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proposed methodology and existing approaches, using illustrative examples to validate the 
effectiveness and demonstrate the advantages of the proposed methods. 

Keywords: Choquet-integral; Hamacher t-norms and t-conorms; complex intuitionistic fuzzy sets; 
average aggregation operators; geometric aggregation operators; decision-making methods 
Mathematics Subject Classification: 03B52, 03E72, 90B50 

 



   35861 

AIMS Mathematics  Volume 9, Issue 12, 35860–35884. 

1. Introduction  

In multi-attribute decision-making (MADM) scenarios, particularly in environments that involve 
complex intuitionistic fuzzy (CIF) values, it is crucial to account for both the interaction between 
criteria and the logical conjunction of values. The combination of the Choquet Integral, often known as 
the C-I and the Hamacher t-norm, enables this dual handling of information. The Choquet Integral is 
known for its ability to model the interaction among criteria through fuzzy measures, making it an 
effective tool for criteria that influence each other. However, by itself, it does not provide the 
flexibility needed to define conjunctions of fuzzy values, especially when dealing with varying levels 
of uncertainty. The Hamacher t-norm complements the Choquet Integral by offering a generalized 
approach to algebraic conjunctions, which can be adjusted through its parameter to reflect different 
logical relationships between attributes. 

By fusing the Hamacher t-norm with the Choquet Integral, the newly developed operator 
provides a more robust aggregation framework, particularly suited to MADM problems that involve 
CIF values. The advantage of this fusion lies in the ability to not only model interactions (via the 
Choquet integral) but also control the degree of conjunction (via the Hamacher t-norm), resulting in 
greater flexibility and accuracy in decision-making. This new operator stands apart from other 
operators due to its ability to handle more complex forms of uncertainty and interaction, offering 
improved performance in decision-making tasks compared to operators that rely on either Hamacher 
t-norms or Choquet integral alone. In addition, Wang et al. [2] conducted research on the extraction of 
knowledge using fuzzy rule-based methods. Moreover, Roman-Flores et al. [3] investigated how to 
solve several fuzzy differential equations. Dehghan et al. [4] developed the solution for fuzzy linear 
systems of equations. In 1994, Heiden and Brickmann [5] investigated the process of dividing protein 
surfaces into segments using fuzzy logic. In addition, Atanassov [6] made modifications to the FS and 
developed a new theory known as intuitionistic FS (IFS). The IFS consists of the degrees of both truth 
and falsity, whereas the FS is a specific instance of the IFS. Several applications have been described 
in the following manner: Liu et al. [7] introduced the linguistic IFS, Xie et al. [8] discussed data quality 
for IFS, Liu et al. [9] explored internet human decision for IFST, Garg et al. [10] investigated the cubic 
IFS, Wang et al. [11] evaluated the probabilistic dominance relation for IFS, and Ecer [12] presented 
the MAIRCA for IFS. Zhang et al. [13] used the fuzzy proportional-integral-derivative for packaging 
gas distribution system. Garg et al. [14] Schweizer and Sklar developed the prioritized operators for 
IFS, whereas Mahmood et al. [15] suggested the power operators for intuitionistic hesitation. Both FS 
and IFS have focused solely on the amplitude term, neglecting the phase. As a result, a large amount of 
data has been lost throughout the decision-making process. It has been observed that the inclusion of 
the phase term offers numerous advantages, particularly in situations involving two-dimensional data. 
For example, when a potential buyer, referred to as “A”, visits a car showroom to purchase a car, the 
owner provides two types of data for each vehicle: The name of the car (representing the real part) and 
the production data of the car (representing the imaginary part). It is important to note that the FS is 
unable to evaluate this type of data. Thus, Ramot et al. [16] developed the complex FS (CFS) to 
represent the truth grade using complex numbers. The real and imaginary components of the complex 
number lie within the unit interval. In addition, Liu et al. [17] developed the distance measure for CFS, 
whereas Mahmood et al. [18] assessed the interdependence of complex fuzzy neighborhood operators. 
In addition, the role of falsity grades in CFS is absent. Instead, Alkouri et al. [19] derived the complex 
IFS (CIFS). The theory of CIFS has garnered significant attention from various scholars, resulting in 
numerous applications. For example, Mahmood et al. [20] introduced the Aczel-Alsina power 
operators, Garg et al. [21] explored the trigonometric operators, Azeem et al. [22] investigated the 
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Einstein operators, Garg et al. [23] examined the geometric operators, and Ali et al. [24] presented the 
prioritized operators.  

Prior to investigating the primary subject of the proposed work, it is important to examine the 
fundamental concepts that are highly beneficial for the proposed work. As a result, our initial focus 
was on Hamacher’s [25] 1975 theory of the t-norm and t-conorm. Hamacher norms are a modified 
approach to algebraic norms. In addition, Choquet [26] conducted an examination of the Choquet 
integral in 1953. Several researchers have applied the Hamacher norms, Choquet integral, or both in 
their work. Huang [27] created the Hamacher operator for IFS, Akram et al. [28] created the Hamacher 
operator for CIFS, Xu [29] described the Choquet integral for weighted IFS, Wang et al. [30] created 
the Choquet integral based on averaging operators for IFS, Tan et al. [31,32] examined the Choquet 
integral operators for IFS and induced IFS, and Mahmood et al. [33] created the Hamacher 
Choquet-integral operators for IFS. It has been observed that no one has suggested the theory of 
Choquet integral for CIFS, and the theory of Hamacher Choquet-integral operators for CIFS has also 
not been obtained. In 2023, Mahmood et al. [34], introduced Aczel Alsina aggregation operators. 
Ejegwa et al. [35] present the applications of emergency management and pattern recognition using 
intuitionistic fuzzy similarity operators. In 2023, Akram et al. [36] defined a new decision model by 
combination of CIF with Hamacher aggregation operators. In 2023, Al-Qubati [37], presented 
Choquet integral aggregation operators with TOPSIS technique and using the Hamacher norm for 
complex intuitionistic fuzzy set. Some bibliometric analysis on decision-making analysis is given by 
the various authors and are summarized in Ref. [38–41]. Our main focus of this study is to assess the 
provided information, including 
(1) To introduce the Hamacher operating rules for the CIF values. 
(2) To obtain the CIFHC-IA operator, CIFHC-IOA operator, CIFHC-IG operator and 

CIFHC-IOG operator. 
(3) Additionally, an analysis is conducted on the attributes and special situations of the suggested 

approaches. 
(4) The operational phases for MADM issues with CIF values were shown in detail to introduce a 

novel method based on the created operators. 
(5) Finally, a comparison study using the shown cases is provided between the proposed and 

current methodologies to demonstrate the superiority and validity of the developed approaches.  
This article is sectioned as follows: Section 2 has a comprehensive discussion of CIFSs, fuzzy 

measures, Choquet integral, Hamacher t-norm, and Hamacher t-conorm, all of which are basic 
concepts related to a specific set 𝕏. In Section 3, we introduce the Hamacher operational laws, 
namely the CIFHC-IA operator, CIFHC-IOA operator, CIFHC-IG operator, and CIFHC-IOG 
operator. Additionally, an analysis of the attributes and special situations of the suggested 
methodologies is conducted. In Section 4, a novel approach is presented utilizing newly devised 
operators for Multiple Attribute Decision Making (MADM) issues with CIF values. The procedural 
stages were thoroughly illustrated. In Section 5, we provide a comparative examination of the 
proposed and current methodologies, using illustrative examples to demonstrate the superiority and 
validity of the derived approaches. The final and conclusive observations are presented in Section 6. 

2. Preliminaries 

In this section, we present the basic concepts of CIFSs, fuzzy measures, Choquet integral, 
Hamacher t-norm, and Hamacher t-conorm for a certain set 𝕏. 
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Definition 1. [19] A CIFS 𝛦 is structured in the following manner: 

𝛦 = ቄቀ𝔚𝔜(𝔟), 𝔑𝔜(𝔟)ቁ : 𝔟 ∈ 𝕏ቅ         (1) 

where 𝔚𝔜(𝔟) = ቀ𝔚𝔜
ோ(𝔟), 𝔚𝔜

ூ (𝔟)ቁ  and 𝔑𝔜(𝔟) = ቀ𝔑𝔜
ோ(𝔟), 𝔑𝔜

ூ (𝔟)ቁ  are memberships, and 

non-membership is represented by a complicated integer with two significant attributes, such as 0 ≤
𝔚𝔜

ோ(𝔟) + 𝔑𝔜
ோ(𝔟) ≤ 1 and 0 ≤ 𝔚𝔜

ூ (𝔟) + 𝔑𝔜
ூ (𝔟) ≤ 1. Additionally, the computed structure 𝔎(𝔟) =

൫𝔎
ோ(𝔟), 𝔎

ூ (𝔟)൯ = ൬1 − ቀ𝔚𝔜
ோ(𝔟) + 𝔑𝔜

ூ (𝔟)ቁ , 1 − ቀ𝔚𝔜
ோ(𝔟) + 𝔑𝔜

ூ (𝔟)ቁ൰ represents the value of neutral 

information with the simple form of CIF number (CIFN), such as 𝛦
∗ =

ቀ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯, ൫𝔑𝔜∗

ோ . 𝔑𝔜∗

ூ ൯ቁ ,∗= 1,2, … , ℩.  

Definition 2. [20] For a CIFN 𝛦
∗ = ቀ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯, ൫𝔑𝔜∗

ோ . 𝔑𝔜∗

ூ ൯ቁ ,∗= 1. The focus has been on 

reviewing the concept of score and accuracy function, such as 

𝛦ௌି
∗ =

ଵ

ଶ
൫𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ + 𝔚𝔜∗

ூ − 𝔑𝔜∗

ூ ൯ ∈ [−1,1]     (2) 

𝛦ுି
∗ =

ଵ

ଶ
൫𝔚𝔜∗

ோ + 𝔑𝔜∗

ோ + 𝔚𝔜∗

ூ + 𝔑𝔜∗

ூ ൯ ∈ [𝛯, 1].     (3) 

Here, some rules for the data in Eqs (2) and (3) are also explained, such as 
(1) When 𝛦ௌି

ଵ > 𝛦ௌି
ଶ , then 𝛦

ଵ > 𝛦
ଶ . 

(2) When 𝛦ௌି
ଵ < 𝛦ௌି

ଶ , then 𝛦
ଵ < 𝛦

ଶ . 

(3) When 𝛦ௌି
ଵ = 𝛦ௌି

ଶ , then 

1) When 𝛦ுି
ଵ > 𝛦ுି

ଶ , then 𝛦
ଵ > 𝛦

ଶ . 

2) When 𝛦ுି
ଵ < 𝛦ுି

ଶ , then 𝛦
ଵ < 𝛦

ଶ . 

Definition 3. [25] The fundamental concept of Hamacher t-norm and Hamacher t-conorm has been 
re-examined for any combination of positive values. 

𝔡 ⊕ 𝔬 =
𝔡𝔬

దା(ଵିద)(𝔡ା𝔬ି𝔡𝔬)
,           (4) 

𝔡 ⊗ 𝔬 =
𝔡ା𝔬ି𝔡𝔬ି(ଵିద)𝔡𝔬

ଵି(ଵିద)𝔡𝔬
.           (5) 

In addition, by varying the parameter 𝜚, several types of t-norms can be obtained. For example, by 
substituting 𝜚 = 1 into Eqs (4) and (5), the following result is obtained: 

𝔡 ⊕ 𝔬 = 𝔡𝔬,              (6) 

𝔡 ⊗ 𝔬 = 𝔡 + 𝔬 − 𝔡𝔬.            (7) 

The data in Eqs (6) and (7) represent the mathematical form of algebraic t-norms. When 𝜚 = 2 is 
substituted into Eqs (4) and (5), the following result is obtained: 

𝔡 ⊕ 𝔬 =
𝔡𝔬

ଵା(ଵି𝔡)(ଵି𝔬)
,            (8) 

𝔡 ⊗ 𝔬 =
𝔡ା𝔬

ଵା𝔡𝔬
.              (9) 

The data in Eqs (8) and (9) are stated the mathematical shape of Einstein t-norms. 
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Definition 4. [26] The major idea of Choquet integral based on the fuzzy measure is described 
below: 

∫ 𝒻𝑑𝛦 = ∑ ቀ𝛦൫𝛦ധ(∗)൯ − 𝛦൫𝛦ധ(∗ିଵ)൯ቁ℩
∗ୀଵ 𝒻(∗)     (10) 

𝛦൫𝛦ധ൯ = 𝛦(∐ 𝔟∗
℩
∗ୀଵ ) = ൝

ଵ

∎
ൣ∏ ൫1 + 𝛾𝛦(𝔟∗)൯℩

∗ୀଵ − 1൧ ∎ ≠ 𝛯

∑ 𝛦(𝔟∗)𝔟∗∈ ∎ = 𝛯
   (11) 

where 𝛯(∗) represents permutations for (1,2, … , ℩) with of 𝒻(ଵ) ≥ 𝒻(ଶ) ≥ ⋯ ≥ 𝒻(℩) and 𝛦ധ = 𝜃, 

𝛦ധ(∗) = ൛𝛦(ଵ)
ᇱ , 𝛦(ଶ)

ᇱ , … , 𝛦(∗)
ᇱ ൟ. 

3. CIF Hamacher C-l operators 

In section, we present the original concept of Hamacher operational laws for CIFNs. 
Subsequently, the theory of four operators CIFHC-IA, CIFHC-IOA, CIFHC-IG, and CIFHC-IOG, is 
assessed using these operational laws. The Hamacher parameter plays a crucial role in the 
decision-making analysis by influencing the aggregation process in fuzzy logic or multi-criteria 
decision analysis (MCDA). Specifically, it controls the degree of interaction between the criteria 
being evaluated. A higher value of the Hamacher parameter tends to emphasize the more influential 
criteria, leading to a stronger impact of the most significant factors on the final decision. Conversely, 
a lower value of the Hamacher parameter tends to distribute influence more evenly among the 
criteria, resulting in a more balanced aggregation. 

Moreover, some desirable properties and important results are also examined in this section for 

the collection of CIFNs 𝛦
∗ = ቀ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯, ൫𝔑𝔜∗

ோ . 𝔑𝔜∗

ூ ൯ቁ ,∗= 1,2, … , ℩ . Here, the Hamacher 

operations for CIFNs have been examined or derived, such as 

𝛦
ଵ ⊕ 𝛦

ଶ ⊕ … ⊕ 𝛦
℩ = 

⎝

⎜
⎛

ቆ
∏ ൫ଵା(దିଵ)𝔚𝔜∗

ೃ ൯℩
∗సభ ି∏ ൫ଵି𝔚𝔜∗

ೃ ൯℩
∗సభ

∏ ቀଵା(దିଵ)𝔚𝔜∗
ೃ ቁ℩

∗సభ ା(దିଵ) ∏ ቀଵି𝔚𝔜∗
ೃ ቁ℩

∗సభ

,
∏ ൫ଵା(దିଵ)𝔚𝔜∗

 ൯℩
∗సభ ି∏ ൫ଵି𝔚𝔜∗

 ൯℩
∗సభ

∏ ቀଵା(దିଵ)𝔚𝔜∗
 ቁ℩

∗సభ ା(దିଵ) ∏ ቀଵି𝔚𝔜∗
 ቁ℩

∗సభ

ቇ ,

ቆ
ద ∏ ൫ଵି𝔚𝔜∗

ೃ ൯℩
∗సభ ିద ∏ ൫ଵି𝔚𝔜∗

ೃ ି𝔑𝔜ೌ∗
ೃ ൯℩

∗సభ

∏ ቀଵା(దିଵ)𝔚𝔜∗
ೃ ቁ℩

∗సభ ା(దିଵ) ∏ ቀଵି𝔚𝔜∗
ೃ ቁ℩

∗సభ

,
ద ∏ ൫ଵି𝔚𝔜∗

 ൯℩
∗సభ ିద ∏ ൫ଵି𝔚𝔜∗

 ି𝔑𝔜ೌ∗
 ൯℩

∗సభ

∏ ቀଵା(దିଵ)𝔚𝔜∗
 ቁ℩

∗సభ ା(దିଵ) ∏ ቀଵି𝔚𝔜∗
 ቁ℩

∗సభ

ቇ
⎠

⎟
⎞

     (12) 

𝛦
ଵ ⊗ 𝛦

ଶ ⊗ … ⊗ 𝛦
℩ = 

⎝

⎜
⎛

ቆ
ద ∏ ൫ଵି𝔑𝔜∗

ೃ ൯℩
∗సభ ିద ∏ ൫ଵି𝔚𝔜∗

ೃ ି𝔑𝔜∗
ೃ ൯℩

∗సభ

∏ ቀଵା(దିଵ)𝔑𝔜∗
ೃ ቁ℩

∗సభ ା(దିଵ) ∏ ቀଵି𝔑𝔜∗
ೃ ቁ℩

∗సభ

,
ద ∏ ൫ଵି𝔑𝔜∗

 ൯℩
∗సభ ିద ∏ ൫ଵି𝔚𝔜∗

 ି𝔑𝔜∗
 ൯℩

∗సభ

∏ ቀଵା(దିଵ)𝔑𝔜∗
 ቁ℩

∗సభ ା(దିଵ) ∏ ቀଵି𝔑𝔜∗
 ቁ℩

∗సభ

ቇ ,

ቆ
∏ ൫ଵା(దିଵ)𝔑𝔜∗

ೃ ൯℩
∗సభ ି∏ ൫ଵି𝔑𝔜∗

ೃ ൯℩
∗సభ

∏ ቀଵା(దିଵ)𝔑𝔜∗
ೃ ቁ℩

∗సభ ା(దିଵ) ∏ ቀଵି𝔑𝔜∗
ೃ ቁ℩

∗సభ

,
∏ ൫ଵା(దିଵ)𝔑𝔜∗

 ൯℩
∗సభ ି∏ ൫ଵି𝔑𝔜∗

 ൯℩
∗సభ

∏ ቀଵା(దିଵ)𝔑𝔜∗
 ቁ℩

∗సభ ା(దିଵ) ∏ ቀଵି𝔑𝔜∗
 ቁ℩

∗సభ

ቇ
⎠

⎟
⎞

     (13) 

∎𝛦
ଵ =

⎝

⎜
⎛

ቆ
ቀଵା(దିଵ)𝔚𝔜భ

ೃ ቁ
∎

ିቀଵି𝔚𝔜భ
ೃ ቁ

∎

ቀଵା(దିଵ)𝔚𝔜భ
ೃ ቁ

∎
ି(దିଵ)ቀଵି𝔚𝔜భ

ೃ ቁ
∎ ,

ቀଵା(దିଵ)𝔚𝔜భ
 ቁ

∎
ିቀଵି𝔚𝔜భ

 ቁ
∎

ቀଵା(దିଵ)𝔚𝔜భ
 ቁ

∎
ି(దିଵ)ቀଵି𝔚𝔜భ

 ቁ
∎ቇ ,

ቆ
దቀଵି𝔚𝔜భ

ೃ ቁ
∎

ିదቀଵି𝔚𝔜భ
ೃ ି𝔑𝔜భ

ೃ ቁ
∎

ቀଵା(దିଵ)𝔚𝔜భ
ೃ ቁ

∎
ି(దିଵ)ቀଵି𝔚𝔜భ

ೃ ቁ
∎ ,

దቀଵି𝔚𝔜భ
 ቁ

∎
ିదቀଵି𝔚𝔜భ

 ି𝔑𝔜భ
 ቁ

∎

ቀଵା(దିଵ)𝔚𝔜భ
 ቁ

∎
ି(దିଵ)ቀଵି𝔚𝔜భ

 ቁ
∎ቇ

⎠

⎟
⎞

     (14) 
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𝛦
ଵ ∎

=

⎝

⎜
⎛

ቆ
దቀଵି𝔑𝔜భ

ೃ ቁ
∎

ିదቀଵି𝔚𝔜భ
ೃ ି𝔑𝔜భ

ೃ ቁ
∎

ቀଵା(దିଵ)𝔑𝔜భ
ೃ ቁ

∎
ି(దିଵ)ቀଵି𝔑𝔜భ

ೃ ቁ
∎ ,

దቀଵି𝔑𝔜భ
 ቁ

∎
ିదቀଵି𝔚𝔜భ

 ି𝔑𝔜భ
 ቁ

∎

ቀଵା(దିଵ)𝔑𝔜భ
 ቁ

∎
ି(దିଵ)ቀଵି𝔑𝔜భ

 ቁ
∎ቇ ,

ቆ
ቀଵା(దିଵ)𝔑𝔜భ

ೃ ቁ
∎

ିቀଵି𝔑𝔜భ
ೃ ቁ

∎

ቀଵା(దିଵ)𝔑𝔜భ
ೃ ቁ

∎
ି(దିଵ)ቀଵି𝔑𝔜భ

ೃ ቁ
∎ ,

ቀଵା(దିଵ)𝔑𝔜భ
 ቁ

∎
ିቀଵି𝔑𝔜భ

 ቁ
∎

ቀଵା(దିଵ)𝔑𝔜భ
 ቁ

∎
ି(దିଵ)ቀଵି𝔑𝔜భ

 ቁ
∎ቇ

⎠

⎟
⎞

.      (15) 

Definition 5. For the finite collection of CIFNs, the theory of the CIFHC-IA operator is stated as follows: 

න 𝛦𝑑𝛦 = 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ )

= ቀ𝛦൫𝛦ധ(ଵ)൯ − 𝛦൫𝛦ധ()൯ቁ 𝛦
ଵ ⊕ ቀ𝛦൫𝛦ധ(ଶ)൯ − 𝛦൫𝛦ധ(ଵ)൯ቁ 𝛦

ଶ ⊕ …

⊕ ቀ𝛦൫𝛦ധ(℩)൯ − 𝛦൫𝛦ധ(℩ିଵ)൯ቁ 𝛦
℩ =  ቀ𝛦൫𝛦ധ(∗)൯ − 𝛦൫𝛦ധ(∗ିଵ)൯ቁ

℩

∗ୀଵ

𝛦
∗  

=⊕∗ୀଵ
℩ ቀ𝛦൫𝛦ധ(∗)൯ − 𝛦൫𝛦ധ(∗ିଵ)൯ቁ 𝛦

∗ .         (16) 

Theorem 1. Considering the data in Eq (16), it is proven that the aggregated value is again a CIFN, 
such as:  

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ )

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

,

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

,

𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ − 𝔑𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

(17) 
Proof. To demonstrate the validity of the facts presented in Eq (17), the method of mathematical 
induction was utilized. Specifically, when ℩ =  2, the following is true: 
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ቀ𝛦൫𝛦ധ(ଵ)൯ − 𝛦൫𝛦ധ()൯ቁ 𝛦
ଵ

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

൫1 + (𝜚 − 1)𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

− ൫1 − 𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

,

൫1 + (𝜚 − 1)𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

− ൫1 − 𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

𝜚൫1 − 𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

− 𝜚൫1 − 𝔚𝔜భ

ோ − 𝔑𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

,

𝜚൫1 − 𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

− 𝜚൫1 − 𝔚𝔜భ

ூ − 𝔑𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

ቀ𝛦൫𝛦ധ(ଶ)൯ − 𝛦൫𝛦ധ(ଵ)൯ቁ 𝛦
ଶ

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

൫1 + (𝜚 − 1)𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

− ൫1 − 𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

,

൫1 + (𝜚 − 1)𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

− ൫1 − 𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

𝜚൫1 − 𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

− 𝜚൫1 − 𝔚𝔜మ

ோ − 𝔑𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

,

𝜚൫1 − 𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

− 𝜚൫1 − 𝔚𝔜మ

ூ − 𝔑𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

Thus, 

= ቀ𝛦൫𝛦ധ(ଵ)൯ − 𝛦൫𝛦ധ()൯ቁ 𝛦
ଵ ⊕ ቀ𝛦൫𝛦ധ(ଶ)൯ − 𝛦൫𝛦ധ(ଵ)൯ቁ 𝛦

ଶ  
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=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

൫1 + (𝜚 − 1)𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

− ൫1 − 𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

,

൫1 + (𝜚 − 1)𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

− ൫1 − 𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

𝜚൫1 − 𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

− 𝜚൫1 − 𝔚𝔜భ

ோ − 𝔑𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜భ

ோ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

,

𝜚൫1 − 𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

− 𝜚൫1 − 𝔚𝔜భ

ூ − 𝔑𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜భ

ூ ൯
ቀ௲൫௲ന(భ)൯ି௲൫௲ന(భషభ)൯ቁ

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⊕

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

൫1 + (𝜚 − 1)𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

− ൫1 − 𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

,

൫1 + (𝜚 − 1)𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

− ൫1 − 𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

𝜚൫1 − 𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

− 𝜚൫1 − 𝔚𝔜మ

ோ − 𝔑𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜మ

ோ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

,

𝜚൫1 − 𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

− 𝜚൫1 − 𝔚𝔜మ

ூ − 𝔑𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜మ

ூ ൯
ቀ௲൫௲ന(మ)൯ି௲൫௲ന(మషభ)൯ቁ

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ

,

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ

,

𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ − 𝔑𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁଶ

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

The data in Eq (17) is successfully reliable for ℩ = 2, moreover, it is assumed that they also hold for 
℩ = 𝑘, such as 
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𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐴൫𝛦
ଵ , 𝛦

ଶ , … , 𝛦
 ൯

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

,

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

,

𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ − 𝔑𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

Thus, finally, it is proven for ℩ = 𝑘 + 1, such as 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ )

= ቀ𝛦൫𝛦ധ(ଵ)൯ − 𝛦൫𝛦ധ()൯ቁ 𝛦
ଵ ⊕ ቀ𝛦൫𝛦ധ(ଶ)൯ − 𝛦൫𝛦ധ(ଵ)൯ቁ 𝛦

ଶ ⊕ …

⊕ ቀ𝛦൫𝛦ധ()൯ − 𝛦൫𝛦ധ(ିଵ)൯ቁ 𝛦
 ⊕ ቀ𝛦൫𝛦ധ(ାଵ)൯ − 𝛦൫𝛦ധ(ାଵିଵ)൯ቁ 𝛦

ାଵ

=  ቀ𝛦൫𝛦ധ(∗)൯ − 𝛦൫𝛦ധ(∗ିଵ)൯ቁ



∗ୀଵ

𝛦
∗ ⊕ ቀ𝛦൫𝛦ധ(ାଵ)൯ − 𝛦൫𝛦ധ(ାଵିଵ)൯ቁ 𝛦

ାଵ

=⊕∗ୀଵ
 ቀ𝛦൫𝛦ധ(∗)൯ − 𝛦൫𝛦ധ(∗ିଵ)൯ቁ 𝛦

∗ ⊕ ቀ𝛦൫𝛦ധ(ାଵ)൯ − 𝛦൫𝛦ധ(ାଵିଵ)൯ቁ 𝛦
ାଵ 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

,

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

,

𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ − 𝔑𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⊕ ቀ𝛦൫𝛦ധ(ାଵ)൯ − 𝛦൫𝛦ധ(ାଵିଵ)൯ቁ 𝛦
ାଵ 
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=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

,

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

,

𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ − 𝔑𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⊕

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

൫1 + (𝜚 − 1)𝔚𝔜ೖశభ

ோ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

− ൫1 − 𝔚𝔜ೖశభ

ோ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜ೖశభ

ோ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜ೖశభ

ோ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

,

൫1 + (𝜚 − 1)𝔚𝔜ೖశభ

ூ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

− ൫1 − 𝔚𝔜ೖశభ

ூ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜ೖశభ

ூ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜ೖశభ

ூ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

𝜚൫1 − 𝔚𝔜ೖశభ

ோ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

− 𝜚൫1 − 𝔚𝔜ೖశభ

ோ − 𝔑𝔜ೖశభ

ோ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜ೖశభ

ோ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜ೖశభ

ோ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

,

𝜚൫1 − 𝔚𝔜ೖశభ

ூ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

− 𝜚൫1 − 𝔚𝔜ೖశభ

ூ − 𝔑𝔜ೖశభ

ூ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

൫1 + (𝜚 − 1)𝔚𝔜ೖశభ

ூ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

+ (𝜚 − 1)൫1 − 𝔚𝔜ೖశభ

ூ ൯
ቀ௲൫௲ന(ೖశభ)൯ି௲൫௲ന(ೖశభషభ)൯ቁ

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁା!

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ

,

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ

,

𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ − 𝔑𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁାଵ

∗ୀଵ ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

The data in Eq (17) is effectively computed for positive values of ℩.  
To assess or streamline the operators, the fundamental characteristics of the devised theory, 

including idempotency, monotonicity, and boundedness, were outlined. 
Property 1. Several characteristics have been defined for the finite collection of CIFNs, including: 
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If 𝛦
∗ = 𝛦 = ቀ൫𝔚𝔜

ோ , 𝔚𝔜
ூ ൯, ൫𝔑𝔜

ோ , 𝔑𝔜
ூ ൯ቁ ,∗= 1,2, … , ℩, thus 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) = 𝛦 .        (18) 

(1) If 𝛦
∗ = ቀ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯, ൫𝔑𝔜∗

ோ , 𝔑𝔜∗

ூ ൯ቁ ≤ 𝛦∗

∗ = ቀ൫𝔚𝔜∗

∗ ோ
, 𝔚𝔜∗

∗ ூ
൯, ൫𝔑𝔜∗

∗ ோ
, 𝔑𝔜∗

∗ ூ
൯ቁ, thus 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) ≤ 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐴൫𝛦∗


ଵ , 𝛦∗


ଶ , … , 𝛦∗


℩ ൯.   (19) 

(2) If 𝛦
ି = ቆቀmin

∗
𝔚𝔜∗

ோ , min
∗

𝔚𝔜∗

ூ ቁ , ቀmax
∗

𝔑𝔜∗

ோ , max
∗

𝔑𝔜∗

ூ ቁቇ and  

𝛦
ା = ቆቀmax

∗
𝔚𝔜∗

ோ , max
∗

𝔚𝔜∗

ூ ቁ , ቀmin
∗

𝔑𝔜∗

ோ , min
∗

𝔑𝔜∗

ூ ቁቇ, thus 

𝛦
ି ≤ 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐴(𝛦

ଵ , 𝛦
ଶ , … , 𝛦

℩ ) ≤ 𝛦
ା.     (20) 

Proof. The mathematical proof of all information is stated below. 

(1) If 𝛦
∗ = 𝛦 = ቀ൫𝔚𝔜

ோ , 𝔚𝔜
ூ ൯, ൫𝔑𝔜

ோ , 𝔑𝔜
ூ ൯ቁ ,∗= 1,2, … , ℩, thus, using the data in Eq (17), it follows 

that 

𝐶𝑜𝐼𝐹𝐻𝐶 − 𝐼𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎛

∏ ൫1 + (𝜚 − 1)𝔚𝔜
ோ൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗ୀଵ − ∏ ൫1 − 𝔚𝔜

ோ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜
ோ൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜

ோ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

,

∏ ൫1 + (𝜚 − 1)𝔚𝔜
ூ ൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗ୀଵ − ∏ ൫1 − 𝔚𝔜

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜
ூ ൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ ⎠

⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎛

𝜚 ∏ ൫1 − 𝔚𝔜
ோ൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜

ோ − 𝔑𝔜
ோ൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜
ோ൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜

ோ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

,

𝜚 ∏ ൫1 − 𝔚𝔜
ூ ൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜

ூ − 𝔑𝔜
ூ ൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜
ூ ൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ ⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞
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=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎛

൫1 + (𝜚 − 1)𝔚𝔜
ோ൯

∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗సభ − ൫1 − 𝔚𝔜

ோ൯
∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗సభ

൫1 + (𝜚 − 1)𝔚𝔜
ோ൯

∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗సభ + (𝜚 − 1)൫1 − 𝔚𝔜

ோ൯
∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗సభ

,

൫1 + (𝜚 − 1)𝔚𝔜
ூ ൯

∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗సభ

− ൫1 − 𝔚𝔜
ூ ൯

∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗సభ

൫1 + (𝜚 − 1)𝔚𝔜
ூ ൯

∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗సభ + (𝜚 − 1)൫1 − 𝔚𝔜

ூ ൯
∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗సభ
⎠

⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎛

𝜚൫1 − 𝔚𝔜
ோ൯

∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗సభ

− 𝜚൫1 − 𝔚𝔜
ோ − 𝔑𝔜

ோ൯
∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗సభ

൫1 + (𝜚 − 1)𝔚𝔜
ோ൯

∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗సభ + (𝜚 − 1)൫1 − 𝔚𝔜

ோ൯
∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗సభ

,

𝜚൫1 − 𝔚𝔜
ூ ൯

∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗సభ − 𝜚൫1 − 𝔚𝔜

ூ − 𝔑𝔜
ூ ൯

∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗సభ

൫1 + (𝜚 − 1)𝔚𝔜
ூ ൯

∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩
∗సభ + (𝜚 − 1)൫1 − 𝔚𝔜

ூ ൯
∑ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗సభ
⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎛

ቆ
൫1 + (𝜚 − 1)𝔚𝔜

ோ൯ − ൫1 − 𝔚𝔜
ோ൯

൫1 + (𝜚 − 1)𝔚𝔜
ோ൯ + (𝜚 − 1)൫1 − 𝔚𝔜

ோ൯
,

൫1 + (𝜚 − 1)𝔚𝔜
ூ ൯ − ൫1 − 𝔚𝔜

ூ ൯

൫1 + (𝜚 − 1)𝔚𝔜
ூ ൯ + (𝜚 − 1)൫1 − 𝔚𝔜

ூ ൯
ቇ ,

ቆ
𝜚൫1 − 𝔚𝔜

ோ൯ − 𝜚൫1 − 𝔚𝔜
ோ − 𝔑𝔜

ோ൯

൫1 + (𝜚 − 1)𝔚𝔜
ோ൯ + (𝜚 − 1)൫1 − 𝔚𝔜

ோ൯
,

𝜚൫1 − 𝔚𝔜
ூ ൯ − 𝜚൫1 − 𝔚𝔜

ூ − 𝔑𝔜
ூ ൯

൫1 + (𝜚 − 1)𝔚𝔜
ூ ൯ + (𝜚 − 1)൫1 − 𝔚𝔜

ூ ൯
ቇ

⎠

⎟
⎞

,  ቀ𝛦൫𝛦ധ(∗)൯

℩

∗ୀଵ

− 𝛦൫𝛦ധ(∗ିଵ)൯ቁ = 1 

=

⎝

⎜
⎛

ቆ
1 + 𝜚𝔚𝔜

ோ − 𝔚𝔜
ோ − 1 + 𝔚𝔜

ோ

1 + 𝜚𝔚𝔜
ோ − 𝔚𝔜

ோ + 𝜚 − 𝜚𝔚𝔜
ோ − 1 + 𝔚𝔜

ோ ,
1 + 𝜚𝔚𝔜

ூ − 𝔚𝔜
ூ − 1 + 𝔚𝔜

ூ

1 + 𝜚𝔚𝔜
ூ − 𝔚𝔜

ூ + 𝜚 − 𝜚𝔚𝔜
ூ − 1 + 𝔚𝔜

ூ ቇ ,

ቆ
𝜚 − 𝜚𝔚𝔜

ோ − 𝜚1 + 𝜚𝔚𝔜
ோ + 𝜚𝔑𝔜

ோ

1 + 𝜚𝔚𝔜
ோ − 𝔚𝔜

ோ + 𝜚 − 𝜚𝔚𝔜
ோ − 1 + 𝔚𝔜

ோ ,
𝜚 − 𝜚𝔚𝔜

ூ − 𝜚1 + 𝜚𝔚𝔜
ூ + 𝜚𝔑𝔜

ூ

1 + 𝜚𝔚𝔜
ூ − 𝔚𝔜

ூ + 𝜚 − 𝜚𝔚𝔜
ூ − 1 + 𝔚𝔜

ூ ቇ
⎠

⎟
⎞

 

= ቀ൫𝔚𝔜
ோ , 𝔚𝔜

ூ ൯, ൫𝔑𝔜
ோ , 𝔑𝔜

ூ ൯ቁ = 𝛦. 

(1) If 𝛦
∗ = ቀ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯, ൫𝔑𝔜∗

ோ , 𝔑𝔜∗

ூ ൯ቁ ≤ 𝛦∗

∗ = ቀ൫𝔚𝔜∗

∗ ோ
, 𝔚𝔜∗

∗ ூ
൯, ൫𝔑𝔜∗

∗ ோ
, 𝔑𝔜∗

∗ ூ
൯ቁ , that is 𝔚𝔜∗

ோ ≤

𝔚𝔜∗

∗ ோ
, 𝔚𝔜∗

ூ ≤ 𝔚𝔜∗

∗ ூ and 𝔑𝔜∗

ோ ≥ 𝔑𝔜∗

∗ ோ
, 𝔑𝔜∗

ூ ≥ 𝔑𝔜∗

∗ ூ, thus 

𝔚𝔜∗

ோ ≤ 𝔚𝔜∗

∗ ோ
⇒ 1 − 𝔚𝔜∗

ோ ≥ 1 − 𝔚𝔜∗

∗ ோ
⇒ ෑ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

℩

∗ୀଵ

≥ ෑ൫1 − 𝔚𝔜∗

∗ ோ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩

∗ୀଵ

 

⇒ ෑ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

℩

∗ୀଵ

− ෑ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

℩

∗ୀଵ

≤ ෑ൫1 + (𝜚 − 1)𝔚𝔜∗

∗ ோ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩

∗ୀଵ

− ෑ൫1 − 𝔚𝔜∗

∗ ோ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩

∗ୀଵ
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⇒
∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

≤
∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

∗ ோ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩
∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

∗ ோ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩
∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

∗ ோ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

∗ ோ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

. 

Moreover, it is derived from the imaginary parts, such as 

𝔚𝔜∗

ூ ≤ 𝔚𝔜∗

∗ ூ

⇒
∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

≤
∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

∗ ூ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩
∗ୀଵ − ∏ ൫1 − 𝔚𝔜∗

∗ ூ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩
∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

∗ ூ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

∗ ூ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

. 

Further, for falsity information, the following holds. 

𝔑𝔜∗

ோ ≥ 𝔑𝔜∗

∗ ோ
⇒ 1 − 𝔑𝔜∗

ோ ≤ 1 − 𝔑𝔜∗

∗ ோ
⇒ 1 − 𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ ≥ 1 − 𝔚𝔜∗

∗ ோ
− 𝔑𝔜∗

∗ ோ 

⇒ ෑ൫1 − 𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

℩

∗ୀଵ

≥ ෑ൫1 − 𝔚𝔜∗

∗ ோ
− 𝔑𝔜∗

∗ ோ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩

∗ୀଵ

 

⇒ −𝜚 ෑ൫1 − 𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

℩

∗ୀଵ

≤ −𝜚 ෑ൫1 − 𝔚𝔜∗

∗ ோ
− 𝔑𝔜∗

∗ ோ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩

∗ୀଵ

 

⇒ 𝜚 ෑ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

℩

∗ୀଵ

− 𝜚 ෑ൫1 − 𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

℩

∗ୀଵ

≥ 𝜚 ෑ൫1 − 𝔚𝔜∗

∗ ோ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩

∗ୀଵ

− 𝜚 ෑ൫1 − 𝔚𝔜∗

∗ ோ
− 𝔑𝔜∗

∗ ோ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩

∗ୀଵ

 

⇒
𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ோ − 𝔑𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ோ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

≥
𝜚 ∏ ൫1 − 𝔚𝔜∗

∗ ோ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩
∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

∗ ோ
− 𝔑𝔜∗

∗ ோ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩
∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

∗ ோ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

∗ ோ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

. 

Additionally, imaginary parts have been evaluated, such as 
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𝔑𝔜∗

ூ ≥ 𝔑𝔜∗

∗ ூ

⇒
𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

ூ − 𝔑𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

ூ ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

≥
𝜚 ∏ ൫1 − 𝔚𝔜∗

∗ ூ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩
∗ୀଵ − 𝜚 ∏ ൫1 − 𝔚𝔜∗

∗ ூ
− 𝔑𝔜∗

∗ ூ
൯

ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
℩
∗ୀଵ

∏ ൫1 + (𝜚 − 1)𝔚𝔜∗

∗ ூ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ + (𝜚 − 1) ∏ ൫1 − 𝔚𝔜∗

∗ ூ൯
ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ

. 

Thus, by including the information above with the data provided in Eqs (2) and (3), the following is 
obtained. 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) ≤ 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐴൫𝛦∗


ଵ , 𝛦∗


ଶ , … , 𝛦∗


℩ ൯. 

(2) If 𝛦
ି = ቆቀmin

∗
𝔚𝔜∗

ோ , min
∗

𝔚𝔜∗

ூ ቁ , ቀmax
∗

𝔑𝔜∗

ோ , max
∗

𝔑𝔜∗

ூ ቁቇ and  

𝛦
ା = ቆቀmax

∗
𝔚𝔜∗

ோ , max
∗

𝔚𝔜∗

ூ ቁ , ቀmin
∗

𝔑𝔜∗

ோ , min
∗

𝔑𝔜∗

ூ ቁቇ , thus, by considering the above two 

proofs, it can be concluded that 

𝐶𝑜𝐼𝐹𝐻𝐶 − 𝐼𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) ≤ 𝐶𝑜𝐼𝐹𝐻𝐶 − 𝐼𝐴൫𝛦ା


ଵ

, 𝛦ା

ଶ

, … , 𝛦ା

℩

൯ = 𝛦
ା 

𝐶𝑜𝐼𝐹𝐻𝐶 − 𝐼𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) ≥ 𝐶𝑜𝐼𝐹𝐻𝐶 − 𝐼𝐴൫𝛦ି


ଵ , 𝛦ି


ଶ , … , 𝛦ି


℩ ൯ = 𝛦

ି . 

Thus, 

𝛦
ି ≤ 𝐶𝑜𝐼𝐹𝐻𝐶 − 𝐼𝐴(𝛦

ଵ , 𝛦
ଶ , … , 𝛦

℩ ) ≤ 𝛦
ା. 

Definition 6. The theory of the CIFHC-IOA operator for the finite collection of CIFNs has been 
presented. 

න 𝛦𝑑𝛦 = 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝑂𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ )

= ቀ𝛦൫𝛦ധ(ଵ)൯ − 𝛦൫𝛦ധ()൯ቁ 𝛦
(ଵ)

⊕ ቀ𝛦൫𝛦ധ(ଶ)൯ − 𝛦൫𝛦ധ(ଵ)൯ቁ 𝛦
(ଶ)

⊕ …

⊕ ቀ𝛦൫𝛦ധ(℩)൯ − 𝛦൫𝛦ധ(℩ିଵ)൯ቁ 𝛦
(℩)

=  ቀ𝛦൫𝛦ധ(∗)൯ − 𝛦൫𝛦ധ(∗ିଵ)൯ቁ

℩

∗ୀଵ

𝛦
(∗) 

=⊕∗ୀଵ
℩ ቀ𝛦൫𝛦ധ(∗)൯ − 𝛦൫𝛦ധ(∗ିଵ)൯ቁ 𝛦

(∗)
.        (21) 

Observed that 𝛯(∗) ≤ 𝛯(∗ −1) for the collection of finite permutation ∗= 1,2, … , ℩. 
Theorem 2. When examining the data in Eq (21), it is demonstrated that the combined value 
conforms to the CIFN manner, as follows: 
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𝐶𝐼𝐹𝐻𝐶 − 𝐼𝑂𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) = 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

∏ ൬ଵା(దିଵ)𝔚𝔜(∗)
ೃ ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ି∏ ൬ଵି𝔚𝔜(∗)

ೃ ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ

∏ ൬ଵା(దିଵ)𝔚𝔜(∗)
ೃ ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ൬ଵି𝔚𝔜(∗)

ೃ ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ

,

∏ ൬ଵା(దିଵ)𝔚𝔜(∗)
 ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ି∏ ൬ଵି𝔚𝔜(∗)

 ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ

∏ ൬ଵା(దିଵ)𝔚𝔜(∗)
 ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ൬ଵି𝔚𝔜(∗)

 ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ ⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

ద ∏ ൬ଵି𝔚𝔜(∗)
ೃ ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ିద ∏ ൬ଵି𝔚𝔜(∗)

ೃ ି𝔑𝔜(∗)
ೃ ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ

∏ ൬ଵା(దିଵ)𝔚𝔜(∗)
ೃ ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ൬ଵି𝔚𝔜(∗)

ೃ ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ

,

ద ∏ ൬ଵି𝔚𝔜(∗)
 ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ିద ∏ ൬ଵି𝔚𝔜(∗)

 ି𝔑𝔜(∗)
 ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ

∏ ൬ଵା(దିଵ)𝔚𝔜(∗)
 ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ൬ଵି𝔚𝔜(∗)

 ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

.    (22) 

To assess or streamline the operators above, the fundamental characteristics of the devised theory, 
including idempotency, monotonicity, and boundedness, were defined.  
Property 2. For the finite collection of CoIFNs, some properties have been stated, such as: 

(1) If 𝛦
∗ = 𝛦 = ቀ൫𝔚𝔜

ோ , 𝔚𝔜
ூ ൯, ൫𝔑𝔜

ோ , 𝔑𝔜
ூ ൯ቁ ,∗= 1,2, … , ℩, thus 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝑂𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) = 𝛦.               (23) 

(2) If 𝛦
∗ = ቀ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯, ൫𝔑𝔜∗

ோ , 𝔑𝔜∗

ூ ൯ቁ ≤ 𝛦∗

∗ = ቀ൫𝔚𝔜∗

∗ ோ
, 𝔚𝔜∗

∗ ூ
൯, ൫𝔑𝔜∗

∗ ோ
, 𝔑𝔜∗

∗ ூ
൯ቁ, thus 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝑂𝐴(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) ≤ 𝐶𝑜𝐼𝐹𝐻𝐶 − 𝐼𝑂𝐴൫𝛦∗


ଵ , 𝛦∗


ଶ , … , 𝛦∗


℩ ൯.     (24) 

(3) If 𝛦
ି = ቆቀmin

∗
𝔚𝔜∗

ோ , min
∗

𝔚𝔜∗

ூ ቁ , ቀmax
∗

𝔑𝔜∗

ோ , max
∗

𝔑𝔜∗

ூ ቁቇ and  

𝛦
ା = ቆቀmax

∗
𝔚𝔜∗

ோ , max
∗

𝔚𝔜∗

ூ ቁ , ቀmin
∗

𝔑𝔜∗

ோ , min
∗

𝔑𝔜∗

ூ ቁቇ, thus 

𝛦
ି ≤ 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝑂𝐴(𝛦

ଵ , 𝛦
ଶ , … , 𝛦

℩ ) ≤ 𝛦
ା .           (25) 

Definition 7. The theory of the CIFHC-IG operator for the finite collection of CIFNs has been presented. 

න 𝛦𝑑𝛦 = 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐺(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ )

= 𝛦
ଵ ቀ௲൫௲ന(భ)൯ି௲൫௲ന()൯ቁ

⊗ 𝛦
ଶ ቀ௲൫௲ന(మ)൯ି௲൫௲ന(భ)൯ቁ

⊗ … ⊗ 𝛦
℩ ቀ௲൫௲ന(℩)൯ି௲൫௲ന(℩షభ)൯ቁ 

= ∏ 𝛦
∗ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ℩

∗ୀଵ =⊗∗ୀଵ
℩ 𝛦

∗ ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ
     (26) 

Theorem 3. To analyze the data in Eq (26), it is demonstrated that the combined value corresponds 
to the CIFN manner, as follows: 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐺(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) = 
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⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎛

ద ∏ ൫ଵି𝔑𝔜∗
ೃ ൯

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰℩
∗సభ ିద ∏ ൫ଵି𝔚𝔜∗

ೃ ି𝔑𝔜∗
ೃ ൯

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰℩
∗సభ

∏ ቀଵା(దିଵ)𝔑𝔜∗
ೃ ቁ

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ቀଵି𝔑𝔜∗

ೃ ቁ
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ

,

ద ∏ ൫ଵି𝔑𝔜∗
 ൯

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰℩
∗సభ ିద ∏ ൫ଵି𝔚𝔜∗

 ି𝔑𝔜∗
 ൯

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰℩
∗సభ

∏ ቀଵା(దିଵ)𝔑𝔜∗
 ቁ

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ቀଵି𝔑𝔜∗

 ቁ
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ ⎠

⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎛

∏ ൫ଵା(దିଵ)𝔑𝔜∗
ೃ ൯

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰℩
∗సభ ି∏ ൫ଵି𝔑𝔜∗

ೃ ൯
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰℩

∗సభ

∏ ቀଵା(దିଵ)𝔑𝔜∗
ೃ ቁ

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ቀଵି𝔑𝔜∗

ೃ ቁ
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ

,

∏ ൫ଵା(దିଵ)𝔑𝔜∗
 ൯

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰℩
∗సభ ି∏ ൫ଵି𝔑𝔜∗

 ൯
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰℩

∗సభ

∏ ቀଵା(దିଵ)𝔑𝔜∗
 ቁ

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ቀଵି𝔑𝔜∗

 ቁ
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ ⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

.     (27) 

To assess or streamline the above operators, the fundamental characteristics of the proposed theory, 
including idempotency, monotonicity, and boundedness, were described. 
Property 3. To assess or streamline the above operators, the fundamental characteristics of the 
proposed theory, including idempotency, monotonicity, and boundedness, were described. 

(1) If 𝛦
∗ = 𝛦 = ቀ൫𝔚𝔜

ோ , 𝔚𝔜
ூ ൯, ൫𝔑𝔜

ோ , 𝔑𝔜
ூ ൯ቁ ,∗= 1,2, … , ℩, thus 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐺(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) = 𝛦 .              (28) 

(2) If 𝛦
∗ = ቀ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯, ൫𝔑𝔜∗

ோ , 𝔑𝔜∗

ூ ൯ቁ ≤ 𝛦∗

∗ = ቀ൫𝔚𝔜∗

∗ ோ
, 𝔚𝔜∗

∗ ூ
൯, ൫𝔑𝔜∗

∗ ோ
, 𝔑𝔜∗

∗ ூ
൯ቁ, thus 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐺(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) ≤ 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐺൫𝛦∗


ଵ , 𝛦∗


ଶ , … , 𝛦∗


℩ ൯.      (29) 

(3) If 𝛦
ି = ቆቀmin

∗
𝔚𝔜∗

ோ , min
∗

𝔚𝔜∗

ூ ቁ , ቀmax
∗

𝔑𝔜∗

ோ , max
∗

𝔑𝔜∗

ூ ቁቇ and  

𝛦
ା = ቆቀmax

∗
𝔚𝔜∗

ோ , max
∗

𝔚𝔜∗

ூ ቁ , ቀmin
∗

𝔑𝔜∗

ோ , min
∗

𝔑𝔜∗

ூ ቁቇ, thus 

𝛦
ି ≤ 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐺(𝛦

ଵ , 𝛦
ଶ , … , 𝛦

℩ ) ≤ 𝛦
ା.             (30) 

Definition 8. The theory of the CIFHC-IOG operator for the finite set of CIFNs has been presented. 

∫ 𝛦𝑑𝛦 = 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝑂𝐺(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) = 𝛦

(ଵ)ቀ௲൫௲ന(భ)൯ି௲൫௲ന()൯ቁ
⊗ 𝛦

(ଶ)ቀ௲൫௲ന(మ)൯ି௲൫௲ന(భ)൯ቁ
⊗

… ⊗ 𝛦
(℩)ቀ௲൫௲ന(℩)൯ି௲൫௲ന(℩షభ)൯ቁ

= ∏ 𝛦
(∗)ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

℩
∗ୀଵ =⊗∗ୀଵ

℩ 𝛦
(∗)ቀ௲൫௲ന(∗)൯ି௲൫௲ന(∗షభ)൯ቁ

.  
                       (31) 

Observed that 𝛯(∗) ≤ 𝛯(∗ −1) for the finite collection of permutation ∗= 1,2, … , ℩. 
Theorem 4. To analyze the data in Eq (31), it is demonstrated that the combined value corresponds 
to the CIFN manner, as follows: 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝐺(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) = 
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⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

ద ∏ ൬ଵି𝔑𝔜(∗)
ೃ ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ିద ∏ ൬ଵି𝔚𝔜(∗)

ೃ ି𝔑𝔜(∗)
ೃ ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ

∏ ൬ଵା(దିଵ)𝔑𝔜(∗)
ೃ ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ൬ଵି𝔑𝔜(∗)

ೃ ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ

,

ద ∏ ൬ଵି𝔑𝔜(∗)
 ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ିద ∏ ൬ଵି𝔚𝔜(∗)

 ି𝔑𝔜(∗)
 ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ

∏ ൬ଵା(దିଵ)𝔑𝔜(∗)
 ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ൬ଵି𝔑𝔜(∗)

 ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ ⎠

⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

∏ ൬ଵା(దିଵ)𝔑𝔜(∗)
ೃ ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ି∏ ൬ଵି𝔑𝔜(∗)

ೃ ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ

∏ ൬ଵା(దିଵ)𝔑𝔜(∗)
ೃ ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ൬ଵି𝔑𝔜(∗)

ೃ ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ

,

∏ ൬ଵା(దିଵ)𝔑𝔜(∗)
 ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ି∏ ൬ଵି𝔑𝔜(∗)

 ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ

∏ ൬ଵା(దିଵ)𝔑𝔜(∗)
 ൰

൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰
℩
∗సభ ା(దିଵ) ∏ ൬ଵି𝔑𝔜(∗)

 ൰
൬೪ቀ೪ന(∗)ቁష೪ቀ೪ന(∗షభ)ቁ൰

℩
∗సభ ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

.    (32) 

The fundamental characteristics of the devised theory, including idempotency, monotonicity, and 
boundedness, were outlined to assess or streamline the operators. 
Property 4. Considering the finite collection of CIFNs, some characteristics have been mentioned, 
including: 

(1) If 𝛦
∗ = 𝛦 = ቀ൫𝔚𝔜

ோ , 𝔚𝔜
ூ ൯, ൫𝔑𝔜

ோ , 𝔑𝔜
ூ ൯ቁ ,∗= 1,2, … , ℩, thus 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝑂𝐺(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) = 𝛦.              (33) 

(2) If 𝛦
∗ = ቀ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯, ൫𝔑𝔜∗

ோ , 𝔑𝔜∗

ூ ൯ቁ ≤ 𝛦∗

∗ = ቀ൫𝔚𝔜∗

∗ ோ
, 𝔚𝔜∗

∗ ூ
൯, ൫𝔑𝔜∗

∗ ோ
, 𝔑𝔜∗

∗ ூ
൯ቁ, thus 

𝐶𝐼𝐹𝐻𝐶 − 𝐼𝑂𝐺(𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩ ) ≤ 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝑂𝐺൫𝛦∗


ଵ , 𝛦∗


ଶ , … , 𝛦∗


℩ ൯.     (34) 

(3) If 𝛦
ି = ቆቀmin

∗
𝔚𝔜∗

ோ , min
∗

𝔚𝔜∗

ூ ቁ , ቀmax
∗

𝔑𝔜∗

ோ , max
∗

𝔑𝔜∗

ூ ቁቇ and  

𝛦
ା = ቆቀmax

∗
𝔚𝔜∗

ோ , max
∗

𝔚𝔜∗

ூ ቁ , ቀmin
∗

𝔑𝔜∗

ோ , min
∗

𝔑𝔜∗

ூ ቁቇ, thus 

𝛦
ି ≤ 𝐶𝐼𝐹𝐻𝐶 − 𝐼𝑂𝐺(𝛦

ଵ , 𝛦
ଶ , … , 𝛦

℩ ) ≤ 𝛦
ା .            (35) 

4. Problem of Multiple Attribute Decision Making (MADM) for derived approaches 

In this section, we present a novel Multi-Attribute Decision-Making (MADM) approach that 
leverages Hamacher Choquet-Integral operators to handle Complex Intuitionistic Fuzzy (CIF) 
information. This method is designed to provide a robust framework for decision-making problems 
where interdependencies among attributes and complex uncertainty need to be addressed. The 
proposed method integrates CIF sets, Hamacher aggregation operators, and the Choquet Integral to 
capture both individual attribute evaluations and the interactions between them. The approach 
follows a systematic process to evaluate and rank alternatives based on complex-valued intuitionistic 
fuzzy data. Here, we discuss the use of the Multiple Attribute Decision Making (MADM) technique 
using innovative techniques, namely the CIFHC-IA operator and CIFHC-IG operator.  

The use of Hamacher Choquet-Integral operators provides a robust mechanism to aggregate CIF 
information while accounting for interdependencies among attributes. The operators inherently 
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incorporate uncertainty by combining uncertain data (CIF values) in a way that respects their fuzzy 
and complex nature, thus preserving the integrity of the uncertainty during the aggregation process. 
The fuzzy measure used in the Choquet Integral captures the interaction between attributes, which 
often carries inherent uncertainty. By modeling these interactions explicitly, our approach ensures 
that uncertainties related to attribute interdependencies are properly accounted for in the 
decision-making process. 

For this, it is assumed that the finite family of alternatives 𝛦
ଵ , 𝛦

ଶ , … , 𝛦
℩  and their attributes 

𝛦
ଵ, 𝛦

ଶ, … , 𝛦
 giving by a finite number of experts ൫𝐸ଵ, 𝐸ଶ, … , 𝐸൯𝑔 = 1,2, … , 𝑛. To assigned a CIF 

number to each attribute in every option and arrange them in a matrix format, such as ൣ𝑟൧
×

, 

where each term in the constructed matrix is defined in the shape of CIF values, looked at here 

𝔚𝔜(𝔟) = ቀ𝔚𝔜
ோ(𝔟), 𝔚𝔜

ூ (𝔟)ቁ  and 𝔑𝔜(𝔟) = ቀ𝔑𝔜
ோ(𝔟), 𝔑𝔜

ூ (𝔟)ቁ , the value of membership and 

non-membership is demonstrated with the representation of a complex number with two significant 
attributes, such as 𝛯 ≤ 𝔚𝔜

ோ(𝔟) + 𝔑𝔜
ோ(𝔟) ≤ 1  and 𝛯 ≤ 𝔚𝔜

ூ (𝔟) + 𝔑𝔜
ூ (𝔟) ≤ 1 . Additionally, the 

computed structure 𝔎(𝔟) = ൫𝔎
ோ(𝔟), 𝔎

ூ (𝔟)൯ = ൬1 − ቀ𝔚𝔜
ோ(𝔟) + 𝔑𝔜

ூ (𝔟)ቁ , 1 − ቀ𝔚𝔜
ோ(𝔟) + 𝔑𝔜

ூ (𝔟)ቁ൰ 

represents the value of neutral information with the simple form of CIFN, such as 𝛦
∗ =

ቀ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯, ൫𝔑𝔜∗

ோ . 𝔑𝔜∗

ூ ൯ቁ ,∗= 1,2, … , ℩. Thus, the following methodology or strategy has been 

introduced for assessing previous issues, including: 
Step 1. Given the CIFNs information, our focus is to represent it in matrix form and subsequently 
normalize it. This is particularly applicable when the information is provided in the form of cost type. 

𝑍 = ቐ
ቀ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯, ൫𝔑𝔜∗

ோ . 𝔑𝔜∗

ூ ൯ቁ for benefit attribute𝑠

ቀ൫𝔑𝔜∗

ோ . 𝔑𝔜∗

ூ ൯, ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯ቁ for cost attributes
. 

However, when it comes to benefits, normalization is optional. 
Step 2. To address issues with group decision-making, the CIFHC-IA operator is applied to combine 
the group data into a single matrix. 
Step 3. Furthermore, the data is aggregated using the CIFHC-IA operator and CIFHC-IG operator 
and converted into individual numbers.  
Step 4. Evaluate the score values of the aggregated information using the data provided in Eqs (2) 
and (3). 
Step 5. Rank all the options in order based on the values of score information and evaluate the 
top-ranked option. 

To streamline the approach above, our attention is directed towards assessing real-world instances in 
the presence of the operators above to demonstrate the efficiency of the generated theory. 
A. Illustrative example 

In this instance, several varieties of glass are selected for use in the windows. Four experts are 
tasked with collecting data on four different types of glass for this purpose. The four experts 
𝐸ଵ, 𝐸ଶ, 𝐸ଷ, 𝐸ସ have arranged the data for the following four best glasses 𝛦

ଵ , 𝛦
ଶ , 𝛦

ଷ , 𝛦
ସ , such as: 

𝛦
ଵ : Heat-strengthened glass: This kind of glass converts heartiness into coolness, they are treated 

for strength or energy capability. 
𝛦

ଶ : Float glass: This type of glass is fundamental and innovative for contemporary windows.   
𝛦

ଷ : Laminated glass: That is highly durable and resistant to breakage.  
𝛦

ସ : Tinted glass: This type of glass absorbs solar heat, aiding in room cooling.  
A set of characteristics is presented for each glass type to help professionals easily select the optimal 
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option from four distinct types, for instance, 𝛦
ଵ: Climate, 𝛦

ଶ: Location, 𝛦
ଷ: Energy efficiency, and 𝛦

ସ: 
Safety and security. Given the facts provided, our objective is to choose the optimal option. To achieve 
this, the decision-making process described above is applied to assess the desired outcomes. 
Step 1. Based on the CIFNs provided in Tables 1–4, our focus is to represent the data in matrix form 
and subsequently normalize it. This normalization process is applicable when the information is 
given in the form of cost type.  

𝑍 = ቐ
ቀ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯, ൫𝔑𝔜∗

ோ . 𝔑𝔜∗

ூ ൯ቁ for benefit attributes

ቀ൫𝔑𝔜∗

ோ . 𝔑𝔜∗

ூ ൯, ൫𝔚𝔜∗

ோ , 𝔚𝔜∗

ூ ൯ቁ for cost attributes
. 

Normalization is not required because the data consists of benefit types. 

Table 1. CIF decision matrix by 𝐸ଵ. 

 𝛦
ଵ 𝛦

ଶ 𝛦
ଷ 𝛦

ସ 

𝛦
ଵ  ൫(0.5,0.3), (0.3,0.4)൯ ൫(0.51,0.31), (0.31,0.41)൯ ൫(0.52,0.32), (0.32,0.42)൯ ൫(0.53,0.33), (0.33,0.43)൯ 

𝛦
ଶ  ൫(0.4,0.4), (0.3,0.3)൯ ൫(0.41,0.41), (0.31,0.31)൯ ൫(0.42,0.42), (0.32,0.32)൯ ൫(0.43,0.43), (0.33,0.33)൯ 

𝛦
ଷ  ൫(0.3,0.6), (0.2,0.2)൯ ൫(0.31,0.61), (0.21,0.21)൯ ൫(0.32,0.62), (0.22,0.22)൯ ൫(0.33,0.63), (0.23,0.23)൯ 

𝛦
ସ  ൫(0.5,0.2), (0.3,0.3)൯ ൫(0.51,0.21), (0.31,0.31)൯ ൫(0.52,0.22), (0.32,0.32)൯ ൫(0.53,0.23), (0.33,0.33)൯ 

Table 2. CIF decision matrix by 𝐸ଶ. 

 𝛦
ଵ 𝛦

ଶ 𝛦
ଷ 𝛦

ସ 

𝛦
ଵ  ൫(0.8,0.7), (0.1,0.2)൯ ൫(0.81,0.71), (0.11,0.21)൯ ൫(0.82,0.72), (0.12,0.22)൯ ൫(0.83,0.73), (0.13,0.23)൯ 

𝛦
ଶ  ൫(0.7,0.6), (0.2,0.3)൯ ൫(0.71,0.61), (0.21,0.31)൯ ൫(0.72,0.62), (0.22,0.32)൯ ൫(0.73,0.63), (0.23,0.33)൯ 

𝛦
ଷ  ൫(0.6,0.5), (0.3,0.4)൯ ൫(0.61,0.51), (0.31,0.41)൯ ൫(0.62,0.52), (0.32,0.42)൯ ൫(0.63,0.53), (0.33,0.43)൯ 

𝛦
ସ  ൫(0.5,0.4), (0.4,0.4)൯ ൫(0.51,0.41), (0.41,0.41)൯ ൫(0.52,0.42), (0.42,0.42)൯ ൫(0.53,0.43), (0.43,0.43)൯ 

Table 3. CIF decision matrix by 𝐸ଷ. 

 𝛦
ଵ 𝛦

ଶ 𝛦
ଷ 𝛦

ସ 

𝛦
ଵ  ൫(0.3,0.4), (0.3,0.4)൯ ൫(0.31,0.41), (0.31,0.41)൯ ൫(0.32,0.42), (0.32,0.42)൯ ൫(0.33,0.43), (0.33,0.43)൯ 

𝛦
ଶ  ൫(0.2,0.3), (0.3,0.4)൯ ൫(0.21,0.31), (0.31,0.41)൯ ൫(0.22,0.32), (0.32,0.42)൯ ൫(0.23,0.33), (0.33,0.43)൯ 

𝛦
ଷ  ൫(0.3,0.4), (0.3,0.4)൯ ൫(0.31,0.41), (0.31,0.41)൯ ൫(0.32,0.42), (0.32,0.42)൯ ൫(0.33,0.43), (0.33,0.43)൯ 

𝛦
ସ  ൫(0.2,0.3), (0.3,0.4)൯ ൫(0.21,0.31), (0.31,0.41)൯ ൫(0.22,0.32), (0.32,0.42)൯ ൫(0.23,0.33), (0.33,0.43)൯ 

Table 4. CIF decision matrix by 𝐸ସ. 

 𝛦
ଵ 𝛦

ଶ 𝛦
ଷ 𝛦

ସ 

𝛦
ଵ  ൫(0.6,0.5), (0.3,0.4)൯ ൫(0.61,0.51), (0.31,0.41)൯ ൫(0.62,0.52), (0.32,0.42)൯ ൫(0.63,0.53), (0.33,0.43)൯ 

𝛦
ଶ  ൫(0.5,0.4), (0.4,0.4)൯ ൫(0.51,0.41), (0.41,0.41)൯ ൫(0.52,0.42), (0.42,0.42)൯ ൫(0.53,0.43), (0.43,0.43)൯ 

𝛦
ଷ  ൫(0.2,0.3), (0.3,0.4)൯ ൫(0.21,0.31), (0.31,0.41)൯ ൫(0.22,0.32), (0.32,0.42)൯ ൫(0.23,0.33), (0.33,0.43)൯ 

𝛦
ସ  ൫(0.3,0.4), (0.3,0.4)൯ ൫(0.31,0.41), (0.31,0.41)൯ ൫(0.32,0.42), (0.32,0.42)൯ ൫(0.33,0.43), (0.33,0.43)൯ 

Step 2. To address issues with group decision-making, the CIFHC-IA operator is used to aggregate 
the group data into a single matrix, as shown in Table 5 
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Table 5. Aggregation using the CIFHC-IA operator. 

 𝛦
ଵ 𝛦

ଶ 𝛦
ଷ 𝛦

ସ 

𝛦
ଵ  ൬

(0.2736,0.18),
(0.2603,0.2988)

൰ ൬
(0.2797,0.185),
(0.284,0.3219)

൰ ൬
(0.2859,0.19),

(0.3121,0.3496)
൰ ൬

(0.2922,0.1951),
(0.3474,0.3853)

൰ 

𝛦
ଶ  ൬

(0.218,0.1864),
(0.2814,0.2488)

൰ ൬
(0.2232,0.1913),
(0.3046,0.2658)

൰ ൬
(0.2285,0.1962),
(0.3322,0.2851)

൰ ൬
(0.2338,0.2011),
(0.3675,0.3079)

൰ 

𝛦
ଷ  ൬

(0.1263,0.2222),
(0.1555,0.2163)

൰ ൬
(0.1308,0.2276),
(0.168,0.2334)

൰ ൬
(0.1353,0.2331),
(0.1827,0.2529)

൰ ൬
(0.1398,0.2386),
(0.2012,0.2759)

൰ 

𝛦
ସ  ൬

(0.1984,0.1194),
(0.2479,0.2249)

൰ ൬
(0.2034,0.1238),
(0.2656,0.238)

൰ ൬
(0.2084,0.1282),
(0.2857,0.2522)

൰ ൬
(0.2134,0.1326),
(0.3094,0.2679)

൰ 

Step 3. In addition, the data is aggregated using the CIFHC-IA and CIFHC-IG operators to generate 
individual values, as shown in Table 6. 

Table 6. Aggregated decision matrix using the CIFHC-IA operator and CoIFHC-IG operator. 

 CoIFHC-IA operator CoIFHC-IG operator 

𝛦
ଵ  ൫(0.2798,0.185), (0.2879,0.3257)൯ ൫(0.2807,0.1856), (0.2811,0.306)൯ 

𝛦
ଶ  ൫(0.2232,0.1913), (0.3083,0.2676)൯ ൫(0.224,0.1916), (0.3074,0.2672)൯ 

𝛦
ଷ  ൫(0.1308,0.2277), (0.1695,0.2353)൯ ൫(0.1309,0.228), (0.1632,0.231)൯ 

𝛦
ସ  ൫(0.2034,0.1238), (0.2675,0.2388)൯ ൫(0.2038,0.1239), (0.2574,0.2253)൯ 

Step 4. Examine the score values of the aggregate information using the data provided in Eqs (2) and (3), 
which can be seen in Table 7. 

Table 7. Score values in the matrix. 

 CoIFHC-IA 

operator 

CoIFHC-IG 

operator 

𝛦
ଵ  -0.074 -0.06 

𝛦
ଶ  -0.081 -0.08 

𝛦
ଷ  -0.023 -0.018 

𝛦
ସ  -0.09 -0.078 

Step 5. Arrange all the options in order based on the values of the score information and analyze the 
highest-scoring option, as shown in Table 8. 

Table 8. Assessing facts and depicting the optimal choice. 

Methods Ranking Results Best one 

CIFHC-IA operator 𝛦
ଷ > 𝛦

ଵ > 𝛦
ଶ > 𝛦

ସ  𝛦
ଷ  

CIFHC-IG operator 𝛦
ଷ > 𝛦

ଵ > 𝛦
ସ > 𝛦

ଶ  𝛦
ଷ  

The most optimum solution, as determined by both operators, is 𝛦
ଷ . In order to streamline the 

procedure above, our focus is on assessing the comparison between the suggested methodologies and 
many established procedures of value, to demonstrate the efficiency of the generated theory. 
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5. Comparisons analysis 

In this section, we provide a concise analysis of the contrast between the suggested methods and 
proposed techniques, considering FS and their expansions. To compare the suggested approaches with 
the proposed methods, certain established operators based on FS and their variations are required. 
Therefore, based on the concepts mentioned, a comparison with the proposed techniques is conducted 
using the data provided in Table 5. The proposed ideas are expressed as follows: The Hamacher operator 
for IFS was derived by Huang [27], while the Hamacher operator for CIFS was developed by Akram 
et al. [28]. Xu [29] exposed the Choquet integral for weighted IFS, and Wang [30] derived the Choquet 
integral based on averaging operators for IFS. Chen [31,32] examined the Choquet integral operators for 
IFST and induced IFS. Mahmood et al. [33] derived the Hamacher Choquet-integral operators for IFS. 
Mahmood et al. [20] developed the Aczel-Alsina power operators for CIFS. Garg [23] assessed the 
geometric operators for CIFS. Mahmood et al. [34] introduced the Aczel-Alsina operators for CIFS. 
Table 9 presents the comparison based on the data provided in Table 5. 

Table 9. Conducting a comparative study of the data presented in Table 5. 

Techniques Scoring System Ranking Data 

Huang [27] 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 

Akram et al. [28] 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 

Xu [29] 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 

Wang [30] 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 

Chen [31] 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 

Chen [32] 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑁𝑜𝑡 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 

Mahmood et al. [20] −0.4872, −0.4844, −0.4142, −0.4746 𝛦
ଷ > 𝛦

ସ > 𝛦
ଶ > 𝛦

ଵ  

Garg [23] −0.484, −0.528, −0.437, −0.503 𝛦
ଷ > 𝛦

ଵ > 𝛦
ସ > 𝛦

ଶ  

Mahmood et al. [34] 0.3709,0.3674,0.3759,0.3331 𝛦
ଷ > 𝛦

ଵ > 𝛦
ଶ > 𝛦

ସ  

CIFHC-IA operator −0.074, −0.081, −0.023, −0.09 𝛦
ଷ > 𝛦

ଵ > 𝛦
ଶ > 𝛦

ସ  

CIFHC-IG operator −0.06, −0.08, −0.018, −0.078 𝛦
ଷ > 𝛦

ଵ > 𝛦
ସ > 𝛦

ଶ  

Following a thorough evaluation, the ranking information obtained corresponds to the results of 
Mahmood et al. [20], Garg et al. [23], Mahmood et al. [35], and derived methodologies, indicating 
that the optimal option is 𝛦

ଷ . In addition, several proposed methods were unable to analyze the data 
shown in Table 5 due to their dependency on operators calculated using the IFS, which is a particular 
case of the suggested information. Therefore, the presented work is very influential and reliable in 
comparison to the theory mentioned in Ref. [27–32]. In the future, our goal is to enhance it further or 
establish other operators using the evaluated methodologies. 

6. Conclusions 

The major contributions of this work are listed below: 
First, the Hamacher operational laws are presented in consideration of the CoIF values. 
Second, the CIFHC-IA operator, CIFHC-IOA operator, CIFHC-IG operator, and CIFHC-IOG 

operator were examined, followed by an analysis of the attributes and special instances of the 
proposed approaches. 
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Third, a novel approach is introduced using the created operators for Multiple Attribute Decision 
Making (MADM) issues with CIF values, with the operational procedures thoroughly illustrated. 

In conclusion, a comparative analysis is conducted to evaluate the proposed techniques in 
comparison to the current ones. This analysis is based on the presented cases and aims to 
demonstrate the superiority and validity of the derived approaches.  

In future research work, we will extend the presented approach to dynamic decision-making 
scenarios where attribute values or criteria weights evolve over time. This could involve developing 
time-dependent CIF models or incorporating real-time data streams. Also, future work could entail 
integrating the CIFHC-IA operator with machine learning techniques or optimization algorithms to 
automatically learn attribute interdependencies and fuzzy measures from data, enhancing 
decision-making efficiency in large-scale problems. While we provide a general framework, future 
research could include the proposed method to specific domains such as healthcare, supply chain 
management, or financial risk assessment, tailoring the method to domain-specific requirements [42,43]. 
Another promising direction is enhancing the model to better handle group decision-making scenarios 
where experts may have conflicting opinions, potentially using consensus-building mechanisms. 

Author contributions 

Harish Garg: Writing–review & editing, writing–original draft, validation, methodology, 
investigation, formal analysis, conceptualization; Tehreem: Writing–original draft, validation, 
methodology, formal analysis; Kinza Ayaz: Writing–original draft, investigation; Walid Emam: 
Formal analysis, funding acquisition. All authors have read and approved the final version of the 
manuscript for publication. 

Use of Generative-AI tools declaration 

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 
article. 

Acknowledgments 

The study was funded by Researchers Supporting Project number (RSPD2025R749), King Saud 
University, Riyadh, Saudi Arabia. 

Conflict of interest 

The authors declare that they have no conflicts of interest to report regarding the present study.  

References 

1. L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. 
https://doi.org/10.1016/S0898-1221(05)80044-1 

2. H. Wang, S. Kwong, Y. Jin, W. Wei, K. F. Man, Multi-objective hierarchical genetic algorithm 
for interpretable fuzzy rule-based knowledge extraction, Fuzzy Set. Syst., 149 (2005), 149–186. 
https://doi.org/10.1016/j.fss.2004.07.002 



   35882 

AIMS Mathematics  Volume 9, Issue 12, 35860–35884. 

3. Y. Chalco-Cano, H. Román-Flores, Comparison between some approaches to solve fuzzy 
differential equations, Fuzzy Set. Syst., 160 (2009), 1517–1527. 
https://doi.org/10.1016/j.fss.2008.12.013 

4. M. Dehghan, B. Hashemi, M. Ghatee, Computational methods for solving fully fuzzy linear 
systems, Appl. Math. Comput., 179 (2006), 328–343. https://doi.org/10.1016/j.amc.2005.11.151 

5. W. Heiden, J. Brickmann, Segmentation of protein surfaces using fuzzy logic, J. Mol. Graph., 
12 (1994), 106–115. https://doi.org/10.1016/0263-7855(94)80008-2 

6. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst. 20 (1986), 87–96. 
https://doi.org/10.1016/S0165-0114(86)80034-3 

7. J. Liu, J. Mai, H. Li, B. Huang, Y. Liu, On three perspectives for deriving three-way decision 
with linguistic intuitionistic fuzzy information, Inform. Sciences, 588 (2022), 350–380. 
https://doi.org/10.1016/j.ins.2021.12.066 

8. D. Xie, F. Xiao, W. Pedrycz, Information quality for intuitionistic fuzzy values with its 
application in decision making, Eng. Appl. Artif. Intel., 109 (2022), 104568. 
https://doi.org/10.1016/j.engappai.2021.104568 

9. Y. Liu, G. Wei, H. Liu, L. Xu, Group decision making for internet public opinion emergency 
based upon linguistic intuitionistic fuzzy information, Int. J. Mach. Learn. Cyb., 13 (2022), 
579–594. https://doi.org/10.1007/s13042-021-01368-2 

10. H. Garg, G. Kaur, Algorithm for solving the decision-making problems based on correlation 
coefficients under cubic intuitionistic fuzzy information: a case study in watershed hydrological 
system, Complex Intell. Syst., 8 (2022), 179–198. https://doi.org/10.1007/s40747-021-00440-5 

11. W. Wang, J. Zhan, J. Mi, A three-way decision approach with probabilistic dominance relations 
under intuitionistic fuzzy information, Inform. Sciences, 582 (2022), 114–145. 
https://doi.org/10.1016/j.ins.2021.11.084 

12. F. Ecer, An extended MAIRCA method using intuitionistic fuzzy sets for coronavirus vaccine 
selection in the age of COVID-19, Neural Comput. Appl., 34 (2022), 5603–5623. 
https://doi.org/10.1007/s00521-021-06276-y 

13. H. Zhang, X. Zuo, B. Sun, B. Wei, J. Fu, X. Xiao, Fuzzy-PID-based atmosphere packaging gas 
distribution system for fresh food, Appl. Sciences, 13 (2023), 2674. 
https://doi.org/10.3390/app13042674 

14. H. Garg, Z. Ali, T. Mahmood, M. R. Ali, A. Alburaikan, Schweizer-Sklar prioritized aggregation 
operators for intuitionistic fuzzy information and their application in multi-attribute 
decision-making, Alex. Eng. J., 67 (2023), 229–240. https://doi.org/10.1016/j.aej.2022.04.030 

15. T. Mahmood, W. Ali, Z. Ali, R. Chinram, Power aggregation operators and similarity measures 
based on improved intuitionistic hesitant fuzzy sets and their applications to multiple attribute 
decision making, CMES-Comp. Model. Eng., 126 (2021), 1165–1187. 
https://doi.org/10.32604/cmes.2021.015634 

16. D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE T. Fuzzy Syst., 10 
(2002), 171–186. https://doi.org/10.1109/91.995119 

17. P. Liu, Z. Ali, T. Mahmood, The distance measures and cross-entropy based on complex fuzzy 
sets and their application in decision making, J. Intell. Fuzzy Syst., 39 (2020), 3351–3374. 
https://doi.org/10.3233/JIFS-191712 

18. T. Mahmood, Z. Ali, A. Gumaei, Interdependency of complex fuzzy neighborhood operators and 
derived complex fuzzy coverings, IEEE Access, 9 (2021), 73506–73521. 
https://doi.org/10.1109/ACCESS.2021.3078248 



   35883 

AIMS Mathematics  Volume 9, Issue 12, 35860–35884. 

19. A. M. D. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conference Proceedings, 
1482 (2012), 464–470. https://doi.org/10.1063/1.4757475 

20. T. Mahmood, Z. Ali, Multi-attribute decision-making methods based on Aczel–Alsina power 
aggregation operators for managing complex intuitionistic fuzzy sets, Comput. Appl. Math., 42 
(2023), 1–34. https://doi.org/10.1007/s40314-022-02116-1 

21. D. Rani, H. Garg, Multiple attributes group decision-making based on trigonometric operators, 
particle swarm optimization and complex intuitionistic fuzzy values, Artif. Intell. Rev., 56 
(2023), 1787–1831. https://doi.org/10.1007/s10462-022-10236-8 

22. W. Azeem, W. Mahmood, T. Mahmood, Z. Ali, M. Naeem, Analysis of Einstein aggregation 
operators based on complex intuitionistic fuzzy sets and their applications in multi-attribute 
decision-making, AIMS Math., 8 (2023), 6036–6063. https://doi.org/10.3934/math.2023366 

23. H. Garg, D. Rani, Generalized geometric aggregation operators based on t-norm operations for 
complex intuitionistic fuzzy sets and their application to decision-making, Cogn. Comput., 12 
(2020), 679–698. https://doi.org/10.1007/s12559-019-09680-0 

24. Z. Ali, T. Mahmood, M. Aslam, R. Chinram, Another view of complex intuitionistic fuzzy soft 
sets based on prioritized aggregation operators and their applications to multiattribute decision 
making, Mathematics, 9 (2021), 1922. https://doi.org/10.3390/math9161922 

25. H. Hamacher, Über Logische Verknüpfungen Unscharfer Aussagen und deren Zugehörige 
Bewertungsfunktionen, Working Paper No. 75/14, Lehrstuhl für Unternehmensforschung, 
RWTH Aachen University, 1975. 

26. G. Choquet, Theory of capacities, Ann. I. Fourier, 5 (1953), 131–295. 
https://doi.org/10.5802/aif.53 

27. J. Y. Huang, Intuitionistic fuzzy Hamacher aggregation operators and their application to 
multiple attribute decision making, J. Intell. Fuzzy Syst., 27 (2014), 505–513. 
https://doi.org/10.3233/IFS-130810 

28. M. Akram, X. Peng, A. Sattar, A new decision-making model using complex intuitionistic fuzzy 
Hamacher aggregation operators, Soft Comput., 25 (2021), 7059–7086. 
https://doi.org/10.1007/s00500-021-05737-w 

29. Z. Xu, Choquet integrals of weighted intuitionistic fuzzy information, Inform. Sciences, 180 
(2010), 726–736. https://doi.org/10.1016/j.ins.2009.11.033 

30. X. Jia, Y. Wang, Choquet integral-based intuitionistic fuzzy arithmetic aggregation operators in 
multi-criteria decision-making, Expert Syst. Appl., 191 (2022), 116242. 
https://doi.org/10.1016/j.eswa.2021.116242 

31. C. Tan, X. Chen, Intuitionistic fuzzy Choquet integral operator for multi-criteria decision 
making, Expert Syst. Appl., 37 (2010), 149–157. https://doi.org/10.1016/j.eswa.2009.05.065 

32. C. Tan, X. Chen, Induced intuitionistic fuzzy Choquet integral operator for multicriteria decision 
making, Int. J. Intell. Syst., 26 (2011), 659–686. https://doi.org/10.1002/int.20474 

33. T. Mahmood, Z. Ali, S. Baupradist, R. Chinram, TOPSIS method based on Hamacher 
Choquet-integral aggregation operators for Atanassov-intuitionistic fuzzy sets and their applications 
in decision-making, Axioms, 11 (2022), 715. https://doi.org/10.3390/axioms11120715 

34. T. Mahmood, Z. Ali, S. Baupradist, R. Chinram, Complex intuitionistic fuzzy Aczel-Alsina 
aggregation operators and their application in multi-attribute decision-making, Symmetry, 14 
(2022), 2255. https://doi.org/10.3390/sym14112255 

35. P. A. Ejegwa, S. Ahemen, Enhanced intuitionistic fuzzy similarity operators with applications in 
emergency management and pattern recognition, Granular Comput., 8 (2023), 361–372. 
https://doi.org/10.1007/s41066-022-00323-3 



   35884 

AIMS Mathematics  Volume 9, Issue 12, 35860–35884. 

36. M. Akram, M. Khan, R. Ali, A new decision-making model using complex intuitionistic fuzzy 
Hamacher aggregation operators, Springer, 2023. https://doi.org/10.1007/978-3-030-71571-6 

37. A. A. Q. Al-Qubati, L. Zedam, K. Ullah, H. F. Al-Qahtani, Choquet-integral aggregation 
operators based on Hamacher t-norm and t-conorm for complex intuitionistic fuzzy TOPSIS 
technique to deal with socio-economic problems, IEEE Access, 12 (2023), 3098–3113. 
https://doi.org/10.1109/ACCESS.2023.3346499 

38. H. M. Talib, A. S. Albahri, T. O. C. Edoh, Fuzzy decision-making framework for sensitively 
prioritizing autism patients with moderate emergency level, Appl. Data Sci. Anal., 2023 (2023), 
16–41. https://doi.org/10.1016/j.ads2023.2023.001 

39. S. Mohammed, A. K. Oleiwi, T. K. Asman, H. M. Saleh, A. M. Mahmood, I. Avci, A survey of 
MCDM-based software engineering method, Babylonian J. Math., 2024 (2024), 13–18. 
https://doi.org/10.1234/bjm2024.01318 

40. D. David, A. Alamoodi, A bibliometric analysis of research on multiple criteria decision making 
with emphasis on energy sector between 2019–2023, Appl. Data Sci. Anal., 2023 (2023), 
143–149. https://doi.org/10.1016/j.ads2023.2023.0149 

41. M. Aljanabi, Navigating the Landscape: A comprehensive bibliometric analysis of 
decision-making research in civil engineering, Mesopotamian J. Civil Eng., 2023 (2023) 
https://doi.org/10.58496/MJCE/2023/005 

42. L. Jing, X. Fan, D. Feng, C. Lu, S. Jiang, A patent text-based product conceptual design 
decision-making approach considering the fusion of incomplete evaluation semantic and scheme 
beliefs, Appl. Soft Comput., 157 (2024), 111492. https://doi.org/10.1016/j.asoc.2024.111492 

43. C. Zhu, An adaptive agent decision model based on deep reinforcement learning and 
autonomous learning, J. Log., Inform. Serv. Sci., 10 (2023), 107–118. 
https://doi.org/10.33168/JLISS.2023.0309 

© 2024 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (https://creativecommons.org/licenses/by/4.0) 


