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Abstract: We have introduced a new continuous-time network evolution model. We have described
cooperation, so we have considered the cliques of nodes. The evolution of the network was based on
cliques of nodes of the network and was governed by a branching process. The basic properties of
the evolution process were described. Asymptotic theorems were proved for the number of cliques
having a fixed size and the degree of a fixed node. The generating function was calculated, and then
the probability of extinction was obtained. For the proof, advanced results of multi-type branching
processes were used. Besides precise mathematical proofs, simulation examples also supported
our results.
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1. Introduction

Nowadays, network theory is a popular and important research field. The book by Barabási [1]
contains several general facts on network theory. A mathematical tool to describe an evolving network
is the theory of random graphs. The graph’s vertices are the nodes of the network and the edges of
the graph are the connections among the nodes. In real life, a connection can be a collaboration or
an interaction.

In this paper, we do not want to overview the vast literature on network theory. As we intend to apply
branching processes to describe a network evolution, we focus on papers using branching processes
in network theory. Bollobás and Riordan in [2] considered several problems of random graphs and
applied Galton-Watson branching processes to prove some of the theorems. Rudas et al. [3] as well as
Rudas and Tóth [4] applied continuous-time branching processes to study random tree growth models.
In [5], a preferential attachment random graph is embedded in a continuous-time branching process to
find the asymptotic behavior of the graph. In [6], continuous-time branching processes were applied
to study an estimator in sublinear preferential attachment trees. In their survey paper [7], Holmgren
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and Janson studied the asymptotics of certain trees using Crump-Mode-Jagers branching processes.
In [8], multi-type preferential attachment trees were studied using the theory of multi-type continuous-
time branching processes. Banerjee and Huang [9] studied growing networks via embedding into a
continuous-time branching process. In [10], Iksanov et al. underlined that one of the main applications
of the theory of branching processes is the study of evolving networks. Usually, the advanced theory
of branching processes is applied to prove new results for growing networks. However, sometimes
network theory inspires new research in the field of branching processes, e.g., [11].

Most studies in network theory concentrate on connections of two nodes. However, cooperation
of more than two units is also important. There are models describing such cooperation. Backhausz
and Móri studied three-interactions in [12], while Fazekas and Porvázsnyik in [13] considered N-
interactions.

In this paper, we shall study a continuous-time network evolution model based on the cooperation
of several units. Our model was motivated by the activities of teams of people. We focused on
cooperation among friends, recruitment of party members, recruitment of volunteers, collaboration
among scientists, and teams in social networks. In the above cases, a person can be a member of
several teams at the same time, new teams can emerge and disappear, and newcomers can join an
existing team.

2. Materials and methods

In this paper, we apply similar mathematical tools as in [14, 15], where continuous-time branching
processes were used (see also [16]). In [14], the starting network is a single edge. Any edge produces
several new vertices during evolution, and then the edge disappears. Any new vertex produced by
an edge is joined to the endpoints of the reproducing edge with one or two new edges. In [14], the
reproduction process of the edges is a continuous-time branching process. In [15], 2- and 3-cliques are
considered and some results of [14] are extended.

In this paper, we shall study networks containing cliques (i.e., groups) of sizes 1, 2, . . . ,N, where
N is fixed. We shall apply multi-type branching processes, where the type is the size of a clique. The
researches [8,17] also applied multi-type branching processes, but there the vertices had different types.
We also mention, that the evolution process considered in this paper is similar to the one studied in [15],
but we emphasize that the process in [15] is not a particular case of the process in the present paper.

During the evolution of the network, when a newcomer joins the network, it joins directly with
certain members of an existing clique in the network. Then they will form a new clique which we shall
consider as a child of the old clique. Any clique produces an offspring clique each time its driving
Poisson process jumps. Then these offspring start their reproduction processes. The length of life of a
clique depends on the number of offspring it has.

This paper is divided into eight sections. In Section 3, we define our model precisely. In Section 4,
we present our general results. We calculate the survival function of a clique (Theorem 4.1), the mean
offspring number of a clique (Corollary 4.1), the Laplace transforms (Proposition 4.1), and then we
turn to the Perron root and the Malthusian parameter. We do not obtain an explicit expression for the
Malthusian parameter, so we can numerically compute it. In Section 5, we prove asymptotic theorems
for the number of cliques of a given size (Theorem 5.1). Each has magnitude eαt in the event of non-
extinction, where α is the Malthusian parameter. The proof of Theorem 5.1 is based on the asymptotic
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theorems of [18]. A most interesting question in the theory of evolving networks is the degree process
of a fixed vertex. Therefore, in Section 6, we prove asymptotic theorems for the degree of a fixed
vertex. For the proof, we introduce a new branching process, called the “good children” process, and
then we can apply the asymptotic theorems of [18]. We obtain that the magnitude of the degree of a
fixed vertex is eα̂t, where α̂ is the Malthusian parameter of the “good children” process. In Section 7, we
obtain the generating functions. We apply the generating functions to find the probability of extinction
of the network, see Theorem 7.1. In Section 8, we show simulation results. We shall see that the
simulation results support our theorems.

We mention that basic results on branching processes are contained e.g., in [19–23].

3. The model

In this paper, we shall consider the following model to describe certain evolving networks. The
main ingredients of the network are teams. Any team is represented as a clique, i.e., a graph having n
vertices so that any two vertices are connected with one edge. The size of a clique is the number of its
vertices. In our model, there are cliques of sizes 1, 2, . . . ,N, where N is an arbitrarily large but fixed
number. We shall describe the evolution of the network by a multi-type branching process. In terms of
multi-type branching processes, see, e.g., [21], an n-clique would be a type-n individual.

At the time t = 0 there is one team, and the size of this team can be 1, 2, . . . ,N. In terms of branching
processes, we call this team the ancestor. This ancestor team produces offspring teams which can be
cliques of sizes 1, 2, . . . ,N. Then these children teams also produce their own children teams, and so
on. Any team has its rate of 1 Poisson process. The jumping times of this Poisson process are the
reproduction times of the team. We shall suppose that the reproduction processes of different teams
are independent. The reproduction processes of the teams of size n are independent copies of the
reproduction process of the generic team of size n.

Now, we identify any team with the clique representing it. The mathematical description of
the evolution of the generic n-clique is the following. Let Πn (t) denote the Poisson process with
parameter 1 corresponding to the generic n-clique. The jumping times of Πn (t) are the reproduction
times. When Πn (t) jumps, then a new vertex appears and we connect it to certain vertices of the generic
n-clique. The new vertex will be connected to j vertices of the generic n-clique with probability qn, j,
where 0 ≤ qn, j ≤ 1, j = 0, 1, . . . , n, and

∑n
j=0 qn, j = 1. (We assume that qN,N = 0 because the

largest team is of size N.) When j is chosen, then together with the new vertex, j new edges appear.
One endpoint of any new edge is the new vertex. The other j endpoints of the j new edges are chosen
randomly from the vertices of the generic n-clique. The number of subsets having j elements is

(
n
j

)
. We

choose one of these
(

n
j

)
subsets uniformly at random. The vertices of this subset are already connected,

and now we connect each of them to the new vertex with one edge. So the j old connected vertices
chosen, the new vertex, and the j new edges form a ( j + 1)-clique. This new ( j + 1)-clique is a child
of the generic n-clique and it is the only child at this step. We should emphasize that the result of the
above step is precisely one child because we shall count only this one child. The reason for this point of
view is that we are interested in the number of teams, and the new sub-cliques of the new ( j + 1)-clique
are not considered as teams.

We see that the generic n-clique produces precisely one child clique at any birth time. If j = 0,
this child is just one vertex, i.e., the new vertex joining the network with 0 edges. If j = 1, then this
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child is an edge, which consists of the new vertex and the old vertex connected to the new one. If
j = 2, this child is a triangle consisting of the new vertex and two vertices of the generic n-clique. If
j = n < N, this child is an (n + 1)-clique consisting of the whole n-clique ancestor and the new vertex.
We emphasize that when the parent is the largest possible clique, i.e., an N-clique, we do not allow the
birth of an (N + 1)-clique. We also see that the probability that an i-type ancestor produces a j-type
child is pi, j = qi, j−1, j = 1, 2, . . . , i + 1. The ancestor clique, the children cliques of the ancestor, and
the grandchildren cliques, etc., will form an evolving network.

Example 3.1. We visualize four simple reproduction steps in Figures 1–4.

Figure 1. The parent is a 2-
clique, and the child is a 3-
clique.

Figure 2. The parent is a 3-
clique, and the child is a 2-
clique.

Figure 3. The parent is a 3-
clique, and the child is a 3-
clique.

Figure 4. The parent is a 3-
clique, and the child is a 4-
clique.

In our model, cliques can die. When a clique dies, it will be an inactive clique not producing
children. But we do not delete its vertices and edges, because any vertex or edge can belong to several
cliques. So we shall study both the number of all j-cliques born during the evolution process and the
number of active j-cliques. We underline again that we are interested in the number of teams. The
teams (i.e., cliques) are born during the above evolution process, i.e., the offspring of the ancestor. So
we will not count those cliques that are not offspring of the ancestor clique.

Let us denote by ξi, j(t) the number of type-j children cliques of the type-i generic clique up to time
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t (i, j = 1, 2, . . . ,N). The processes ξi, j are point processes. Then

ξi(t) =

i+1∑
j=1

ξi, j(t) (3.1)

is the number of all children of the generic i-clique up to time t.
Let τi(1), τi(2), . . . be the birth times of the generic i-clique and denote by εi(1), εi(2), . . . the

corresponding total litter sizes. In our model, εi(k) ≡ 1.
Let λi be the life length of the generic i-clique. λi is a random variable with P(0 ≤ λi < ∞) = 1.

After its death, a clique does not produce offspring, so ξi (t) = ξi (λi), when t > λi. So

ξi (t) =
∑

τi(k)≤t∧λi

εi(k) = Πi (t ∧ λi) , (3.2)

where Πi (t) is the Poisson process, and x ∧ y is the minimum of {x, y}.
Now we turn to the survival function of the life length of an i-clique. Li (t) will denote the

distribution function of λi. Then the survival function of λi is

1 − Li (t) = P (λi > t) = exp
(
−

∫ t

0
li (u) du

)
. (3.3)

Here li (t) denotes the hazard rate function of λi.
A major assumption of this paper is that the hazard rate is determined by the total number of

offspring in the following way:
li (t) = b + cξi (t) , (3.4)

where b ≥ 0 and c > 0 are fixed constants.
We emphasize that the reproduction processes of the i-cliques are independent copies of the

reproduction process of the generic i-clique.

4. Preliminary results

First, we calculate the survival function of an i-clique.

Theorem 4.1. For any i, the survival function of an i-clique is

1 − Li (t) = P (λi > t) = e−(b+1)te
1−e−ct

c . (4.1)

Proof. Using the general calculation of [15, Theorem 1], we have

P (λi > t) = e−(b+1)te
∑∞

j=1 s j
1−e−ct j

c j ,

where s j denotes the distribution of εi. As now εi ≡ 1, so s1 = 1, and therefore the survival function
for an i-clique is

P (λi > t) = e−(b+1)te
1−e−ct

c .

�
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Now, we turn to the mean offspring number. It is mi, j(t) = Eξi, j(t), which is the expectation of the
number of type-j offspring of a type-i parent up to time t.

Corollary 4.1. For any t ≥ 0, we have

mi, j (t) = pi, jF(t), (4.2)

where

F(t) =

∫ t

0
(1 − Li (s)) ds =

∫ t

0
e−(b+1)se

1−e−cs
c ds =

1
c

∫ 1−e−ct

0
(1 − u)

b+1
c −1 e

u
c du,

0 < F(∞) < ∞.

Eλi =
1
c

∫ 1

0
(1 − u)

b+1
c −1 e

u
c du. (4.3)

Proof. Similar to the proof of [15, Corollary 1], we have

mi, j (t) = Eξi, j (t) = E
(
εi, j(1) + εi, j(2) + · · · + εi, j (Π (t ∧ λi))

)
,

where εi, j(k) is the number of type-j children of a type-i mother at her kth birth event. Applying Wald’s
identity, we get

mi, j (t) = E
(
εi, j(1)

)
E (Π (t ∧ λi)) . (4.4)

Π is a rate-1 Poisson process, and t ∧ λ is bounded, so (4.4) implies that

mi, j (t) = E
(
εi, j(1)

)
E (t ∧ λi) = E

(
εi, j(1)

) ∫ t

0
(1 − Li (x)) dx. (4.5)

In our case P
(
εi, j(k) = 1

)
= pi, j, so from (4.1) and inserting u = 1 − e−cs, we get

mi, j (t) = pi, j

∫ t

0
e−(b+1)se

1−e−cs
c ds =

pi, j

c

∫ 1−e−ct

0
(1 − u)

b+1
c −1 e

u
c du. (4.6)

�

We need the Laplace transform of mi, j,

m∗i, j(κ) =

∫ ∞

0
e−κsmi, j(ds), i, j = 1, 2, . . . ,N.

Proposition 4.1. We have
m∗i, j (κ) = pi, jA(κ), κ ≥ 0, (4.7)

where

A(κ) =

∫ ∞

0
e−κte−(b+1)te

1−e−ct
c dt =

1
c

∫ 1

0
(1 − u)

κ+b+1
c −1 e

u
c du. (4.8)

mi, j(∞) = pi, jA(0). If A(0) > 1, then A(α) = 1 for some α > 0.

Proof. For the proof, one can use Corollary 4.1. �
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Now, we shall consider the Perron root. The Laplace transform matrix is

M(κ) =

(
m∗i, j(κ)

)N

i, j=1
. (4.9)

The characteristic roots of M(κ) are denoted by %l(κ), l = 1, . . . ,N. The Perron root is the greatest of
the values %l(κ). We denote it by %(κ).

We suppose that
%(0) > 1, (4.10)

that is, we assume that our process is supercritical.
We shall need the Malthusian parameter. α is called the Malthusian parameter if %(α) = 1.
If α is the Malthusian parameter, then we denote by v = (v1, . . . , vN)> the right eigenvector of M(α)

corresponding to eigenvalue 1 and normalized as v1 + · · · + vN = 1. Let u = (u1, . . . , uN)> be the left
eigenvector of M(α) satisfying u1v1 + · · · + uNvN = 1.

We shall suppose that the stochastic matrix
(
pi, j

)N

i, j=1
is irreducible and acyclic. Then its Perron root

is 1, so %(κ) = A(κ). Therefore, our branching process is supercritical if and only if A(0) > 1. If
A(0) > 1, then there exists a Malthusian parameter, that is, an α > 0 such that A(α) = 1. We also see
that v = (1/N, . . . , 1/N)>.

5. The limiting behavior of the number of cliques

For any evolving network, a basic question is the growth of the number of ingredients of the
network. So, for our network, we should find the number of cliques. For the proof, we shall use
powerful results on multi-type branching processes, see [18, Theorem 2.4, and Proposition 4.1]. In [15,
Section 8], we summarized those results in one proposition, see [15, Proposition 4]. So here in the
proof, we shall check conditions (a), (b1), (b2), (c), (d), and (i) − (iii) of [15, Section 8].

We shall assume that the matrix
(
pi, j

)
is irreducible and acyclic. Therefore, [24, Theorem 1.4] gives

that there exists a positive integer K, such that each element of the Kth power of the matrix
(
pi, j

)
is

positive. As mi, j(∞) = pi, jA(0) and A(0) > 0, condition (d) will be satisfied.
For condition (a), we have to show that not all measures mi, j are concentrated on a lattice. By

Corollary 4.1, these measures are absolutely continuous, so condition (a) is fulfilled.
For (b2), we shall assume that A(0) > 1. As mi, j(∞) = pi, jA(0), it will imply (b2). Concerning

condition (b1), we mention that A(0) > 1 implies that there exists a Malthusian parameter, that is, an
α > 0 such that A(α) = 1. We can numerically calculate the value of α.

We shall check condition (c) during the proof of Theorem 5.1.
Now, we shall find the denominator in the limit theorem. We can see that the denominator of mΦ

∞ in
the asymptotic expression does not depend on Φ and it has the form

D(α) =

N∑
l, j=1

ulv j

∫ ∞

0
se−αsml, j (ds).

It is the same as

D(α) =

N∑
l, j=1

ulv j

(
−m∗l, j(α)

)′
. (5.1)
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Here ui and vi are the coordinates of the eigenvectors and we know that v = (1/N, . . . , 1/N)>. Moreover,
by Proposition 4.1, we can see that (

−m∗l, j(α)
)′

= pl, j
(
−A′(α)

)
. (5.2)

So

D(α) = −A′(α)
N∑

l, j=1

ulv j pl, j = −A′(α). (5.3)

Here

− A′(α) =

∫ ∞

0
te−αte−(b+1)te

1−e−ct
c dt = −

1
c2

∫ 1

0
ln(1 − x) (1 − x)

α+b+1
c −1 e

x
c dx. (5.4)

Now, we shall consider the number of the n-cliques.

Theorem 5.1. Assume that the matrix
(
pi, j

)N

i, j=1
is irreducible and acyclic. Assume that A(0) > 1. Let

α be the Malthusian parameter, i.e., a finite positive solution of equation A(α) = 1. Let n be fixed,
1 ≤ n ≤ N. We denote by kT (t) the number of all n-cliques being born up to time t if the ancestor of
the network was a k-clique, k = 1, 2, . . . ,N. Then

lim
t→∞

e−αt
kT (t) = kW

vkun

α (−A′(α))
(5.5)

almost surely for k = 1, 2, . . . ,N.
We denote by kT̂ (t) the number of all n-cliques alive at time t if the ancestor of the network was a

k-clique, k = 1, 2, . . . ,N. Then

lim
t→∞

e−αt
kT̂ (t) = kW

vkunA(α)
(−A′(α))

(5.6)

almost surely for k = 1, 2, . . . ,N.
The quantity kW is a.s. non-negative, E(kW) = 1, and kW is a.s. positive on the event of survival.

Proof. We shall use [15, Proposition 4] as in the proof of [15, Theorem 2]. To prove condition (vi), it
is enough to show that

E
[
αξi(∞) log+

αξi(∞)
]
< ∞, i = 1, 2, . . . ,N, (5.7)

where

αξi(∞) =

∫ ∞

0
e−αtξi (dt) , i = 1, 2, . . . ,N, (5.8)

and
ξi(t) = ξi,1(t) + ξi,2(t) + · · · + ξi,i+1(t), i = 1, 2, . . . ,N. (5.9)

At any birth, there is precisely 1 child, so

αξi(∞) =

∫ ∞

0
e−αtξi (dt) =

∑
τ( j)≤λi

1e−ατ( j) ≤

∞∑
j=1

1e−ατ( j) = M,
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where τ(1), τ(2), . . . are the jumping times of the Poisson process Πi. The interarrival time (τ( j) −
τ( j − 1)) is exponentially distributed with rate 1, so τ( j) has Γ-distribution Γ ( j, 1). It implies that

E(M) =

∞∑
j=1

E
(
e−ατ( j)

)
=

∞∑
j=1

1
(1 + α) j =

1
α
. (5.10)

Let η j = τ( j) − τ( j − 1). Let η0 be a random variable having an exponential distribution with
parameter 1 and assume that η0 and M are independent. Then

e−αη0 (1 + M) = e−αη0 + e−αη0

∞∑
j=1

e−α(η1+···+η j) =

∞∑
j=0

e−α(η0+η1+···+η j).

So e−αη0 (1 + M) has the same distribution as that of M. From this and Eq (5.10), we get

EM2 = E
(
e−αη0 (1 + M)

)2
=

1
1 + 2α

(
1 +

2
α

+ EM2
)
.

So we obtain
EM2 =

α + 2
2α2 < ∞.

Therefore (5.7) is true for any i.
To prove conditions (c) and (iv), it is enough to show that

∫ ∞
0

t2e−αtmi, j(dt) < ∞, for i, j =

1, 2, . . . ,N. Now, from Corollary 4.1, we get that∫ ∞

0
s2e−αsmi, j(ds) ≤

∫ ∞

0
s2e−αse−s(b+1)e

1−e−cs
c ds ≤

∫ ∞

0
s2e−s(α+b+1−1)ds < ∞,

as α + b is positive. Therefore conditions (c) and (iv) are true.
Now, consider the number of n-cliques. To show (5.5), let Φx(t) = 1 if x is an n-clique, and Φx(t) = 0

otherwise. Therefore EΦn(t) = 1 and EΦ j(t) = 0 for j , n. So assumptions (i) − (iii) and (v) are true.
Therefore, [15, Proposition 4] implies (5.5).

To prove (5.6), let Φx(t) = 1 if x is an n-clique and it is alive at time t, and let Φx(t) = 0 otherwise.
Therefore EΦn(t) = 1 − Ln(t) and EΦ j(t) = 0 for j , n. So (i) − (iii) and (v) are fulfilled. We see that∫ ∞

0
e−αsEΦn (s) ds =

∫ ∞

0
e−αs(1 − Ln(s))ds = A(α).

Using [15, Proposition 4], we get (5.6). �

Remark 5.1. The process is supercritical if

1 < %(0) = A(0) =
1
c

∫ 1

0
(1 − u)

b+1
c −1 e

u
c du.

If the process is supercritical, then there exists a Malthusian parameter.
For any pair b, c, one can show whether the process is supercritical. Here we just list a few cases.
If 1 ≤ c < 1/ ln 2 and 0 ≤ b ≤ c − 1, then the process corresponding to b, c is supercritical.

Moreover the case b = 0, c = 1/2 is also supercritical.
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If b ≥ 1, c = 1, then the process is not supercritical. The case b = 1, c = 2 is also not supercritical.
To consider the other values, we have made a numerical investigation on a rectangle: We have

considered the cases when 0 ≤ b ≤ 2 and 0.01 ≤ c ≤ 2, because the parameter c is in the denominator.
Figure 5 shows the set of parameters (b, c) for which the process is supercritical.

Figure 5. The region where the process is supercritical on the set [0, 2] × [0.01, 2].

Example 5.1. Consider the Leslie model. For n = 1, 2, . . . ,N − 1, when a new vertex joins to an
n-clique, then either it joins to all vertices of the n-clique, or the new vertex alone creates a new clique.
So pn,n+1 = pn, pn,1 = 1 − pn for n = 1, 2, . . . ,N − 1. But for n = N, when a new vertex appears, then
either it creates alone a new clique or the new vertex and N − 1 old vertices create an N-clique. So
pN,N = pN and pN,1 = 1 − pN .

Now, the matrix of the Laplace transforms is

M(κ) = A(κ)



1 − p1 p1 0 . . . 0
1 − p2 0 p2 . . . 0
...

...
...

. . .

1 − pN−1 0 0 . . . pN−1

1 − pN 0 0 . . . pN


.

We assume that p1 > 0, . . . , pN−1 > 0, and 1 − pN > 0. We also assume that the greatest common
divisor of the set {i = 1, 2, . . . ,N : 1 − pi > 0} is equal to 1. So the matrix

(
pi, j

)
is irreducible and

acyclic. Therefore its Perron root is 1. So the Perron root of M(κ) is A(κ), and the corresponding right
eigenvector is

v =

(
1
N
,

1
N
, . . . ,

1
N

)>
.

Direct calculations show that the coordinates of the left eigenvector are

uN =
N p1 p2 · · · pN−1

(1 − pN)(1 + p1 + p1 p2 + · · · + p1 p2 · · · pN−2) + p1 p2 · · · pN−1
,

AIMS Mathematics Volume 9, Issue 12, 35721–35742.



35731

and
uN−1 =

1 − pN

pN−1
uN , uN−2 =

1 − pN

pN−1 pN−2
uN , . . . , u1 =

1 − pN

pN−1 pN−2 · · · p1
uN .

Now, Theorem 5.1 gives the asymptotic number of cliques.
Consider the particular case of the Leslie model when pi = a for any i, where 0 < a < 1. Then

uN = NaN−1, and un = N(1 − a)an−1, n = 1, 2, . . . ,N − 1. Inserting these values into the formulae (5.5)
and (5.6), we obtain the asymptotic number of cliques. For n-cliques with n = 1, 2, . . . ,N − 1,

lim
t→∞

e−αt
kT (t) = kW(1 − a)an−1 ·

1
α(−A′(α))

, (5.11)

but for the N-cliques,

lim
t→∞

e−αt
kT (t) = kWaN−1 ·

1
α(−A′(α))

(5.12)

almost surely for k = 1, 2, . . . ,N.
Similarly, for n-cliques with n = 1, 2, . . . ,N − 1,

lim
t→∞

e−αt
kT̂ (t) = kW(1 − a)an−1 ·

A(α)
(−A′(α))

, (5.13)

and for the N-cliques,

lim
t→∞

e−αt
kT̂ (t) = kWaN−1 ·

A(α)
(−A′(α))

. (5.14)

We see that as a → 1, then N-cliques dominate. It is a plausible consequence of the definition of the
model.

Another particular case of the Leslie model is p1 = pN = 1/2 and pi = 1 for i = 2, . . . ,N − 1. Then
u1 = uN = (2N)/(N + 2), and ui = uN/2 for i = 2, . . . ,N − 1.

6. The connected network and the degree of a fixed vertex

A basic question for any evolving network is the degree process of a fixed vertex. We study the
topics of the connected network and the degree of a fixed vertex in the same chapter because both of
them are studied by multi-type branching processes having N − 1 types.

Remark 6.1. When the network is connected then it is not possible that a separated vertex is born. In
that case, we can consider just the 2, 3, . . . ,N cliques. So the possible types of our branching process
will be 2, 3, . . . ,N, where the type is 2 if the clique is an edge, it is 3 if the clique is a triangle, . . . , and
it is N in the case of an N-clique. The probability that the new vertex will be connected to j vertices of
the generic n-clique is again qn, j, where 0 ≤ qn, j ≤ 1, but now j = 1, . . . , n and

∑n
j=1 qn, j = 1. So we

should consider a multi-type branching process having N − 1 types. Now, the probability that a type-i
parent gives birth to a type-j child is pi, j = qi, j−1 for i, j = 2, 3, . . . ,N.

The results of the previous two sections remain valid with obvious modifications. So mi, j, m∗i, j are
the same, but i, j = 2, 3, . . . ,N.

We shall suppose that the stochastic matrix
(
pi, j

)N

i, j=2
is irreducible and acyclic. Then its Perron root

is 1, so %(κ) = A(κ). Therefore, our branching process is supercritical if and only if A(0) > 1. If
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A(0) > 1, then there exists a Malthusian parameter, that is, an α > 0 such that A(α) = 1. v = (1/(N −
1), . . . , 1/(N−1))> is the right eigenvector of

(
pi, j

)N

i, j=2
corresponding to eigenvalue 1. u = (u2, . . . , uN)>

is the left eigenvector of
(
pi, j

)N

i, j=2
satisfying the condition u2v2 + · · · + uNvN = 1.

We can modify Theorem 5.1 to find the number of the n-cliques in the case of the connected network.
Assume that the matrix

(
pi, j

)N

i, j=2
is irreducible and acyclic. Assume that A(0) > 1. Let α be the

Malthusian parameter. Let n be fixed, 2 ≤ n ≤ N. Denote by kT (t) the number of all n-cliques being
born up to time t if the ancestor of the population was a k-clique, k = 2, 3, . . . ,N. Then

lim
t→∞

e−αt
kT (t) = kW

vkun

α (−A′(α))
(6.1)

almost surely for k = 2, 3, . . . ,N.
This is similar for the number of n-cliques alive at time t.

Now, we turn to the degree process of a fixed vertex. Let V be a fixed vertex. Assume that at the
beginning, V is a member of an i-clique. We assume that i ≥ 2, so the initial degree of V is i − 1 ≥ 1.
We call a child a “good child” if it contains V . So the degree of V increases by 1, when a good child
is born. More precisely, the degree of V increases when good children of the initial i-clique are born,
and then good children of the good children are born, etc. Then the degree of V at time t is the total
number of good children at that time.

Let p̂i, j be the probability that a type-i parent gives birth to a type-j good child. Then

p̂i, j = pi, j
j − 1

i
.

We see that the good children process is a branching process having types 2, 3, . . . ,N. The length of
the life of an i-clique is the same λi as in the case of our original process.

Let ξ̂i, j be the number of type-j good children of a type-i good child. Then the average number of
good children is

m̂i, j(t) = Eξ̂i, j(t) =
j − 1

i
mi, j(t) =

j − 1
i

pi, jF(t).

The Laplace transform of m̂i, j(t) is

m̂∗i, j(κ) =
j − 1

i
m∗i, j(κ) =

j − 1
i

pi, jA(κ).

Let
M̂(κ) =

(
m̂∗i, j(κ)

)N

i, j=2

be the matrix of the Laplace transforms. Denote by %̂(κ) the Perron root of M̂(κ). We shall suppose that
the good children process is supercritical, i.e., %̂(0) > 1. If the process is supercritical, then in our case
there exists a positive Malthusian parameter α̂ such that %̂(α̂) = 1. Let v̂ = (v̂2, . . . , v̂N)> be the right
eigenvector of M̂(α̂) corresponding to eigenvalue 1 and normed according to v̂2 + · · · + v̂N = 1. Let
û = (û2, . . . , ûN)> be the left eigenvector of M̂(α̂) corresponding to eigenvalue 1 and normed according
to v̂2û2 + · · · + v̂N ûN = 1.

Now, we can present our result on the asymptotic behavior of the degree of a fixed vertex.

AIMS Mathematics Volume 9, Issue 12, 35721–35742.



35733

Theorem 6.1. Assume that the matrix
(
pi, j

)N

i, j=2
is irreducible and acyclic. Assume that the good

children process is supercritical, i.e., %̂(0) > 1. Let α̂ be the positive Malthusian parameter, so %̂(α̂) = 1.
Let V be a fixed vertex which is initially a member of an i-clique, 2 ≤ i ≤ N.

Let iV(t) denote the degree of V, more precisely, the number of all edges being connected to V up to
time t. Then

lim
t→∞

e−α̂t
iV(t) = iŴ

v̂i
∑N

j=2 û j

−α̂A′(α̂)
(6.2)

almost surely.
Let iV̄(t) denote the number of those edges, whose one endpoint is V and belonging to a clique alive

at time t. Then

lim inf
t→∞

e−α̂t
iV̄(t) ≥ iŴ

A(α̂)v̂i
∑N

j=2 û j

−A′(α̂)
(6.3)

almost surely.
The quantity iŴ is a.s. non-negative, E(iŴ) = 1, and iŴ is a.s. positive in the event of survival of

the good children process.

Proof. Here we shall use some results obtained during the proof of Theorem 5.1. We have

iV(t) = (i − 1) +

N∑
j=2

Vi, j(t),

where Vi, j(t) denotes the number of type-j good offspring of a type-i mother. We shall find the limit
of Vi, j(t).

As in the proof of Theorem 5.1, we shall check the conditions of [15, Proposition 4]. Conditions
(a), (c), (iv), and (vi) are true because they are true for the original process (see Theorem 5.1). (b1) and
(b2) are true because we supposed that %̂(0) > 1. Condition (d) is true because we supposed that the
matrix

(
pi, j

)N

i, j=2
is irreducible and acyclic.

Now, let Φx(t) = 1, if the clique x is a good j-clique, and Φx(t) = 0 otherwise. Then conditions
(i) − (iii) , and (v) are satisfied. Moreover, EΦ j(t) = 1 and EΦl(t) = 0 for l , j.

So [15, Proposition 4] implies

lim
t→∞

e−α̂tVi, j(t) = iŴ
v̂iû j

−α̂A′(α̂)

almost surely. So we obtain (6.2).
To obtain (6.3), let Φx(t) = 1 if x is a good j-clique and it is alive at time t, and let Φx(t) = 0

otherwise. Therefore EΦ j(t) = 1 − L j(t) and EΦl(t) = 0 for l , j. Conditions (i) − (iii) and (v) are true.
Now ∫ ∞

0
e−αsEΦ j (s) ds =

∫ ∞

0
e−αs(1 − L j(s))ds = A(α).

Now, we can apply [15, Proposition 4]. However, in (6.3) we cannot offer equality, because an edge
can belong to a clique being alive and at the same time it can belong to a clique being dead. �
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7. The extinction probability

7.1. The joint generating function

To find the probability of the extinction of our network, we need the generating function. We
calculate the joint generating function of the variables Πn (λn) and ξn, j (λn), j = 1, . . . , (n + 1) ∧ N,
n = 1, . . . ,N. Consider the generic n-clique, where n is fixed with 1 ≤ n ≤ N. Consider the sequence

wi,{k j}
(n+1)∧N
j=1

= P
(
Πn (λn) = i, ξn, j (λn) = k j, j = 1, . . . , (n + 1) ∧ N

)
, (7.1)

where i = 0, 1, 2, . . . , k j = 0, 1, 2, . . . .
Then (7.1) describes the joint distribution of the last reproduction time and the offspring size of the

generic n-clique during its whole lifetime. Here Πn is the Poisson process that describes the birth times
of the generic n-clique and λn is its life length. In other words, we can say that wi,{k j}

(n+1)∧N
j=1

gives the

probability of the event that the last birth time of the generic n-clique before its death is τi and the total
number of type-j offspring up to its death is k j. That is, we can write wi,{k j}

(n+1)∧N
j=1

in the following form:

wi,{k j}
(n+1)∧N
j=1

= P
(
τi ≤ λn < τi+1, ξn, j (τi) = k j, j = 1, . . . , (n + 1) ∧ N

)
. (7.2)

To determine the desired joint generating function, first we consider the following sequence:

ui,{k j}
(n+1)∧N
j=1

= P
(
τi ≤ λn, ξn, j (τi) = k j, j = 1, . . . , (n + 1) ∧ N

)
. (7.3)

We use the notation τ0 = 0, so u0,{k j}
(n+1)∧N
j=1

= 1 if each k j is zero, but it is 0 if any k j is positive.

Moreover, ui,{k j}
(n+1)∧N
j=1

= 0, if any subscript is negative. Now, for a while, assume that τi and τi−1 are

fixed and ξn, j (τi−1) = m is known. Then using the definition of the survival function of the life length
given in (3.3) and by Assumption (3.4), we have

P (λn ≥ τi|λn ≥ τi−1) = exp (− (τi − τi−1) (b + cm)) . (7.4)

But τi and τi−1 are random. So, a simple calculation that uses the fact that the increments of a Poisson
process with intensity 1 are exponential with parameter 1 can lead us to obtain that

P (λn ≥ τi|λn ≥ τi−1) =
1

1 + b + cm
. (7.5)

That is, (7.5) is the probability that the object will not die before the ith birth event. Using the above
calculations and the law of total probability, we can give the following recursion for the sequence
ui,{k j}

(n+1)∧N
j=1

, i = 1, 2, . . .

ui,{k j}
(n+1)∧N
j=1

(7.6)

=

(n+1)∧N∑
l=1

P
(
τi−1 ≤ λn, ξn,l (τi−1) = kl − 1, ξn, j (τi−1) = k j, j = 1, . . . , (n + 1) ∧ N, j , l

)
× pn,l−1

1

1 + b + c
((∑(n+1)∧N

j=1 k j

)
− 1

)
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=

(n+1)∧N∑
l=1

ui−1,kl−1,{k j}
(n+1)∧N
j=1, j,l

pn,l−1
1

1 + b + c
((∑(n+1)∧N

j=1 k j

)
− 1

) .
Here pn, j is the probability that the new vertex is born with j new edges. To obtain the above recursion,
we also used the following. Considering the generic n-clique, the definition of the evolution process
implies that at each birth step, exactly 1 offspring is born, the smallest possible offspring size is 1, and
the maximal offspring size is (n + 1) ∧ N. Moreover, the offspring sizes of the generic n-clique at any
two consecutive birth steps are independent. Using (7.3) and (7.5), we can also see that

wi,{k j}
(n+1)∧N
j=1
P
(
τi ≤ λn < τi+1, ξn, j (τi) = k j, j = 1, . . . , (n + 1) ∧ N

)
= P

(
λn < τi+1|τi ≤ λn, ξn, j (τi) = k j, j = 1, . . . , (n + 1) ∧ N

)
× P

(
τi ≤ λn, ξn, j (τi) = k j, j = 1, . . . , (n + 1) ∧ N

)
=

b + c
∑(n+1)∧N

j=1 k j

1 + b + c
∑(n+1)∧N

j=1 k j

ui,{k j}
(n+1)∧N
j=1

. (7.7)

Let us consider the following sequence vi,{k j}
(n+1)∧N
j=1

, where wi,{k j}
(n+1)∧N
j=1

is defined in (7.1):

vi,{k j}
(n+1)∧N
j=1

=

wi,{k j}
(n+1)∧N
j=1

b + c
∑(n+1)∧N

j=1 k j

=

ui,{k j}
(n+1)∧N
j=1

1 + b + c
∑(n+1)∧N

j=1 k j

. (7.8)

Moreover, using the recursion (7.6), we see that the sequence vi,{k j}
(n+1)∧N
j=1

satisfies the following

recurrence relation: 1 + b + c
(n+1)∧N∑

j=1

k j

 vi,{k j}
(n+1)∧N
j=1

=

(n+1)∧N∑
l=1

pn,l−1vi−1,kl−1,{k j}
(n+1)∧N
j=1, j,l

, (7.9)

where the initial values are

v0,{0}(n+1)∧N
j=1

=
1

1 + b
and v0,{k j}

(n+1)∧N
j=1

= 0 if ∃ j : k j , 0. (7.10)

Let us denote by G
(
x,

{
x j

}(n+1)∧N

j=1

)
the generating function of the sequence vi,{k j}

(n+1)∧N
j=1

. We have

G
(
x,

{
x j

}(n+1)∧N

j=1

)
=

∞∑
i=0

(n+1)∧N∑
j=1

∞∑
k j=0

vi,{k j}
(n+1)∧N
j=1

xi
(n+1)∧N∏

j=1

xk j

j . (7.11)

To determine the generating function G
(
x,

{
x j

}(n+1)∧N

j=1

)
, we multiply with xi ∏(n+1)∧N

j=1 xk j

j and then
take the sum of both sides of (7.9). In this way, we obtain that

∞∑
i=0

(n+1)∧N∑
j=1

∞∑
k j=0

1 + b + c
(n+1)∧N∑

j=1

k j

 vi,{k j}
(n+1)∧N
j=1

xi
(n+1)∧N∏

j=1

xk j

j (7.12)
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=

(n+1)∧N∑
l=1

pn,l−1

∞∑
i=0

(n+1)∧N∑
j=1

∞∑
k j=0

vi−1,kl−1,{k j}
(n+1)∧N
j=1, j,l

xi
(n+1)∧N∏

j=1

xk j

j . (7.13)

From this equation and using the definition of the generating function given by (7.11), we can
obtain that

(1 + b)
(
G

(
x,

{
x j

}(n+1)∧N

j=1

)
−

1
1 + b

)
+ c

(n+1)∧N∑
j=1

x jG
′

x j

(
x,

{
x j

}(n+1)∧N

j=1

)
(7.14)

=

(n+1)∧N∑
l=1

pn,l−1xxlG
(
x,

{
x j

}(n+1)∧N

j=1

)
. (7.15)

Let h (t) = G
(
x,

{
tx j

}(n+1)∧N

j=1

)
. By (7.10), we have the initial condition

h (0) = G
(
x, {0}(n+1)∧N

j=1

)
=

∞∑
i=0

vi,{0}(n+1)∧N
j=1

xi =
1

1 + b
.

Now, substituting x j with tx j in (7.14), we get the following first-order differential equation:

h
′

(t) + h (t)
1
ct

(1 + b) − t
(n+1)∧N∑

l=1

pn,l−1xxl

 =
1
ct
, (7.16)

where the initial value is
h (0) =

1
1 + b

. (7.17)

The solution of the above initial value problem (7.16) and (7.17) is

h (t) = t
−(1+b)

c e
∑(n+1)∧N

l=1 pn,l−1 xxl
c t 1

c

∫ t

0
s

1+b
c −1e−

∑(n+1)∧N
l=1 pn,l−1 xxl

c sds. (7.18)

Substituting t = 1 in (7.18), we obtain that the generating function of the sequence vi,{k j}
(n+1)∧N
j=1

is

G
(
x,

{
x j

}(n+1)∧N

j=1

)
= h (1) =

1
c

∫ 1

0
s

1+b
c −1e

∑(n+1)∧N
l=1 pn,l−1 xxl

c (1−s)ds. (7.19)

Now, let us denote by g
Πn,{ξn, j}

(n+1)∧N
j=1

the joint generating function of the variables Πn (λn) and ξn, j (λn),

j = 1, . . . , (n + 1) ∧ N. Using the definitions of the sequences wi,{k j}
(n+1)∧N
j=1

and vi,{k j}
(n+1)∧N
j=1

, by (7.14)

we have

g
Πn,{ξn, j}

(n+1)∧N
j=1

(
x,

{
x j

}(n+1)∧N

j=1

)
= E

xΠn(λn)
(n+1)∧N∏

j=1

xξn, j(λn)
j


=

∞∑
i=0

(n+1)∧N∑
j=1

∞∑
k j=0

P
(
Πn (λn) = i, ξn, j (λn) = k j, j = 1, . . . , (n + 1) ∧ N

)
xi

(n+1)∧N∏
j=1

xk j

j
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= bG
(
x,

{
x j

}(n+1)∧N

j=1

)
+ c

(n+1)∧N∑
j=1

x jG
′

x j

(
x, {x j}

(n+1)∧N
j=1

)

= e
∑(n+1)∧N

l=1 pn,l−1 xl
c

1
c

∫ 1

0
s

1+b
c −1e−

∑(n+1)∧N
l=1 pn,l−1 xxl

c s

b + (1 − s)
(n+1)∧N∑

l=1

pn,l−1xxl

 ds. (7.20)

With x = 1 in (7.20), we obtain that the generating function of the total offspring distribution of the
generic n-clique is

fn

({
x j

}(n+1)∧N

j=1

)
= e

∑(n+1)∧N
l=1 pn,l−1 xl

c
1
c

∫ 1

0
s

1+b
c −1e−

∑(n+1)∧N
l=1 pn,l−1 xl

c s

b + (1 − s)
(n+1)∧N∑

l=1

pn,l−1xl

 ds. (7.21)

7.2. The probability of extinction

Consider the embedded multi-type Galton-Watson process which can be constructed in the
following way. At the initial time, the ancestor alone constitutes the starting generation of the Galton-
Watson process. During its life, the ancestor produces a random number of offspring. All of the
offspring of this ancestor form the 1st generation. Generally, the nth generation is formed by the
offspring of the members of the (n − 1)th generation.

Under some reasonable conditions, the probability of extinction of our process is the same as the
probability of extinction of the embedded multi-type Galton-Watson process, see [21, Theorem 7.1
in Chapter 3]. In our case those conditions are satisfied. Let M be the matrix of the expected total
offspring number of our process. Then

M =
(
mi, j(∞)

)N

i, j=1
= A(0)

(
pi, j(∞)

)N

i, j=1
.

We see that the matrix M contains the expected offspring numbers of the embedded Galton-Watson
process.

From the theory of multi-type branching processes, we know that the probability of extinction may
depend on the type of the ancestor. Moreover, the vector of extinction probabilities is the solution of a
vector equation.

Theorem 7.1. Let us denote by si the probability of extinction when the ancestor of the network is an i-
type object. Let s = (s1, . . . , sN). Assume that

(
pi, j(∞)

)N

i, j=1
is an irreducible acyclic Markov transition

matrix. Denote by % the Perron–Frobenius root of M. If % ≤ 1, then s1 = s2 = · · · = sN = 1. If
% > 1, then s1 < 1, s2 < 1, . . . , sN < 1. In any case, s is the smallest non-negative solution of the
vector equation

s = f(s), (7.22)

where f = ( f1, . . . , fN) and the functions fk are defined in (7.21).

Proof. Our conditions ensure that the matrixM is positively regular. Now, applying [21, Theorem 7.1
in Chapter 1], we can obtain the desired result. �
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8. Simulation results

In this section, we present some numerical results for our previously presented asymptotic theorems.
We used the Julia environment because of the possibility of fast numerical computing allowed by the
well-written dynamic structures. The code can be downloaded from GitHub, see [25].

According to Theorem 5.1, the numbers of n-cliques, when the process moves forward in time,
are asymptotically close to a straight line on the logarithmic scale. To support numerically our
Theorem 5.1, we studied the slope of the sequence of the simulated number of n-cliques being born up
to time t on the logarithmic scale.

Example 8.1. Now, we present an example of the Leslie model with N = 5, the transition matrix

P1 =


0.1 0.9 0 0 0
0.2 0 0.8 0 0
0.3 0 0 0.7 0
0.4 0 0 0 0.6
0.5 0 0 0 0.5


,

and with parameters of the hazard rate b = 0.2 and c = 0.2. In Figure 6, we illustrate the first 219

birth steps of two different simulated processes. The five solid lines represent the number of n-cliques
being born, for n = 1, . . . , 5 on a logarithmic scale, while the dotted line’s slope α̂ = 0.6462 equals the
numerical approximation of the Malthusian parameter. We can see that the plotted lines are parallel
straight lines for large values of t, which in fact gives nice feedback to our asymptotic results.
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Figure 6. Two example processes for the Leslie model with transition matrix P1, and
parameters b = 0.2 and c = 0.2.

Then, to obtain statistically significant evidence, we used 100 simulated processes to construct a
99% confidence stripe for the trajectory of the number of n-cliques. For demonstration, in Figure 7, the
99% confidence stripes are presented for 4- and 5-cliques. The red lines are the borders of the stripes.

In Table 1, the boundaries of the 99% confidence intervals for α are presented. Each fixed clique size
gives a confidence interval. The columns labeled with 0.5% and 99.5% show the lower and the upper
bounds calculated from simulations. As the results show, the numerical approximation α̂1 = 0.6462 is
contained by all confidence intervals.
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Figure 7. The 99% confidence stripes based on 100 simulations.

Table 1. All 99% confidence intervals for the slopes of the number of n-cliques include the
approximation α̂1 = 0.6462 of the Malthusian parameter.

Type 0.5% 99.5%
1 0.6435 0.6769
2 0.6454 0.7205
3 0.6437 0.8244
4 0.6167 0.6420
5 0.6392 0.7276

Example 8.2. Now, we present another example with a transition matrix

P2 =


0.1 0.9 0 0 0
0.1 0.1 0.8 0 0
0.1 0.1 0.1 0.7 0
0.1 0.1 0.1 0.1 0.6
0.1 0.1 0.1 0.1 0.6


,

and parameters b = 0.4 and c = 0.4. In this model, a newcomer joining an n-clique can contact any
other group members, when n = 1, . . . , 4. For n = 5, it is not possible that the newcomer joins all
former clique members. In Figure 8, we show a simulated example of the process. The five solid lines
represent the number of n-cliques being born, for n = 1, . . . , 5 on a logarithmic scale, while the dotted
line’s slope equals α̂2 = 0.3391. Table 2 contains the confidence intervals for the slope, using 100
simulated processes.
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Figure 8. Example process with transition matrix P2, b = 0.4, and c = 0.4.

Table 2. 99% confidence intervals, α̂2 = 0.3391.

Type 0.5% 99.5%
1 0.3265 0.3623
2 0.3361 0.3547
3 0.3208 0.3490
4 0.3279 0.3411
5 0.3350 0.3548

9. Conclusions

We have introduced a new continuous-time network evolution model. We have proven asymptotic
theorems for the number of cliques having a fixed size and the degree of a fixed node. We have obtained
the probability of extinction. Besides precise mathematical proofs, we have presented simulation
examples supporting our results.
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12. Á. Backhausz, T. F. Móri, A random graph model based on 3-interactions, Ann. Univ. Sci. Budapest.
Sect. Comput., 36 (2012), 41–52.

13. I. Fazekas, B. Porvázsnyik, Scale-free property for degrees and weights in an N-
interactions random graph model, J. Math. Sci., 214 (2016), 69–82. https://doi.org/10.1007/s10958-
016-2758-5
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