) = 2 + n

4 by first going through path b0a0a1b1 and then going to in steps of 2 in
the inner rim to b n

2−1.
Suppose n is even and n

2 is odd. By referring to H(n), if we consider only vertices of the outer rim,
one of the maximum distances is d(a0, a n

2
) = 1 +

⌊
n
4

⌋
+ 2 = 1 + n−2

4 + 2 = n+2
4 + 2 =

⌈
n
4

⌉
+ 2 by first going

to a1, then b1, and going to in steps of 2 to b n
2

and then going to a n
2
. If we consider one vertex from the

outer rim, say a0 with another vertex bi, one of the maximum distances is d(a0, b n
2
) = 2 +

⌊
n
4

⌋
=

⌈
n
4

⌉
+ 1

by first going to a1 followed by b1 and going to in steps of 2 in the inner rim to b n
2
. If we consider

only any two vertices of the two cycles in the inner rim, one of the maximum distances is d(b0, b n
2
) =

2 + n+2
4 =

⌈
n
4

⌉
+ 2 by first going through path b0a0a1b1 and then going to in steps of 2 in the inner rim

to b n
2
.

Suppose n is odd and n−1
2 is even. By referring to H(n), if we consider only vertices of the outer rim,

one of the maximum distances is d(a0, a n−1
2

) = 1 + n−1
4 + 1 = n−1

4 + 2 by first going to b0 and going to in
steps of 2 to b n−1

2
and then going to a n−1

2
. Note that d(a0, a n−1

2
) = d(a0, a n−1

2 −1) = d(a0, a n−1
2 +1) = n−1

4 + 2.
If we consider one vertex from outer rim, say a0 with another vertex bi, one of the maximum distances
is d(a0, b n−1

2
) = 1 + n−1

4 by first going through the path a0, then b0, and going to in steps of 2 in the inner
rim to b n−1

2
. If we consider only any two vertices of the inner rim, one of the maximum distances is

d(b0, b n−1
2 −1) = 2 + n−1

4 by first going through path b0a0a1b1 and then going to in steps of 2 in the inner
rim to b n−1

2 −1.
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Suppose n is odd and n−1
2 is odd. By referring to H(n), if we consider only vertices of the outer rim,

one of the maximum distances is d(a0, a n−1
2

) = 1 +
⌈

n−1
4

⌉
+ 1 =

⌈
n
4

⌉
+ 2 by first going to a1, then b1, and

going to in steps of 2 to b n−1
2

and then going to a n−1
2

. If we consider one vertex from the outer rim, say

a0 with another vertex bi, one of the maximum distances is d(a0, b n−1
2

) = 1 +
⌈

n−1
4

⌉
by first going to a1

followed by b1 and going to in steps of 2 in the inner rim to b n−1
2

. If we consider only any two vertices

in the inner rim, one of the maximum distances is d(b0, b n−1
2

) = 2 +
⌈

n−1
4

⌉
by first going through path

b0a0a1b1 and then going to in steps of 2 in the inner rim to b n−1
2

.
This completes the proof. �

The following corollary follows directly from Eq (1.1) and Lemma 2.1.

Corollary 2.1. Let n ≥ 6. Then

CL(P(n, 2)) ≤


⌈

n−1
4

⌉
+ 3, if n is odd;⌈

n
4

⌉
+ 3, if n is even.

Now, we are ready to prove the following theorem.

Theorem 2.2. Let n ≥ 28. Then

CL(P(n, 2)) =



n
4 + 3, if n ≡ 0 mod 4;

n−2
4 + 3, if n ≡ 2 mod 4;

n−1
4 + 3, if n ≡ 1 mod 4;

n−3
4 + 4, if n ≡ 3 mod 4.

Proof. Suppose n ≡ 0 mod 4, i.e., n = 4k for some positive integer k. Then
⌈

n
4

⌉
+ 3 = k + 3. By

Corollary 2.1, CL(P(n, 2)) ≤ k + 3. To find the lower bound, we need to determine the cooling source
xi in round i. We place x1 = a0, x2 = a2, x3 = a4k−3, x4 = a4k−5, x5 = a4k−7, and for 6 ≤ i ≤ k + 2,
we place xi = a2i−5. Since n ≥ 28, we have k ≥ 7. It is not hard to see that at the end of round
k + 2, all vertices are cooled, except a2k and a2k+1. The vertex a2k is adjacent to the cooled vertex
b2k, whereas a2k+1 is adjacent to the cooled vertex b2k+1. Therefore, we have the cooling sequence
(x1, x2, . . . , xk+2, [xk+3]). Hence, CL(P(n, 2)) ≥ k + 3 =

⌈
n
4

⌉
+ 3, and the theorem holds for n ≡ 0

mod 4.
Suppose n ≡ 2 mod 4, i.e., n = 4k+2 for some positive integer k. First, we show that CL(P(n, 2)) ≤

k + 3. By Corollary 2.1, CL(P(n, 2)) ≤
⌈

n
4

⌉
+ 3 = k + 4. Suppose CL(P(n, 2)) = k + 4. So, it has a

cooling sequence (x1, x2, . . . , xk+3, [xk+4]) or (x1, x2, . . . , xk+3, xk+4). This means

V(P(n, 2)) \ (Nk+2[x1] ∪ {xk+3}) , ∅.

Without loss of generality, we may assume that x1 = a0 or b0. Suppose x1 = a0. Note that at the end of
round k + 2, all the vertices contained in Nk+1[x1] are cooled. Recall that xk+3 cannot be adjacent to a
cooled vertex. Therefore, xk+3 < Nk+2[x1] or, equivalently,

xk+3 ∈ V(P(n, 2)) \ Nk+2[x1] = {a2k+1}.
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So, we must have xk+3 = a2k+1. Now,

Nk+2[x1] ∪ {xk+3} = V(P(n, 2)),

a contradiction, as CL(P(n, 2)) = k + 4. Suppose x1 = b0. Note that at the end of round k + 2, all the
vertices contained in Nk+1[x1] are cooled. As before, xk+3 < Nk+2[b0] or, i.e.,

xk+3 ∈ V(P(n, 2)) \ Nk+2[x1] = {b2k+1}.

So, we must have xk+3 = b2k+1. Now,

Nk+2[x1] ∪ {xk+3} = V(P(n, 2)),

again, a contradiction. Hence, CL(P(n, 2)) ≤ k + 3. To find the lower bound, we place x1 = a0, x2 = a2,
x3 = a4k−1, x4 = a4k−3, x5 = a4k−5, and for 6 ≤ i ≤ k + 3, we place xi = a2i−5. It is not hard to see that at
the end of round k + 2, all vertices are cooled, except

a2k+3, a2k+2, a2k+1, a2k, a2k−1,

b2k+1.

Clearly, a2k+3 is adjacent to the cooled vertex b2k+3, a2k+2 is adjacent to the cooled vertex b2k+2, a2k is
adjacent to the cooled vertex b2k, a2k−1 is adjacent to the cooled vertex b2k−1, and b2k+1 is adjacent to
the cooled vertex b2k−1. So, at the end of round k + 3, all vertices are cooled, and we have the cooling
sequence (x1, x2, . . . , xk+2, xk+3). Hence, CL(P(n, 2)) = k + 3 = n−2

4 + 3 and the theorem holds for n ≡ 2
mod 4.

Suppose n ≡ 1 mod 4, i.e., n = 4k + 1 for some positive integer k. Then
⌈

n−1
4

⌉
+ 3 = k + 3. By

Corollary 2.1, CL(P(n, 2)) ≤ k + 3. To find the lower bound, we need to determine the cooling source
xi in round i. We place x1 = a0, x2 = a2, x3 = a4k−2, x4 = a4k−4, x5 = a4k−6, and for 6 ≤ i ≤ k + 2, we
place xi = a2i−5. It is not hard to see that at the end of round k + 2, all vertices are cooled, except

a2k+2, a2k+1, a2k.

The vertex a2k+2 is adjacent to the cooled vertex b2k+2, a2k+1 is adjacent to the cooled vertex b2k+1 and a2k

is adjacent to the cooled vertex b2k. Therefore, we have the cooling sequence (x1, x2, . . . , xk+2, [xk+3]).
Hence, CL(P(n, 2)) ≥ k + 3 = n−1

4 + 3 and the theorem holds for n ≡ 1 mod 4.
Suppose n ≡ 3 mod 4, i.e., n = 4k + 3 for some positive integer k. Then

⌈
n−1

4

⌉
+ 3 = k + 4. By

Corollary 2.1, CL(P(n, 2)) ≤ k + 4. To find the lower bound, we need to determine the cooling source,
xi in round i. We place x1 = a0, x2 = a2, x3 = a4k, x4 = a4k−2, x5 = a4k−4, and for 6 ≤ i ≤ k + 3,
we place xi = a2i−5. It is not hard to see that at the end of round k + 3, all vertices are cooled, except
a2k+2. The vertex a2k+2 is adjacent to the cooled vertex b2k+2. Therefore, we have the cooling sequence
(x1, x2, . . . , xk+3, [xk+4]). Hence, CL(P(n, 2)) ≥ k + 4 = n−3

4 + 4 and the theorem holds for n ≡ 3 mod 4.
This completes the proof of the theorem. �

To remark, for 6 ≤ n ≤ 27, by using similar choices of cooling sources in the proof of Theorem 2.2,
it can be easily seen that CL(P(n, 2)) ≥ O

(
n
4

)
. Here, we omitted the choices of the cooling sources for

these cases.
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2.3. General case

Lemma 2.2. Let k ≥ 3 be a fixed positive integer and n ≥ 2k. Then

diam(P(n, k)) =


⌊

n
2k

⌋
+ 1 +

⌊
k+1

2

⌋
, if

⌊
n
k

⌋
is even;

⌊
n
2k

⌋
+ 2 +

⌊
k+1

2

⌋
, if

⌊
n
k

⌋
is odd.

Proof. Note that
diam(P(n, k)) = max{d(a0, y), d(b0, y) : y ∈ V(P(n, k))},

where d(x, y) is the distance between x and y. We consider two cases.
Case 1. Suppose n = 2sk + r where 0 ≤ r < k − 1. If y = a j for some ik ≤ j ≤ ik +

⌊
k+1

2

⌋
where

0 ≤ i ≤ s − 1, then d(a0, y) = 2 + i + j − ik, which can be seen from the path

a0 → b0 → bk → · · · → bik → aik → aik+1 → · · · → a j. (2.3)

In particular, if i = s − 1 and j = (s − 1)k +
⌊

k+1
2

⌋
, then

d(a0, y) = 2 + (s − 1) +

⌊
k + 1

2

⌋
=

⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
.

If y = a j for some ik+
⌊

k+1
2

⌋
+1 ≤ j ≤ (i+1)k where 0 ≤ i ≤ s−1, then d(a0, y) = 2+(i+1)+(i+1)k− j,

which can be seen from the path

a0 → b0 → bk → · · · → b(i+1)k → a(i+1)k → a(i+1)k−1 → · · · → a j. (2.4)

In particular, if i = s − 1 and j = (s − 1)k +
⌊

k+1
2

⌋
+ 1, then

d(a0, y) = 2 + s + k −
⌊
k + 1

2

⌋
− 1 = 1 + s + k −

⌊
k + 1

2

⌋
,

and

d(a0, y) =


⌊

n
2k

⌋
+

⌊
k+1

2

⌋
, if k is odd;

⌊
n
2k

⌋
+ 1 +

⌊
k+1

2

⌋
if k is even.

If y = a j for some sk ≤ j ≤ sk +
⌊

r
2

⌋
, then d(a0, y) = 2 + s + j − sk, which can be seen from the path

a0 → b0 → bk → · · · → bsk → ask → ask+1 → · · · → a j. (2.5)

Thus, when j = sk +
⌊

r
2

⌋
, we have

d(a0, y) = 2 + s +

⌊ r
2

⌋
≤ 2 + s +

⌊
k − 1

2

⌋
=

⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
.
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This means if y = a j for 1 ≤ j ≤ sk +
⌊

r
2

⌋
, then

d(a0, y) ≤
⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
. (2.6)

By symmetry, if y = a j for some sk +
⌊

r
2

⌋
+ 1 ≤ j ≤ 2sk + r − 1, then (2.6) still holds.

If y = b j for some ik ≤ j ≤ ik +
⌊

k+1
2

⌋
+ 1 where 0 ≤ i ≤ s − 1, then d(a0, y) = j − ik + 1 + i, which

can seen from the path

a0 → a1 → · · · → a j−ik → b j−ik → b j−(i−1)k → · · · → b j. (2.7)

In particular, if i = s − 1 and j = (s − 1)k +
⌊

k+1
2

⌋
+ 1, then

d(a0, y) =

⌊
k + 1

2

⌋
+ 2 + (s − 1) =

⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
.

If y = b j for some ik+
⌊

k+1
2

⌋
+2 ≤ j ≤ (i+1)k where 0 ≤ i ≤ s−1, then d(a0, y) = (i+1)k− j+3+(i+1),

which can be seen from the path

a0 → b0 → bk → · · · → b(i+1)k → a(i+1)k → a(i+1)k−1 → · · · → a j → b j. (2.8)

In particular, if i = s − 1 and j = (s − 1)k +
⌊

k+1
2

⌋
+ 2, then

d(a0, y) = k −
⌊
k + 1

2

⌋
+ 1 + s,

and

d(a0, y) =


⌊

n
2k

⌋
+ 1 +

⌊
k+1

2

⌋
, if k is even;

⌊
n
2k

⌋
+

⌊
k+1

2

⌋
, if k is odd.

If y = b j for some sk ≤ j ≤ sk +
⌊

r
2

⌋
, then d(a0, y) = j − sk + 1 + s, which can be seen from the path

a0 → a1 → · · · → a j−sk → b j−sk → b j−(s−1)k → · · · → b j. (2.9)

Thus, when j = sk +
⌊

r
2

⌋
, we have

d(a0, y) =

⌊ r
2

⌋
+ 1 + s ≤

⌊ n
2k

⌋
+ 1 +

⌊
k − 1

2

⌋
=

⌊ n
2k

⌋
+

⌊
k + 1

2

⌋
.

This means if y = b j for 1 ≤ j ≤ sk +
⌊

r
2

⌋
, then

d(a0, y) ≤
⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
. (2.10)
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By symmetry, if y = b j for some sk +
⌊

r
2

⌋
+ 1 ≤ j ≤ 2sk + r− 1, then (2.10) still holds. So, we conclude

that

max{d(a0, y) : y ∈ V(P(n, k))} =

⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
.

Now, we consider d(b0, y). If y = a j for some ik ≤ j ≤ ik +
⌊

k+1
2

⌋
where 0 ≤ i ≤ s − 1, then by

considering the path in (2.3) (remove a0), we have

d(b0, y) ≤
⌊ n
2k

⌋
+

⌊
k + 1

2

⌋
.

If y = a j for some ik +
⌊

k+1
2

⌋
+ 1 ≤ j ≤ (i + 1)k where 0 ≤ i ≤ s−1, then by considering the path in (2.4)

(remove a0), we have

d(b0, y) ≤


⌊

n
2k

⌋
+

⌊
k+1

2

⌋
− 1, if k is odd;

⌊
n
2k

⌋
+

⌊
k+1

2

⌋
, if k is even.

If y = a j for some sk ≤ j ≤ sk +
⌊

r
2

⌋
, then by considering the path in (2.5) (remove a0), we have

d(b0, y) ≤
⌊ n
2k

⌋
+

⌊
k + 1

2

⌋
.

This means if y = a j for 1 ≤ j ≤ sk +
⌊

r
2

⌋
, then

d(b0, y) ≤
⌊ n
2k

⌋
+

⌊
k + 1

2

⌋
. (2.11)

By symmetry, if y = a j for some sk +
⌊

r
2

⌋
+ 1 ≤ j ≤ 2sk + r − 1, then (2.11) still holds.

If y = b j for some ik ≤ j ≤ ik +
⌊

k+1
2

⌋
where 0 ≤ i ≤ s − 1, then by considering the path in (2.7)

(adding b0 → a0), we have

d(b0, y) ≤
⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
.

If y = b j for some ik +
⌊

k+1
2

⌋
+ 1 ≤ j ≤ (i + 1)k where 0 ≤ i ≤ s−1, then by considering the path in (2.8)

(remove a0), we have

d(b0, y) ≤


⌊

n
2k

⌋
+ 1 +

⌊
k+1

2

⌋
, if k is even;

⌊
n
2k

⌋
+

⌊
k+1

2

⌋
, if k is odd.

If y = b j for some sk ≤ j ≤ sk +
⌊

r
2

⌋
, then by considering the path in (2.9) (adding b0 → a0), we have

d(b0, y) ≤
⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
.
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This means if y = b j for 1 ≤ j ≤ sk +
⌊

r
2

⌋
, then

d(b0, y) ≤
⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
. (2.12)

By symmetry, if y = b j for some sk +
⌊

r
2

⌋
+ 1 ≤ j ≤ 2sk + r− 1, then (2.12) still holds. So, we conclude

that

max{d(b0, y) : y ∈ V(P(n, k))} =

⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
.

Hence,

diam(P(n, k)) =

⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
.

Case 2. Suppose n = (2s + 1)k + r where 0 ≤ r < k − 1. We consider d(a0, y). If y = a j for some
ik ≤ j ≤ ik +

⌊
k+1

2

⌋
where 0 ≤ i ≤ s, then d(a0, y) = 2 + i + j − ik, which can be seen from the path

in (2.3). In particular, if i = s and j = sk +
⌊

k+1
2

⌋
, then

d(a0, y) = 2 + s +

⌊
k + 1

2

⌋
=

⌊ n
2k

⌋
+ 2 +

⌊
k + 1

2

⌋
.

If y = a j for some ik +
⌊

k+1
2

⌋
+ 1 ≤ j ≤ (i + 1)k where 0 ≤ i ≤ s, then d(a0, y) = 2 + (i + 1) + (i + 1)k− j,

which can be seen from the path in (2.4). In particular, if i = s and j = sk +
⌊

k+1
2

⌋
+ 1, then

d(a0, y) = 3 + s + k −
⌊
k + 1

2

⌋
− 1 = 2 + s + k −

⌊
k + 1

2

⌋
,

and

d(a0, y) =


⌊

n
2k

⌋
+ 1 +

⌊
k+1

2

⌋
, if k is odd;

⌊
n
2k

⌋
+ 2 +

⌊
k+1

2

⌋
, if k is even.

This means if y = a j for 1 ≤ j ≤ (s + 1)k, then

d(a0, y) ≤
⌊ n
2k

⌋
+ 2 +

⌊
k + 1

2

⌋
. (2.13)

By symmetry, if y = a j for some sk + r − 1 ≤ j ≤ (2s + 1)k + r − 1, then (2.13) still holds.
If y = b j for some ik ≤ j ≤ ik +

⌊
k+1

2

⌋
+ 1 where 0 ≤ i ≤ s, then d(a0, y) = j − ik + 1 + i, which can

be seen from the path in (2.7). In particular, if i = s and j = sk +
⌊

k+1
2

⌋
+ 1, then

d(a0, y) =

⌊
k + 1

2

⌋
+ 2 + s =

⌊ n
2k

⌋
+ 2 +

⌊
k + 1

2

⌋
.

If y = b j for some ik +
⌊

k+1
2

⌋
+ 2 ≤ j ≤ (i + 1)k where 0 ≤ i ≤ s, then d(a0, y) = (i + 1)k− j + 3 + (i + 1),

which can be seen from the path in (2.8). In particular, if i = s and j = sk +
⌊

k+1
2

⌋
+ 2, then

d(a0, y) = k −
⌊
k + 1

2

⌋
+ 2 + s,
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and

d(a0, y) =


⌊

n
2k

⌋
+ 2 +

⌊
k+1

2

⌋
, if k is even;

⌊
n
2k

⌋
+ 1 +

⌊
k+1

2

⌋
, if k is odd.

This means if y = b j for 1 ≤ j ≤ (s + 1)k, then

d(a0, y) ≤
⌊ n
2k

⌋
+ 2 +

⌊
k + 1

2

⌋
. (2.14)

By symmetry, if y = b j for some sk + r − 1 ≤ j ≤ (2s + 1)k + r − 1, then (2.14) still holds. Thus,

max{d(a0, y) : y ∈ V(P(n, k))} =

⌊ n
2k

⌋
+ 2 +

⌊
k + 1

2

⌋
.

Now, we consider d(b0, y). If y = a j for some ik ≤ j ≤ ik +
⌊

k+1
2

⌋
where 0 ≤ i ≤ s, then by

considering the path in (2.3) (remove a0), we have

d(b0, y) ≤
⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
.

If y = a j for some ik +
⌊

k+1
2

⌋
+ 1 ≤ j ≤ (i + 1)k where 0 ≤ i ≤ s, then by considering the path in (2.4)

(remove a0), we have

d(b0, y) ≤


⌊

n
2k

⌋
+

⌊
k+1

2

⌋
, if k is odd;

⌊
n
2k

⌋
+ 1 +

⌊
k+1

2

⌋
if k is even.

This means if y = a j for 1 ≤ j ≤ (s + 1)k, then

d(b0, y) ≤
⌊ n
2k

⌋
+ 1 +

⌊
k + 1

2

⌋
. (2.15)

By symmetry, if y = a j for some sk + r − 1 ≤ j ≤ (2s + 1)k + r − 1, then (2.15) still holds.
If y = b j for some ik ≤ j ≤ ik +

⌊
k+1

2

⌋
where 0 ≤ i ≤ s, then by considering the path in (2.7) (adding

b0 → a0), we have

d(b0, y) ≤
⌊ n
2k

⌋
+ 2 +

⌊
k + 1

2

⌋
.

If y = b j for some ik +
⌊

k+1
2

⌋
+ 1 ≤ j ≤ (i + 1)k where 0 ≤ i ≤ s, then by considering the path in (2.8)

(remove a0), we have

d(b0, y) ≤


⌊

n
2k

⌋
+ 2 +

⌊
k+1

2

⌋
, if k is even;

⌊
n
2k

⌋
+ 1 +

⌊
k+1

2

⌋
, if k is odd.

This means if y = b j for 1 ≤ j ≤ (s + 1)k, then

d(b0, y) ≤
⌊ n
2k

⌋
+ 2 +

⌊
k + 1

2

⌋
. (2.16)
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By symmetry, if y = b j for some sk + r − 1 ≤ j ≤ (2s + 1)k + r − 1, then (2.16) still holds. Hence,

max{d(b0, y) : y ∈ V(P(n, k))} =

⌊ n
2k

⌋
+ 2 +

⌊
k + 1

2

⌋
,

and

diam(P(n, k)) =

⌊ n
2k

⌋
+ 2 +

⌊
k + 1

2

⌋
.

This completes the proof of the lemma. �

Theorem 2.3. Let k ≥ 3 be a fixed positive integer and n ≥ 2k. Then

⌊ n
2k

⌋
+

⌊
k + 1

2

⌋
≤ CL(P(n, k)) ≤


⌊

n
2k

⌋
+ 2 +

⌊
k+1

2

⌋
, if

⌊
n
k

⌋
is even;

⌊
n
2k

⌋
+ 3 +

⌊
k+1

2

⌋
, if

⌊
n
k

⌋
is odd.

Proof. Let c =
⌊

n
2k

⌋
+

⌊
k+1

2

⌋
. In order to show the lower bound, instead of providing a cooling sequence

(x1, x2, . . . , xc) or (x1, x2, . . . , xc−1, [xc]) that can completely cool the whole graph, we provide choices
of cooling sources in the cooling sequence so that each assigned cooling source is of d(x j, xi) ≥ j− i+1
for i = 1, 2, . . . , j − 1. Let n = sk + r for some 0 ≤ r ≤ k − 1. To ease the explanation, we draw P(n, k)
as follows:

(i) Place the vertices a0, a1, a2, . . . , ak−1 horizontally from right to left.

(ii) Then, place the vertices ak, ak+1, . . . , ask−1 such that a( j+1)k+i is positioned right below a jk+i for
each i = 0, 1, 2, . . . , k − 1 and j = 0, 1, . . . , s− 1. Place ask+i below a(s−1)k+i for i = 0, 1, 2, . . . r − 1. Add
edges to form the outer rim cycle Cn = a0a1a2 . . . an−1.

(iii) Add the vertex b j beside a j for all j = 0, 1, 2, . . . , n − 1 and then draw the corresponding spoke
a jb j without any crossing.

(iv) Add the edges of the inner rim induced by the vertices {b0, b1, b2, . . . , bn−1}.
Here, we do the following to position each cooling source. Let

(i) x1 = bb n
2kck+b k−1

2 c
;

(ii) xi = ab n
2kck+b k−1

2 c−(i−1)k for each i = 2, 3, . . . ,
⌊

n
2k

⌋
+ 1;

(iii) xb n
2kc+1+ j = bb k−1

2 c
+ j for each j = 1, 2, . . . ,

⌊
k−1

2

⌋
.

Hence, CL(P(n, k)) ≥
⌊

n
2k

⌋
+ 1 +

⌊
k−1

2

⌋
=

⌊
n
2k

⌋
+

⌊
k+1

2

⌋
.

Figure 3 depicts the case for P(52, 7) such that CL(P(52, 7)) > 7.
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7 6 5 x4 5 6 6

6 5 4 x3 4 5 6

5 4 3 x2 3 4 5

5 4 3 2 3 4 5

6 5 4 3 4 5 6

7 6 5 4 5 6 7

7 7 6 5 6 7 8

7 8 7

x7 x6 x5 5 6 7 5

7 6 5 4 5 6 6

6 5 4 3 4 5 6

6 5 4 x1 4 5 6

7 6 5 2 5 6 7

7 7 6 3 6 7 8

6

7 7
4

7 8 7

6

78

Figure 3. Cooling in P(52, 7). The inner rim is induced by the black vertices
while the outer rim is induced by the brown vertices. Black labels indicate the
vertices of the cooling sequence in increasing order. Blue labels indicate the
round that the corresponding vertex was cooled.

The upper bound follows from Eq (1.1) and Lemma 2.2. �

The following corollary is an immediate consequence of Corollary 2.1 and Theorems 2.2 and 2.3.

Corollary 2.2. Let k ≥ 2 be a fixed positive integer and n ≥ 2k. Then

CL(P(n, k)) =

⌊ n
2k

⌋
+

⌊
k + 1

2

⌋
+ O(1).

3. Concluding remark

The cooling number, a relatively new graph parameter, aims to maximize the number of rounds
required to cool all vertices in a graph. It is the compelling counterpart to the extensively researched
burning number, offering a new perspective on dynamic processes within graphs. We presented the
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exact results for the cooling numbers of P(n, 1) and P(n, 2), while providing an asymptotic formula for
P(n, k) for general k.

While this paper focuses on generalized Petersen graphs, it could benefit a discussion on how
the results might generalize to other families of graphs or how the use of vertex-transitivity and
combinatorial arguments to derive the cooling sequences could be adapted. This would broaden the
impact of the results and suggest potential avenues for future research.
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