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1. Introduction

In multi-attribute decision-making (MADM) scenarios, particularly in environments that involve
complex intuitionistic fuzzy (CIF) values, it is crucial to account for both the interaction between
criteria and the logical conjunction of values. The combination of the Choquet Integral, often known as
the C-I and the Hamacher t-norm, enables this dual handling of information. The Choquet Integral is
known for its ability to model the interaction among criteria through fuzzy measures, making it an
effective tool for criteria that influence each other. However, by itself, it does not provide the
flexibility needed to define conjunctions of fuzzy values, especially when dealing with varying levels
of uncertainty. The Hamacher t-norm complements the Choquet Integral by offering a generalized
approach to algebraic conjunctions, which can be adjusted through its parameter to reflect different
logical relationships between attributes.

By fusing the Hamacher t-norm with the Choquet Integral, the newly developed operator
provides a more robust aggregation framework, particularly suited to MADM problems that involve
CIF values. The advantage of this fusion lies in the ability to not only model interactions (via the
Choquet integral) but also control the degree of conjunction (via the Hamacher t-norm), resulting in
greater flexibility and accuracy in decision-making. This new operator stands apart from other
operators due to its ability to handle more complex forms of uncertainty and interaction, offering
improved performance in decision-making tasks compared to operators that rely on either Hamacher
t-norms or Choquet integral alone. In addition, Wang et al. [2] conducted research on the extraction of
knowledge using fuzzy rule-based methods. Moreover, Roman-Flores et al. [3] investigated how to
solve several fuzzy differential equations. Dehghan et al. [4] developed the solution for fuzzy linear
systems of equations. In 1994, Heiden and Brickmann [5] investigated the process of dividing protein
surfaces into segments using fuzzy logic. In addition, Atanassov [6] made modifications to the FS and
developed a new theory known as intuitionistic FS (IFS). The IFS consists of the degrees of both truth
and falsity, whereas the FS is a specific instance of the IFS. Several applications have been described
in the following manner: Liu et al. [7] introduced the linguistic IFS, Xie et al. [8] discussed data quality
for IFS, Liu et al. [9] explored internet human decision for IFST, Garg et al. [10] investigated the cubic
IFS, Wang et al. [11] evaluated the probabilistic dominance relation for IFS, and Ecer [12] presented
the MAIRCA for IFS. Zhang et al. [13] used the fuzzy proportional-integral-derivative for packaging
gas distribution system. Garg et al. [14] Schweizer and Sklar developed the prioritized operators for
IFS, whereas Mahmood et al. [15] suggested the power operators for intuitionistic hesitation. Both FS
and IFS have focused solely on the amplitude term, neglecting the phase. As a result, a large amount of
data has been lost throughout the decision-making process. It has been observed that the inclusion of
the phase term offers numerous advantages, particularly in situations involving two-dimensional data.
For example, when a potential buyer, referred to as “A”, visits a car showroom to purchase a car, the
owner provides two types of data for each vehicle: The name of the car (representing the real part) and
the production data of the car (representing the imaginary part). It is important to note that the FS is
unable to evaluate this type of data. Thus, Ramot et al. [16] developed the complex FS (CFS) to
represent the truth grade using complex numbers. The real and imaginary components of the complex
number lie within the unit interval. In addition, Liu et al. [17] developed the distance measure for CFS,
whereas Mahmood et al. [ 18] assessed the interdependence of complex fuzzy neighborhood operators.
In addition, the role of falsity grades in CFS is absent. Instead, Alkouri et al. [19] derived the complex
IFS (CIFS). The theory of CIFS has garnered significant attention from various scholars, resulting in
numerous applications. For example, Mahmood et al. [20] introduced the Aczel-Alsina power
operators, Garg et al. [21] explored the trigonometric operators, Azeem et al. [22] investigated the
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Einstein operators, Garg et al. [23] examined the geometric operators, and Ali et al. [24] presented the
prioritized operators.

Prior to investigating the primary subject of the proposed work, it is important to examine the
fundamental concepts that are highly beneficial for the proposed work. As a result, our initial focus
was on Hamacher’s [25] 1975 theory of the t-norm and t-conorm. Hamacher norms are a modified
approach to algebraic norms. In addition, Choquet [26] conducted an examination of the Choquet
integral in 1953. Several researchers have applied the Hamacher norms, Choquet integral, or both in
their work. Huang [27] created the Hamacher operator for IFS, Akram et al. [28] created the Hamacher
operator for CIFS, Xu [29] described the Choquet integral for weighted IFS, Wang et al. [30] created
the Choquet integral based on averaging operators for IFS, Tan et al. [31,32] examined the Choquet
integral operators for IFS and induced IFS, and Mahmood et al. [33] created the Hamacher
Choquet-integral operators for IFS. It has been observed that no one has suggested the theory of
Choquet integral for CIFS, and the theory of Hamacher Choquet-integral operators for CIFS has also
not been obtained. In 2023, Mahmood et al. [34], introduced Aczel Alsina aggregation operators.
Ejegwa et al. [35] present the applications of emergency management and pattern recognition using
intuitionistic fuzzy similarity operators. In 2023, Akram et al. [36] defined a new decision model by
combination of CIF with Hamacher aggregation operators. In 2023, Al-Qubati [37], presented
Choquet integral aggregation operators with TOPSIS technique and using the Hamacher norm for
complex intuitionistic fuzzy set. Some bibliometric analysis on decision-making analysis is given by
the various authors and are summarized in Ref. [38—41]. Our main focus of this study is to assess the
provided information, including

(1) To introduce the Hamacher operating rules for the CIF values.
(2) To obtain the CIFHC-IA operator, CIFHC-IOA operator, CIFHC-IG operator and

CIFHC-IOG operator.

(3) Additionally, an analysis is conducted on the attributes and special situations of the suggested
approaches.

(4) The operational phases for MADM issues with CIF values were shown in detail to introduce a
novel method based on the created operators.

(5) Finally, a comparison study using the shown cases is provided between the proposed and
current methodologies to demonstrate the superiority and validity of the developed approaches.

This article is sectioned as follows: Section 2 has a comprehensive discussion of CIFSs, fuzzy
measures, Choquet integral, Hamacher t-norm, and Hamacher t-conorm, all of which are basic
concepts related to a specific set X. In Section 3, we introduce the Hamacher operational laws,
namely the CIFHC-IA operator, CIFHC-IOA operator, CIFHC-IG operator, and CIFHC-IOG
operator. Additionally, an analysis of the attributes and special situations of the suggested
methodologies is conducted. In Section 4, a novel approach is presented utilizing newly devised
operators for Multiple Attribute Decision Making (MADM) issues with CIF values. The procedural
stages were thoroughly illustrated. In Section 5, we provide a comparative examination of the
proposed and current methodologies, using illustrative examples to demonstrate the superiority and
validity of the derived approaches. The final and conclusive observations are presented in Section 6.

2. Preliminaries

In this section, we present the basic concepts of CIFSs, fuzzy measures, Choquet integral,
Hamacher t-norm, and Hamacher t-conorm for a certain set X.
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Definition 1. [19] A CIFS E; is structured in the following manner:
E, = {(%@(b),m@(b)) b € X (1)

where Wy (b) = (QB% (b),ﬂBé) (b)) and iy, (b) = (ER% (b),m’@ (b)) are memberships, and

non-membership is represented by a complicated integer with two significant attributes, such as 0 <
Wy (b) + NH(d) < 1 and 0 < Wyy(b) + Ny (b) < 1. Additionally, the computed structure K,.(b) =

(&E(p), &L(D)) = <1 - (QB% () + 9y (b)) ,1— (QB% () + 9y (b))) represents the value of neutral
information with the simple form of CIF number (CIFN), such as E} =
(a0} ), (925 .9 )) o= 12,1

Definition 2. [20] For a CIFN E}; = ((EIBS*,QB’%), (ER%ER{D)),*= 1. The focus has been on

reviewing the concept of score and accuracy function, such as
Eg_ o = %(%5* —Ng + Wy, — Ny, ) € [-1,1] )
« 1 .
E—ci =5 (5, + N5, + Wy, + %) € [5,1]. 3)

Here, some rules for the data in Eqs (2) and (3) are also explained, such as
(1) When Ej__; > E&_;, then EL > EZ.

(2) When Ei__; < E&_;, then E < EZ.
(3) When EJ__., = E& _;, then
1) When E}_; > Ef_,;, then EY > EZ%.
2) When Ej_.; < Ef_.;, then EY < EZ.
Definition 3. [25] The fundamental concept of Hamacher t-norm and Hamacher t-conorm has been

re-examined for any combination of positive values.

bo
pPo= 0+(1—0)(d+0—bo)’ 4)
__ d+o—do—(1-0)bo

PQo="r—"—"— )

1-(1—9)do

In addition, by varying the parameter g, several types of t-norms can be obtained. For example, by
substituting ¢ = 1 into Eqgs (4) and (5), the following result is obtained:

@ o = bo, (6)

>@®o=>b+0—bdo. (7)
The data in Egs (6) and (7) represent the mathematical form of algebraic t-norms. When p = 2 is
substituted into Eqgs (4) and (5), the following result is obtained:

bo

bPo=—2 (8)

T 1+4(1-d)(1-0)’

d® o=

b+
1+d0

)

The data in Eqgs (8) and (9) are stated the mathematical shape of Einstein t-norms.
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Definition 4. [26] The major idea of Choquet integral based on the fuzzy measure is described
below:

fﬁ'dE = Z]*=1 (E(ﬁs(*)) - E(ﬁs(*—n)) #5(*) (10)
—[Ms(1+YE®)) 1] m2
Yb.eaE(D.) m=Z

where Z(x) represents permutations for (1,2,...,1) with of £z(1) = #z2) = =+ = Fz() and E=0,
Esty = {Ezqy Ezyr 0 Bz}

[$3]

E(E) =E(II\=,b.) =

3. CIF Hamacher C-l operators

In section, we present the original concept of Hamacher operational laws for CIFNs.
Subsequently, the theory of four operators CIFHC-IA, CIFHC-IOA, CIFHC-IG, and CIFHC-IOG, is
assessed using these operational laws. The Hamacher parameter plays a crucial role in the
decision-making analysis by influencing the aggregation process in fuzzy logic or multi-criteria
decision analysis (MCDA). Specifically, it controls the degree of interaction between the criteria
being evaluated. A higher value of the Hamacher parameter tends to emphasize the more influential
criteria, leading to a stronger impact of the most significant factors on the final decision. Conversely,
a lower value of the Hamacher parameter tends to distribute influence more evenly among the
criteria, resulting in a more balanced aggregation.

Moreover, some desirable properties and important results are also examined in this section for

the collection of CIFNs E:iz((%g*,%l@*), (%giﬁ%)),*z 1,2,...,1. Here, the Hamacher

operations for CIFNs have been examined or derived, such as

L= (14 (e-DBF ) -TTos (1-5 ) [Ti=s (1+(e- 1)), )-ITos (1-8), )
ey (14— DB )+ (0= Ty (1-5, )" iy (14— WY )+ (e~ D ey (1-1 ) ) 12)
ell=1(1-F,)-e[1aa (1-WY, -NGy,) @[Tz (1-Wh, ) -0 [Tima (1-WY, ~Rg, )
Ly (14— DBE )+ (e-D My (1-5, )" My (14 (- WY )+ (0D ey (1~ )

EQEL® .. QEy =
Moy (19 )- ey (1-F —0F ) oMoy (1-9h,) -0 [T (1-), -5t )
o1 (14e-D9E )+ (e-D ey (1-25 ) " TIey (14— 1D )+ (e-D Ty (19 ) )

(13)
l_[l=1(1+(9_1)m‘§*)_nl=1(1_m‘§*) 1*:1(1"'(9_1)9?%)*)‘1_[1:1(1‘9?‘5]*)
Moy (14— DRF )+ (0= D My (1-%F, )" Tamy (14 (0= )+ (0~ Ty (1-7 )

( (1"'(@—1)%51)._(1_%‘51). (1+(Q—1)%‘§J1)._(1_%§)1). >

(1+(Q—1)%§1).—(9—1)(1—%‘}51). ’ (1+(Q—1)m5)1)._(9‘1)(1‘%{2)1). ’
( o(1-n§,)"-o(1-mf,-9f,)" _o(1-mh,)"—o(1-mh, -wh,)" )
(

1+(Q—1)%§1)._(9_1)(1_%‘51). ’ (1+(Q—1)QB;151).—(9—1)(1—%12)1).

1 _
mE,; =

(14)
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EE A SN

(1+(Q_1)m‘§1)-_(9_1)(1_m51)- , (1+(Q—1)mé)1)-_(9_1)(1_5%)1)- ,
< (1+e-v9f, )" ~(1-55 )" (1+Ge-09h, )" ~(1-xh, )" )
(1+(Q_1)m51)-_(9_1)(1_m51)- , (1+(9_1)m‘51)._(9_1)(1_%5)1).

1.
Eci -

(15)

Definition 5. For the finite collection of CIFNS, the theory of the CIFHC-IA operator is stated as follows:
f E,dE = CIFHC — IA(EL, EZ, ..., EL)
= (E(Es(l)) - E(ﬁs(s))) E, ® (E(l?_:(z)) - E(ﬁs(l))) EG D ..
1

® (E(E=) — E(Ea-n)) Bt = z (E(Es) — E(Esie-n)) Eoi

*x=1

=@.o1 (E(Bz) — E(Bzo) ) i (16)

Theorem 1. Considering the data in Eq (16), it is proven that the aggregated value is again a CIFN,
such as:

CIFHC — IA(EL, EZ, ...,E.)

ci’

(1 + (o - 1);1)35*)(E(ﬁs(*))—E(fs(*_n)) e smg*)(E(fs(,f))—E(fs(*—n))

l:l(l n (Q _ 1)%%*)(E(ﬁs(*))—E(fs(*—n)) + (Q —1) lel(l _ QB%*)(E(EE(*))_E@E(*—D)) ’
(14 (0 — DWW )(E(fs(*))—E(I?s(*_l))) Ty (1 — 2} )(E(ﬁs(*))—E(ﬁs(*—l)))

)

Lo (14 (0 — DWW, )(E(f?s(*))—b"(fs(*—ﬁ)) + (- DTy (1 -}, )(E(ﬁg(*))—E(ﬁE(*—l)))
0 H1*=1(1 — QB%*)(E(ﬁs(*))_E(EE‘(*—l))) —0 l—[1*=1(1 _ QB%* _ mg*)(E(ﬁE(*))_E(ﬁs(*—l)))

a1+ o - g ) EE ) oy (1 — g ) (EBe)FEeen))
olli=:(1 - QBGID*)(E(fs(*))—E(T?E(*—ﬂ)) — oITey(1 — T} — mgy*)(E(fg(*))—E(fs(*_l)))

]*=1(1 + (Q — 1)91&11)*)(E(fs(*))—E(fs(*—ﬂ)) + (Q _ 1) l_[]*:l(l _ QB{D*)(E(fs(*))—E(EE(*_l)))

(17)
Proof. To demonstrate the validity of the facts presented in Eq (17), the method of mathematical
induction was utilized. Specifically, when 1 = 2, the following is true:
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(E(EE(U) - E(EE(E))) E
(1+ (e — W )(E(fs(l))_E(ﬁs(l—l))) —(1-m§ )(E(fs(l))-E(fs(l—l))) j

(1+ (- 1)51)351)(E(f5(1))—E(§5(1—1))) +e-D(1- QB%l)(E(ﬁi(l))‘E(ﬁsu_l))) ,
(1+ (e — D)Wy )(E(I?E(l))_E(fE(l—l))) — (1 -}, )(E(ﬁi(l))_E(fE(l—l)))

(1 + (o — 1)5])31@1)(E(f5(1))—5(§5(1—1))) + (o - 1)(1 _ mlml)(E(EE(D)_E@EG—D))

o(1- %51)(E(ﬁs(l))_E(ﬁs(l—ﬂ)) —o(1-m} — m%l)(E(ﬁs(l))_E(ﬁE(l—l))) J

(1 + (Q — 1)9351)(E(fs(l))—E(l?su—n)) n (Q _ 1)(1 _ QBSI)(E(ﬁs(l))_E(ﬁsu—n)) ’

o(1— W} )(E(fs(l))—E(fs(l-n)) —o(1- W - )(E(fg(l))—E(fE(l_l)))

(1+ (- 1)%12)1)(E(fsu))—E(fs(l-l))) +-1(1- gm,@l)(E(ﬁs(l))_;g(ﬁs(l_l)))

(E(EE(Z)) - E(EE(l))) EZ
(14 (o — Dk, ) EEe)EEeen)) _ (1 _ gup y(EEs)-5Ese-n)

(1+ (e — W )(E(I?s(z))-E(fs(z—l))) +e-1(1-mG )(E(I?E(Z))—E(fs(z_l)))’
(1+ (e — D)WY )(E(I?E(Z))_E(ff(z—l))) — (1 -}, )(E(ﬁE(Z))_E(EE(Z—l)))

(1 + (o — 1)5])31@2)(E(fs(z))—E(ﬁs(z—ﬂ)) + (o — 1)(1 _ QB!DZ)(E(fs(z))—E(fs(z_l)))
o(1- QB%Z)(E(ﬁs(Z))_E(ﬁi(z-D)) —o(1-W - mgz)(E(fs(z))-E(fs(z-l))) J

(1+ (- 1)9)352)(E(fs(z))—E(fs(z-n)) +-1(1- QBgz)(15(EE(Z))_E(fs(Z_l)))

o(1 -} )(E(fs(z))—E(fs(z-n)) —o(1-ml) — N )(E(T?E(z))—E(fE(Z_I)))

(1+ (- 1)WY )(E(fs(z))—E(fs(z-n)) +e-D(1- m )(E(fs(z))—E(T;E(Z_l)))

Thus,
= (E(Bz) — E () ) Bl ® (E(Bz) — E(B)) B2
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_ 9BR )(E(ﬁs(n)—b"(fsu )

(1 + (o — 1)%1 )(E(§5(1))—E(f5(1—1))) _ (1 _

(1 n (Q 1)51)31? (E(EH(1))—E(§5(1—1))) + (Q . 1)(1 _

)(E(E z())~E(Ez1- 1))

[ (1 + (o — 1)QBR )(E(§5(1))—E(§5(1—1))) _ (1

(1 + (o — 1)5])31 (E(E_(1))—E(f5(1—1))) +(o—

E(E”(l)) E(Eza- 1)))

(1 -

E(E"(l)) E(Ezq- 1)))

(1 + (Q 1)93R (E(l=?5(1))—E(fs(1—1))) + (Q _ 1)(1 _

)(E(E~(1)) E(Ez(1- 1))

Q(l _QBIm _gﬁl )(E(E"(l)) E(E"(1 1))

(1 + (o - I)QBI )(E(l=?5(1))—E(fs(1—1))) +(o— 1)(1 _

)(E(E~(1)) E(Ezi- 1))

(1 + (Q _ 1)931 )(E(fs(z))—E(fs(z—ﬂ)) _ (1 _

)(E(E"(Z)) E(Fze-1))
)(E(E"(Z)) E(Fze-1))

(E(E:(z))_E(T?E(z—D))

(1 + (0 — D)) +(0—

E(E"(Z)) ~E(Ez(- 1)))

o(1

(1+ (- 1)93R )(E(fs(z))—E(l?s(z—n)) ~(1- QBQI?) )(E(EH(Z)) E(Ez@-1))
(1+ (o - nmg, ) FE=)FEav) | ()14

D(1-
_QB% _mR )(E(E £2)~E(Ez(z- 1)))

)(E(E"(Z)) E(Eze-1))

(1 +(o— 1)51)3R (E(fs(z))—E(ﬁs(z—D)) +(o—

E(E @) E(Ez(a- 1)))

D(1-
o(1— Wl — N, )(E(E"(z)) ~E(Fz(2-1)))

)(E(E"(z)) ~E(Ez(z- 1)))

)(E(E"(ﬂ) ~E(Ez(1- 1))
)(E(E z))~E(Ez1- 1))

Q(l _QBS _mR )(E(E"(l)) E(E”(1 1))

E:l(l + (0 — 1)51)35 )(E(fs(*))—E(fs(*_l))) B

(1 + (Q 1)51)31 )(E(ﬁs(z))_E(fs(z—l))) n (Q _ 1)(1 _

(1

)(E(E £2)E(Ez(a- 1)))

)(E(E £))~E(Ez( 1)))

|
],
|

3:1(1 + (o — 1)913519 )(E(fs(*))—E(fs(*_l))) B

Iy (1 + (o — Dy )EEe)EEe0)) 4 () 4y (1 -

2_,(1 — 2y

)(E(ﬁs(*))_E(ﬁi(*—l)))

R )(E(ﬁs(*))‘E(ﬁs(*—n)) '
D«

Hf:l(l — Sm%*)(E(fs(*))_E(ﬁi(*—l))) —0

l_[f:l(]- + (Q _ 1)%%*)(E(ﬁi(*))_E(ﬁE(*—l))) + (Q 1) l_[f_l(l

M2, (1 —mE mg*)(E(Esm)—E(fg(*_l)))

)(E(E £))~E(Ez( 1)))

1_[3:1(1 — QB{D*)(E(ﬁs(*))‘E(ﬁs(*_l))) —o

12,1+ (o - g ) *E= Py oy, (1 -
[, (1 — ), - 91p,)

E(fs(*))—E(ﬁs(*_n))

R )(E(ﬁs(*))‘E(fs(*—n)) '
D

Iy (1 + (o — Dy ) EE)EEe0)) 4 (0 1y (1 -

I )(E(EE(*))_E(ﬁi(*—l)))
PN

The data in Eq (17) is successfully reliable for 1 = 2, moreover, it is assumed that they also hold for

1=k, such as
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CIFHC — IA(EY, E3, ... EX
HI:=1(1 + (Q - 1)%5*)(E(EE(*))_E(EE(*—D)) _ ]:zl(l _ QBS*)(E(EE(*))_E(EE(*_l)))

Hf:l(l n (Q _ 1)%%*)(E(fs(*))—E(f?s(*—ﬂ)) + (Q ~1) Hle(l _ QB%*)(E(T?E(*))_E(ﬁs(*—g)) ’
fz (1 + (Q - 1)%513 )(E(fs(*))—E(f?s(*—l))) _ I:=1(1 _ %12) )(E(fg(*))—E(T;E(*_l)))

(14 (o — DY )(E(EE(*))—E(EW))) + (0 - DT, (1 — 1} )(E(T?E(*))—E(fs(*_l)))
M. (1 - 51)32)*)(E(fs(*))—E(fs(*—n)) oIl (1 - mE — 2RS*)(E(Fs(,f))—ls(fg(*_l)))

HI:=1(1 + (Q — 1)5])35*)(E(fs(*))—E(fs(*—n)) + (Q _ 1) 1_[,::1(1 _ E]BR*)(E(EE(*))_E(FE(*—Q)) ’
M, (1- QBI%)(E(I?s(*))—E(I?s(*_n)) I, (1 - )(E(fs(*))—E(fs(*—n))

H’:=1(1 + (o — 1)5])31%)(E(fs(*))—E(fs(*—ﬂ)) +(0—1) Hl:zl(l . EIB!D*)(E(FE(*))_E@E(*_D))

Thus, finally, it is proven for 1 = k + 1, such as
CIFHC — IA(EL, E2, ..., EL)
(E(Em)) — E(Bzr) ) Bl @ (E(Fe) — E(B=r) ) B4 © -
(E(EH(k)) E(Ezqe-1)) ES @ (E(Bzqesny) — E (Bzges— 1)))5 o

Z(E(E" 9) = E(Es(.- 1)))EaEB(E(E~(k+1>) E(Es - 1)))5 +1
=695§= (E(Es) = E(Baeen) ) Esy ® (E(Esgerny) — E(Bsgess-n) ) EEH

(14 (- 1);1)35*)(E(ﬁs(*))—E(fs(*_n)) M, (1 )(E(fs(*))—b"(fs(*—l)))

Hf:l(l n (Q _ 1)%%*)(E(ﬁs(*))—E(fs(*—n)) + (Q _ 1) l_[le(l _ QB%*)(E(EE(*))_E@E(*—D)) ,
(14 (- 1)%359*)(E(EE(*))_E(’?E(*—”)) (- quy*)(E(fs(*))—b"(ﬁs(*—l)))

H’:=1(1 + (o — 1)51)35) )(E(ﬁs(*))—E(fs(*—ﬂ)) +(0—1) 1—[]*;1(1 _ %é) )(E(ﬁg(*))—E(ﬁE(*—l)))
Hi‘zl(]_ — QB%*)(E(ﬁE(*))_E(ﬁs(*—l))) —0 Hf=1(1 _ QB%* _ mg*)(E(fs(*))—E(fE(*_l)))

H§=1(1 + (Q — 1)%5*)(E(EE'(*))_E(EE'(*—D)) + (Q _ 1) l—[]*czl(l _ QBS*)(E(Eg(*))—E(fE(*_l))) !
Hle(l — QB%) )(E(fs(*))—E(f?s(*—l))) —0 l—[1:=1(1 _ QBIm _ mgy )(E(fs(*))—E(T;E(*_l)))

,’.f:l(l + (Q — 1)91&11)*)(E(fs(*))—E(fs(*—ﬂ)) + (Q _ 1) Hf:l(l _ QB{D*)(E(fs(*))—E(EE(*_l)))
©® (E(EE(RH)) - E(EE(k+1—1))) Ek+1
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I:=1(1 + (o — 1)%5*)(E(fs(*))—E(fs(*—ﬂ)) _ ]:zl(l _ QBS*)(E(ﬁs(*))_E(EE(*_l)))

(14 (o - Dy )P o)) gy (1 - amg ) PP E o))
le(l + (Q - 1)%%*)(E(fs(*))—E(fs(*—n)) _ I:=1(1 _ QB;ID*)(E(ﬁs(*))_E(EE(*_l)))

(14 (- 1)%5)*)(E(Es(*))—E(fE@_n)) + (- DT, (1- i%*)(E(EE(*))_E(fg(*_l)))

( olT¥,(1 —m§ )(E(fs(*))—E(I?s(*_l))) — oI, (1— ;] - mg*)(E(fs(*))—E(fs(*—n))

_1(1 + (Q — 1)51)3R )(E(fs(*))—E(fs(*—ﬁ)) + (Q 1) l-[ _1(1 _ 51)35 )(5@5(*))‘5@5(*_1))) ’
[T, (1 — 1y )(E(EE(*))_E(ﬁs(*—l))) — oIl (1 — 1) — 9, )(E(fs(*))—E(ﬁs(*_l)))

H’:=1(1 + (o — 1)5])31%)(E(fs(*))—E(fs(*—ﬂ)) +(0—1) Hl:zl(l . EIB!D*)(E(FE(*))_E@E(*_D))

(1 + (o — 1)%Rk+1)(E(fs(kﬂ))—E(fs(k+1—1))) _ (1 _ k+1)(E(fg(kﬂ))—E(fs(kﬂ_l)))

(1 + (Q — 1)5])32) )(E(E"(kﬂ)) -E(Eg Z(k+1- 1))) + (Q . 1)(1 2) )(E(fg(kﬂ))—E(fs(kﬂ_l))) !

(1+ (- 1)91;%“1)(15(:5:(“1)) E(Eses1-1)) _ (1- ) k+1)(E(E:(k_,_l))—E(fs(k_'_l_l)))

(1 n (Q 1)%;3 )(E(fs(kﬂ))—E(ﬁs(k+1—1))) n (Q 1)(1 2) )(E(ﬁg(k+1))_E(§E(k+1—1)))
[ Q(l_img)kﬂ)(E(Ewkﬂ)) E(Ez(e+1- 1))) Q(l QB@,(H ER;DkH)(E(Es(kﬂ))_E(fs(k“_l)))

(1 + (Q — 1)%2) )(E(E._(k+1)) E(E:(k+1—1))) n (Q _ 1)(1 _ QB;D )(E(ﬁs(k+1))_E(§E(k+1—1))) ,
k+1 k+1

Q(l _ EIBI )(E(EH(k+1))—E(f5(k+1—1))) _ Q(l _ QB{D . m{g) )(E@E(kﬂ))‘E(fs(kﬂ_l)))
k+1 k+1 k+1

(1 +(o— 1)%2) )(E(l=?5(k+1))—E(l=?5(k+1—1))) +(o— 1)(1 _ QB{D )(E(T?E(lﬁ1))—E(l=?5(k+1_1)))
k+1 b1

(1 + (o - I)QB%*)(E(EE(*))_E(EE‘(*—D)) (1 - )(E(fg(*))—E(T;E(*_l)))
(14 (o — I)QBR )(E(ﬁs(*))_E(ﬁg(*‘l))) +(o— 1)1 - )(E(fs(*))—E(fg(*—ﬂ)) ,
k+1(1 +(o— 1)9)31 )(E(fs(*))—E(fs(*_n)) k+1(1 )(E(fs(*))—E(fs(*_l)))
~ [ (1 + (o — I)QBI%)(E(E:(*))—E(fs(*_n)) +-1) Hk+1(1 )(E(EH( 2)-E(Ese))
— k+1(1 )(E(fs(*))—E(fs(*_n)) _ k+1(1 )(E(EE(*))—E(fE(*_l)))
k+1(1 + (Q - 1)QBR )(E(fs(*))—E(fs(*—ﬂ)) + (Q 1) Hk+1(1 )(E(E 2)—E(Ez(. 1)))
o ITKH (1 — )(E(EE(*))_E(EE(*—l))) —oIl%i(1 - )(E(fs(*))—E(f?s(*—l)))

k+1(1 + (Q 1)%1@*)(E(ﬁs(*))—E(fs(*_ﬁ)) + (Q _ 1) l—[]*(::ll(l _ m;]g)*)(E(EE(*))_E(EE(*_D))

The data in Eq (17) is effectively computed for positive values of 1.

To assess or streamline the operators, the fundamental characteristics of the devised theory,
including idempotency, monotonicity, and boundedness, were outlined.
Property 1. Several characteristics have been defined for the finite collection of CIFNs, including:
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If Ejy = Ee; = (5, 9), (5, 9%) ) += 1,2,...1, thus
CIFHC — IA(E%, E2, ..., EL) = Ey. (18)
() 1F B = (5, 289,), (05, 9p)) < B2 = ((205,%,985."), (9%, ", 95.)), thus

CIFHC — IA(EY, E%, ... EY) < CIFHC — IA(E* 5, E*%y o E™Y). (19)

Q) If E; = ((m*in QBR*,m*in ‘JB{D*),(m?xﬂtg* ,mflxi]tl%)> and

Ef = ((max Wy, max QB’@) , (min RNy, , min ER%)), thus

E;; < CIFHC — IA(EL, E%, ... ,E.) < EX. (20)

Proof. The mathematical proof of all information is stated below.
() If EY,=E,; = ((smg,m’@), (an,mgj)),*: 1,2, ..., thus, using the data in Eq (17), it follows
that

ColFHC — IA(EL, EZ, ..., EL)

l=1(1 +(0— 1)%%)(E(ﬁs(*))—E(Fs(*—n)) _ l:l(l _ QBS)(E(ﬁi(*))_E(ﬁE(*—l)))

(14 (o — DmR) EEe)EEe) gy qp_ (1 — g (EFe)E o)
]*zl(l + (Q . 1)%%)(E(EE(*))_E(FE(*—D)) _ ]*=1(1 _ m;ly)(E(EE(*))_E(EE(*_D))

)

L=1(1 + (o - 1)93{8)(E(EE(*))_E(EE(*—D)) +-DIT =1(1 B %%)(E(fs(*))_g(ﬁs(*_l)))
1] Hl:l(l — QB%)(E@E(*))—E@E(*—H)) —0 HL=1(1 _ QB% _ mg)(E(f?g(*))—E(f?E(*_l)))

(1 + (o — Dm0 Feen)) o pyp_ (1 - qup) (FFe)F o))
ol=a(1- QB%)(E(EE(*))_E(’?E(*—M) — ooy (1 — 28} — mgID)(E(ﬁi(*))_E(FE(*—l)))

]*=1(1 + (Q _ 1)m§))(E(ﬁE(*))_E(fE(*—l))) + (Q _ 1) l_P =1(1 _ %%)(E(ﬁg(*))—E(ﬁs(*_l)))

AIMS Mathematics Volume 9, Issue 12, 35860-35884.



35871

(1+ (- 1)‘D3R) 1(E(Bz)-E(Es¢-n)) _ (1 QBR) =1(E(Bze)-E(Fzin))

(1 + (Q 1)51)3R) (E(E"( )) E(E"( 1))) + (Q _ 1)(1 _ m%) *=1(E(§5(*))—E(§E(*—1))) ’
(1+ (- 1)q;3 ) 1(E(Fa)-E(Fze-n)) (1 _quy)ZL:1(E(f5(*))—5(§5(*—1)))

(1+ (- 1)%1 ) 1(E(Ez())-E(Ezq-n)) +-1(1- QBé))ZL=1(E(EE(,0)_E(ﬁ_,(*_l)))

Q(l _ QBQ)) =1 (E(EE(*))—E(fE(*—ﬂ)) _ Q(l _ QBS _ mg)ZL=1(E(fg(*))—E(T;E(*_l)))

)

(1+ G- 1)51)3R) 1 (E(Ez0))-E(Bz(-n)) Fe-D(1 _QB%)lel(E(fg(*))—E(fs(*_l)))'
Q(l — W ) =t (E(EE(*))_E@E(*‘D)) _ Q(l _ QBI _9l )21*=1(E(§5(*))—E(f5(*—1)))

(1+ (o — WY ) ~1(E(Ez0)-E(Es(-n)) +-D(1- %2)) 1(E(Ez())-E(Esq-))

( (14 (e —DW§) — (1 —WF) (1+ (e —DW)) — (1 — W) )
(1+C-DBF) + (0 - 1)(1—%@)’(1+(g—1)ﬂn§))+(g 1)(1—91;!3)’ Z(E(§~)
( o(1 —Wy) —o(1 — Wy — 9%y) o(1 —2y) — o(1 — Wy — 9y) ) L VEY
(1+@-DWE) + (0 - 1)(1—135)'(1+(g—1)%)+(g 1)(1—91;’2))
—E(Bzon)) = 1
1+ oWy — Wy — 1 + Wj 1+ oWy — Wy — 1 + W,
1+ oW — Wy + 0 — oW — 1 + W' 1 + oWy — Wy + 0 — oW — 1+ W )’
0 — oWy — o1 + oWy + 0Ny 0 — oWy — o1 + oWy, + oMy,
1+ oG — W + 0 — oW — 1 + WG " 1 + oWy — Wy + 0 — oWj — 1 + W;,

= (w5, wY), (7§, 9%)) = E

()1 By = (2., wh,), (05, 9,)) < E75 = ((%Jian%f) (9%.",%5.")) . that is 1B, <
w; *,wh < w; " and NE >0y K NL > My, thus

! = =
WE <Ww; “=>1-WE >1-w; > 1_[(1 3 QBS*)(E(EE(*))—E(EE(*_D))

> 1_[(1 — QB%*R)(E(’?E(*))—E(ﬁs(*_n))

*=1

N 1_[(1+ (0 — 1)51)312 )(E(E~( 9)-E(Ez( 1)) 1_[(1 QBR )(E(E~( 9)—E(Ez 1)))

*=1
. R\(E(Fz)-E(Bzio)) . r\(E(Bz)-E(Bzen))
<[]0+ - vy a-m
i []

*=1
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i(1+ (o— 1)9)35*)(E(fs(*))—E(fs(*_l))) (1 - QBS*)(E(fg(*))—E(ﬁs(*_l)))

(1 + (o - nmg ) FEEEe0) (o y (1 — g (o) # Eec-0)
]—1(1 + (Q - 1)%&5 R)(E(ﬁs(*))—E(ﬁs(*_l))) _ 1_1(1 _ %% R)(E(ﬁE(*))_E(ﬁE(*—l)))

(14 (o 1)&1;;)*R)(E('?E(*))_E(EE(*‘”)) + (- DI, (1 - ‘«’B%*R)(

E(fs(*))—E(fs(*_n)).

Moreover, it is derived from the imaginary parts, such as
1 x 1
%2)* S %2)* B - ) i
:‘=1(1 + (Q — 1)51)3{1)*)(E(FE(*))_E(EE(*—D)) _ ]*=1(1 _ m;ly*)(E(EE(*))_E(EE(*_D))

(14 e - 1)%%*)(E(EE(*))_E(EE(*—Q)) +(o-DITy(1 - ‘«7)353*)(E(]?E(*))_E(EE(*_D))

]*=1(1 + (Q — I)QB;)*I)(E(fs(*))—E(ﬁs(*—ﬂ)) _ 1*=1(1 _ QB%*1)(E(fs(*))—h"(?s(*—ﬁ))

]*=1(1 + (Q _ 1)93%*I)(E(’?E(*))‘E(fi(*—l))) + (Q _ 1) lel(l _ ‘JB%*I)(

E(fs(*))_E(fs(*_n)).

Further, for falsity information, the following holds.

NE >Ny Fo1-0f <1-MyF=s1-wE —nf >1-w; oy "

(EE(*))_E(EE(*—D)) ] « R « R (E(fs(*))—E(ﬁs(*-n))
ST G- mg - wg)E > [ -mp * -2 %)
[ ﬂ
(fs(*))_E(ﬁs(*—ﬂ)) - « R « R (E(ﬁs(*))—E(fs(*_l)))
= o[ J(1- w§. -5 )" < o[ J-my - w7
[ ﬂ

=0 ﬁ(l - QB%*)(E(fs(*))—E(fs(*—ﬂ)) —0 ﬁ(l _ QB%* _ m%*)(E(EE(*))_E@E(*—D))
*=1 *=1
2 o (1 — g, 7)o F )
*=1

o] [y, - sy )P
*=1

oll.—.(1 - 9)35*)(E(fs(*))—E(fs(*_n)) — oIy (1 -] - m%*)(E(T?E(*))—E(T;E(*_l)))

L:l(l + (Q — ]_)QB% )(E(fs(*))—E(f?s(*—l))) + (Q _ 1) lel(l _ QB% )(E(T?E(*))—E(l:?g(*_l)))
oIT=1(1~ %R)(
(14 (o - Dy M) oy (1w ?)

E(Fz)-E(Fz-n)) _ olTes (1 -3 F — R)(E(ﬁs(*))-E(fs(*_o))

(E (ﬁE(*))_E(ﬁE(*—l))) .

Additionally, imaginary parts have been evaluated, such as
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n, =
0 H] =1(1 _ %é) )(E(fs(*))—E(fs(*—ﬂ)) —0 1—[1 =1(1 _ QBI . msID )(E(ﬁg(*))—E(ﬁE(*—l)))
(14 e - 1)%%*)(E(EE(*))_E(EE(*—Q)) +(o-DITy(1 - ‘«7)353*)(E(]?E(*))_E(EE(*_D))
0 l_[1 _1(1 — EIB% I)(E(EE(*))_E(ﬁE(*—l))) —0 l‘[] _1(1 _ %% I m% I)(E(EE(*))_E(EE‘(*—Q))

1*=1(1 + (Q _ 1)%%*I)(E(ﬁE(*))_E(ﬁE(*—l))) + (Q _ 1) l—[1*=1(1 _ Sm%*l)

(E(fs(*))—E(fs(*_n))'

Thus, by including the information above with the data provided in Eqs (2) and (3), the following is
obtained.

CIFHC — IA(E%, E%, ..., E) < CIFHC — IA(E* 5, E*2y o E*Ly).

ci»Hciv

Q) If E; = <(m*in QBg*,m*in %%*),(mfxmg*,mfx ER%)) and

Ef = <(max Wy, max ‘JB!D) ) (min Ny, , min ‘Jt%)), thus, by considering the above two

proofs, it can be concluded that

COIFHC — IA(EL, E3, ..., E\)) < CoIFHC — IA(E* 4, E*Z;, ... EYly) = EX,

ci» Hciy

ColFHC — IA(EY, E2, ..., EL) = ColFHC — IA(E"Y,E™%, ... ,E™\;) = E.

cir Hciv
Thus,
E5 < ColFHC — IA(EY, E3, ..., EY) < EZ,.

ci»&ciy

Definition 6. The theory of the CIFHC-IOA operator for the finite collection of CIFNs has been
presented.

f E,dE = CIFHC — I0A(EL, EZ, ..., E})

ci»&civ

= (E(Es(l)) - E(ﬁs(s))) EcEi(l) &) (E(=5(2)) - E(§5(1))) ECEi(Z) D ..

® (E(Ezw) — E(Ezo-n) ) E" = z (E(Ezey) = E(Bzemn)) B
*=1
=@y (E(Ez) = E(Baemn) ) B 1)

Observed that Z(*) < Z(x —1) for the collection of finite permutation *= 1,2, ...,1.
Theorem 2. When examining the data in Eq (21), it is demonstrated that the combined value
conforms to the CIFN manner, as follows:
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CIFHC — I0A(EL, E2, ...,E.) =

ci’

)(E(FE(*))‘E(EE(*—D)) )(E(FE(*))_E(EE(*—Q))

R
L=1(1+(Q—1)ﬂ32)5(*)

)(E(EE(*))—E(EE(*—l)))

-1 —gpR
Moy (1-2,

)(E(Fs(*))‘E(FE(*-l)» ,

1 (1+(0-1)WR +(e-DIl= (1_%R
—(1+Ge-nmf @ DILa(1-Wy )

)(E(EE(*))—E(EE(*—l)))

Z(%)

1*:1(1+(Q—1)9&5}5(*))(E(EE(*))_E(EE(*_l))>_ l=1(1—ﬂB§)

)(E(E‘E(*))—E(FE(*—l)))

2()

)(E(FE(*))—E(EE(*—l)))

‘*=1(1+(Q—1)QB;155(*)

)(E(fs(*))‘E(EE(*—l)))

1
+(e-DII =1(1_QB‘D5(*)

)(E(ES(*))—E(fs(*_l))) (22)

o Ilicy1-205 —oMey(1-25,  -f,

)(E(fs(*))‘E(ﬁi(*—l)))

EZ(x) )

)(E(ﬁs(*))‘E(EE(*—l))) '

1=1(1+(e—1)%55(*)

)(E(E‘E(*))—E(FE(*—l)))

+(Q_1) HL:l(l_mSE(*)

)(E(FE(*))—E(EE(*—l))>

I ! !
0 l_ll=1(1—9732)5(*) -0 Hl=1(1—%@5(*)—m9

)(E(F‘E(*))—E(FE(*—H))

2()

HL=1(1+(Q—1)QB{D (E(EE(*))_E(FE(*—l)»

+o-D Ty (1-m)_ )
o (e-D =1 D= (x)

To assess or streamline the operators above, the fundamental characteristics of the devised theory,
including idempotency, monotonicity, and boundedness, were defined.
Property 2. For the finite collection of ColFNs, some properties have been stated, such as:

() If Eg = Ee; = (5, p), (N5, 7)) += 1,2,... 1, thus
CIFHC — I0A(E}, EZ, ... Ey) = Eq. (23)

@)1t Bz = (5, 95,), (05, %9,)) < Ee = ((2." 25, (9., 9%,)), thus

CIFHC — I0A(EL, E?, ...,EL) < ColFHC — I0A(E* 3, E*, . E™%). (24)
@) If E; = ((m*in W, min W), ), (max 9§, max zng,)) and

Ef = <(m3x W, max Wy, ), (min 9§ , min zng,)) thus

E;; < CIFHC — I0A(EL, EZ, ... ,E.) < EL. (25)

ci»&ciy

Definition 7. The theory of the CIFHC-IG operator for the finite collection of CIFNs has been presented.
ci» Hciv

f E,dE = CIFHC — IG(EL, EZ, ..., EL)

E(Ezy)-E(Es= E(Ez2)-E(Ez Ez)-E(Egq

_ Ecll( (Fz)-E(Bz)) ®Ec2i( (Fz)-E(Ezw)) ® ___®E1ci(E(E_()) E(Fzq-1)))
=\, E:i(E(ﬁs(*))—E(ﬁs(*—n)) =®', E:i(E(ﬁs(*))—E(fs(*—ﬁ)) (26)

Theorem 3. To analyze the data in Eq (26), it is demonstrated that the combined value corresponds

to the CIFN manner, as follows:

CIFHC — IG(EL, E?, ...,E) =

AIMS Mathematics Volume 9, Issue 12, 35860-35884.



35875

0 ]_[L=1(1—‘ﬁ;}ﬁ*)(E(EE(*))_E(EE(*_l)D—Q HL=1(1_%§*_gﬁ!y?*)(E(EE(*))_E(EE(*—l)D

)

=1(1+(Q—1)9?5*)(E(§E(*))_E(EE(*_1)))+(9_1) Hl:l(l—ER;S*)(E(FE(*))_E(FE(*_D»

0 HL=1(1_%Iy*)(E(EE(*))‘E(FE(*—ﬂ))_Q HL=1(1_%§IQ*_gﬁgly*)(E(EE(*))_E(FE(*—l)»

(14D, )(E(EE(*))_E(FE(*‘”»+(g—1)mzl(l_% )(E(EE(*))_E(EE(*—l))>
: 27
MT-1(1+(e-1)NF ) (5(B=o)-#(Bac-n))_ Moy (1-95, )(E(EE(*))‘E(EE(*—l))) 7)

=1(1+(9—1)§R§*)( (Bco)-#(Fc- 1)))+(Q—1)1T— (1-0§ )( Peo)-#lPzc-0)

(v ) ) FCae-0))__ (gt §(EEe)EEse-)
)(E(fs(*))—E(ﬁs(*—n)) )(E(EE(*)) E(Eg(._ )))

Moy (1+(e- D)%Y, +(o=1) ey (190,

To assess or streamline the above operators, the fundamental characteristics of the proposed theory,
including idempotency, monotonicity, and boundedness, were described.

Property 3. To assess or streamline the above operators, the fundamental characteristics of the
proposed theory, including idempotency, monotonicity, and boundedness, were described.

(1) If Efy = Ee; = (25, ), (5, 7)) += 1,2, .1, thus
CIFHC — IG(EY, E%, ..., E}) = E. (28)
@) 1f B = (W5, ), (ma,%*)) < B = (. wy. "), (9., 95.")), thus

CIFHC — IG(EY, E%, ..., E}) < CIFHC — IG(E* 3, E* %y o E™). (29)

cv

Q) If E; = ((m*in QB%*,m*in ‘JB{D*),(m?xﬂtg* ,max iR’g))) and

Ef = <(max Wy, max ‘JBI@) , (min Ny, , min ER%)), thus

E; < CIFHC — IG(EL, E%, ..., EY) < EZ. (30)
Definition 8. The theory of the CIFHC-IOG operator for the finite set of CIFNs has been presented.

=1\(E(Ez))-E(Es(z
[ E,dE = CIFHC — [0G(EL, E2%, ... ,E,) = Eji(”( (Fo)-E o))
(E(fso))‘E(ﬁso—n)) _ (E(fs(*))‘E(fs(*—n))

® EZ(Z)(E(FE(Z))_E@E(D)) ®

2(») (E(Fz)-E(Ez(-1))
| €1y

. QEZY o ERY =®\1 E

Observed that Z(*) < Z(* —1) for the finite collection of permutation *= 1,2, ...,1
Theorem 4. To analyze the data in Eq (31), it is demonstrated that the combined value corresponds
to the CIFN manner, as follows:

CIFHC — IG(EL,E?, ... ,E)) =
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ollos (1 9?2)-(*))( (EE(*))_E(EE(*—l)))_Ql_P_ (1 wf, -9 (Bz(y)-E(Ez-1))

))(E(ﬁs( 2)E(Fz(—n))

)
) E(Ez())-E(Eze-n)’

=1(1+(g—1)in§ +(e-D I\ (1 ng_ =0

Z(*

) E(Bz()-E(Ez(o1)))

5)-E(Eze-n)) |
eMlms (1-3 )

—-o[li= 1(1 %‘5 E() ‘ﬁg)
)(E(EE(*))_E(EE(*_]')))+(Q_1) HL_ (1 ml

)( (Bz()-E(Fze-n))
E()
)( (o) (EH(*_l))>+(Q—1)lT=1(1_m§

S
=1 E()

)(E(fsg(*)) F(Fz-n))

2

el
i1+ vRy_ “

N ))( Ez())-E(Ez(.-1))

) )
E(Eg()-E(Ez(-1))
2 (32)

Lo (1+(e- D)%, ~[Tiea(1-5,
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The fundamental characteristics of the devised theory, including idempotency, monotonicity, and
boundedness, were outlined to assess or streamline the operators.

Property 4. Considering the finite collection of CIFNs, some characteristics have been mentioned,
including:

(1) If Efy = Ee; = (25, ), (5, 7)) += 1,2, .1, thus
CIFHC — 10G(E%, E%, ..., EY) = Ey. (33)
@) 1f B = (W5, ), (ma,%*)) < B = (. wy. "), (9., 95.")). thus

CIFHC — 10G(E}, E%, ..., EL) < CIFHC — 10G(E* 4, E*%i, . E™1). (34)

Q) If E; = ((m*in QB%*,m*in ‘JB{D*),(m?xﬂtg* ,max iR’g))) and

EL = ((max Wy, max QB’@) ) (min RNy, , min ER%)), thus
E;; < CIFHC — I0G(E}, E%, ..., EY) < E}. (35)
4. Problem of Multiple Attribute Decision Making (MADM) for derived approaches

In this section, we present a novel Multi-Attribute Decision-Making (MADM) approach that
leverages Hamacher Choquet-Integral operators to handle Complex Intuitionistic Fuzzy (CIF)
information. This method is designed to provide a robust framework for decision-making problems
where interdependencies among attributes and complex uncertainty need to be addressed. The
proposed method integrates CIF sets, Hamacher aggregation operators, and the Choquet Integral to
capture both individual attribute evaluations and the interactions between them. The approach
follows a systematic process to evaluate and rank alternatives based on complex-valued intuitionistic
fuzzy data. Here, we discuss the use of the Multiple Attribute Decision Making (MADM) technique
using innovative techniques, namely the CIFHC-IA operator and CIFHC-IG operator.

The use of Hamacher Choquet-Integral operators provides a robust mechanism to aggregate CIF
information while accounting for interdependencies among attributes. The operators inherently
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incorporate uncertainty by combining uncertain data (CIF values) in a way that respects their fuzzy
and complex nature, thus preserving the integrity of the uncertainty during the aggregation process.
The fuzzy measure used in the Choquet Integral captures the interaction between attributes, which
often carries inherent uncertainty. By modeling these interactions explicitly, our approach ensures
that uncertainties related to attribute interdependencies are properly accounted for in the
decision-making process.

For this, it is assumed that the finite family of alternatives E;, EZ, ..., E}; and their attributes
E},EZ, .. EJ* giving by a finite number of experts (Ey, Ey, .., Eg)g =1,2,...,n. To assigned a CIF

number to each attribute in every option and arrange them in a matrix format, such as [ri f]mxn’

where each term in the constructed matrix is defined in the shape of CIF values, looked at here
Wy (b) = (W5 (6), WY(b)) and Ry, (b) = (NF(B), Ry(b)) . the value of membership and

non-membership is demonstrated with the representation of a complex number with two significant
attributes, such as = < QB% (®) + ERS () <1 and £ < ﬂB{D (®) + ERI@ (b) < 1. Additionally, the

computed structure K, (b) = (KE(b), KL(D)) = (1 - (‘JBS (b) + 9y (b)), 1-— (‘JBS () + 9y (b)))
represents the value of neutral information with the simple form of CIFN, such as E; =
((‘JB%*,QB%*), (m%m%)),ﬂc 1,2,...,1. Thus, the following methodology or strategy has been

introduced for assessing previous issues, including:
Step 1. Given the CIFNs information, our focus is to represent it in matrix form and subsequently
normalize it. This is particularly applicable when the information is provided in the form of cost type.

((QBR*, EIBI@*), (m% ERIQ)) for benefit attributes
((m% ER{D), (QBS*, 9)3’2))) for cost attributes

However, when it comes to benefits, normalization is optional.
Step 2. To address issues with group decision-making, the CIFHC-IA operator is applied to combine
the group data into a single matrix.
Step 3. Furthermore, the data is aggregated using the CIFHC-IA operator and CIFHC-IG operator
and converted into individual numbers.
Step 4. Evaluate the score values of the aggregated information using the data provided in Eqs (2)
and (3).
Step 5. Rank all the options in order based on the values of score information and evaluate the
top-ranked option.

To streamline the approach above, our attention is directed towards assessing real-world instances in
the presence of the operators above to demonstrate the efficiency of the generated theory.
A. Ilustrative example

In this instance, several varieties of glass are selected for use in the windows. Four experts are
tasked with collecting data on four different types of glass for this purpose. The four experts
E., E,, E5, E, have arranged the data for the following four best glasses EZ, E%, E2, EX, such as:
El: Heat-strengthened glass: This kind of glass converts heartiness into coolness, they are treated
for strength or energy capability.
E?: Float glass: This type of glass is fundamental and innovative for contemporary windows.
E2;: Laminated glass: That is highly durable and resistant to breakage.
E%: Tinted glass: This type of glass absorbs solar heat, aiding in room cooling.

A set of characteristics is presented for each glass type to help professionals easily select the optimal
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option from four distinct types, for instance, E4: Climate, E2: Location, E3: Energy efficiency, and Ej:
Safety and security. Given the facts provided, our objective is to choose the optimal option. To achieve
this, the decision-making process described above is applied to assess the desired outcomes.

Step 1. Based on the CIFNs provided in Tables 1-4, our focus is to represent the data in matrix form
and subsequently normalize it. This normalization process is applicable when the information is
given in the form of cost type.

((‘JBR*, QBQJ*), (%’5 8?{5)) for benefit attributes

((5..2,), (w85, 25,))

for cost attributes

Normalization is not required because the data consists of benefit types.

Table 1. CIF decision matrix by Ej.

Ej E} E} E}
EL  ((05,0.3),(0.3,04)) ((0.51,0.31),(0.31,041)) ((0.52,0.32),(0.32,0.42)) ((0.53,0.33),(0.33,0.43))
E% ((0.4,0.4),(0.3,0.3)) ((0.41,0.41),(0.31,0.31)) ((0.42,0.42),(0.32,0.32)) ((0.43,0.43),(0.33,0.33))
E3  ((0.3,0.6),(0.2,0.2)) ((0.31,0.61),(0.21,0.21)) ((0.32,0.62),(0.22,0.22)) ((0.33,0.63),(0.23,0.23))
E:  ((05,0.2),(0.3,03)) ((0.51,0.21),(0.31,0.31)) ((0.52,0.22),(0.32,0.32)) ((0.53,0.23),(0.33,0.33))
Table 2. CIF decision matrix by E,.
E} E? E3 E}
EL ((0.8,0.7),(0.1,0.2)) ((0.81,0.71),(0.11,0.21)) ((0.82,0.72),(0.12,0.22)) ((0.83,0.73),(0.13,0.23))
E%  ((0.7,0.6),(0.2,0.3)) ((0.71,0.61),(0.21,0.31)) ((0.72,0.62),(0.22,0.32)) ((0.73,0.63), (0.23,0.33))
E3  ((0.6,0.5),(0.3,04)) ((0.61,0.51),(0.31,041)) ((0.62,0.52),(0.32,0.42)) ((0.63,0.53),(0.33,0.43))
E:  ((0.5,0.4),(0.4,0.4)) ((0.51,0.41),(0.41,041)) ((0.52,0.42),(0.42,0.42)) ((0.53,0.43),(0.43,0.43))
Table 3. CIF decision matrix by Ej.
Ej E} E} E}
EL ((03,0.4),(0.3,04)) ((0.31,0.41),(0.31,041)) ((0.32,0.42),(0.32,0.42)) ((0.33,0.43),(0.33,0.43))
E%  ((0.2,0.3),(0.3,04)) ((0.21,0.31),(0.31,041)) ((0.22,0.32),(0.32,0.42)) ((0.23,0.33),(0.33,0.43))
E3 ((0.3,0.4),(0.3,04)) ((0.31,0.41),(0.31,041)) ((0.32,0.42),(0.32,0.42)) ((0.33,0.43),(0.33,0.43))
E:  ((0.2,03),(0.3,04)) ((0.21,0.31),(0.31,041)) ((0.22,0.32),(0.32,0.42)) ((0.23,0.33),(0.33,0.43))
Table 4. CIF decision matrix by E,.
Ej E} E} E}
EL ((0.6,0.5),(0.3,0.4)) ((0.61,0.51),(0.31,041)) ((0.62,0.52),(0.32,0.42)) ((0.63,0.53),(0.33,0.43))
E%  ((0.5,0.4),(0.4,0.4)) ((0.51,0.41),(0.41,041)) ((0.52,0.42),(0.42,0.42)) ((0.53,0.43),(0.43,0.43))
E3  ((0.2,0.3),(0.3,04)) ((0.21,0.31),(0.31,041)) ((0.22,0.32),(0.32,0.42)) ((0.23,0.33),(0.33,0.43))
E:  ((03,04),(0.3,04)) ((0.31,041),(0.31,041)) ((0.32,0.42),(0.32,0.42)) ((0.33,0.43),(0.33,0.43))

Step 2. To address issues with group decision-making, the CIFHC-IA operator is used to aggregate
the group data into a single matrix, as shown in Table 5
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Table 5. Aggregation using the CIFHC-IA operator.

EZ
(0. 2736 0.18), ((0 .2797,0.185), ) (0. 2859 0.19), (0. 2922 O 1951)
(0.2603,0.2988) (0.284,0.3219) (0.3121,0.3496) (0.3474,0.3853)

( ) ( ) | )
E% ((0 .218,0.1864), ) ((0 .2232,0.1913), ) ((0 .2285,0.1962), ) ((0 .2338,0.2011), )
( ) ( ) )
( ) ( ) )

El

cl

(0.2814,0.2488) (0.3046,0.2658) (0.3322,0.2851) (0.3675,0.3079)
(0.1263,0.2222), ((0 .1308,0.2276), ) (0.1353,0.2331), (0.1398,0.2386),

(0.1555,0.2163) (0.168,0.2334) (0.1827,0.2529) (0.2012,0.2759)
(0.1984,0.1194), ((0 2034,0.1238), ) (0.2084,0.1282),\ ((0.2134,0.1326),

(0.2479,0.2249) (0.2656,0.238) (0.2857,0.2522) (0.3094,0.2679)

3
Eci

4
Eci

Step 3. In addition, the data is aggregated using the CIFHC-IA and CIFHC-IG operators to generate
individual values, as shown in Table 6.

Table 6. Aggregated decision matrix using the CIFHC-IA operator and ColFHC-IG operator.

ColIFHC-IA operator CoIFHC-IG operator
E}; ((0.2798,0.185), (0.2879,0.3257))  ((0.2807,0.1856), (0.2811,0.306))
EZ% ((0.2232,0.1913), (0.3083,0.2676))  ((0.224,0.1916), (0.3074,0.2672))
E} ((0.1308,0.2277),(0.1695,0.2353))  ((0.1309,0.228), (0.1632,0.231))
EX ((0.2034,0.1238), (0.2675,0.2388))  ((0.2038,0.1239), (0.2574,0.2253))

Step 4. Examine the score values of the aggregate information using the data provided in Eqs (2) and (3),
which can be seen in Table 7

Table 7. Score values in the matrix.

CoIFHC-IA CoIFHC-IG
operator operator

EL -0.074 -0.06

E2 -0.081 -0.08

E3 -0.023 -0.018

EX -0.09 -0.078

Step 5. Arrange all the options in order based on the values of the score information and analyze the
highest-scoring option, as shown in Table 8.

Table 8. Assessing facts and depicting the optimal choice.

Methods Ranking Results Best one
CIFHC-IA operator E3 > EL >E% > E} E3
CIFHC-IG operator E3 >EL >EY >E% E3

The most optimum solution, as determined by both operators, is EZ;. In order to streamline the
procedure above, our focus is on assessing the comparison between the suggested methodologies and
many established procedures of value, to demonstrate the efficiency of the generated theory.
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5. Comparisons analysis

In this section, we provide a concise analysis of the contrast between the suggested methods and
proposed techniques, considering FS and their expansions. To compare the suggested approaches with
the proposed methods, certain established operators based on FS and their variations are required.
Therefore, based on the concepts mentioned, a comparison with the proposed techniques is conducted
using the data provided in Table 5. The proposed ideas are expressed as follows: The Hamacher operator
for IFS was derived by Huang [27], while the Hamacher operator for CIFS was developed by Akram
et al. [28]. Xu [29] exposed the Choquet integral for weighted IFS, and Wang [30] derived the Choquet
integral based on averaging operators for IFS. Chen [31,32] examined the Choquet integral operators for
IFST and induced IFS. Mahmood et al. [33] derived the Hamacher Choquet-integral operators for IFS.
Mahmood et al. [20] developed the Aczel-Alsina power operators for CIFS. Garg [23] assessed the
geometric operators for CIFS. Mahmood et al. [34] introduced the Aczel-Alsina operators for CIFS.
Table 9 presents the comparison based on the data provided in Table 5.

Table 9. Conducting a comparative study of the data presented in Table 5.

Techniques Scoring System Ranking Data

Huang [27] Not able to evaluate the data Not able to evaluate the data
Akram et al. [28] Not able to evaluate the data Not able to evaluate the data
Xu [29] Not able to evaluate the data Not able to evaluate the data
Wang [30] Not able to evaluate the data Not able to evaluate the data
Chen [31] Not able to evaluate the data Not able to evaluate the data
Chen [32] Not able to evaluate the data Not able to evaluate the data
Mahmood et al. [20] —0.4872,—-0.4844,—-0.4142,—-0.4746 E3 > EX > E4 > E},

Garg [23] —0.484,—-0.528,—-0.437,—-0.503 E3 >EY >EY >E%

Mahmood et al. [34]
CIFHC-IA operator
CIFHC-IG operator

0.3709,0.3674,0.3759,0.3331
—0.074,-0.081,—-0.023,-0.09
—0.06,—0.08,—0.018,—0.078

E3 > EL > E%4 > E}

3 1 2 4
Eci > Eci > Eci > Eci
E3 > EL > E) > E%

Following a thorough evaluation, the ranking information obtained corresponds to the results of
Mahmood et al. [20], Garg et al. [23], Mahmood et al. [35], and derived methodologies, indicating
that the optimal option is E>;. In addition, several proposed methods were unable to analyze the data
shown in Table 5 due to their dependency on operators calculated using the IFS, which is a particular
case of the suggested information. Therefore, the presented work is very influential and reliable in
comparison to the theory mentioned in Ref. [27-32]. In the future, our goal is to enhance it further or
establish other operators using the evaluated methodologies.

6. Conclusions

The major contributions of this work are listed below:

First, the Hamacher operational laws are presented in consideration of the ColF values.

Second, the CIFHC-IA operator, CIFHC-IOA operator, CIFHC-IG operator, and CIFHC-IOG
operator were examined, followed by an analysis of the attributes and special instances of the
proposed approaches.
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Third, a novel approach is introduced using the created operators for Multiple Attribute Decision
Making (MADM) issues with CIF values, with the operational procedures thoroughly illustrated.

In conclusion, a comparative analysis is conducted to evaluate the proposed techniques in
comparison to the current ones. This analysis is based on the presented cases and aims to
demonstrate the superiority and validity of the derived approaches.

In future research work, we will extend the presented approach to dynamic decision-making
scenarios where attribute values or criteria weights evolve over time. This could involve developing
time-dependent CIF models or incorporating real-time data streams. Also, future work could entail
integrating the CIFHC-IA operator with machine learning techniques or optimization algorithms to
automatically learn attribute interdependencies and fuzzy measures from data, enhancing
decision-making efficiency in large-scale problems. While we provide a general framework, future
research could include the proposed method to specific domains such as healthcare, supply chain
management, or financial risk assessment, tailoring the method to domain-specific requirements [42,43].
Another promising direction is enhancing the model to better handle group decision-making scenarios
where experts may have conflicting opinions, potentially using consensus-building mechanisms.
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