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result and some well-known ones, like Holder’s, the power mean, improved Holder, improved power
mean, convexity, and bounded features of the function, we obtained new bounds for Euler-Maclaurin’s
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1. Introduction and preliminaries

The theory of integral inequalities is studied to estimate the various mathematical quantities, and
relying on the concept of inequality, numerous concepts of mathematical analysis are developed. One
of these concepts, convex functions, is particularly useful in determining notable inequalities such as
Young’s inequality, Holder’s type inequalities, Jensen’s inequality, trapezium’s inequality, Ostrowski’s
type inequalities, Simpson’s type inequalities, and so on. It is interesting to note that Jensen’s and
Hermite-Hadamard inequalities are studied as equivalent definitions of convex mappings and necessary
and sufficient conditions to check the concavity of functions, respectively.

Definition 1.1. Let F : [m;,m;] — R be considered as convex mapping if
F(1 -2)w+zw)) < (1 —2)F(w) + zF(wy), Y w,w, € [m,m;], (1.1)
where z € [0, 1].

LetF : I = [m;,m;] C R — R be a convex mapping, then

Pt < I fmF(w)dst.
2 my —my Jn, 2

(1.2)
1

Innovative and creative strategies have been employed to analyze the Hermite-Hadamard
inequality. We can determine the boundaries for the remainder in trapezoidal and mid-point rules
employed for numerical integration by assessing the inequality from both the right and left sides,
respectively. For more details, see [1]. As far as we are aware, Simpson’s rule is the most
frequently applied three-point approximation integration rule, although it has the disadvantage of
being inapplicable to functions that are not differentiable at the domain’s endpoints. In the part that
follows, we recapture the Simpson’s % formula and the well-known Simpson’s inequality, which is
demonstrated as:

mp +mp

f " Flwydw ~ é [F(ml) ; 4F(

m

) ; F(mz)] .

Theorem 1.1. [2] IfF : [m;,my] — R is a four times continuously differentiable on (m;, m,), and
IF®leo = SUP ey my) IF¥| < oo, then

‘é[F(m1)+4F(ml;m2)+F(m2)]— ! fsz(w)dw

my —my Jpy,

1
< @ s
< 2880”F [loo (112 — m1)°.

To address the limitation of Simpson’s inequality, the Maclaurin method is employed since it does
not involve any boundary points in its quadrature rules. We present the Maclaurin’s inequality, which
is stated as:

Theorem 1.2. Let F : [my,my] — R be a four times continuously differentiable on (m,,m,), and
IF9|o = SUP oy o) IF®| < oo, then

i
‘1(3/:(—5’”1+m2)+2F(m1;m2)+3F(’"1+5m2))— ! fF(w)dwl

< T(my — my)?
51840

IFco-
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In 2009, Alomari et al. [3] explored the general form of Simpson’s-like inequalities utilizing s-
convexity of functions. Budak et al. [4] presented some fresh improvements regarding Simpson’s
type inequalities by making use of newly proposed quantum operators. Yang et al. [5] obtained
new representations of Simpson’s-like inequalities using (s,m) convex mappings. Noor et al. [6]
presented the inequalities of the trapezium type, utilizing the definition of harmonic convexity for two
dimensions. Set et al. [7] obtained some Ostrowski-like inequalities by making use of s-convexity and
fractional concepts. In [8], the authors discussed the Dragomir-Agarwal type inequalities incorporated
with the generalized convexity and (p, g) calculus. In 2020, Chu et al. [9] came up with a new type of n-
polynomial strongly convex mappings and worked out some new, stronger Simpson’s type inequalities
using Katugampola fractional integral operators. Dragomir and Rassias [10] published a monograph
on Ostrowski’s type inequalities and their utilities. In [11] applied a unified technique to extract the
bounds for various error inequalities incorporated with monotone mappings. Ujevic [12] discussed the
sharp inequalities of Simpsons’s and Ostrowski’s type. For more details, see [13—15].

In 2013, Alomari and Dragomir [16] introduced a new unified kernel and developed the error
bounds of several Newton-Cotes formulas, including Euler-Maclaurin’s inequality. Meftah et al. [17]
came up with error bounds for Euler-Maclaurin’s method using the idea of generalized convexity
in the fractal domain. They then used the results in numerical integration to show that they were
correct. In 2023, Hezenci and his fellows [18] investigated the fractional forms of Euler-Maclaurin-
like inequalities associated with convex functions. Additionally, simulations verify the outcomes.
In [19], the authors utilized the g approach to obtain more general and improved Euler-Maclaurin’s type
inequalities. In the continuation, Peng and Du [20] implemented the concepts of multiplicative calculus
and established the new error estimates regarding Maclaurin’s formula. In 2013, for the first time,
Alomari [21] derived the error estimates for Milne’s formula for first-order differentiable mappings.
This article paved the way to investigate these kinds of methods. Budak et al. [22] investigated the error
estimates of open methods involving convex functions and functions having the property of bounded
variation and their applications. Also, Bin-Mohsin et al. [23] used quantum mechanics and the Jensen-
Mercer inequality to look at new inequalities of Milne’s type and used graphs to show that their results
were correct.

Research on Euler-Maclaurin’s inequality has motivated us to derive more accurate upper bounds
for under-consideration inequality and its applications, particularly a novel iterative algorithm related
to the open method of Maclaurin’s rule. We determine Euler-Maclaurin’s type inequalities via a
new identity established for first-order differentiable and convex mappings, bridging some elementary
results from the theory of inequalities. Our obtained estimates will yield more accurate results
than those found in other research. Moreover, we visualize and verify our primary outcomes
through graphical representations and numerical examples. To increase reliability, we present novel
applications of theoretical means, numerical integration, and a new iterative method to solve non-
linear problems.

2. Major results
In the following part of the investigation, we construct new error boundaries for first order

differentiable convex by leveraging the elementary concepts of inequalities. First, we prove a new
differentiable identity concerning Maclaurin’s procedure.
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Lemma 2.1. LetF : I = [m;,m;] — R be a differential mapping on I° with my < m, and F € L[m,, m;,],

then the following equality hold

1 1 "
Z13F M + ZF(M) +3F m + Sm; - f F(w)dw
8 6 2 6 my — Ny m

1 1

= (my — my) [f6 zF' (1 — z2)m, + zm,)dz + fz (z - %)F’((l —z)m; + zm,)dz
0 é
s 1
+f (Z — %)F’((l —z)my + zmy)dz + f (z-DF (1 -2z)m; + zmz)dz] .

Proof. Let

1
6
I = f ZF,((l —z2)my + zmy)dz
0

L= fz (z - %)F'((l —z)m; + zm,)dz

1
6

[=N[9))

I = f (z - %)F'((l —2)my + zm,)dz

1
Ly = f (z - DF'((1 = 2)m; + zm,)dz.

6

Implementing the integration by parts, we have

I

Z(F((l - Z)m1 + ng))

nmy —my

C fé F((L= 7y +2ms)
— Z
0

my —m

0

1
1 1_(5 6
- Cp(2tm) f’ F(1 = 2)my + zmy)dz
my — mj »6 6 0
[ Smy +my
1 1_(5 1
= —F (2 ) 6 F(w)dw|.
myp — my 6 6 my —my Jp,

Similarly, we obtain

( 3) F((1 — z2)m; + zm») : fé F((1 —z2)m; + zm»)
L=|z - dz

my —my % my —nmy
1 1 mp +mp 5 5m1 + my 1 iy
- —F( ) +2F - F(w)dw| .
my — m, [8 2 24 ( 6 ) my —my Jamom (@)de
S\ F((1 =2)m; +zm) P (% F((1 = 2ymy + zm)
13 =\|z—- — - dz
8 my — mq 1 1 nyp —my
my+5my
1 1 my +myp 5 my; + Smy 1 6
= —F( ) + _F - F d )
—— [8 2 24 ( 6 ) o —my Jmems (@) “’]

2.1

(2.2)

(2.3)

(2.4)

AIMS Mathematics Volume 9, Issue 12, 35885-35909.



35889

Li=@-1 F((1 — z2)m; + zm») ! 3 fl F((1 -2z)m; + zmz)dZ
np —m 2 5 my —m
1 1 1 !
_ Tp(mtom) f Flw)dw| . (2.5)
ny — mq 6 6 my — nmy ’"|+65'"2

Summing (2.2-2.5) and then taking the product of the obtained results by (m, — m;), we get (2.1). O

Theorem 2.1. Assume that all of the requirements of Lemma 2.1 are fulfilled. If |F’| is a convex mapping
on [my,my], then

1 ! "
Ll5e Smy + my, + 2F(m1 + mz) +3F m; + Smyp _ f F(w)dw (26)
2 6 my —my my

< 25(my — my)
N 576

Proof. Considering Lemma 2.1 and implementing the modulus characteristic and the convexity of |F’|,
we have

o
l[gF(—Sml+m2)+2F(m1;m2)+3F(m1+5m2)]— ! fF(w)dw|

(IF'(mpl + IF"(m2)).

6 nyp — My m

1

1 1
< (my = my) Uﬁ ZAF (1 = 2)m, + zmy)|dz + fz 7 %‘ F'((1 = Z)my + zmy)|dz
0 :

5
6
+
1
2

< (my —my) [f6 z((1 = 2)IF'(mp)] + z|F'(m>)])dz + j:z

0
5
6
+f
1
2

— (my —m) [ f " A1 = DIF ()] + 2F (mo))dz

0

5 1

zZ— §‘ IF'((1 = z)my + zm,)|dz + f |z — 1|F'((1 = z2)m; + Zmz)ldz}
5
3

3
z- g‘ (1 = 2)F"(m)| + z|F’ (m2)])dz

5 1
z- g‘ ((1 = 2)F"(mp)| + z|F"(m2)l)dz + ﬁ |z = 11((1 = 2)IF (my)| + ZIF'(mz)I)dZ}

1

’ U | (% i Z) <) (Z i %)] (= 2F m)] + 2F (ma)))dz
% 5 % 5 , ’
+ [ﬁ (§ - Z) + ﬁ (Z - g)] ((1 = 2)|F (my)| + zIF' (my)|)dz

1
+ ﬂ |z = 1I((1 = 2)IF" (my)] + z|F’(m2)|)dz}

6

25(m, —
- %(IF’(%N + IF' (ma)).

The proof is completed. O

We now give a graphical illustration of the above mentioned result.
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Example 2.1. Suppose all the properties of Theorem 2.1 are met, and considering the mapping F(z) =

rng%*z defined on R* withr > 1, 0 > 1, m; = 1 and m, = 3 be a convex function. Then,

9(3 (g)q}e +2(2r+929)+3(§)r+929) 02 (3%}9 ) 1)
8(20 + r) C2((r + 20)(r + 30)

25 r+6
<— (37 +1).
<57 +1)

Under similar assumptions with @ = 1 = r = 6, Theorem 3.2 proved in [17] and Theorem 2.1 provide
the following bounds for Maclaurin’s inequality: 0 < 0.7525 and 0 < 0.8681, respectively. Our results
provide better estimations compared to results previously established.

{L.H.S(Blue), R-H.S(Yellow)}
1

F(r) F(e

140F RHS
08
120F
100 - 06}
8of
04l RHS

(b) 2 3 4 5 é % ' (C) 2 3 4 5 6-LAs
Figure 1. Graphical visuals of left and right sides of Theorem 2.1.

e For Figure 1(a)—(c), we vary r € [1,5] and 0 € [1,5] to illustrate the comparison between the
left and right sides of Theorem 2.1. From these visuals, one can easily observe that the left side
is strictly less than the right hand side of Theorem 2.1, which confirms the accuracy of under-
consideration of the result.

Theorem 2.2. Assume that all of the requirements of Lemma 2.1 are fulfilled. If |F'|? is a convex
mapping on [m;,my], g > 1, then

1 3F S+ m + 2F(m1 al mz) +3F (2 Fma )| _ ! fmz Fw)dw
8 6 2 6 my —my Jy,

Y |
6Pl (p + 1)

11 1 g
< (mp —my) [( (7—2|F'(m1)|q + 7—2|F'(m2)|q)

1

L5\ (1YY (2. Y
(rl&) (&) )] Gromr grom)

1 1

U1V 5V (L 2 i
(ol (&) )) (G Seom)

1 1
V(1 1\
+ —) (ilF (m1)|q+ﬁ|/‘_ (mz)q) },

6Pl (p+1)
where L +1 = 1.
P g
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Proof. Taking p > 1. Considering Lemma 2.1, and making the utility of notable Holder’s integral
inequality and the convexity of |F’|?, we achieve

‘ 1

< (my —my) [f6 zIF (1 = 2)m; + zmy)|dz + fz
0 8

5
6
+f
1
2

(5m1 + my

mp +mp
2F
o

my + 5m2

6

F (a))dw‘

S =i

Z- %‘ IF'(1 — z2)m; + zm,)|dz

1
zZ— g‘ IF'((1 = z)ymy + zm,)|dz + f |z — 1|F' (1 = z2)m; + Zm2)|dZ:|
5
5

< (mp —my) [[fé Zde]P [f6 IF'((1 —z)m; + Zmz)lqdz]q
0 0

+

+

< (mp —my) l(fﬁ Zde]
0

+

+

1
= (my —my) [(

_l_

AIMS Mathematics

Z_§
8

1
2
[
5
6
A
1 3 1
flz—ll”dz) (
% 3

7 — —

8

T =

Z_E
3

1
2
J
6
5
f6
%
1 3 1
flz—ll”dz) [f
; :

5
Z__
8

6Pl (p+1)

1 5 ”“+ 1
p+1\\24 8
1 1p+1+ 5
p+1\\8 24

1 v (1
— | |=F
6ri(p+ 1)) \72

’ dz],, ( f (= DF (mp)l? + z|F'<m2>q>dz)

} dZ]p [fﬁ((l —2)IF" (mpl? + ZIF’(W)q)dZ]

1 1
b Yo ([ 0
dz] ( f CF = Zymy + Zmz)lqdz)
6
s V([ i
dz f IF'((1 — z)m; + zm,)|%dz
1

IF'((1 = z)m; + zmz)lqdz)q]

[fﬁ((l — 2)IF" (ml” + le'(mz)q)dz)
0

q

q

(1 = DF ()l + z|F'<m2)q>dz)q]

1 1
P11, 1 4
(7—2|F (mp)? + 7—2|F (m2)|q)

1

POV (2 1 Z
)) (§|F'(m1)|q + §|F'(m2)q)

p+1\\» 1 2 q
)) (§|F'(m1)|q + §|F'(m2)q)

(m)|* + %IF'(Mz)q)q] ;
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which ends the proof. O

Below is the graphical illustration of Theorem 2.2.

Example 2.2. Suppose all the properties of Theorem 2.2 are met, and considering the mapping F(z) =

0

TZHZ%” defined on R* withr > 1, 0 > 1, m; = 1 and m, = 3 be a convex function. Then,

o) 2 0)T) e
8(r + 26) 2((r + 20)(r + 36))

1 11 1 vt 19 2 1 re
Sz[\/@[ 7—2+7—2(32“”))+\/1—s4[\/§+§(3””))

19 1 2/ 2 1 1 11 r420
+\/@[\/§+§(3292)J+\/@[ ﬁ+ﬁ(3202)] .

e For Figure 2(a)—(c), we vary r € [1,5] and 0 € [1, 5] to illustrate the comparison between the
left and right sides of Theorem 2.2. From these visuals, one can easily observe that the left
side is strictly less than the right side of Theorem 2.2, which confirms the accuracy of under-
consideration of the result.

{L.H.S(Blue), R.H.S(Yellow)}
5

(a) 6 (b) ¢ () —
Figure 2. Graphical visuals of left and right sides of Theorem 2.2.

Theorem 2.3. Assume that all of the requirements of Lemma 2.1 are fulfilled. If |F’|? is a convex

mapping on [my,my], g > 1, then

1 Smy + + +5 1 "

‘_ (2 g () g (I [ F(w)dw‘
2 m2 - m] mi

8 6 6
17\"7% ( 863
576

1
361 q
IF"(m)|? + —|F'(m2)q)

1 1
1\ /1 1 ‘
—| (=Pl + —F (mo))¢
( ) (81| (mol" + 22l (mZ)l) +( 41472 41472

< —
< (mo =m) || 25 6438

1

1
17\ ( 361 863 R RN |
F T4+ ——|F a — —F 94 —|F q
+(576) (41472| (my)] +41472| (mz)) +(72) (648' (my)| +81| (mz))

»Q

Proof. Considering Lemma 2.1, implementing the power-mean’s inequality and the convexity of |F’|7,
we get

my
‘l[y(—sml+m2)+2F(m1;m2)+3F(m1+5m2)]— ! fF(w)dw‘

8 6 6 m2 _ml nmi
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1 1
< (my —my) [fﬁ zIF (1 = z)m; + zmy)|dz + fz zZ— %‘ IF'((1 = z)my + zm,)|dz
0 8

' f ‘
2 1 =i 7
< (my—m) [[f Zdz] (f z((1 = 2)|F (m)|? + ZlF'(mz)q)dZ)
0 0
. i
+ f dz] (f
6% 5 -5 6%
L F=3le) (]
1 s i
+ f; |z — 1|dz) (ﬁ |z — 1|((1 = 2)|F (my)|? + Z|F’(m2)q)dz) }
1\ (1 1 i (17\77( 863
= (my —my) [(i) (aV:'(ml)r] + @Vz'(mzﬂq) + (576) (

17\'"7 ( 361 863 R 1 L
F’ T+ ———|F (my)? — —F 94 —IF (m~)d
+(576) (41472| ()l + ] (mz)) +(72) (648| ()l + =] (mz))

1
z— %‘ IF"((1 — z)ymy + zmy)|dz + f Iz — 1IF' (1 = z)m; + Zi’l’Q)le}
%

3
Z__

8

- g' (1= DF (m)|? + Z|F'(m2)q)dl]

z- %' (1 = 2)IF (m)l” + z|F’(m2)‘1)dz]

1
361 ;
F/(m)lf + ———|F (1)
a1’ o+ s (mZ))

Hence, we acquire our required result. O
Here is the visual analysis of Theorem 2.3.

Example 2.3. Suppose all the properties of Theorem 2.3 are met, and considering the mapping F(z) =

#02925” defined on R* withr > 1, 0 > 1, m; = 1 and m, = 3 be a convex function. Then,

3T 20 +3(9)7) e o)
8(r + 26) T 2((r +20)(r + 36))

(1 1 o 19 ( [863 36 /o
< _ — 4+ — (379 e
= 2[\/648 ( 31 " aas )] * \/5184 (\/41472 * )]
19 361 863 . \/ 1 11 oo
" \/5184 (\/41472 " )) Vs [ o 51 3 )H

e For Figure 3(a)—(c), we vary r € [1,5] and 0 € [1, 5] to illustrate the comparison between the
left and right sides of Theorem 2.3. From these visuals, one can easily observe that the left
side is strictly less than the right side of Theorem 2.3, which confirms the accuracy of under-
consideration of the result.
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{L.H.S(Blue), R.H.S(Yellow)}
5

(b) 2 3 /; ‘5 r (C) 2 3 4 5 o-1ns
Figure 3. Graphical visuals of left and right sides of Theorem 2.3.

Theorem 2.4. Assume that all of the requirements of Lemma 2.1 are fulfilled. If |F'|? is a convex
mapping on [my,m], g > 1, then

my
‘1[3F(—5m]+m2)+2F(ml;m2)+3F(m1+5m2)]— ! fF(w)da)'

my —mp Jpy,
1 1
1 r(17 1 a
< - F’ T+ —|F 1
< (my ml){6 [(6P+2(p+ 1)(p+2)) (1296' (m)|* + 1296| (my)| )

1 (1 1 7
+ (—) (—lF'(ml)lq + —|F'(mz)|q) }

6r+2(p +2) 81 648

<=

1
3742 4 5P+1(1T 4 8p)\7 [ 13 5
F(m) + ——IF' (my)|¢
[( 24p+2(p+1)(p+2)) (324| (m)l" + 353 1F (m2)l

5P42 4 3041(13 4 8p)\7 ( 11 7 g
F ()l + ——IF (ma)l
(24p+2(p+1)(p+2)) (324' (mol" + 354 (mZ)l)

Q=

5742 4 3041(13 4+ 8p)\7 [ 7 1
F ()l + ——IF' (mo)?
[( 24P+2(p+1)(p+2)) (324| (mol" + 35417 (m2)

3742 4 504113 + 8p)\7 [ 5 13 i
F'm)l + ——IF (my)|"
(24P+2(p+1)(p+2)) (324| (m)l"+ 3541 (mZ)l)

1 vl 1 7
F’ q F/ q
+6{(6p+2(p+2)) (648| ol + =] <m2>|)

1 1 17 i
M (6p+z(p +1)(p +2)) (1296|F mol"+ 5561 (m2)|q) }}

where L +1 = 1.
P q

Proof. Considering Lemma 2.1, by implementing the improved Holder’s inequality and the convexity
of |F'|9, we get

my
‘l[y(—sml+m2)+2F(m1;m2)+3F(m1+5m2)]— ! fF(a))dw‘

8 6 6 m2 _ml nmi
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1

S(mz—ml)[féle'((l—z)ml+Zm2)|dz+f
0 :
+f6
VISR I —
< (my—m)J6 fz” - —z|dz f(——z)lF((l—z)m1+zm2)|qdz
0 6 o \6

+ [fﬁ z”(z)dz)ﬂ [fﬁ zIF (1 — z)my + Zmz)ldz]q
0 0
3\ (% - z) dz)p (j; (% - z) IF'((1 — z)m; + zm,)|%dz

N—

zZ— %‘ IF'((1 = z)my + zm,)|dz

1
z- g‘ IF"((1 — z)my + zmy)|dz + f Iz - 1IF' (1 = z)m; + zmg)ldz}
%

Q1=

; [ [
[f; zZ— % p(% — z)dz)p [f; (% - z) IF'((1 = z)ymy + zm,)|%dz
% ’ ! d % : ! F((1 ad '
+ £ Z—E z £ Z_El (1 = 2)my + zmy)|dz
1 3 1 ; A
(ﬁ lz— 1/ (1-12) dz) (ﬁ (1-2)|F {1 -2z2)ym + Zmz)lqdz]
1 5 TI) 1 5 é
+ (ﬁ |z —1° (Z - 6) dz) (ﬁ (Z - 8) IF'(1 = z2)m; + zmz)quz) ]

1 P17 1 g
< (m - m1>{6 [( T 2)) (1296|F (It + o IF <m2)|Q)

1 (1 - ]
+(m) (8_1|F (m1)|q+@|/: (m2)|q)}

3)[(3P+2+5P+1(11 +8p))11’(1 i

|
Q1=

+3

+6

T

3 5
Fm)lf + ——|F (m)l
W Dp+2) ) \3al (mlF gl im)

1

5042 L 3041 (13 4 8p)\7 (11 7 i
( Z ) ( Fom)l* + - FF (mz)w)

24r2(p+ 1)(p+2) ) \324 32
5042 4 3041(13 4+ 8p)\7 [ 7 1 a
3 F'(m)|? + ——|F (my)|?
[( 2472(p + 1)(p +2) ) (324| (ol + 3541 (m2)
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(3P+2 + 577113 + Sp));’ ( 5

1

13 i

Fm)lf + = |F (m)l
W )pr2)) \32al M gl (mz)l)]

+

1 1
1 V(1 1 7
6 F ()l + —IF (my)|f
(6P+2(p+2)) (648' (my)| +81| (mz)l)

1 1 17 3
+ (6,,+2(p o 2)) (1296|F (" + s F <m2>|‘1) ]}

which ends the proof. O

Example 2.4. Suppose all the properties of Theorem 2.4 are met, and considering the mapping F(z) =

ﬁzgﬂ defined on R* withr > 1, 0 > 1, m; = 1 and m, = 3 be a convex function. Then,

0(3 (%‘)ﬁgﬂ? N 2(2,-+629) +3 (g)rt}zg) 02 (3%35; _ 1)
8(r + 20) T 2((r +20)(r + 36))

I 17 1 o 1 TN

<2 e = — (3=~
. {6[\/15552(\/1296+ E )]+ \/5184[ TRETIC )
[ [ 1 13 5 /o \/ 677 \/11 RN
+3 \/1152 (\/324 * 35 0 )J * 1990656( TR S |

[ 677 7 11 s \/1\/5 13 (o )|
+ \/1990656[\/324+324 (3" ))+ 1152( TRETTL )

[ [ 1 1 1 /s \/ 1 \/ 1 17 /s
+o \/5184[ aas 1 )]+ 15552[ 7296 * 1206 0 )J}}

e For Figure 4(a)—(c), we vary r € [1,5] and 0 € [1, 5] to illustrate the comparison between the
left and right hand side of Theorem 2.4. From these visuals, one can easily observe that the left
side is strictly less than the right side of Theorem 2.4, which confirms the accuracy of under-
consideration of the result.

{L.H.S(Blue), R.H.S(Yellow)}

NN
A

%

\

(a) (b) 2 3 4 5" e (C) 7 % 7y +—0- LHS

Figure 4. Graphical visuals of left and right sides of Theorem 2.4.
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Theorem 2.5. Assume that all of the requirements of Lemma 2.1 are fulfilled. If |[F'| < M, M > 0 is
convex function on [my, m,), then

iy
‘1[3/:(—5’"1+m2)+2F(m”2“m2)+3F(’"1+5m2)]— ! fF(w)dw‘

8 6 6 my —my Jpy,
< 25M(my — my)
- 288 '

Proof. Considering Lemma 2.1 and the convexity of |F’|, we have

Lz (2t m +2F(m1+m2)+3F mtom 1 f F(w)dw
8 6 2 6 my —my Jy,

1

< (my —my) [f6 ZIF (1 = 2)m; + zmy)|dz + f2
0 :

5
6
+f
1
2

< (my —my) [ f " AL = DIF )] + 2F mo)dz + f i

0
SM(mz—m1)[j:ZdZ+[ ;(g‘z)+f(z_§)]dz

6

LG Lo [ om0

2

_ 25M(m2 - l’l’l])
B 288 ‘

Hence, we acquire the required outcome. O

3
zZ— g‘ IF'((1 = z2)my + zm,)|dz

1
zZ— %‘ IF'((1 = z)my + zm,)|dz + f |z = 1IF' (1 - 2)m; + zmz)ldz}
5
6

1

3
z— g\ (1 = 2)F (m)| + 2 (my)dz

5 1
zZ— g‘ (1 = 2)IF (my)| + zIF (mp))dz + j; |z — 1I((1 = 2)IF"(my)| + Z|F'(m2)|)d2}

-

w

+

Here is the graphical analysis of Theorem 2.5.

Example 2.5. Suppose all the properties of Theorem 2.5 are met, and considering the mapping F(z) =

#92925” defined on R* withr > 1, 0 > 1, m; = 1 and m, = 3 be a convex function. Then,

o) 20 +3()7) e o)
8(r+20) B 2((r + 26)(r + 36))

25 r+6
<—|(1+37).
288 ( )

e For Figure 5(a)—(c), we vary r € [1,5] and 0 € [1,5] to illustrate the comparison between
the left and right hand side of Theorem 2.5. From these visuals, one can observe that the left
side is strictly less than the right side of Theorem 2.5, which confirms the accuracy of under-
consideration of the result.
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{L.H.S(Blue), R.H.S(Yellow)}

05

LHS
6 LHS
' (C) 2 3 4 5

(b) *
Figure 5. Graphical visuals of left and right sides of Theorem 2.5.

Theorem 2.6. Assume that all of the requirements of Lemma 2.1 are fulfilled. If |F’|? is a convex
mapping on [m;,my], g > 1, then

my
‘1[3,:(—5”’“+m2)+2F(m“2Lm2)+3F(m‘+5m2)]— ! fF(w)dw'

8 6 6 =
1 l_é 11 1 é
< - 6 F’ q 1= g
= ml){ [(1296) (15552| m)l' + 75557 (mZ)l)
1 - 7 1 1
- —F’ q F/ q
+(648) (5184| ()l + 57eg] (mz)l)
; 1
251 \'"v({ 3059 319 !
’ q , q
- [(41472) (663552|F P+ 2atisal (mZ)l)
1 1
157 \'"77( 4631 2905 :
- —F/ q —F’ q
+(41472) (1990656' m)l + 7550656 ™2 ”
1 1
157 \'77( 2905 4631 i
’ q AT = q
+ [(41472) (199O6S6|F mol" + 150636 (m2)|)
251 \'"1( 319 3059 ;
- 4 q 4 q
+(41472) (221184|F mf Ge3ssa (’"Z)l) ]
; 1
AN 1 7 4
- —|F q ’ q
) (e o]

N EUURNS | S N
+(1296) (15552| (m)l" + 15553 (mZ)l) ’

where g > 1.

Proof. Through Lemma 2.1, implementing the improved power-mean inequality and the convexity of
IF'|7, we get

)
Llzg(2mtm +2F(’"1+’"2)+3F mtSm)| 1 f F(w)dw

< (my —my) [f6 ZIF (1 — z)m; + zmy)|dz + fz
0 :

3
Z-— g' IF'((1 = z)m; + zm,)|dz
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5 1

A g‘ IF'((1 = z)my + zm,)|dz + f |z — 1||F'((1 = 2)m; + Zmz)IdZ]
5
3

1 =0 ot i
(f z(é —z) dz) (f (é —z) zIF (1 — z)m, +zm2)|"dz]
0 0
b g
+ [ f zzdz] [ f 2Z2IF (1 - 2)my +zm2)|dz) ]
0 0
(f;z—g'——zdz) (
(3
NS NN
; N (i
AL (S
1 s ;
6 (f; lz—1](1 - Z)dZ) (‘ﬁ (1-2)z-1IF({(1-2)m; + Zm2)|qu)

1-1

1 5 q 1 5 %
+ (‘ﬁ |z — 1] (Z - 6) dz) (ﬁ (Z — 6) |z — 1| IF'((1 = 2)m; + Zm2)|qu] ]

5
6
+
1
2

< (mz - ml) {6

Q=

+3

z——||= - z) IF'((1 — z2)m; + zm,)|%dz

3

8 ‘73

(Z - —) IF'((1 —z)m; + ng)lqu]

Q=

+3 zZ— —| IF'((1 — 2)m; + zmy)|dz

=

5
Z__

8

5 7
— g‘ IF'((1 —z)m; + zmz)lqdz]

6 6

ctm—m 6 (L s )
= 1296 15552 : 15552 ™

1\"a( 7 ;
_ q F’ q
* (648) (5184| )l + 5184| (m2)| )

251 \'"1( 3059 319 g
+3[( ) ( IF"(m)|? + IF’(m 2)|q)

41472) 663552 221184
1 1
157 \'"1( 4631 2905 a
FI q F/ q
+(41472) (1990656| I+ 500656 2! ”
157 \'"7 [ 2905 4631 '
4 f] q
+3 [(41472) (1990656|F ml' + 1550636 " 2)|)

251 \'79( 319 3059 7
- 4 q ’ q
+(41472) (221184|F mol'+ G355 (2l ) }
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+6

1 1
1\79( 1 7 a
— P (ml+ ——IF (mo)l
(648) (5184| (mol" + 5753 (mz)l)

1
1 \77( 1 11 a
’ q 4 q
+(1296) (15552'F )l + 35555 (m2)|) ]}

which ends the proof. O

Example 2.6. Suppose all the properties of Theorem 2.6 are met, and considering the mapping F(z) =

#‘;625” defined on R* withr > 1, 0 > 1, m; = 1 and m, = 3 be a convex function. Then,

9(3 (%)Lﬁw +2(2r+929)+3(§)r+929) P (3% B 1)
8(r + 26) 2((r +26)(r + 36))
< 2{6

1 11 1 syers 1 7 1 sw
+ (3 g ) + + (3 g )
1296 | V15552 15552 648 | V5184 5184
+3'\/ 251 \/3059 . 319 (37) +\/ 157 \/ 4631 . 2905 (37)
| V41472 V663552 * 221184 41472 | YV 1990656 ~ 1990656
+3’\/ 157 \/ 2905 .\ 4631 (37) +\/251 \/ 319 .\ 3059 (37)
41472 Y 1990656 ' 1990656 414721 NV 221184 ' 663552

WE 1 Tz \/ 1 \/ 1 11 (a2
6 370 35 )|t
T \/648(\/5184+5184( 9 )]+ 1296[ 5552 * 13552 (0 )H}

e For Figure 6(a)—(c), we vary r € [1,5] and 6 € [1,5] to illustrate the comparison between the left
and right hand side of Theorem 2.6. From these visuals, one observe that the left side is strictly
less than the right side of Theorem 2.6, which confirms the accuracy of under-consideration of
the result.

{L.H.S(Blue), R.H.S(Yellow)}
5

(b) 2 3 4 % ’ He (C) 2 3 4 5 6-LHS
Figure 6. Graphical visuals of left and right sides of Theorem 2.6.

3. Applications
In this section, we discuss applications of our primary innovations. First, we establish a
relationship between the means of nonnegative real numbers by taking into account certain outcomes

from the previous section. We also present various numerical integration implementations.
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3.1. The quadrature formula

Suppose a partition P : m; = wy < Wy < ... < W, < W, = my 1s obtained by dividing the interval
[my, m,] into n subintervals [w;, w;,1] withi =0,1,...,n — 1, then

fmz F(w)dx = T(w) + R(w).

1

Here,

T(w) =2

my [3F(5m1 +m2) + 2F(m1 ;—mz)_i_ 3F(m1 + SMQ)] ’

8 6 6

and R(w) denotes the error term.

Proposition 3.1. All the conditions of Theorem 2.1 are fulfilled, then

© 25(wis1 - wi) ., ,
R@) < e (F @)l + F (@i)).

Proof. The proof is simply attained by applying the sum from i = 0 to n — 1 over subinterval [w;, w;1]
in Theorem 2.1. O

Proposition 3.2. All the conditions of Theorem 2.4 are fulfilled, so

) | P17 1 i
IR(w)| < ;(wm - w;) {6 [(6””(19 Py 2)) (1296| (W)l + T%'F (wis)|? )

| , ;
(m) ( IF’(w)| + JSV: (Wir)I? ) ]

{(31”2 + 577111 + 8p)\?

7 (13
Flwplt + ——|F
24p+2(p+1)(p+2)) (324| (@l + P @ie)l"

5042 4 374113 + 8p)\? , ,
(24p+2(p+1)(p+2)) (324|F( W)+ S lF @ }

1
5P+2+3p+1(13+8p) > ,
F/
" {( 24P+2<p+1><p+2>) (324' @I+ @l

IF (w)l” + —IF’(wm)I

3742 4 507113 4 8p)\7 [ 5
324 324

24r+2(p + 1)(p + 2)

oy , /
o {(61’”(19 ¥ 2)) (648 Pl + —IF (wm)rf)

1 P17 , ;
+ (6p+2(p+ 1)(p+2)) (1296|F (w )|q+ ﬁllz (wz+1)| ) }}
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Proof. The proof is simply attained by applying the sum from i = O to n — 1 over subinterval [w;, w;41]
in Theorem 2.4. O

Proposition 3.3. All the conditions of Theorem 2.5 are fulfilled, then

n—1
25M(wiyy — w))
IR(w)| < :
; 288

Proof. The proof is simply attained by applying the sum from i = 0 to n — 1 over subinterval [w;, w;;1]
in Theorem 2.5. O

3.2. Applications to means

We recall some notable means for non-negative real numbers.

(1) The arithmetic mean:
mp + mp

2

A(my,my) =
(2) The Weighted arithmetic mean:

mwi + mow,
wA(WI,WZa ml,mz) = -
w1 + wy

(3) The log-mean:

m2r+l _ mlr+l

(r+ D(my —my)

L,(m,my) =

] ; re R\ {-1,0}.
Proposition 3.4. From Theorem 2.2, we get

. 51 ; 15
‘L[3A9+2(m1,m2,6 6)+2A9 (ml,mz)+3A9+2(m1,mz,6,6)]— "+2(m1,mz)

Q=

1
1 (1 , ,
- —Al(11 (y+1)q’ (5+Dgq
(6P+1(p+1) (36 (11m ma!01)

1 5 p+1 1 p+IN\\ p 2 . ) é
+ -— +1| = —A (2m1(9+1)”,m2(§+1)q)
p+1|\24 8 9

1

1 1p+l 5 p+IN\ 7 2 . . i
Rl ) o)

1 1
(o (La i) |
6r+l(p+1)

Proof. The statement of claim is directly followed by substitution F(z) = z9+2 in Theorem 2.2. 0O

Proposition 3.5. From Theorem 2.3, we have

m

L9+2
8(r + 20) (1, m2)

51 15
[3A9+2(m1,m2,6 6)+2A9+2(ml,mz)+3A"+ (ml,m2,6 6)
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_ =
==

72 81

1
1\77(1 , , 17\ 1
_ (+D) (+D) (z+1) (z+1D)
< (m, ml)[( ) (—A (m1 7, 8m, ‘1)) + (_576) (—20736A (863m 7,361m, q))

1 1 1 1
17\ 1 . , a 1\77(1 a
(5+1) (5+1) . (5+1), (5+1),
+(576) (20736‘4(361’“1 ", 863my0 q)) +(72) (81A(8m1 7 my ,,)) ]

Proof. By substituting F(z) = +2929+2 in Theorem 2.3, we attain our desired result. O

3.3. Applications to probability functions

Assume that X be a convex with respect to probability density mapping, p : [m;,m,] — [0, 1],
and cumulative distribution mapping is explored as:

12

Pr(X <mp) = F(my) = f p(z)dz.

1

Utilizing the fact that

E(X):f 2zp(z)dz

1

EX)=m, — fmz p(z)dz.

my

Proposition 3.6. Through Theorem 2.1, we have

1 5 5 -EX
|3pr(x < 2T +2Pr(X§m1+m2)+3PrXsml+ m)|_maZ EX)
8 6 2 6 my —m,
25(my — my)
< e (p(m)| + |p(m)).
Proof. The assertion follows directly by making use of probability density mapping in Theorem 2.1.
O
Proposition 3.7. Through Theorem 2.1, we have
1 5 5 -EX
3P (x < 2T +2Pr(X§ml+m2)+3PrXsml+ m)|_maZ EX) 5y
8 6 2 6 my — my
25M(my, — my)
<—. 33
- 288 (3-3)
Proof. The assertion follows directly by making use of probability density mapping in Theorem 2.5.
O
4. Application to numerical scheme
Algorithm 4.1. Suppose we have a non-linear equation F(w) = 0, then
8F(wy,
e =t = () (“.1)

3F7 (Ren) 4 o (ko) 4 3F7 (20
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where

_ F(w)
" Flwy)

w1, = W

Proof. From Theorem 2.1 applying the result over [w,, w] for F’, we achieve the following result,

w — W, Sw, + w w, +w w; + 5w
—F = F’ 2F | —— |+ F .
o= 52 o (2 o (25) e (252

This implies that

8F(wn)
w=w,— .
’ Swytw 7 [ Wntw y [ w1+50w
3F7 (3452) 4 2F (25 + F7 (1£22)
Taking Newton’s method as predictor, we obtained our desired Algorithm 4.1. O

4.1. Numerical analysis

In the following subsequent portion, we demonstrate the numerical analysis of the developed
scheme 4.1. For this, we consider some physical problems.

(1) The first problem we consider is the Blood Rheology and Fractional Non-Linear Equations
Model [24]. Since blood is Casson fluid. To discuss the plug flow of Casson fluids, we take into
account the given non-linear fractional equation, where a decrease in flow rate is measured by:

16 4 1
Flw)y=1-— +-w-—w' -
(w) 7 Vo 30) > 1w G,
where reduction in flow rate is measured by G = 04. If we choose an initial guess of
wo = 0.1. Then, we use using the proposed Algorithm 4.1, which gives the required solution

w = 0.10469865153654822812 in four iterations.

(2) For the second problem, we consider is the Fluid Permeability in Biogels [24]. The link
between pressure gradient and fluid velocity in porous media (such as agarose gel or extracellular fibre
matrix) is shown by the nonlinear equation below:

F(w) = R0 = 20x(1 — w)?,

where R, = 10x 107 and k = 0.3655. Using initial guess of w, = 2, we have noticed that the proposed
Algorithm 4.1 reached at destination w = 1.0000369883881891758 in twenty iterations.
(3) The third problem is [25]:

0.4(1 - w)
0.4 -0.5w

F(w) = % ~5log [ ] +4.45977, 4.2)
where w specifies the conversion of species A in chemical reactor and w € [0, 1], for other value of
w there does not exist any physical meanings. Using Algorithm 4.1, we have searched the solution
w = 0.75739624625375387946 after four iterations. Note that expression (4.2) becomes undefined
when w € [0.8, 1]. The derivative of (4.2) approaches to 0 when w € [0, 0.5]. Thus, we assume the
initial approximation to be wy = 0.76 for the current problem.
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We now present some more numerical experiments and study the comparison analysis of
Algorithm 4.1. For this, we consider the following different types of non-linear equations:

(1) F(w) = &* + 40 - 15,

2) F(w) = xe” —sinw +3cosw + 5,

(3) F(w) = 10we™ — 1,

4) F(w) = e + cos w.

We compare our proposed method Algorithm 4.1 with well-known techniques such as the Newton
method (NM) [26], Abbasbandy’s method (AM) [27], Halley’s method (HM) [26] and Chun’s method
(CM) [28]. To determine the approximate root, we employ a tolerance of € = 10", The subsequent
termination conditions are utilized for computer algorithms:

(D) |wps1 — wil <€,

() IF(wns)l < €.

Numerical tests were conducted on an Intel(R) Core(TM) i5 processor with 1.60 GHz and 16GB
RAM. Maple 2020 was used for coding, while graphical analysis was carried out using Matlab 2021.
After carrying out numerical tests on the software below we present tabular as well as visual
illustrations of Algorithm 4.1 for the above mentioned examples in Table 1.

Table 1. Comparison of different methods for various examples.

Methods w, IT w, F(w,) 1)

NM 2 6 1.6319808055660635175 0 0

AM 2 4 1.6319808055660635175 0 0

HM 2 4 1.6319808055660635175 0 0

cM 2 4 1.6319808055660635175 0 0

ALG 2 4 1.6319808055660635175 0 0

NM -1 6 —1.2076478271309189270 4.0x 107" 7.58 x 107"
AM -1 5 —1.2076478271309189270 4.0x 107" 0

HM -1 4 —1.2076478271309189270 4.0x 107" 0

cM -1 5 -1.2076478271309189270 4.0x 107 0

ALG -1 5 —1.2076478271309189270 4.0x 107" 0

NM 1.8 5 1.6796306104284499407 -9x 1072 4.7395x 107"
AM 1.8 4  1.6796306104284499407 -9x1072 1.0x107"
HM 1.8 4  1.6796306104284499407 -9x1072 0

cM 1.8 4  1.6796306104284499407 2.0x107° 0

ALG 1.8 4 1.6796306104284499407 -9x1072 0

NM 2 5 1.7461395304080124176 6.0x 1072 1.0x 107"
AM 2 4  1.7461395304080124176 —-6x 1072 1.0x 107"
HM 2 4  1.7461395304080124176 6.0x 1072 1.0x 107"
cM 2 3 1.7461395304080124176 —-6x 1072 4.63x 107"
ALG 2 4 1.7461395304080124176 6x 1072  1.0x 107"

4.2. Basins of attraction

Here, we briefly describe the Algorithm 4.1 through the basins of attraction. We deploy our
proposed Algorithm on [-2, 2] X [-2, 2] with a 1000 x 1000 points grid by fixing the tolerance |F(w,)| <
1 x 1071° and the maximum number of iterations is 50. Along with this, we also present probability
distributions of the required iterations for obtaining the basins of attraction. The red line in the plots
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will indicate the most probable number of iterations. For this purpose, we consider these examples
W -1, -1, —1,and * + 1.

Figure 7 contains the basin of attraction of above mentioned examples, while Figure 8 provides
us the probability distribution of these examples based on the number of iterations.
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5. Conclusions

One of the featured aspects of research regarding error analysis is to establish new error bounds for
quadrature rules involving different strategies. Integral inequalities are the main source for evaluating
the error estimations of numerical integration rules. In this study, we develop new integral inequalities
of Euler-Maclaurin’s type involving convex mappings. It is worth mentioning that our results provide
better upper bounds compared to other results for first-order differentiable mappings. Also, we
derive various applications for means, quadrature rules, and novel iterative schemes. We establish
a differentiable identity that enables us to achieve several other bounds through various classes of
functions, such as strong and uniform convex functions, Breckner convex functions, exponential
convex functions, and Godunova-Levin convexity. In the future, we will attempt to establish some
tight bounds of this inequality through higher-order differentiable mappings and other functional
classes in different frameworks. We hope the methodology and idea of the paper will create new
research dimensions.
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