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1. Introduction

The main goal of this research is to compute the solution to the nonlinear equation

Θ(x) = 0, (1.1)
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where the function Θ : D ⊆ C→ C is holomorphic on the domainD consists of multiple root (η) with
multiplicity (m), which implies

Θk(η) =

0, k = 0, 1, 2, 3, . . . ,m − 1,
, 0, k = m.

(1.2)

Analytical techniques to locate multiple zeros of a nonlinear function f (x) are almost nonexistent.
Consequently, we search for iterative algorithms to obtain approximate solutions. Thus, the main
objective of this study is to acquire multiple roots using derivative-free approaches.

The most popular and straightforward approach for calculating multiple roots of Eq (1.1) is the
modified Newton’s technique [18], defined by

xt+1 = xt − m
Θ(xt)
Θ′(xt)

, t ∈ N0. (1.3)

Here, N0 denotes the collection of all natural numbers, including zero. The aforementioned technique
(1.3) requires that the first-order derivative should be calculated at each stage to exhibit quadratic
convergence in case of multiple roots. Nonetheless, a plethora of high-order techniques have been
presented and investigated in research papers (see Arora et al. [2], Cordero et al. [6], Neta et al. [13],
Petkovic et al. [15], Proinov and Ivanov [16], Shengguo et al. [21], Soleymani et al. [24], and Zafar et
al. [36]). These iterative techniques can be classified broadly into two categories: (i) with derivatives
and (ii) free from derivatives. Evaluating a first or second-order derivative is necessary for the first
class of methods. Generally speaking, these methods do not provide the desired results over the non-
smooth functions [5]. In order to overcome this fact, a few researchers have analyzed and developed
some iterative algorithms without derivatives for multiple roots.

To get rid of derivatives, Traub-Steffensen [26] employed the following approximation

Θ′(xt) ≃
Θ(xt + γΘ(xt)) − Θ(xt)

γΘ(xt)
, γ ∈ R\{0}, (1.4)

where the derivative is replaced with the first-order divided difference approximation (1.4) in the
modified Newton method (1.3), and one arrives at

xt+1 = xt − m
Θ(xt)
Θ[ut, xt]

, t ∈ N0, (1.5)

known as the modified Traub-Steffensen method (denoted by T M1), where Θ[ut, xt] =
Θ(ut)−Θ(xt)

ut−xt
is the

first-order divided difference and ut = xt + γΘ(xt). By maintaining second-order convergence, the
approach (1.5) improves upon the modified Newton’s method significantly and is derivative-free.

Several versions of the modified Newton’s approach have been developed and examined in the
literature to approximate multiple zeros of nonlinear functions. Using derivatives, many researchers,
such as Cordero et al. [7] and Zafar et al. [35] extended the modified Newton’s technique (1.3) for
multiple roots. Furthermore, recent and some derivative-free higher-order multipoint techniques have
been discussed in [9, 10, 17, 19, 20, 23]. These methods belong to a class of iterative solvers which
require the knowledge of the multiplicity. However, the exact value of this multiplicity might only
sometimes be available in practice. In such circumstances, a very close approximation of multiplicity
can be calculated by using the subsequent forms given by
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(i) Traub [26] approximation formula:

m ≈
log |Θ(x)|

log
∣∣∣∣∣ Θ(x)
Θ′(x)

∣∣∣∣∣ ,
as x approaches the multiple root of Θ in close proximity;

(ii) Lagouanelle [11] approximate formula:

m ≈
Θ′(x)2

Θ′(x)2 − Θ(x)Θ′′(x)
,

as x approaches the multiple root of Θ in close proximity.

Moreover, an alternative procedure h(x) := Θ(x)
Θ′(x) suggested by Traub [26] can be used on any method

that uses multiplicity m. Soleymani et al. [22,25] further implemented this transformation for handling
multiple roots in the absence of multiplicity through iterative techniques. In addition to this, such
methods are not only restricted to finding the solution of nonlinear equations but can also be used
especially in the areas of fluid dynamics, biomechanics, aerodynamics, and many other areas [30–34].
For simple roots, these iterative methods can be extended to multidimensional cases in order to consider
alternating direction implicit methods [12, 28] and the time-fractional telegraph equation [29].

Developing an efficient and competitive fourth-order derivative-free iterative scheme, compared
to existing optimal techniques, is quite challenging. Therefore, motivated by this idea and the
weight function notion, we have made an attempt to propose an efficient fourth-order derivative-
free family that uses four functional evaluations at each iteration. In literature, most of the iterative
schemes are limited to computing multiple roots of multiplicity m ≥ 2. The key innovation of the
proposed derivative-free family is that several efficient variants can be developed using different weight
functions. A thorough analysis and comparison are performed to study their convergence behavior. The
strength of this scheme lies in its effectiveness for both simple and multiple roots. Additionally, the
basins of attraction are analyzed in the complex plane to assess their convergence domains across a
range of problems.

The rest of the work is arranged: A new derivative-free class of multiple root solvers is proposed
in Sect. 2 along with its convergence analysis for m = 1, 2, and 3. The generalized error equation of
the proposed algorithm for m ≥ 4 is established in Sect. 3. Some particular instances are mentioned
in Sect. 4. In Sect. 5, the basins of attractions are included to demonstrate the stability features of
iterative techniques over complex planes. The suggested scheme is analyzed numerically, using various
examples to highlight its effectiveness and accuracy in Sect. 6. Lastly, in Sect. 7, some conclusions
are given.

2. Iterative scheme

We propose the following derivative-free family:

zt = xt − m
Θ(xt)
Θ[µt, xt]

,

xt+1 = zt − m
Θ(ht)
Θ[µt, xt]

[
1 + βst

1 + (β − 2)st

]
Q[st, vt],

(2.1)
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where µt = xt+γΘ(xt), ht =
xt+zt

2 , γ ∈ R\{0}, vt =
(
Θ(zt)
Θ(µt)

) 1
m
, st =

(
Θ(zt)
Θ(xt)

) 1
m , and β is a free real parameter.

Here, the function Q : C2 → C is analytic in the neighborhood of origin. In addition, Θ[µt, xt] denotes
a finite difference of order one. Keep in mind that the mappings st and vt are multivalued. As a
result, we take into account their primary analytical branches (see Ahlfors [1]). For instance, we
consider st = exp

[
1
m log

(
Θ(zt)
Θ(xt)

)]
, where log

(
Θ(zt)
Θ(xt)

)
= log

∣∣∣∣Θ(zt)
Θ(xt)

∣∣∣∣ + i arg
(
Θ(zt)
Θ(xt)

)
for −π < arg

(
Θ(zt)
Θ(xt)

)
≤ π.

Additionally, st =
∣∣∣∣Θ(zt)
Θ(xt)

∣∣∣∣ 1
m

exp
[

1
m arg

(
Θ(zt)
Θ(xt)

)]
can be written O(et), where the error at tth step is denoted

by et. The built-in command of the computer algebra system utilized in this study coincides with the
convention of the primary argument Arg(z) for z ∈ C.

We demonstrate that the suggested approach (2.1) achieves at least fourth-order convergence for
all nonzero real values of γ in the following Theorems 1–4. Also, we shall illustrate that for different
cases of the multiplicity m, the theoretical convergence findings of the scheme (2.1) are symmetrical.
First, we apply the following theorem to verify its result for the case m = 1, i.e., simple zeros.

Theorem 1. Consider a simple zero (η) of nonlinear function Θ : D ⊆ C → C such that the
neighborhood of required zero η lies in the domain D. Then, for Q00 = 0, Q01 = 0, Q10 = 2, Q02 =

0, Q20 = −8, and Q11 = 3, the proposed family (2.1) achieves at least fourth-order convergence with
error equation

et+1 =
1
4

(1 + σ1)p1

(
(5 + 2σ1 + 4σ2

1 + 8β(1 + σ1)2)p2
1 − (5 + 6σ1)p2

)
e4

t + O(e5
t ),

where β ∈ R, σ1 = γΘ
′(η), and Qi j =

∂i+ j

∂si
t∂v j

t

Q(st, vt) |(st=0, vt=0), for i, j = 0, 1, and 2.

Proof. Assume the error at the tth iteration is et = xt − η and expands the functions Θ(xt) and Θ(µt)
using Taylor’s series around x = η such that Θ(η) = 0 and Θ′(η) , 0; then one gets

Θ(xt) = Θ′(η)et

(
1 + p1et + p2e2

t + p3e3
t + p4e4

t + O(e5
t )
)
, (2.2)

and
Θ(µt) = Θ′(η)et

[
1 + σ1 + (p1 + 3σ1 p1 + σ

2
1 p1)et + (2σ1 p2

1 + 2σ2
1 p2

1 + p2 + 4σ1 p2

+ 3σ2
1 p2 + σ

3
1 p2)e2

t + (σ2
1 p3

1 + 5σ1 p1 p2 + 8σ2
1 p1 p2 + 3σ3

1 p1 p2 + p3

+ 5σ1 p3 + 6σ2
1 p3 + 4σ3

1 p3 + σ
4
1 p3)e3

t
]
+ O(e5

t ),
(2.3)

respectively. Here,

pk =
1!

(1 + k)!
Θ(1+k)(η)
Θ′(η)

, ∀ k = 1, 2, . . . .

To get the error of approximation at the first sub-step of family (2.1), substitute the Eqs (2.2) and (2.3),
and one can have

zt − η = (1 + σ1)p1e2
t +

[
−(2 + 2σ1 + σ

2
1)p2

1 + (2 + 3σ1 + σ
2
1)p2

]
e3

t +
[
(4 + 5σ1 + 3σ2

1

+ σ3
1)p3

1 − (7 + 10σ1 + 7σ2
1 + 2σ3

1)p1 p2 + (3 + 6σ1 + 4σ2
1 + σ

3
1)p3

]
e4

t + O(e5
t ).

(2.4)

Utilizing Eq (2.4) and the Taylor series of the function Θ(zt), one arrives at

Θ(zt) = Θ′(η)et[(1 + σ1)p1et + (−(2 + 2σ1 + σ
2
1)p2

1 + (2 + 3σ1 + σ
2
1)p2)e2

t + ((5 + 7σ1

+ 4σ2
1 + σ

3
1)p3

1 − (7 + 10σ1 + 7σ2
1 + 2σ3

1)p1 p2 + (3 + 6σ1 + 4σ2
1 + σ

3
1)p3)e3

t ]
+ O(e5

t ).
(2.5)
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By substituting the functions Θ(xt), Θ(µt) and Θ(zt) from Eqs (2.2)–(2.5), we get the following
expression for st and vt:

st =

(
Θ(zt)
Θ(xt)

)
= (1 + σ1)p1et +

(
−(−3 + 3σ1 + σ

2
1)p2

1 + (2 + 3σ1 + σ
2
1)p2

)
e2

t

+
(
(8 + 10σ1 + 5σ2

1 + σ
3
1)p3

1 − 2(5 + 7σ1 + 4σ2
1 + σ

3
1)p1 p2

+(3 + 6σ1 + 4σ2
1 + σ

3
1)p3

)
e3

t +
(
− (20 + 30σ1 + 20σ2

1 + 7σ3
1

+σ4
1)p4

1 + (37 + 60σ1 + 44σ2
1 + 17σ3

1 + 3σ4
1)p2

1 p2 − (8 + 15σ1

+13σ2
1 + 6σ3

1 + σ
4
1)p4

2 − (14 + 25σ2
1 + 20σ2

1 + 9σ3
1 + 2σ4

1)p1 p3

+(4 + 10σ1 + 10σ2
1 + 5σ3

1 + σ
4
1)p4

)
e4

t + O(e5
t ),

(2.6)

and

vt =

(
Θ(zt)
Θ(µt)

)
= p1et +

(
−(3 + 2σ1)p2

1 + (2 + σ1)p2

)
e2

t +
(
(8 + 8σ1 + 3σ2

1)p3
1

−(10 + 11σ1 + 4σ2
1)p1 p2 + (3 + 3σ1 + σ

2
1)p3

)
e3

t +
(
− (20

+26σ1 + 15σ2
1 + 4σ3

1)p4
1 + (37 + 52σ1 + 33σ2

1 + 9σ3
1)p2

1 p2 − (8
+13σ1 + 9σ2

1 + 2σ3
1)p2

2 − (14 + 21σ1 + 14σ2
1 + 4σ3

1)p1 p3 + (4
+6σ1 + 4σ2

1 + σ
3
1)p4

)
e4

t + O(e5
t ).

(2.7)

From the Eqs (2.6) and (2.7), we conclude that st and vt are of order et.
As we know, the Taylor series expansion of a multivariable function f (x, y) about the point (0, 0) up

to second-order terms can be written as

f (x, y) = f00 +
1
1!

( f10x + f01y) +
1
2!

(
f20x2 + 2 f11xy + f02y2

)
, (2.8)

where fi j =
∂i+ j

∂xi∂y j ( f (x, y))|(x=0,y=0), for i, j ∈ {0, 1, 2}. Now, replacing x = st and y = vt in (2.8) and

expanding the weight function Q(st, vt) about the point (0, 0), we obtain

Q(st, vt) = Q00 + (Q10st + Q01vt) +
1
2

(
Q20s2

t + 2Q11stvt + Q02v2
t

)
, (2.9)

where Qi j =
∂i+ j

∂si
t∂v j

t

Q(st, vt)|(st=0, vt=0), for i, j ∈ {0, 1, 2}.

Finally, the required expressions (2.2)–(2.9) are substituted in the final sub-step of family (2.1), one
gets the following relation:

et+1 = −
Q00

2
et −

1
4

(
Q00(3 + 4σ1) + 2(Q01 + (−2 + Q10)(1 + σ1)

)
p1e2

t +
1
8

(
2
(
− 8

+ 3Q01 − Q02 + 3Q10 − 2Q11 − Q20 − 8σ1 − Q10σ1 − 2Q11σ1 − 2Q20σ1 − 4σ2
1

− 2Q10σ
2
1 − Q20σ

2
1 + Q00(6 + σ1 − 2σ2

1 + 4β(1 + σ1)2)
)
p2

1 −
(
Q00(13 + 24σ1

+ 8σ2
1) + 4(2 + σ1)(Q01 + (−2 + Q10)(1 + σ1))

)
p2

)
e3

t + φ1e4
t + O(e5

t ),

(2.10)

where φ1 = φ1(γ, β, p1, p2, p3, p4,Q00,Q10,Q01,Q20,Q11,Q02).
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The main aim here is to achieve the highest possible convergence order, which can be obtained by
equating the coefficients (ei

t, i=1,2,3) equal to zero. Therefore, one obtains the following conditions on
the weight function:

Q00 = 0, Q10 = 2, Q01 = 0, Q20 = −8, Q02 = 0, Q11 = 3. (2.11)

By substituting conditions of (2.11) in Eq (2.10), it yields the final error equation

et+1 =
1
4

(1 + σ1)p1

(
(5 + 2σ1 + 4σ2

1 + 8β(1 + σ1)2)p2
1 − (5 + 6σ1)p2

)
e4

t + O(e5
t ), (2.12)

where σ1 = γΘ
′(η). Hence, equation (2.12) leads to the conclusion of at least fourth-order convergence

of scheme (2.1) for simple zero. □

The next theorem provides the convergence analysis of proposed scheme (2.1) for m = 2.

Theorem 2. Now, consider the same hypothesis as of Theorem 1 with multiplicity two, then the family
(2.1) achieves at least fourth-order convergence, provided Q00 = 0, Q10 = 4 − Q01, Q01 = 4, and
Q02 = −8 − 2Q11 − Q20, where {|Q11|, |Q20|} < ∞ satisfying the following error equation

et+1 =
1

128
(σ2 + 2c1)

(
σ2

2(−4 + 4β − Q11 − Q20) + 2σ2(−10 + 8β − Q11 − Q20)c1

+ 4(5 + 4β)c2
1 − 24c2

)
e4

t + O(e5
t ),

where β ∈ R, σ2 = γΘ
′′(η), and Qi j =

∂i+ j

∂si
t∂v j

t

Q(st, vt) |(st=0, vt=0) for i, j = 0, 1, and 2.

Proof. Suppose the error at the tth iteration is et = xt − η and expands the functions Θ(xt) and Θ(µt)
using Taylor’s series around x = η such that Θ(η) = Θ′(η) = 0 and Θ′′(η) , 0; then one gets

Θ(xt) =
Θ′′(η)

2!
e2

t

(
1 + c1et + c2e2

t + c3e3
t + c4e4

t + O(e5
t )
)
, (2.13)

and
Θ(µt) =

Θ′′(η)
2!

e2
t

[
1 + (σ2 + c1)et +

1
4

(σ2
2 + 10σ2c1 + 4c2)e2

t +
1
4

(5σ2
2c1 + 6σ2c2

1

+ 12σ2c2 + 4c3)e3
t + O(e4

t )
]
,

(2.14)

respectively. Here,

ck =
2!

(2 + k)!
Θ(2+k)(η)
Θ
′′(η)

, ∀ k = 1, 2, . . .

and σ2 = γΘ
′′(η). To get the error of approximation at the first sub-step of scheme (2.1), substitute the

Eqs (2.13) and (2.14), and one can have

zt − η =
1
4

(σ2 + 2c1)e2
t −

1
16

[
σ2

2 − 8σ2c1 + 12c2
1 − 16c2

]
e3

t +
1

64

[
σ3

2 − 10c1(σ2
2 + 16c2)

− 20σ2c2
1 + 64σ2c2 + 72c3

1 + 96c3

]
e4

t + O(e5
t ).

(2.15)
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Employing Eq (2.15) and Taylor’s expansion of the function Θ(zt), one obtains

Θ(zt) =
Θ′′(η)

2!
e2

t

[ 1
16

(σ2 + 2c1)2e2
t −

1
32

(σ2 + 2c1)(σ2
2 − 8σ2c1 + 12c2

1 − 16c2)e3
t + O(e4

t )
]
. (2.16)

By adopting Eqs (2.13), (2.14), and (2.16) in order to obtain the order of st and vt, one arrives at

st =

(
Θ(zt)
Θ(xt)

) 1
m

=
1
4

(σ2 + 2c1)et −
1

16
(σ2

2 − 6σ2c1 + 16c2
1 − 16c2)e2

t

+
1

64
(σ3

2 − 6σ2
2c1 − 22σ2c2

1 + 56σ2c2 + 116c3
1

− 208c1c2 + 96c3)e3
t + O(e4

t ),

(2.17)

and

vt =

(
Θ(zt)
Θ(µt)

) 1
m

=
1
4

(σ2 + 2c1) et +
1

16
(−3σ2

2 + 2σ2c1 − 16c2
1 + 16c2)e2

t

+
1

64
(7σ3

2 − 22σ2
2c1 − 14σ2c2

1 + 24σ2c2 + 116c3
1

− 208c1c2 + 96c3)e3
t + O(e4

t ).

(2.18)

From the Eqs (2.17) and (2.18), we conclude that st and vt are of order et.
We can expand the weight function Q(st, vt) about the point (0, 0) using Taylor’s series up to second-

order terms only, as given by

Q(st, vt) = Q00 +
1
1!

(Q10st + Q01vt) +
1
2!

(
Q20s2

t + 2Q11stvt + Q02v2
t

)
. (2.19)

where Qi j =
∂i+ j

∂si
t∂v j

t

Q(st, vt)|(st=0, vt=0), for i, j ∈ {0, 1, 2}.

By substituting the Eqs (2.13)–(2.19) in the family (2.1), the relation we have obtained is:

et+1 = −
Q00

4
et +

1
16

(
− σ2(−4 + 3Q00 + Q01 + Q10) − 2(−4 + 2Q00 + Q01 + Q10)c1

)
e2

t

+
1

128

(
σ2

2(−8 + 4(1 − β)Q00 − Q02 − 4Q10 − 2Q11 − Q20) + 4σ2(16 + 2(−9

+ 2β)Q00 − 6Q01 − Q02 − 8Q10 − 2Q11 − Q20)c1 + 4(−24 + 4(3 + β)Q00

+ 4Q01 − Q02 + 4Q10 − 2Q11 − Q20)c2
1 − 8(9Q00 + 4(−4 + Q01 + Q10))c2

)
e3

t

+ φ2e4
t + O(e5

t ),

(2.20)

where φ2 = φ2(γ, β, c1, c2, c3,Q00,Q10,Q01,Q20,Q11,Q02).
Now, to achieve a higher convergence order, we equate the coefficients (ei

t, i=1,2,3) of the above
error equation equal to zero. Therefore, one gets

Q00 = 0, Q10 = 4 − Q01, Q01 = 4, Q02 = −8 − 2Q11 − Q20. (2.21)
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On substituting the conditions of (2.21) in Eq (2.20), it yields

et+1 =
1

128
(σ2 + 2c1)

(
σ2

2(−4 + 4β − Q11 − Q20) + 2σ2(−10 + 8β − Q11 − Q20)c1

+ 4(5 + 4β)c2
1 − 24c2

)
e4

t + O(e5
t ),

where σ2 = γΘ′′(η). For multiplicity two, the family (2.1) thus reaches at least fourth-order
convergence. □

We shall prove the convergence results of the suggested technique for m = 3 in the next theorem.

Theorem 3. Now, consider the same hypothesis as of Theorem 1 with multiplicity m = 3, and the
scheme (2.1) achieves at least fourth-order convergence, provided Q00 = 0, Q01 = 8 − Q10, and
Q02 = −24− 2Q11 −Q20, where β ∈ R, σ3 = γΘ

′′′(η), and {|Q10|, |Q11|, |Q20|} < ∞. The error equation
becomes

et+1 =
1

432
b1

(
−3σ3(12 + Q10) + 4(17 + 8β)b2

1 − 84b2

)
e4

t + O(e5
t ),

Proof. Assume the error at the tth iteration is et = xt − η and expands the functions Θ(xt) and Θ(µt)
using Taylor’s series around x = η such that Θ(η) = Θ′(η) = Θ′′(η) = 0 and Θ′′′(η) , 0; then one gets

Θ(xt) =
Θ′′′(η)

3!
e2

t (1 + b1et + b2e2
t + b3e3

t + b4e4
t + O(e5

t )), (2.22)

and
Θ(µt) =

Θ′′′(η)
3!

e3
t

[
1 + b1et +

1
2

(σ3 + 2b2)e2
t +

(7
6
σ3b1 + b3

)
e3

t +
1

12
(
σ2

3 + 8σ2b2
1

+ 16σ3b2 + 12b4
)
e4

t + O(e5
t )
]
,

(2.23)

where the error constants are denoted by

b j =
3!

(3 + j)!
Θ(3+ j)(η)
Θ(3)(η)

, j = 1, 2, . . . .

The error of approximation at the first sub-step of family (2.1) is obtained by substituting the Eqs (2.22)
and (2.23), and one can have

zt − η =
b1

3
e2

t +
1

18
(3σ3 − 8b2

1 + 12b2)e3
t +

(1
9

b1(2σ3 − 13b2) +
16b3

1

27
+ b3

)
e4

t + O(e5
t ). (2.24)

Using Eq (2.24) and Taylor’s expansion of the function Θ(zt) brings us to

Θ(zt) =
Θ′′′(η)

3!
e3

t

[
b3

1

27
e3

t +
1

54
b2

1(3σ3 − 8b2
1 + 12b2)e4

t + O(e5
t )
]
. (2.25)

By adopting Eqs (2.22), (2.23) and (2.25), one arrives at

st =

(
Θ(zt)
Θ(xt)

) 1
3

=
b1

3
et +

1
18

(3σ3 − 10b2
1 + 12b2)e2

t +
1

54
(
9σ3b1 + 46b3

1

− 96b2b1 + 54b3
)
e3

t + O(e4
t ),

(2.26)
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and

vt =

(
Θ(zt)
Θ(µt)

) 1
3

=
b1

3
et +

1
18

(3σ3 − 10b2
1 + 12b2)e2

t +
1

27
(
3σ3b1 + 23b3

1

− 48b2b1 + 27b3
)
e3

t + O(e4
t ).

(2.27)

From the Eqs (2.26) and (2.27), we conclude that st and vt are of order et.
We can expand the weight function Q(st, vt) about the point (0, 0) using Taylor’s series up to second-

order terms only, as given by

Q(st, vt) = Q00 +
1
1!

(Q10st + Q01vt) +
1
2!

(
Q20s2

t + 2Q11stvt + Q02v2
t

)
, (2.28)

where Qi j =
∂i+ j

∂si
t∂v j

t

Q(st, vt)|(st=0, vt=0), for i, j ∈ {0, 1, 2}.

Now, substitute the Eqs (2.22)–(2.28) in the scheme (2.1), and one gets

et+1 = −
Q00

8
et −

1
48

(
5Q00 + 2(−8 + Q01 + Q10)

)
b1e2

t +
1

288

(
2(−64 + 4(5 + β)Q00

+ 5Q01 − Q02 + 5Q10 − 2Q11 − Q20)b2
1 − 3

(
2σ3(−8 + 4Q00 + Q01 + Q10)

+ (23Q00 + 8(−8 + Q10 + Q01))b2
)
e3

t + φ3e4
t + O(e5

t ),

(2.29)

where φ3 = φ3(γ, β, b1, b2, b3,Q00,Q10,Q01,Q20,Q11,Q02).
To achieve at least fourth-order convergence, we equate the coefficients (ei

t, i=1,2,3) of the above
error equation equal to zero. Therefore, one gets

Q00 = 0, Q01 = 8 − Q10, Q02 = −24 − 2Q11 − Q20. (2.30)

Using Eq (2.30) in Eq (2.29), one can have

et+1 =
1

432
b1

(
−3σ3(12 + Q10) + 4(17 + 8β)b2

1 − 84b2

)
e4

t + O(e5
t ), (2.31)

where σ3 = γΘ
′′′(η). Thus, for multiplicity three, the proposed approach (2.1) achieves at least fourth-

order convergence. □

3. Generic form of error equation

The generic form of the error equation for the derivative-free scheme (2.1) will now be presented
when m ≥ 4.

Theorem 4. Consider the same hypothesis as of Theorem 1 with multiplicity m ≥ 4, then the scheme
(2.1) achieves at least fourth-order convergence, provided Q00 = 0, Q01 = 2m − Q10, and Q02 =

−(2mm + 2Q11 + Q20), where {|Q10|, |Q11|, |Q20|} < ∞, satisfies the following error equation

et+1 =
1

4m3

[
((1 + m)2 + 1 + 8β)w3

1 − m(m + 4)w1w2

]
e4

t + O(e5
t ).
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Proof. Assume the error at the tth iteration is et = xt − η and the error constants wk =
m!

(m+ j)!
Θ(m+ j)(η)
Θ(m)(η) ,

j = 1, 2, . . .. Now, expand the functions Θ(xt) and Θ(µt) using Taylor’s series around x = η such that it
follows expression (1.2), and one gets

Θ(xt) =
Θ(m)(η)

m!
em

t (1 + w1et + w2e2
t + w3e3

t + w4e4
t + O(e5

t )), (3.1)

and

Θ(µt) =
Θ(m)(η)

m!
em

t

1 + 2∑
i=0

δiei+1
t + O(e4

t )

 , (3.2)

respectively.
Here δi = δi(m, γ,w1,w2,w3,w4,Θ

(m)(η)). For example, the first few coefficients can be expressed
simply as δ0 = w1, δ1 = w2, and

δ2 =

{ 1
6

(
γΘ(4)(η) + 6w3

)
m = 4,

w3 m ≥ 5.

Now, utilizing the Eqs (3.1) and (3.2) in the proposed scheme (2.1), we get

ezt = zt − η =
w1

m
e2

t +
1

m2 (2mw2 − (1 + m)w2
1)e3

t +
1

m3

(
δ1 + m2w3 + (1 + m)2w3

1

− m(3m + 4)w2w1
)
e4

t + O(e5
t ),

(3.3)

where

δ1 =

{ mγΘ(4)(η) m = 4,
0 m ≥ 5.

On operating Eq (3.3) and the Taylor series of the function Θ(zt), one can have

Θ(zt) =
Θ(m)(η)

m!
em

zt
(1 + w1ezt + w2e2

zt
+ w3e3

zt
+ w4e4

zt
+ O(e5

t )). (3.4)

From the Eqs (3.1), (3.2), and (3.4), we obtain

st =

(
Θ(zt)
Θ(xt)

) 1
m

=
w1

m
et +

(
2
m

w2 −
(m + 2)

m2 w2
1

)
e2

t +
1

2m3

(
δ2 + (2m2 + 7m

+ 7)w3
1 − 2m(3m + 7)w1w2 + 6m2w3

)
e3

t + O(e4
t ),

(3.5)

and

vt =

(
Θ(zt)
Θ(µt)

) 1
m

=
w1

m
et +

1
m2

(
2mw2 − (m + 2)w2

1

)
e2

t +
1

2m3

(
δ2 + (2m2 + 7m

+ 7)w3
1 − 2m(3m + 7)w1w2 + 6m2w3

)
e3

t + O(e4
t ),

(3.6)

where

δ2 =

{ 2mγΘ(4)(η) m = 4,
0 m ≥ 5.
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Expanding the weight function Q(st, vt) about the point (0, 0) using Taylor’s series up to second-order
terms as:

Q(st, vt) = Q00 + stQ10 + vtQ01 +
1
2

s2
t Q20 + Q11stvt +

1
2

v2
t Q02. (3.7)

On substituting the Eqs (3.1)–(3.7) in the technique (2.1), one arrives at the relation:

et+1 = −
Q00

2m et −
1

m2m+1

(
(2 + m)Q00 + 2(−2m+1 + Q01 + Q10)

)
w1e2

t +
1

m22m+2

×

(
2(−(1 + m)2m+1 + ((1 + m)(2 + m) + 4β)Q00 + (m + 2)(Q01 + Q10)

− Q02 − 2Q11 − Q20)w2
1 − m

(
(4(m + 2) + m)Q00 + 8(−2m + Q01

+ Q10))w2

)
e3

t + φ3e4
t + O(e5

t ), (3.8)

where φ3 = φ3(γ, β,w1,w2,w3,w4,Q00,Q10,Q01,Q20,Q11,Q02).
In a similar fashion, as in previous theorems, to achieve higher convergence order, we equate the
coefficients (ei

t, i=1,2,3) equal to zero. Therefore, one gets

Q00 = 0, Q01 = 2m − Q10, Q02 = −(2mm + 2Q11 + Q20). (3.9)

By using Eq (3.9) in Eq. (3.8), the error equation becomes

et+1 =
1

4m3

[
((m + 1)2 + 1 + 8β)w3

1 − m(m + 4)w1w2

]
e4

t + O(e5
t ). (3.10)

The scheme (2.1) for nonzero real values of γ exhibits at least fourth-order convergence when m ≥ 4,
as shown by Eq. (3.10). □

Remark 1. Subsequently, the proposed family (2.1) for the respective weight function can be expressed
as:

zt = xt − m
Θ(xt)
Θ[µt, xt]

,

xt+1 = zt − m
Θ(ht)
Θ[µt, xt]

[
1 + βst

1 + (β − 2)st

] (
(Q10st + (2m − Q10)vt) +

1
2

(
Q20s2

t + 2Q11stvt

−(2mm + 2Q11 + Q20)v2
t

))
,

(3.11)

where β is the free parameter, and the values of Q10,Q20, and Q11 can be taken from Table 1 for
different multiplicities. It is essential to note that the family (3.11) satisfies all of the criteria stated in
the preceding Theorems 1–4 and has a simple body structure. However, the choice of weight function
is not restricted to polynomial form; it can also be of rational form, which will be discussed in the next
section.

Remark 2. The proposed scheme (2.1) is based on the modified Newton’s method, which is well-known
for its simplicity and good local convergence properties. However, a good convergence of Newton’s
method can only be expected when the initial guess is adequately chosen. The significance of the
choice of initial approximations becomes even more important if higher-order iteratives are applied
due to their sensitivity to perturbations. If the initial approximation is not sufficiently close to the
desired root, these methods may exhibit slow convergence at the beginning of the iterative process,
leading to decreased computational efficiency.
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Remark 3. The computational complexity of an iterative method can be determined by the Ostrowski
approach [14], given by

E = ρ1/C, (3.12)

where ρ denotes the order of convergence, C denotes the computational cost of an iterative method that
includes a total number of functional evaluations and its derivatives per iteration for solving scalar
nonlinear equations, and E denotes the efficiency index. Here, the computational cost of the proposed
scheme (2.1) is four, i.e., it requires Θ(xt), Θ(µt), Θ(ht), and Θ(zt) functional evaluations to attain at
least fourth-order convergence. Therefore, the efficiency index of the proposed scheme becomes 41/4.

Remark 4. It can be noticed that the results for multiplicity m = 1, 2,≥ 3, the presented scheme (2.1)
achieves the fourth-order convergence with a number of restrictions on Qi j and are 6, 4, 3, respectively.
Also, for m ≥ 3, their corresponding error equations satisfy the common conditions, as given in Table 1.

Table 1. Number of restrictions on weight function Q.

Multiplicity (m) Number of
Restrictions

Conditions

1 6 Q00 = 0, Q01 = 0, Q10 =

2, Q02 = 0, Q20 = −8, Q11 =

3
2 4 Q00 = 0, Q10 = 0, Q01 =

4, Q02 = −8 − 2Q11 − Q20

≥ 3 3 Q00 = 0, Q01 = 2m −

Q10, Q02 = −(2mm + 2Q11 +

Q20)

Furthermore, for multiplicity m ≥ 1, these conditions can be generalized as Q00 = 0, Q01 =

(m−1)2m, Q10 = 2m−Q01, Q02 = −(2mm+2Q11+Q20), Q20 = −(m+1)2(m+1), and Q11 = (m+2)2(m−1).

Remark 5. It can be seen that the final error equation (3.10) (for m ≥ 4) does not contain the
parameters γ in the e4

t coefficient. Although they exist in the coefficient of e5
t , we do not state it as we

already attain the convergence order four. Moreover, the role of parameters β and γ can be observed
in equations (2.12), (2.22) and (2.31) for m = 1, m = 2 and m = 3, respectively, showing how the
parametric values will enhance the convergence order of the proposed iterative algorithm.

4. Special cases: Weight function analysis

We can devise several new iterative methods by choosing different weight functions Q(st, vt) of
the scheme (2.1) that satisfies the conditions of Theorems 1–4. Some specific cases of the suggested
scheme are given below:

1. Let us first consider the following weight function in the form of polynomial

Q(st, vt) = k1 + k2st + k3vt + k4s2
t + k5stvt. (4.1)
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under the generalized conditions Q00 = 0, Q01 = (m−1)2m, Q10 = 2m−Q01, Q20 = −(m+1)2(m+1),

and Q11 = 2(m−1)(m+2). Here, Qi j =
∂i+ j

∂si
t∂v j

t

Q(st, vt)|(st=0, vt=0). On substituting, we obtain a system

of five linear equations and therefore one obtains the ki’s values for i = 1, 2, 3, 4, 5 by

k1 = 0, k2 = 2m(2 − m), k3 = 2m(m − 1), k4 = −2m(m + 1), and k5 = 2m−1(m + 2). (4.2)

As a result, the first weight function Q(st, vt) = Q1(st, vt) becomes

Q1(st, vt) = 2m−1(2(m − 1)vt − 2(1 + m)s2
t + mst(vt − 2) + 2st(2 + vt)

)
.

2. Now, there are two ways to get a rational weight function. The first one is to directly apply the
generalized conditions obtained above on the following rational weight function

Q(st, vt) =
k1 + k2st + k3vt + k4s2

t + k5v2
t + k6stvt

−1 + 2st − 2vt
, (4.3)

and one obtains the weight function

Q(st, vt) =
2m−1(7(m − 2))stvt − 2m(m − 5)s2

t + 2m(m − 2)st − 2m+1(m − 1)v2
t − 2m(m − 1)vt

2st − 2vt − 1
.

This approach is the basic one that most of the researchers do. However, in this study, we optimize
the ki’s values of the weight function (4.3) by applying it directly to the proposed scheme, and the
optimized values obtained here are given by

k1 = 0, k2 = 2m(m − 2), k3 = 2m(1 − m), k4 =
(
1 − mm + 22+m

)
,

k5 = mm − 1, k6 = −2m−1(7m).
(4.4)

On subsituting the values, our second weight function Q(st, vt) = Q2(st, vt) becomes

Q2(st, vt) =
(
(1 + 22+mm − mm)s2

t + vt(2m − 2mm − vt + mmvt) − 2m−1st(4 + m(−2 + 7vt))
)

(−1 + 2st − 2vt)
.

3. Let us consider another rational weight function of the form

Q(st, vt) =
k1 + k2st + k3vt + k4s2

t + k5v2
t + k6stvt

(−1 + st − vt)4 , (4.5)

and using the same hypothesis as discussed in generating the second weight function, the ki’s
values becomes

k1 = 0, k2 = 2m(2 − m), k3 = 2m(m − 1), k4 = m − 12 − 2m−1m + m2 − mm,

k5 = mm − m2, k6 = 12 − m.
(4.6)

Upon solving, we obtain our third weight function Q(st, vt) = Q3(st, vt) by

Q3(st, vt) =
(
2m(2 − m)st + (m − 12 − 2m−1m + m2 − mm)s2

t + 2m(m − 1)vt + (12 − m)stvt + (mm − m2)v2
t
)

(−1 + st − vt)4 .
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Therefore, by taking these weight functions in our scheme (2.1), the corresponding methods take the
following forms:
Method 1 (LM1):


zt =xt − m

Θ(xt)
Θ[µt, xt]

,

xt+1 =zt − m
Θ(ht)
Θ[µt, xt]

[
1 + βst

1 + (β − 2)st

] (
2m−1(2(m − 1)vt − 2(1 + m)s2

t + mst(vt − 2) + 2st(vt + 2)
))
.

Method 2 (LM2):



zt = xt − m
Θ(xt)
Θ[µt, xt]

,

xt+1 = zt − m
Θ(ht)
Θ[µt, xt]

[
1 + βst

1 + (β − 2)st

]
×

(
(1 + 22+mm − mm)s2

t + vt(2m − 2mm − vt + mmvt) − 2m−1st(4 + m(−2 + 7vt))
)

(−1 + 2st − 2vt)
.

Method 3 (LM3):



zt = xt − m
Θ(xt)
Θ[µt, xt]

,

xt+1 = zt − m
Θ(ht)
Θ[µt, xt]

[
1 + βst

1 + (β − 2)st

]
×

(
2m(2 − m)st + (m − 12 − 2m−1m + m2 − mm)s2

t + 2m(m − 1)vt + (12 − m)stvt + (mm − m2)v2
t
)

(−1 + st − vt)4 .

It is important to note that discontinuities or singularities may occur when the denominators of
the weight function Q1,Q2, and Q3 approaches zero. We compared the weight functions for m = 1
and m = 2, as illustrated in Figures 1–2. Each weight function displays distinct behavior due to its
unique numerator and denominator. Additionally, functions that include terms like 2m or mm may
dominate certain regions because of their scaling differences. We have examined several real-world
and standard academic examples to evaluate the effectiveness of iterative approaches using different
weight functions.
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Figure 1. Numerical comparisons of weight functions for m = 1.

Figure 2. Numerical comparisons of weight functions for m = 2.

5. Basins of attraction

Here, we use the technique of some complex polynomials p(z) to analyze the basins of attraction of
the iterative schemes and highlight the key information about their convergence and stability. Attraction
basins are typically thought of as visual geometrical tools for comparing iterative methods that describe
the behavior of a particular scheme at several initial points. The following contents offer a succinct
summary of some fundamental concepts related to the visual tool; further details can be found in
Varona [27].

Let the rational map ψ : C → C be defined on the Riemann sphere. The orbit is defined for any
given point z0 ∈ C by

{z0, ψ(z0), ψ2(z0), . . . , ψn(z0), . . .}.

If ψq(z0) = z0, then a point z0 ∈ C is typically referred to as a periodic point with period q (q is the
least integer). Consequently, a fixed point is a periodic point when q = 1. If |ψ′(z0)| < 1, then z0 is an
attracting complex point; if |ψ′(z0)| > 1, it repels; if |ψ′(z0)| = 1, it is neutral; and if |ψ′(z0)| = 0, it is
super attracting. Think of α∗ as the rational function’s attractive fixed point. Regarding each attractive
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fixed point α∗, the collection of initial points z0 whose orbits tend to α∗ constitutes the attraction basins
(represented by D(α∗)) given as

D(α∗) = {z0 ∈ C : ψn(z0)→ α∗, as n→ ∞}.

The Fatou set collects all points whose orbits are getting closer to the fixed point α∗. The Julia
set (Js) is its complementary set. The lines connecting the basins are verified from Js recognized
by the closure of the set where fixed points repel. Thus, when we employ a method of iteration
on a polynomial, the procedure of attraction basins allows us to select those initial points that are
convergent to the required root. Additionally, we can see those starting regions that are unfit for the
iterative techniques. We choose initial point z0 in the domain D1, where D1 = [−3, 3]× [−3, 3] ⊆ C×C
denotes the rectangular domain with 512 × 512 mesh points so that it contains each root of p(z) = 0;
otherwise, we enlarge the domain to enclose the desired root. The convergence of a scheme starting at
a point z0 ∈ D1 to the zero of a function p(z) is not guaranteed. To draw the attraction basins, we set
the tolerance 10−3 in the stopping criterion for the convergence, limited to 25 iterations. The scheme,
including the findings demonstrating non-convergence w.r.t the iteration formula begun from z0, will be
rejected if the tolerance has not been reached in the expected amount of iterations. We allocate a single
color to each z0 throughout the formation of the basins. These attraction basins with the designated
color are formed if the iterative scheme converges for the initial point z0. If not, the scheme will be
colored blue since it deviates from the predicted number of iterations.

For comparison purposes, we consider several existing optimal fourth-order variants of Newton-like
techniques for calculating the multiple zeros of a function. The schemes are expressed as follows:

Zafar et al. [35] method: 
zt = xt − m

Θ(xt)
Θ′(xt)

,

xt+1 = zt − m
ut(4ut + 1)
(ut + 1)2

Θ(xt)
Θ′(xt)

,

(5.1)

and 
zt = xt − m

2Θ(xt)
2Θ′(xt) + mΘ(xt)

,

xt+1 = zt − mut

(
1 + 2ut +

11
2

u2
t

)
Θ(xt)

Θ′(xt) + mΘ(xt)
,

(5.2)

where ut =

(
Θ(zt)
Θ(xt)

) 1
m

. We have denoted the methods (5.1) and (5.2) by FM1 and FM2, respectively.

Sharma et al. [19] method:
wt = ut − m

Θ(ut)
Θ[vt, ut]

,

ut+1 = wt −

(
st − yt + myt − m2styt + 2mstyt

−mst + s2
t + 1

)
Θ(ut)
Θ[vt, ut]

,

(5.3)
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and


wt = ut − m

Θ(ut)
Θ[vt, ut]

,

ut+1 = wt +

(
st + ms2

t − (m − 1)yt(myt − 1)
myt − 1

)
Θ(ut)
Θ[vt, ut]

,

(5.4)

where vt = ut + βΘ(ut), st =

(
Θ(wt)
Θ(ut)

) 1
m

, yt =
(
Θ(wt)
Θ(vt)

) 1
m , and β = 1/2. The methods in expressions (5.3)

and (5.4) are denoted by S M1, and S M2, respectively.

Sharma et al. [20] method:


zt = ut − m

Θ(ut)
Θ[vt, ut]

,

ut+1 = zt −
mht(1 + 3ht)

2

(
1
yt
+ 1

)
Θ(ut)
Θ[vt, ut]

,

(5.5)

where vt = ut + βΘ(ut), xt =

(
Θ(zt)
Θ(ut)

) 1
m

, yt =

(
Θ(vt)
Θ(ut)

) 1
m

, ht =
xt

1 + xt
, and β = 0.5. The method (5.5) is

denoted by MM1.

Three polynomials with multiple zeros are employed to study the complex dynamics of the scheme
(2.1). For testing, we fix β = −25

26 in the proposed methods LM1, LM2, and LM3. The test problems
considered here are as follows:

Problem 1. Consider a polynomial p1(z) = (z2 + 5z + 6)2 that consists of two zeros {−3,−2} of
multiplicity m = 2. For γ = 0.01, 10−4, 10−6, the polynomial’s basins are shown in the Figures 3–
5, respectively. The orange color is assigned to the initial approximations whenever it converges to the
roots of an Eq p1(z) = 0 while drawing its basins of attractions.
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Figure 3. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ = 10−2 in Problem 1.
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Figure 4. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ = 10−4 in Problem 1.
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Figure 5. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ =10−6 in Problem 1.

Problem 2. For further testing, suppose the polynomial p2(z) = (z2 + 1
z + 2)3 carrying three zeros{

0.453,−0.226+1.467I,−0.226−1.467I
}

with multiplicity m = 3. The basins of attractors are estimated
by different schemes for p2(z), represented in Figures 6–8 for the parametric value γ as 0.01, 10−4, 10−6,
respectively. The corresponding basins are distinguished via a color allotted to them. Particularly, we
allocate an orange color to all convergent points approaching to the zeros of a function p2(z).
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Figure 6. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ = 10−2 in Problem 2.
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Figure 7. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ = 10−4 in Problem 2.
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Figure 8. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ = 10−6 in Problem 2.

Problem 3. Consider a function p3(z) = (z3 − z)4 having three zeros {−1, 1, 0} with multiplicity four.
Basins of attractions for this problem are illustrated in Figures 9–11 for particular values of γ =
0.01, 10−4, 10−6, respectively. We allot an orange color to the convergent points, whereas a blue color
signifies the non-convergent points.
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Figure 9. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ = 10−2 in Problem 3.
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Figure 10. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ = 10−4 in Problem 3.
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Figure 11. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ =10−6 in Problem 3.

We present quantitative data on the above three problems in Tables 2–4 by considering the mean
value of iterations per point. The mean number of iterations in an algorithm is the total number of
iterations needed per point until the root is reached, displayed in the first column (by M/P). If the
point is not converging within maximum iterations, the point is regarded as non-convergent. Tables
2–4 display the percentage of non-convergent points (NC(%)) in the second column. The blue zones
in the fractal images shown in Figures 3–11 represent these points.

Remember that the non-convergent points, which always contributed with the maximum 25
permitted iterations, determine the value of M/P. Contrastingly, convergent points were typically
reached very quickly because we use higher-order multipoint approaches. To reduce round-off errors,
we also provide an additional column (MC/C) that shows the mean value of iterations per convergent
point.

It is evident that the convergence behavior suggested family (2.1) is significantly impacted by the
estimation of parameter γ. For this reason, we have chosen several values of γ. An increasing size of
the basin attractors is shown by the lowering parameter γ. Conversely, the fractals get smaller when the
parameter γ is large. Furthermore, when the value of γ drops, the blue areas represent the divergence
zones, which are likewise getting smaller. In conclusion, we find that the convergence of the proposed
approaches is significantly better at smaller γ values.
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Table 2. Different measures of iterative convergence for test problem p1(z) = 0.

γ Methods M/P NC (%) MC/C
10−2 FM1 4.3224 0.0000 4.3224
10−2 FM2 6.1212 9.0425 4.2444
10−2 S M1 6.3036 33.3406 6.7266
10−2 S M2 7.9442 19.6862 3.7635
10−2 MM1 12.0488 30.6586 6.3226
10−2 LM1 7.8721 20.5879 3.4316
10−2 LM2 7.7204 20.2854 3.3232
10−2 LM3 6.4615 33.3045 3.2973
10−4 FM1 4.3224 0.0000 4.3224
10−4 FM2 6.1212 9.0425 4.2444
10−4 S M1 7.1947 2.9802 7.1566
10−4 S M2 3.3625 0.0092 3.3605
10−4 MM1 5.0118 0.6593 4.8791
10−4 LM1 3.2445 2.6249 2.6581
10−4 LM2 3.2631 2.6379 2.6742
10−4 LM3 2.9392 2.7215 2.6344
10−6 FM1 4.3224 0, 0000 4.3224
10−6 FM2 6.1212 9.0425 4.2444
10−6 S M1 7.3083 0.7630 7.2817
10−6 S M2 3.3590 0.0000 3.3593
10−6 MM1 4.8903 0.0403 4.8822
10−6 LM1 3.1610 1.8289 2.7541
10−6 LM2 3.1601 1.8262 2.7539
10−6 LM3 2.9596 1.8946 2.7501
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Table 3. Different measures of iterative convergence for test problem p2(z) = 0.

γ Methods M/P NC (%) MC/C
10−2 FM1 4.3196 0.0027 4.3191
10−2 FM2 13.1313 43.2737 4.0773
10−2 S M1 21.9086 84.4655 5.1974
10−2 S M2 18.9200 71.0817 4.1045
10−2 MM1 21.7949 84.0213 5.0422
10−2 LM1 18.6034 70.0892 3.8040
10−2 LM2 19.3298 73.4156 3.7913
10−2 LM3 11.2078 77.1364 3.5877
10−4 FM1 4.3196 0.0027 4.3191
10−4 FM2 13.1313 43.2737 4.0773
10−4 S M1 12.0181 30.0681 7.3592
10−4 S M2 4.8651 12.0227 3.4618
10−4 MM1 14.9290 49.3531 6.0382
10−4 LM1 5.1886 14.1236 3.1477
10−4 LM2 5.1637 14.1799 3.1548
10−4 LM3 4.4466 13.0958 3.1389
10−6 FM1 4.3196 0.0027 4.3191
10−6 FM2 13.1313 43.2737 4.0773
10−6 S M1 12.6317 34.8122 8.3879
10−6 S M2 5.4710 19.8234 3.4935
10−6 MM1 11.4979 33.2152 7.1989
10−6 LM1 5.42989 18.5421 3.1306
10−6 LM2 5.4593 18.7222 3.1285
10−6 LM3 5.0120 18.6869 3.1274
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Table 4. Different measures of iterative convergence for test problem p3(z) = 0.

γ Methods M/P NC (%) MC/C
10−2 FM1 5.7004 0.0289 5.6948
10−2 FM2 6.5795 10.3819 4.4460
10−2 S M1 24.0285 94.6878 6.7120
10−2 S M2 22.0260 85.8817 3.9354
10−2 MM1 23.1753 90.6551 5.4738
10−2 LM1 21.9881 86.2613 3.0770
10−2 LM2 22.4859 88.5366 3.0684
10−2 LM3 12.7140 89.3171 2.9839
10−4 FM1 5.7004 0.0289 5.6948
10−4 FM2 6.5795 10.3819 4.4456
10−4 S M1 23.6691 92.2901 7.7383
10−4 S M2 18.2325 65.5750 5.3413
10−4 MM1 20.8471 78.5020 5.6822
10−4 LM1 17.7304 66.4600 3.3255
10−4 LM2 19.0186 72.4094 3.3210
10−4 LM3 11.5767 72.1510 3.3508
10−6 FM1 5.7004 0.0289 5.6948
10−6 FM2 6.5795 10.3819 4.4455
10−6 S M1 23.6912 92.8491 6.7024
10−6 S M2 13.4588 35.4586 7.1190
10−6 MM1 16.9522 58.6414 5.5425
10−6 LM1 8.3798 22.6486 3.5143
10−6 LM2 10.7761 33.7749 3.5235
10−6 LM3 7.7696 34.1925 3.4390

6. Numerical experimentation

In this section, we examine the performance of the derivative-free proposed methods LM1, LM2

and LM3 on test problems by fixing β = −25
26 , and γ = 1

2 . We have considered several practical
and standard academic problems to assess the execution of iterative schemes. For this, first we have
determined the comparison on three well-known real-life problems stated in Examples 1, 2, and 3, in
which nonlinear equations are established consisting of multiple roots. Next, we choose a problem
related to eigenvalues as in Example 4. At last, we check three academic Examples 5, 6, and 7 having
multiple roots of multiplicity m = 5, m = 6 and m = 8, respectively. Along with the methods
considered for the sake of comparison in the previous section, we have included one more iterative
method to show that the present method is faster than the classic second-order method (T M1 for γ = 1

2 ).
We utilize computer specifications and the programming application Mathematica 11 to perform
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multiple precision arithmetic: CPU speed: 2.80GHz Intel (R) i7-7600U (64-bit operating system) 8
GB of RAM and Microsoft Windows 10 Pro.

The computational performance of the iterative techniques is measured in terms of the iteration
number (t), consecutive error approximations |e′t+1| = |xt+1 − xt|, absolute residual functional error
|Θ(xt)|, and the order of convergence (ρ), which is calculated computationally [8, 14] using formula:

ρ ≈
ln |Θ(xt+1)/Θ(xt)|
ln |Θ(xt)/Θ(xt−1)|

, t = 1, 2, . . . .

Further, in order to reduce round-off errors, the results are evaluated with a minimum of 3000
significant digits in Tables 5–11. Furthermore, the data displayed corresponding to the column of
|xt+1 − xt| and |Θ(xt)| in the comparison tables are up to the first two significant digits along with its
exponent power. The scientific notation a×10±b is represented as a(±b). In addition, the ρ is displayed
up to five significant digits. For each example, we have plotted the basins of attraction in Figures 12–18
to know convergence domains of all fourth-order iterative methods for solving the nonlinear equation
Θi(z) = 0, i = 1, 2, . . . , 7 in Examples 1–7.

Table 5. Computational outcomes of iterative methods for Example 1.

Methods t |e′2| |e′3| |e′4| |Θ1(xt)| ρ

T M1 3 2.7(−3) 1.5(−7) 4.4(−16) 8.5(−17) 1.9998
FM1 3 3.2(−6) 1.7(−26) 1.5(−107) 2.8(−108) 4.0000
FM2 3 5.3(−3) 3.6(−10) 8.1(−39) 1.6(−39) 4.0010
S M1 3 3.1(−6) 1.6(−26) 9.3(−108) 1.8(−108) 4.0000
S M2 3 3.1(−6) 1.3(−26) 4.7(−108) 9.1(−109) 4.0000
MM1 3 1.2(−4) 1.4(−11) 1.6(−25) 3.1(−26) 2.0000
LM1 3 3.3(−6) 2.0(−26) 2.5(−107) 4.8(−108) 4.0000
LM2 3 3.3(−6) 2.0(−26) 2.7(−107) 5.2(−108) 4.0000
LM3 3 3.4(−6) 2.1(−26) 3.1(−107) 5.9(−108) 4.0000

Example 1. We study a problem pertaining to Planck’s radiation law [3]. The following nonlinear
equation that appears during the mathematical modeling:

G(y) =
8πchy−5

e
ch

ykT − 1
,

Here, c, T, y, k,, and h stand for the speed of light, the black body’s absolute temperature, the radiation
wavelength, the Boltzmann value, and Planck’s constant, respectively. This law gives the spectrum
distribution of radiations from a black body at a given temperature in thermal equilibrium. In order
to determine the wavelength y, which corresponds to the maximum energy density G(y), we solve the
equation G′(y) = 0.
For doing so, we perform some algebraic calculations and arrive at the following equation:(

ch
ykT

)
e

ch
ykT

e
ch

ykT − 1
= 5.
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Additionally, it can be expressed as the following nonlinear function:

Θ1(x) =
(
e−x − 1 +

x
5

)
, (6.1)

where x = ch
ykT . Now, the approximated root of an Eq (6.1) of multiplicity 1 is computed using

iterative techniques with initial guess x0 = 5.4, which turns out to be 4.96511423174428. Further,
the wavelength of the nonlinear model can be obtained via the expression x = ch

ykT . The outcomes of
our testing of this problem are shown in Table 5.
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Figure 12. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ =10−6 in Example 1.

Example 2. The Van der Waals equation [4] for the ideal gas is studied in this instance, whose
mathematical representation is given by

(
P1 +

a1n2
1

V1

)
(V1 − n1b1) = n1R1T1,

indicating how a real gas with two constants, a1 and b1, behaves. To simplify this equation, the problem
at hand is to determine the optimal value of volume in the above expression. After giving values to
pressure (P1) and the number of moles (n1), the following nonlinear equation is obtained in form of
volume (x)

Θ2(x) = x3 − (522/100)x2 + (90825/10000)x − (52675/10000) = 0.

The multiple root for this model is 1.75 of multiplicity two which is approximated by using initial guess
x0 = 2, and the corresponding outcomes are provided in Table 6.
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Table 6. Computational outcomes of iterative methods for Example 2.

Methods t |e′2| |e′3| |e′4| |Θ2(xt)| ρ

T M1 3 6.0(−2) 1.9(−2) 3.8(−3) 5.4(−7) 1.1565
FM1 3 3.4(−2) 2.1(−3) 6.8(−7) 1.4(−14) 2.5369
FM2 3 2.7(−2) 5.5(−4) 1.8(−11) 9.3(−24) 4.0681
S M1 3 2.7(−2) 6.7(−4) 2.1(−9) 1.3(−19) 3.1312
S M2 3 2.4(−2) 3.7(−4) 1.2(−10) 4.7(−22) 3.3247
MM1 3 3.7(−2) 2.6(−3) 1.3(−6) 5.2(−14) 2.4417
LM1 3 1.6(−2) 5.1(−5) 1.8(−14) 9.3(−30) 3.6445
LM2 3 1.8(−2) 7.3(−5) 7.7(−14) 1.8(−28) 3.5977
LM3 3 1.4(−2) 3.1(−5) 2.5(−15) 1.8(−31) 3.6983
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Figure 13. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ =10−6 in Example 2.

Example 3. An unwanted radio frequency breakdown can occur in high-power microwave media
running with the condition of vacuum, termed as a multifactor effect. In general, it can be found inside
a parallel plate that guides the waves. Between the plates, an electric field is generated with voltage,
which allows the electron to move within the plates. So, here we study a mathematical model of the
trajectory of an electron in the air gap between two parallel plates, given by

y(t) = y0 + e
E0

maω2 (cos(ωt + ∆) +
(
v0 + e

E0

maω
sin(ωt0 + δ)

)
(t − t0) − cos(ωt0 + ∆)),

where e and ma denote the charge and mass of an electron at rest, whereas E0 sin(ωt +∆) corresponds
to a radio frequency electric field between the plates. Here, v0 and y0 denote the velocity and position
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of an electron at time t0. By considering the particular values of the parameters in the above equation,
one can obtain its normalized form as given below:

Θ3(x) = cos(x) + x −
π

2
.

We are looking for multiple root
π

2
of multiplicity three which is approximated by using an initial guess

of x0 = 1, Table 7 lists the numerical performance of the considered approaches.

Table 7. Computational outcomes of iterative methods for Example 3.

Methods t |e′2| |e′3| |e′4| |Θ3(xt)| ρ

T M1 3 8.5(−3) 3.0(−8) 1.4(−24) 4.4(−73) 3.0000
FM1 3 Diverges – – – –
FM2 3 Diverges – – – –
S M1 3 3.2(−5) 1.9(−26) 1.5(−132) 5.9(−397) 5.0000
S M2 3 3.4(−5) 2.5(−26) 5.3(−132) 2.5(−395) 5.0000
MM1 3 5.0(−5) 3.8(−25) 9.6(−126) 1.5(−376) 5.0000
LM1 3 2.5(−6) 6.1(−32) 5.1(−160) 2.2(−479) 5.0000
LM2 3 1.6(−6) 5.8(−33) 4.1(−165) 1.2(−494) 5.0000
LM3 3 2.8(−7) 1.1(−36) 1.0(−183) 1.9(−550) 5.0000
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Figure 14. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ =10−6 in Example 3.
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Figure 15. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ =10−6 in Example 4.

Example 4. Let us consider a 5 × 5 matrix:


29 14 2 6 −9
−47 −22 −1 −11 13
19 10 5 4 −8
−19 −10 −3 −2 8

7 4 3 1 −3


.

The matrix shown above has a characteristic polynomial in terms of x as

Θ4(x) = (1 + x)(2 − x)4.

This polynomial contains a multiple root 2 of multiplicity 4. Using x0 = 1.9, the computational
outcomes are summarized in Table 8.
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Table 8. Computational outcomes of iterative methods for Example 4.

Methods t |e′2| |e′3| |e′4| |Θ4(xt)| ρ

T M1 3 1.1(−3) 9.8(−8) 8.0(−16) 1.3(−60) 1.9999
FM1 3 1.8(−3) 6.5(−14) 1.2(−55) 1.3(−220) 3.9999
FM2 3 1.4(−2) 2.4(−8) 6.7(−16) 6.2(−61) 1.3076
S M1 3 2.2(−3) 1.2(−14) 2.4(−29) 1.0(−114) 1.3046
S M2 3 2.2(−3) 2.6(−14) 1.1(−28) 5.0(−112) 1.3140
MM1 3 2.2(−3) 1.5(−13) 3.7(−54) 5.8(−214) 3.9980
LM1 3 2.2(−3) 5.0(−14) 1.6(−56) 1.9(−223) 3.9931
LM2 3 2.2(−3) 4.9(−14) 1.6(−56) 1.9(−223) 3.9930
LM3 3 2.2(−3) 5.0(−14) 1.6(−56) 2.0(−223) 3.9931
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Figure 16. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ =10−6 in Example 5.

In the next three examples, we consider some academic problems to check the efficacy of proposed
algorithms compared to the existing schemes.

Example 5. Consider the following nonlinear function carrying multiple zero at x = 0.739085133 of
multiplicity 5:

Θ5(x) = (cos(x) − x)5.

Here, the numerical outcomes are shown in Table 9 by taking x0 = 0.8.
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Table 9. Computational outcomes of iterative methods for Example 5.

Methods t |e′2| |e′3| |e′4| |Θ5(xt)| ρ

T M1 3 7.6(−4) 1.3(−7) 3.5(−15) 7.1(−72) 1.9999
FM1 3 1.4(−6) 4.3(−25) 4.1(−99) 1.5(−491) 3.9999
FM2 3 Diverges – – – –
S M1 3 Diverges – – – –
S M2 3 Diverges – – – –
MM1 3 1.4(−6) 5.1(−25) 8.3(−99) 5.2(−490) 3.9997
LM1 3 9.7(−7) 5.6(−26) 6.2(−103) 1.2(−510) 4.0000
LM2 3 1.1(−6) 1.1(−25) 8.4(−102) 5.4(−505) 4.0000
LM3 3 7.9(−7) 2.5(−26) 2.6(−104) 1.5(−517) 4.0000

Example 6. Consider the function

Θ6(x) =
(
1 + (1 − x)3

)6
,

with zero at x = 2 having multiplicity 6. With the value x0 = 1.9, we presented the numerical outcomes
in Table 10.

Table 10. Computational outcomes of iterative methods for Example 6.

Methods t |e′2| |e′3| |e′4| |Θ6(xt)| ρ

T M1 3 1.2(−2) 1.4(−4) 2.0(−8) 4.7(−44) 1.9912
FM1 3 2.9(−2) 5.3(−6) 7.5(−21) 1.3(−118) 3.9624
FM2 3 6.0(−2) 2.4(−6) 1.7(−9) 2.0(−50) 1.2099
S M1 3 4.5(−2) 2.7(−5) 1.5(−9) 7.8(−51) 1.3175
S M2 3 4.8(−2) 4.2(−5) 3.5(−9) 1.5(−48) 1.3235
MM1 3 3.0(−2) 6.3(−6) 1.5(−20) 8.3(−117) 3.9601
LM1 3 2.1(−2) 5.8(−7) 3.9(−25) 2.5(−144) 3.9830
LM2 3 1.6(−2) 2.0(−7) 5.2(−27) 1.5(−155) 3.9871
LM3 3 2.6(−2) 1.4(−6) 1.5(−23) 8.7(−135) 3.9856
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Figure 17. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ =10−6 in Example 6.

Example 7. We consider the following nonlinear function:

Θ7(x) = (5 arctan(x) − 4x)8 ,

carrying multiple zero x = 0.94913461128828951372581521479848875 of multiplicity 6. The
outcomes for this test problem are presented in Table 11, by taking x0 = 1.

Table 11. Computational outcomes of iterative methods for Example 7.

Methods t |e′2| |e′3| |e′4| |Θ7(xt)| ρ

T M1 3 2.2(−3) 4.6(−6) 2.0(−11) 3.4(−85) 1.9984
FM1 3 3.7(−5) 1.7(−17) 7.7(−67) 1.5(−528) 4.0000
FM2 3 9.0(−6) 2.3(−10) 1.3(−38) 9.6(−303) 6.1661
S M1 3 5.5(−5) 5.7(−9) 9.2(−33) 6.4(−256) 5.9794
S M2 3 6.0(−5) 7.0(−9) 2.2(−32) 8.0(−253) 5.9683
MM1 3 3.7(−5) 1.7(−17) 7.7(−67) 1.5(−528) 4.0000
LM1 3 3.8(−5) 1.6(−17) 5.5(−67) 1.0(−529) 4.0000
LM2 3 3.8(−5) 1.6(−17) 5.2(−67) 6.8(−530) 4.0000
LM3 3 3.8(−5) 1.6(−17) 5.8(−67) 1.5(−529) 4.0000
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Figure 18. Convergence planes of FM1, FM2, S M1, S M2, MM1, LM1, LM2 and LM3 for
γ =10−6 in Example 7.

The numerical findings of several techniques for calculating multiple roots of nonlinear functions
Θi, i = 1, 2, . . . , 7 are presented in Tables 5–11, respectively. From these results, one can observe that
the proposed schemes work more adequately in terms of accuracy in Examples 2–6. It is necessary to
keep in mind that the desired results are obtained by each algorithm. However, in Examples 2, 4, and
6, the convergence order of certain existing methods is lower than their theoretical convergence order.
This disparity occurs because the convergence domains can differ for different iterative processes.
As a result, a specific method may converge more slowly for a particular initial guess, highlighting
its sensitivity to the choice of initial conditions that are close to the desired solution. Henceforth, the
numerical outcomes in Tables 5–11 reveal that the schemes LM1, LM2, and LM3 outperform the current
robust approaches. Moreover, compared to existing methods, our schemes yield lower absolute errors
in the consecutive iterations and functional errors. While drawing basins of attraction, we find that the
iterative method MM1 does not support well in the complex domain in the case of Examples 2 and 5,
which shows its unstable nature toward complex initial guesses; however, the proposed solvers show
better convergence plane than the existing derivative-free techniques.

7. Conclusions

We have introduced a novel two-point derivative-free iterative technique using weight functions that
approximate the multiple roots of the nonlinear equations. We have discussed a detailed theoretical
analysis for m = 1, 2, and 3. For m ≥ 4, it is additionally provided in generalized form, confirming
that the convergence order is at least four. Furthermore, a few special cases are shown via the use
of distinct weight functions. We have also demonstrated the basins of attraction of our methods for
various parametric values in the complex plane to verify their stability. The numerical results illustrate
the higher performance of the proposed family. Also, it shows that the proposed derivative-free family
performs significantly better than the current ones for academic problems as well as for real-life
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applications. Therefore, we can conclude that the suggested class would be a valuable alternative
for numerically calculating multiple zeros of nonlinear functions.
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