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Abstract: This paper analyzed the strategy optimization problem of networked evolutionary games
(NEGs) with bankruptcy mechanism. The main objective was to design a state-feedback control such
that the number of bankrupt players is minimized. First, an algebraic expression was formulated for
this type of NEGs by the semi-tensor product of matrices, based on which the sets of profiles with
different numbers of bankrupt players are defined. Second, a desired profile set in which the number
of bankrupt players is no higher than a given value was obtained, and the convergence region of this
set was calculated. Third, for any profile in the convergence region of the desired set, we propose a
controller design method to minimize the number of bankrupt players. Finally, an example is given to
illustrate the validity of our results.
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1. Introduction

With the emerging technologies and rapid development of complex networks, networked
evolutionary games (NEGs) have been widely used in popular research fields such as multi-agent
learning [1], transportation networks [2], and social networks [3]. An NEG is comprised of a network
graph, a fundamental networked game (FNG), and a strategy-updating rule (SUR), and each player
decides its strategy at the next step by a pre-defined SUR. Unconditional imitation, Fermi rule, and
myopic best response adjustment are three commonly used SURs. Under these SURs, a number of
approaches have been proposed to study the dynamics of NEGs, including the mean-field approach [4]
and Monte Carlo simulation method [5]. It can be observed that these methods mainly focus on
qualitative analysis by numerical simulations, make it difficult to present strict theoretical results to
analyze and regulate the evolutionary behaviors of each player in an NEG.
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In order to deal with finite-valued logical dynamic systems, a new matrix multiplication called
semi-tensor product (STP) of matrices, was proposed by Professor Cheng [6]. The outstanding
advantage of STP is that it can convert any finite-valued system into an algebraic state-space
representation form [7]. Based on this form, many results and methods about classical control theory
can be directly used to study finite-valued logical dynamic systems. Under the STP method, many
fundamental problems of logical networks have been solved, such as stability and stabilization [8–10],
controllability and observability [11–13], and optimal control [14, 15]. In a game, each player has
strategy set, which can be either discrete or continuous [16, 17]. When the number of players in
the game and the strategies of each player are both finite, its dynamics can be modelled as a logical
network. The logical network assigns a value to the strategy of the player and represents SUR as a
propositional logical formula; thus, the dynamics of a game can be studied as a logical dynamic system.

Up to now, the STP method has been successfully applied in the research of NEGs. In [18], authors
frist provided a standard process to convert a general NEG into an algebraic form by STP method, and
studied some control problems of an NEG. In [19], authors discussed the dynamical behavior of NEGs,
and added a control player in the game so that the payoff to this player was maximized by designing a
strategy control scheme. Some other problems of NEGs have also been solved under the framework of
STP, including stability analysis [20, 21], strategy optimization [22], and strategy consensus [23, 24].
The survey papers [25] and [26] gave a detailed introduction to the application of STP in finite games.
In addition, this powerful tool has also been successfully used to other types of games, such as potential
games [27, 28], congestion games [29], and Bayesian games [30].

In economic systems, the bankruptcy of financial institutions and enterprises is a common
phenomenon. Generally, for any individual, in order to ensure their survival, their profits need to meet
a minimum requirement. When this minimum requirement is not met, the individual or organization
will face extinction. Therefore, it is of practical significance to study the bankruptcy mechanism of the
games. Authors in [31] first studied the chain reaction of bankruptcy behavior and the cooperation in
evolutionary games and found that a cascading bankruptcy process may occur when defection strategies
exist. Authors in [32] studied the cascading failure in a scale-free network, and discussed the influence
of the number of law enforcers on the evolutionary game. Since there is no strict theoretical framework
for the systematic analysis of such games, these works used only numerical simulation methods to
study the dynamics of games, and did not provide schemes to avoid players going bankruptcy.

In [33], the STP method was firstly applied to study the control problem of NEGs with bankruptcy
mechanism, and a control sequence was designed to avoid any player going bankrupt. Authors
in [34] investigated the state-feedback control design problem to avoid all players going bankrupt.
Authors in [35] studied the minimum-time strategy optimization problem for NEGs with bankruptcy
mechanism by designing a kind of state-feedback controllers. However, in a real economic market,
sometimes it is challenging to avoid bankruptcy for all enterprises despite the effort of the government
to regulate the decisions of certain financial institutions or companies. For instance, some small and
medium-sized businesses are particularly prone to bankruptcy when economy is sluggish. In these
cases, it becomes a meaningful topic to minimize the number of bankrupt enterprises, which can be
modeled as the problem of minimizing the number of bankrupt players for NEGs with bankruptcy
mechanism. As far as we know, there is no literature on how to minimize the number of bankrupt
players in an NEG.

Motivated by this, we intend to study the strategy optimization problem for NEGs; our main goal
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is to design a state-feedback control such that the number of bankrupt players is minimized. The major
contributions are as follows: (1) The sets of profiles with different numbers of bankrupt players are
defined and a desired profile set in which the number of bankrupt players is no higher than a given
value is obtained. Moreover, the convergence region of the desired profile set is calculated. (2) For any
profile in the convergence region of the desired profile set, we propose a controller design method to
minimize the number of bankrupt players. It is noted that if the given number of bankrupt players is 0,
our results will degenerate into the results of avoiding all players going bankrupt.

The rest of this paper is organized as follows: Section 2 contains some necessary preliminaries on
the STP and game theory. Section 3 is the problem formulation for this paper. Section 4 gives the main
results. Section 5 gives an illustrative example. Section 6 gives a brief conclusion.

2. Preliminaries

Notations:

• R: the set of real numbers.
• ∆n := {δi

n | i = 1, 2, · · · , n}.
• Mm×n: the set of m × n real matrices.
• Coli(A) : the i-th column of A.
• Rowi(A) : the i-th row of A.
• Z+ : the set of positive integer.
• Lm×n denotes the set of m × n logical matrices. L ∈ Lm×n means Col(L) ⊆ Dm.
• Bm×n : the set of m × n Boolean matrices. L ∈ Bm×n means that all its entries are either 0 or 1.
• A +B B : the Boolean addition of A, B ∈ Bm×n, where (A +B B)i, j = (A)i, j ∨ (B)i, j.
•

∑
B

n

i=1
(Ai) = A1 +B A2 +B · · · +B An, where Ai ∈ Bm×n, i ∈ {1, 2, . . . , n}.

In the following, we give some necessary preliminaries about STP and NEG.

Definition 2.1. [6] The semi-tensor product of two matrices A ∈ Rm×n and B ∈ Rp×t is defined as
A n B = (A ⊗ I α

n
)(B ⊗ I α

p
), where α = lcm(n, p) is the least common multiple of n and p, and ⊗ is the

Kronecker product.
The semi-tensor product is a generalization of the traditional matrix product, so the symbol n is

omitted below.

Lemma 2.2. [36] Define the retrievers as

S n
i,k = 1T

ki−1 ⊗ Ik ⊗ 1T
ki−1 .

Then, for x = nn
i=1xi, xi = S n

i,kx holds, where xi ∈ Dk and i = 1, 2 . . . , n.

Lemma 2.3. [36] Let f : Dn
k → Dk be a k-valued logical function. Then, there exists a unique

M f ∈ Lm×kn , such that in vector form we have

f (x1, x2, · · · , xn) = M f n
n
i=1 xi,

where M f is called the structure matrix of f.
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Definition 2.4. [18] A normal finite game G has three basic elements (N, S , P), where

• N = {1, 2, . . . , n} is the set of players.
• S = Πn

i=1S i is the profile set, and S i = {s1, s2, . . . , ski} is the set of strategies of player i, i ∈ N.
• P = {p1, p2, . . . , pn} and pi : S → R is the payoff function of player i, i ∈ N.

Definition 2.5. [18] A normal game with two players is called a fundamental network game (FNG), if

S 1 = S 2 := S 0 = {s1, s2, · · · , sk}.

An FNG is symmetric, if p1(x, y) = p2(y, x),∀x, y ∈ S 0.

Definition 2.6. [18] An NEG denoted by ((N, E),G, F) consists of three components, namely:

• A network graph (N, E) with N = {1, 2, · · · ,m} the set of vertices, E ⊂ N × N the set of edges.
• An FNG, such that if (i, j) ∈ E, then players i and j play the FNG.
• A local information-based strategy-updating rule F = ( f1, f2, · · · , fn).

This paper considers the NEGs whose FNG is symmetric. The payoff bi-matrix of the FNG is
shown in Table 1, where ai j > 0.

Table 1. The payoff bi-matrix for each pair of players.

Player 1\ Player 2 s1 s2 · · · sk

s1 (a11, a11) (a12, a21) · · · (a1k, ak1)
s2 (a21, a12) (a22, a22) · · · (a2k, ak2)
...

...
...

...
...

sk (ak1, a1k) (ak2, a2k) · · · (akk, akk)

Definition 2.7. [18] Let N be the set of nodes in the network, and E ∈ N × N the set of edges. U(i) is
the set of the neighborhood of i, and we assume that i ∈ U(i).

In the NEG, player i only plays games with all its neighbors, and the payoff of player i is the sum
of the payoffs interacting with all its neighbors; in other words,

pi(xi, x j | j ∈ U(i) \ i) = Σ j∈U(i)\i pi j(xi, x j), xi, x j ∈ S 0,

where pi j : S 0 × S 0 → R is the payoff of player i playing with its neighbor j when i takes strategy xi

and j takes strategy x j.
The SUR considered is the unconditional imitation updating rule with fixed priority. Let xi(t)

denote the strategy adopted by player i at time t and x(t) =
(
x1(t), x2(t), · · · , xn(t)

)
; the SUR can be

described in mathematical formula as

xi(t + 1) = fi({x j(t), p j(x(t))| j ∈ U(i)}), (2.1)

where fi is a finite-valued function determined by the SUR. Precisely, if

j∗ = argmax j∈U(i) p j(x(t)),
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then
xi(t + 1) = x j∗(t).

The players with maximum payoff may be not unique; in other words, argmax j∈U(i) p j(x(t)) :=
{ j∗1, j∗2, · · · , j∗r}. When i ∈ { j∗1, j∗2, · · · , j∗r}, player i retains their strategy for the next moment. When
i < { j∗1, j∗2, · · · , j∗r}, we select one corresponding to a priority as

j∗ = min{µ|µ ∈ argmax j∈U(i) p j(x(t))}.

Definition 2.8. [18] Let N = Y ∪U be a partition of N. If the strategies of any u ∈ U can be assigned
arbitrarily, we call [(Y ∪ U, E),G, F] a controlled NEG. Moreover, u ∈ U is called a control player.

3. Problem formulation of NEGs with bankruptcy mechanism

This section introduces the model of NEGs with bankruptcy mechanism, and gives its
algebraic form.

In the NEGs with bankruptcy mechanism, each player usually needs to keep their payoff above a
certain value in order to continue to survive. Denote Ti as the minimum survival requirement for player
i. When the payoff of player i is below Ti, the player will exit the NEG, and the network topology will
change. The change of network topology will lead to a situation where the dynamic analysis of the
profiles becomes very complicated. In order to avoid the difficulties caused by the exit of players, a
bankruptcy strategy in the NEG was introduces in [33]. When the payoff of player i is no higher than
Ti, the player is considered as a player whose strategy is bankruptcy (B) and cannot be removed from
the NEG.

When a player takes B as its strategy, the payoffs obtained by themselves and all their neighbors is
set to 0 through the game relationship among them. The payoff bi-matrix after adding the bankruptcy
strategy is shown in Table 2.

Table 2. The payoff bi-matrix after adding the bankruptcy strategy.

Player 1\ Player 2 s1 s2 · · · sk B
s1 (a11, a11) (a12, a21) · · · (a1k, ak1) (0, 0)
s2 (a21, a12) (a22, a22) · · · (a2k, ak2) (0, 0)
...

...
...

...
...

...

sk (ak1, a1k) (ak2, a2k) · · · (akk, akk) (0, 0)
B (0, 0) (0, 0) · · · (0, 0) (0, 0)

After introducing the bankruptcy strategy B, the evolutionary dynamics of player i can be
described as

xi(t + 1) =

 fi({x j(t), p j(x(t))| j ∈ U(i)}), pi(xi(t), x j(t)| j ∈ U(i)) ≥ Ti,

B, pi(xi(t), x j(t)| j ∈ U(i)) < Ti,
(3.1)

where fi is the formula expression of the unconditional imitation updating rule described in (2.1).
In order to regulate the evolutionary dynamics of NEG, we introduce control players into the

game. For example, in reality, the government can influence the decisions of some businesses in order
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to increase the total benefits of the market. These businesses can be seen as the control players, and
their actions can be regulated by the government. With the help of the government, it is reasonable to
assume that these control players will not go bankrupt.

Divide the player set N of the NEG into

N = Y ∪ U,

where Y is the set of normal players, and U is the set of control players. In the NEG, the players in Y
should follow the SUR, and players in U can take strategies freely. Assume that the first m players are
the control players, that is, U = {1, 2, . . . ,m} and Y = {m + 1,m + 2, . . . , n}.

Next, we give the algebraic form of the dynamics for the NEG. Identify strategies

si ∼ δ
i
k+1, B = sk+1 ∼ δ

k+1
k+1.

Let ui(t) ∈ ∆k be the strategy of control player i ∈ {1, 2, . . . ,m} at time t, and y j(t) ∈ ∆k+1 be the strategy
of player at time t. Using the STP method, the dynamics of a control NEG can be converted into an
algebraic form as

y(t + 1) = Lu(t)y(t), (3.2)

where u(t) = nm
i=1ui(t), y(t) = nn

j=m+1y j(t).
We can study the whole evolutionary dynamics by analyzing the profile transition matrix L of

the NEG.

Remark 3.1. For any NEG, once the network graph, FNG, and SUR are given, its dynamics can be
converted into an algebraic form like (3.2) by the STP method; one can refer to [18] for more details.
In [33], a detailed procedure was proposed to convert the NEG with bankruptcy mechanism to the
algebraic form (3.2); we will not repeat the description here.

The aim of this paper is to design a state-feedback controller

u1(t) = g1(y(t)),
u2(t) = g2(y(t)),

...

um(t) = gm(y(t)),

(3.3)

such that minimum players will go bankrupt starting from a given initial state, where gi is a logical
function, i ∈ {1, 2, . . . ,m}. Based on Lemma 2.3, (3.3) must have its algebraic form, and we denote
it as

u(t) = Gy(t),

where G ∈ Lkm×(k+1)n−m is the state-feedback gain matrix.
Previous results just investigated whether all players could avoid going bankrupt under controls,

such as control sequences [33] and state-feedback control [34]. Keeping all players from going
bankrupt is too difficult to achieve sometimes, so we investigate how to minimize the number of
bankrupt players in an NEG.
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4. Main results

Considering realistic economic systems, we do not optimize the profiles with too many bankrupt
players. For an initial profile, if no matter how we design the controller, the number of players who go
bankrupt will be more than α, we no longer optimize it.

If a player chooses a bankruptcy strategy, their payoff is 0, which will still be less than their
minimum survival requirement. The bankruptcy strategy is still selected at time t + 1 according to the
strategy-updating rule. Obviously, a bankrupt player will never return to a normal player. From the
above analysis, we can see that the number of bankrupt players can only stay the same or increase.

In order to minimize the number of bankrupt players, we need to search for the profiles whose
number of bankrupt players is no more than α.

According to Lemma 2.2, we can obtain that

y j(t) = S n−m
j,k+1 y.

Then we have

ym+1(t) + ym+2(t) + . . . + yn(t) =

n∑
j=m+1

(S n−m
j,k+1 y) :=


a1

a2
...

ak+1

 .
We can obtain that ak+1 ∈ {0, 1, · · · , n − m}. Since the bankruptcy strategy is denoted by δk+1

k+1, ak+1

represents the number of bankrupt players in profile y(t). Denote the set of profiles that has i bankrupt
players as Ωi. Then, Ωi can be expressed as

Ωi = { y |Rowk+1(
n∑

j=m+1

(S n−m
j,k+1 y)) = i}.

Denote
Ω∗ = Ω0 ∪Ω1 ∪ · · · ∪Ωα.

If a profile y ∈ Ω∗, then the number of bankrupt players in profile y must be no more than α. Therefore,
we expect that the profile trajectories can converge to set Ω∗. If an initial profile converges to Ω∗, then
it must converge to the control invariant subsets of Ω∗. We give the definition of the control invariant
subsets as follows.

Definition 4.1. [37] A set Λ ⊆ ∆(k+1)n−m is a control invariant subset of system (3.2), if for any y(t) ∈ Λ,
there is a control u(t) ∈ ∆km such that y(t + 1) ∈ Λ.

The maximum control invariant subset of a given set Λ, denoted by Ic(Λ), is the union of all
control invariant subsets contained in Λ.

Remark 4.2. We need to obtain Ic(Ω∗). There are many mature conclusions in calculating the
maximum control invariant set of a given set such as [37]. We will not repeat the detailed
procedure here.

The set of all profiles that converge to the invariant set Ic(Ω∗) is called the convergence region of
Ic(Ω∗), that is

A(Ic(Ω∗)) = {δ
j
(k+1)n−m | y(t, δ j

(k+1)n−m) ∈ Ic(Ω∗),∃t ∈ Z+},

AIMS Mathematics Volume 9, Issue 12, 35702–35720.



35709

where y(t, δ j
(k+1)n−m) is the state at time t starting from δ

j
(k+1)n−m .

If a profile can converge to Ic(Ω∗), then the number of bankrupt players must be no more than
α at each step in the evolutionary trajectory of this profile. If we want to find all the profiles
that satisfy the condition, we just need to compute the convergence region of Ic(Ω∗). We have the
following conclusion.

Theorem 4.3. For NEGs with bankruptcy mechanism (3.2),

A(Ic(Ω∗)) = Ic(Ω∗).

Proof. If δ j
(k+1)n−m converges to Ic(Ω∗), then δ j

(k+1)n−m ∈ A(Ic(Ω∗)). Since Ic(Ω∗) is one-step reachable
from any profile in the Ic(Ω∗), we obtain that Ic(Ω∗) ⊆ A(Ic(Ω∗)).

Next, we prove A(Ic(Ω∗)) ⊆ Ic(Ω∗). Assume a profile δ j
(k+1)n−m ∈ A(Ic(Ω∗)), then δ j

(k+1)n−m must
converge to Ic(Ω∗). Since the number of bankrupt players does not decrease during the evolution of
the profile, starting from δ

j
(k+1)n−m , the number of bankrupt players at any time does not exceed α. This

means that the trajectory of δ j
(k+1)n−m stays in Ω∗. Therefore, δ j

(k+1)n−m ∈ Ic(Ω∗), thenA(Ic(Ω∗)) ⊆ Ic(Ω∗).
To sum up,A(Ic(Ω∗)) = Ic(Ω∗).
We know that only profiles starting from A(Ic(Ω∗)) can eventually achieve a number of bankrupt

players no higher than α. So we only optimize the evolution trajectories of this part of initial profiles.
To optimize the trajectories of system (3.2), we should first calculate the basin of each set Ic(Ωi), i =

0, 1, · · · , α.
First, we seek the set of profiles that can ensure that no player goes bankrupt. Since only the

profiles in Ω0 can guarantee that the number of bankrupt players is 0, we need to compute the maximum
control invariant set Ic(Ω0) and then calculate the basin of Ic(Ω0). We get the following conclusion.

Corollary 4.4. For NEGs with bankruptcy mechanism (3.2),

A(Ic(Ω0)) = Ic(Ω0).

Proof. The proof is similar to Theorem 4.2, so we omit this part.
If A(Ic(Ω0)) = Ω0, then starting from any profile y ∈ Ω0, we can design a state-feedback control

to ensure that no player goes bankrupt. Moreover, the corresponding state-feedback control can be
obtained by the truth matrix method. According to Definition 4.1, any profile y ∈ Ic(Ω0) will remain in
the set Ic(Ω0) in the next step under a control u. Therefore, we can construct a truth matrix as

[TIc(Ω0)|Ic(Ω0)]i, j =

1, if Lδi
kmδ

j
(k+1)n−m ∈ Ic(Ω0),∀δ j

(k+1)n−m ∈ Ic(Ω0),
0, otherwise.

(4.1)

If Ti, j = 1, it means that profile δ j
(k+1)n−m ∈ Ic(Ω0) can still evolve into Ic(Ω0) at the next step under

control δi
(k+1)n−m . Since Ic(Ω0) is a control invariant set, we can obtain

Ic(Ω0) := {δ j
(k+1)n−m |Col j(TIc(Ω0)|Ic(Ω0)) , 0km}.

Then the corresponding state-feedback control can be designed as

Coli(G) ≤ Coli(TIc(Ω0)|Ic(Ω0)), δi
(k+1)n−m ∈ Ic(Ω0). (4.2)
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It is noted that G is a logical matrix, so Coli(G) should not only satisfy Eq (4.2), but also belong to ∆km .
If A(Ic(Ω0)) , Ω0, then for any profile in Ω0\A(Ic(Ω0)), at least one player will go bankrupt

during the evolution. We continue to find the optimal evolutionary trajectories for the other profiles.
Next, we need to seek the set of profiles that will ensure that only one player goes bankrupt. Since

the number of bankrupt players cannot be reduced from any initial profile, the profile in Ωi can only
evolve to ∆(k+1)n−m\

⋃i−1
j=0 Ω j. Since the profiles in A(Ic(Ω0)) have determined the optimal evolutionary

trajectories, we just need to look for profiles where only one player eventually goes bankrupt in (Ω0 ∪

Ω1)\A(Ic(Ω0)).
Denote R0(Ic(Ω1)) = Ic(Ω1) and S 1 = (Ω0 ∪Ω1)\A(Ic(Ω0)) ∪ Ic(Ω1), then construct

[TR0(Ic(Ω1))|S 1]i, j =

1, if Lδi
kmδ

j
(k+1)n−m ∈ R0(Ic(Ω1)),∀δ j

(k+1)n−m ∈ S 1,

0, otherwise.

Calculate R1(Ic(Ω1)) := {δ j
(k+1)n−m |Col j(TR0(Ic(Ω1))|S 1) , 0(k+1)m}. It is obvious that for any δ

j
(k+1)n−m ∈

R1(Ic(Ω1)),R0(Ic(Ω1)) is one-step reachable from δ
j
(k+1)n−m . Check whether R1(Ic(Ω1)) = ∅. If

R1(Ic(Ω1)) = ∅, the basin is Ic(Ω1); otherwise, denote S 2 = S 1\R1(Ic(Ω1)), and construct TR1(Ic(Ω1))|S 2 as

[TR1(Ic(Ω1))|S 2]i, j =

1, if Lδi
kmδ

j
(k+1)n−m ∈ R1(Ic(Ω1)),∀δ j

(k+1)n−m ∈ S 2,

0, otherwise.

Calculate R2(Ic(Ω1)) := {δ
j
(k+1)n−m |Col j(TR1(Ic(Ω1))|S 2) , 0km}. It is evident that for any δ

j
(k+1)n−m ∈

R2(Ic(Ω1)), R1(Ic(Ω1)) is one-step reachable from δ
j
(k+1)n−m . In other words, Ic(Ω1) is two-step reachable

from δ
j
(k+1)n−m . Check whether R2(Ic(Ω1)) = ∅. When R2(Ic(Ω1)) = ∅, A(Ic(Ω1)) = R0(Ic(Ω1)) ∪

R1(Ic(Ω1)).
When R2(Ic(Ω1)) , ∅, we can repeat the above procedure. Since the number of profiles in S 1 is

finite and Ri(Ic(Ω1))
⋂

R j(Ic(Ω1)) = ∅, there exists l1 ∈ Z+ such that Rl1(Ic(Ω1)) = ∅ and Rl1−1(Ic(Ω1)) ,
∅. Therefore, we can compute that

A(Ic(Ω1)) =

l1−1⋃
h=0

Rh(Ic(Ω1)).

We can use Figure 1 to show the calculation ofA(Ic(Ω1)).
Moreover, the corresponding columns of the state-feedback control can be determined by

Coli(G) ≤ Coli(T∗Ω1), δi
(k+1)n−m ∈ A(Ic(Ω1)),

where
T∗

Ω1 =
∑
B

l1−1

h=1

TRh(Ic(Ω1))|S h+1 +B TIc(Ω1)|Ic(Ω1),

[TIc(Ω1)|Ic(Ω1)]i, j =

1, if Lδi
kmδ

j
(k+1)n−m ∈ Ic(Ω1),∀δ j

(k+1)n−m ∈ Ic(Ω1),
0, otherwise.

We can obtain that for any initial profile starting inA(Ic(Ω1)), we can regulate the control players
such that only one player goes bankrupt eventually. Since the profiles inA(Ic(Ω1)) cannot converge to
Ω0, we ensure that the least players go bankrupt in these profiles.
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Figure 1. Illustration graph of evolutionary dynamics of profiles inA(Ic(Ω1)).

The same method can be used to compute the convergence domain of Ic(Ωθ), θ ∈ {2, 3, . . . , α}.
When we calculate the convergence domain of Ic(Ωθ), the profiles inA(Ic(Ω0))∪· · ·∪A(Ic(Ωθ−1)) have
determined the optimal evolutionary trajectories; we just need to compute the convergence domain in
(Ω0∪Ω1∪· · ·∪Ωθ)\

(
A(Ic(Ω0))∪· · ·∪A(Ic(Ωθ−1))

)
. On this basis, an algorithm is proposed to calculate

A(Ic(Ωθ)).
According to Algorithm 1, we can not only find the corresponding convergence domain of Ic(Ωθ),

but also determine the corresponding control of each profile in it. Precisely, the state-feedback control
can be designed as

Coli(G) ≤ Coli(T∗Ωθ), δi
(k+1)n−m ∈ A(Ic(Ωθ)), (4.3)

where
T∗

Ωθ =
∑
B

lθ−1

h=1

TRh(Ic(Ωθ))|S h+1 +B TIc(Ωθ)|Ic(Ωθ),

[TIc(Ωθ)|Ic(Ωθ)]i, j =

1, if Lδi
kmδ

j
(k+1)n−m ∈ Ic(Ωθ),∀δ j

(k+1)n−m ∈ Ic(Ωθ),
0, otherwise.
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Algorithm 1 Computation ofA(Ic(Ωθ)).
Require: Ic(Ωθ), θ ∈ {0, 1, · · · , α}, L
Ensure: A(Ic(Ωθ))
1: Initialize l← 1,R0(Ic(Ωθ)) = Ic(Ωθ),
2: Let Z0 = (Ω0 ∪Ω1 ∪ · · · ∪Ωθ)\

(
A(Ic(Ω0)) ∪ · · · ∪ A(Ic(Ωθ−1)

)
∪ Ic(Ωθ)

3: Construct the truth matrix [TR0(Ic(Ωθ))|Z0 ]i, j as

[TR0(Ic(Ωθ))|Z0 ]i, j =

1, if Lδi
kmδ

j
(k+1)n−m ∈ R0(Ic(Ωθ)),∀δ j

(k+1)n−m ∈ Z0,

0, otherwise.

4: Compute Rl(Ic(Ωθ)) := {δ j
(k+1)n−m |Col j(TR0(Ic(Ωθ))|Z0 ) , 0km }

5: while Rl(Ic(Ωθ)) , ∅ do
6: Compute Φl = Rl(Ic(Ωθ)),Zl = Z0\

⋃l−1
i=0 Rl(Ic(Ωθ));

7: Construct the truth matrix [TΦl |Zl ]i, j as

[TΦl |Zl ]i, j =

1, if Lδi
kmδ

j
(k+1)n−m ∈ Φl,∀δ

j
(k+1)n−m ∈ Zl,

0, otherwise.

8: Compute Rl+1(Ic(Ωθ)) := {δ j
(k+1)n−m |Col j(TΦl |Zl+1 ) , 0km }

9: if Rl+1(Ic(Ωθ)) , ∅ then
10: l← l + 1, and go to 6
11: else
12: set lθ = l

13: return A(Ic(Ωθ)) =
⋃lθ

i=0 Ri(Ic(Ωθ))
14: end if
15: end while

Theorem 4.5. Consider the NEGs with bankruptcy mechanism (3.2), if the state-feedback matrix
G satisfies

Coli(G) ≤ Coli(T∗), δi
(k+1)n−m ∈ A(Ic(Ω∗)), (4.4)

where T∗ = TIc(Ω0)|Ic(Ω0) + T∗
Ω1 + · · · + T∗

Ωα , then for any initial profile y ∈ A(Ic(Ω∗)), the number of
bankrupt players is minimized.
Proof. We can know from the construction of the truth matrices that for any θ ∈ {1, 2, . . . , α},

A(Ic(Ωθ)) =

lθ−1⋃
j=0

R j(Ic(Ωθ)) = {δi
(k+1)n−m |Coli(T ∗Ωθ) , 0km},

whereA(Ic(Ωθ1))
⋂
A(Ic(Ωθ2)) = ∅ for any θ1 , θ2, θ1, θ2 ∈ {1, 2, · · · , α}.

Since A(Ic(Ω∗)) =
⋃α

j=0A(Ic(Ω j)), for any δi
(k+1)n−m ∈ A(Ic(Ω∗)), there exists a unique θ ∈

{0, 1, . . . , α} such that δi
(k+1)n−m ∈ A(Ic(Ωθ)).

If δi
(k+1)n−m ∈ A(Ic(Ω0)), it holds that Coli(TIc(Ω0)|Ic(Ω0)) , 0km , and there exists an integer s ∈

{1, 2, . . . , km} such that [TIc(Ω0)|Ic(Ω0)]s,i , 0. It follows from (4.1) that Lδs
km
δi

(k+1)n−m ∈ Ic(Ω0), which
implies that δi

(k+1)n−m can evolve to Ic(Ω0) at the next step under control u = δs
km

. Therefore, if Coli(G) ≤
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Coli(TIc(Ω0)|Ic(Ω0)), that is, we design Coli(G) = δs
km , the number of bankrupt players is 0 starting from

the initial profile δi
(k+1)n−m . The number of bankrupt players is minimized.

If δi
(k+1)n−m ∈ A(Ic(Ωθ)), θ ∈ {1, 2, . . . , α}, it holds that Coli(T ∗Ωθ) , 0km , and there are integers

w ∈ {1, 2, . . . , km} and v ∈ {0, 1, . . . , lθ − 1} such that [T ∗
Ωθ]w,i , 0 and δi

(k+1)n−m ∈ Rv(Ic(Ωθ)). If we design
Coli(G) = δw

km ≤ Coli(T ∗Ωθ), it follows from Algorithm 1 that Lδw
kmδ

i
(k+1)n−m ∈ Rv−1(Ic(Ωθ)). Therefore,

δi
(k+1)n−m gradually converges to Ic(Ωθ), which shows that the number of bankrupt players will be θ.

Since δi
(k+1)n−m cannot evolve to Ic(Ω0) ∪ Ic(Ω1) ∪ · · · ∪ Ic(Ωθ−1), the number of bankrupt players is

minimized starting from the initial profile δi
(k+1)n−m .

From the arbitrariness of profile δi
(k+1)n−m inA(Ic(Ω∗)), the theorem is completed.

Remark 4.6. We do not optimize the profiles in ∆(k+1)n−m\A(Ic(Ω∗)), so the corresponding control to
each profile y ∈ ∆(k+1)n−m\A(Ic(Ω∗)) can be designed arbitrarily. It is noted that G is a logical matrix,
so Coli(G) should not only satisfy Eq (4.4) but also belong to ∆km .

Remark 4.7. For the control problems of NEGs with bankruptcy mechanism, previous works just
studied how to avoid all players going bankrupt, which can be transformed into the set stabilization
problem of the algebraic form (3.2). As the objective set for each profile in the system is the same, the
core method is to calculate the largest control invariant subset of the objective set and the attraction
basin of this set. However, in this paper, we aim to minimize the number of bankrupt players, which
cannot be simply transformed into the set stabilization problem of (3.2). Since the optimal objective
set of each profile is not known in advance, the main challenge in this paper is to determine the optimal
objective set for each profile.

5. An illustrative example

This section gives an example of how to study NEGs with bankruptcy mechanism.

Example 5.1. The basic elements of a controlled NEG are as follows:

• The network topological structure, denoted as (Y ∪ U, E), is shown in Figure 2. U = {1},Y =

{2, 3, 4, 5}, and E = {(1, 2), (1, 3), (1, 5), (2, 4), (3, 4)}.
• The FNG is a snowdrift game, where the payoff bi-matrix is shown in Table 3. C denotes

cooperation and D is defection. The minimal requirements of the four players are T2 = T3 =

T4 = 7,T5 = 5.
• The SUR is the unconditional imitation with fixed priority updating rule. We assume that control

player 1 will never go bankrupt, while the other players will go bankrupt if the payoff fails to
meet its minimal requirement.

Table 3. The payoff bi-matrix.

Player 1\ Player 2 C D B
C (7, 7) (3, 9) (0, 0)
D (9, 3) (1, 1) (0, 0)
B (0, 0) (0, 0) (0, 0)
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Figure 2. The topological structure of the 5 players.

Identify C ∼ δ1
3,D ∼ δ

2
3, B ∼ δ

3
3. The evolutionary dynamics of this NEG can be converted into an

algebraic form as:
y(t + 1) = Lu(t)y(t), (5.1)

where u(t) = u1(t) ∈ ∆2, y(t) = n5
i=2yi(t) ∈ ∆81, and

L1 = δ81[1 1 3 4 46 48 7 7 9 10 10 12 4 4 6 7 7 9 19 19 21 19 19 21 25 25 27 31 31 33
4 4 6 7 7 9 43 44 45 7 44 45 7 44 45 52 53 54 52 53 54 52 53 54 55 55 57 55
55 57 61 61 63 70 71 72 70 71 72 79 80 81 79 80 81 79 80 81 39 39 39 78 78
78 81 81 81 39 39 12 78 78 78 81 81 81 48 21 21 78 78 78 81 81 81 39 39 39
78 78 78 81 81 81 45 45 45 81 81 81 81 81 81 54 54 54 81 81 81 81 81 81 66
57 57 78 78 78 81 81 81 72 72 72 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 ].

Next, we shall solve the optimization problem of this NEG. We first calculate the set of profiles
for no more than two bankrupt players. We can obtain

Ω0 = {δ1
81, δ

2
81, δ

4
81, δ

5
81, δ

10
81, δ

11
81, δ

13
81, δ

14
81, δ

28
81, δ

29
81, δ

31
81, δ

32
81, δ

37
81, δ

38
81, δ

40
81, δ

41
81},

Ω1 = {δ3
81, δ

6
81, δ

7
81, δ

8
81, δ

12
81, δ

15
81, δ

16
81, δ

17
81, δ

19
81, δ

20
81, δ

22
81, δ

23
81, δ

30
81, δ

33
81, δ

34
81, δ

35
81,

δ39
81, δ

42
81, δ

43
81, δ

44
81, δ

46
81, δ

47
81, δ

49
81, δ

50
81, δ

55
81, δ

56
81, δ

58
81, δ

59
81, δ

64
81, δ

65
81, δ

67
81, δ

68
81},

Ω2 = {δ9
81, δ

18
81, δ

21
81, δ

24
81, δ

25
81, δ

26
81, δ

36
81, δ

45
81, δ

48
81, δ

51
81, δ

52
81, δ

53
81, δ

57
81, δ

60
81, δ

61
81, δ

62
81,

δ66
81, δ

69
81, δ

70
81, δ

71
81, δ

73
81, δ

74
81, δ

76
81, δ

77
81}.

Denote Ω∗ = Ω0 ∪Ω1 ∪Ω2. By constructing a truth matrix, we can obtain

Ic(Ω∗) = {δ1
81, δ

2
81, δ

3
81, δ

4
81, δ

5
81, δ

7
81, δ

8
81, δ

9
81, δ

10
81, δ

11
81, δ

12
81, δ

13
81, δ

14
81, δ

16
81, δ

17
81, δ

18
81,

δ19
81, δ

20
81, δ

21
81, δ

22
81, δ

23
81, δ

24
81, δ

25
81, δ

26
81, δ

28
81, δ

29
81, δ

30
81, δ

31
81, δ

32
81, δ

33
81, δ

34
81, δ

35
81,

δ36
81, δ

37
81, δ

38
81, δ

39
81, δ

40
81, δ

41
81, δ

42
81, δ

43
81, δ

44
81, δ

45
81, δ

46
81, δ

47
81, δ

49
81, δ

50
81, δ

52
81, δ

53
81,

δ55
81, δ

56
81, δ

57
81, δ

58
81, δ

59
81, δ

60
81, δ

61
81, δ

62
81, δ

64
81, δ

65
81, δ

67
81, δ

68
81, δ

70
81, δ

71
81}.

Because ofA(Ic(Ω∗)) = Ic(Ω∗), any profile in Ic(Ω∗) ensures that no more than two players go bankrupt.
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Next, we minimize the number of bankrupt players step by step. We first compute the initial
profile set that eventually guarantees that all players do not go bankrupt. Then, we have

Ic(Ω0) = {δ1
81, δ

2
81, δ

4
81, δ

10
81, δ

11
81, δ

13
81, δ

14
81, δ

28
81, δ

29
81, δ

31
81, δ

32
81}.

According to Proposition 4.4, we know A(Ic(Ω0)) = Ic(Ω0). It shows that no player is bankrupt from
the initial profile y ∈ Ic(Ω0). By constructing the truth matrix TIc(Ω0)|Ic(Ω0), we can obtain

TIc(Ω0)|Ic(Ω0) =

 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 · · · 0 1 1 0 1 1 0 · · · 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0︸  ︷︷  ︸

13

0 0 0 0 0 0 · · · 0︸  ︷︷  ︸
49

 ,
which means that the corresponding control of profiles δ1

81, δ
2
81, δ

4
81, δ

10
81, δ

11
81, δ

13
81, δ

14
81, δ

28
81, δ

29
81, δ

31
81, δ

32
81

is δ1
2.

Similarly, we continue to seek the set of profiles that will ensure only one player goes bankrupt.
Then, we have

Ic(Ω1) = {δ3
81, δ

7
81, δ

8
81, δ

12
81, δ

16
81, δ

17
81, δ

19
81, δ

20
81, δ

22
81, δ

23
81, δ

30
81, δ

33
81, δ

34
81, δ

35
81, δ

43
81, δ

44
81, δ

55
81, δ

56
81, δ

58
81, δ

59
81}.

We can compute the convergence domain of Ic(Ω1) by Algorithm 1. It is computed that

A(Ic(Ω1)) = {δ3
81, δ

7
81, δ

8
81, δ

12
81, δ

16
81, δ

17
81, δ

19
81, δ

20
81, δ

22
81, δ

23
81, δ

30
81, δ

33
81, δ

34
81,

δ35
81, δ

37
81, δ

38
81, δ

40
81, δ

41
81, δ

43
81, δ

44
81, δ

55
81, δ

56
81, δ

58
81, δ

59
81}.

We can obtain the truth matrix

T∗
Ω1 =

 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 · · · 1 0 0 1 1 1 0 · · · 0 1 1 0 · · · 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·︸︷︷︸

6

0 0 0 0 0 0 0 · · · 0︸ ︷︷ ︸
7

0 0 0 · · · 0︸ ︷︷ ︸
10

0 0 0 0 0

 ,
which shows that we can design a state-feedback gain matrix G to ensure that the number of bankrupt
players is 1 starting from any profile y ∈ A(Ic(Ω1)).

G = δ2[2 2 1 2 2 2 1 1 2 2 2 1 2 2 2 1 1 2 1 1 2 1 1 2 · · · 2︸  ︷︷  ︸
6

1 2 2 2 1 1 2 · · · 2︸  ︷︷  ︸
7

1 1 2 · · · 2︸  ︷︷  ︸
10

0 0 0 0 0 ].

Furthermore, it is computed that

Ic(Ω2) = {δ9
81, δ

18
81, δ

21
81, δ

24
81, δ

25
81, δ

26
81, δ

36
81, δ

45
81, δ

52
81, δ

53
81, δ

57
81, δ

60
81, δ

61
81, δ

62
81, δ

70
81, δ

71
81}.

Moreover, by Algorithm 1, we have

A(Ic(Ω2)) = {δ5
81, δ

9
81, δ

18
81, δ

21
81, δ

24
81, δ

25
81, δ

26
81, δ

36
81, δ

39
81, δ

42
81, δ

45
81, δ

46
81, δ

47
81, δ

49
81,

δ50
81, δ

52
81, δ

53
81, δ

57
81, δ

60
81, δ

61
81, δ

62
81, δ

64
81, δ

65
81, δ

67
81, δ

68
81, δ

70
81, δ

71
81}.

We can obtain the truth matrix as

Col j(T∗Ω2) =



(1 1)T , j = 20, 21, 53,
(1 0)T , j = 5, 9, 18, 24, 25, 26, 36, 39, 42, 45, 46, 47, 49,

50, 52, 53, 57, 60, 61, 62, 64, 65, 67, 68, 70, 71,
(0 1)T , j = 54,
(0 0)T , otherwise,
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where j ∈ [1 : 81]. We can describe a possible profile feedback gain matrix G as

G =


Col j(G) = (1, 0)T , j = 5, 9, 18, 21, 24, 25, 26, 36, 39, 42, 45, 46, 47, 49,

50, 52, 53, 57, 60, 61, 62, 64, 65, 67, 68, 70, 71,
Col j(G) = (0, 1)T , otherwise,

where j ∈ [1 : 81].
Based on the above discussion, we just need to make the corresponding state-feedback

matrix satisfy

Coli(G) ≤ Coli(T∗),

where

T∗ = TIc(Ω0)|Ic(Ω0) + T∗
Ω1 + T∗

Ω2 .

Then, we can design the state-feedback matrix as follows

G =


Col j(G) = (1, 0)T , j = 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 28, 29,

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49,
50, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 67, 68, 70, 71,

Col j(G) = (0, 1)T , otherwise,

where j ∈ [1 : 81]. Under this control, we can ensure that for any initial profile y ∈ A(Ic(Ω∗)), the
number of bankrupt players is minimized.

We take initial profile δ5
81 as an example. When we take G as above, the evolutionary trajectory of

the profile δ5
81 can be expressed in Figure 3. We know from Figure 3 that the trajectory starting from

y(0) = δ1
3δ

1
3δ

2
3δ

2
3 = δ5

81 is δ5
81 → δ46

81 → δ52
81 → δ25

81 → δ25
81 → · · · .

Figure 3. The evolutionary trajectory of profile δ5
81.

We can see from Figure 3 that when the initial profile is δ5
81, and the control player always uses

cooperation as their strategy, then the profile eventually converges to the fixed point δ25
81. The number

of bankrupt players is minimized under these circumstances.
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6. Conclusions

This paper studied the strategy optimization problem for NEGs with bankruptcy mechanism. The
existing results only considered how to avoid all players going bankrupt, but for the profiles where at
least one player will go bankrupt, there is no further results. We investigated the problem of minimizing
the number of bankrupt players. Within an allowed number of bankrupt players, we have designed a
kind of state-feedback controller for minimizing the number of bankrupt players.

This paper only considered the ideal NEG models without the influence of other external factors.
However, the actual systems may inevitably be affected by various external factors, such as changes
in government policies, environmental and weather changes, and public opinion. In the future, we
will consider investigating the strategy optimization problem with both disturbances and bankruptcy
mechanism in NEGs.
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