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Abstract: Delay differential equations and algorithms hold a crucial position in the exploration of
some biological systems and several models in real-world applications. So, some algorithms contribute
to improve mathematical models related to natural life problems and global optimization. A novel
hybridization between the downhill Nelder-Mead simplex algorithm (NM) and the classic bat algorithm
(BA) was presented. The classic BA suffers from premature convergence, which is due to its global
search weakness. In this research, this weakness was overcome by the intervention of NM in the
velocity updating formula of the particles as an additional term. This improvement distracts particles
from the rapporteur route, toward only the best solution found, to discover the search space more
accurately. Once this improvement detects a promising area, sequential expansions are performed
to deeply explore the area. This mechanism provides rapid convergence for the algorithm. Deep
analysis of the algorithm’s behaviour was provided, and thoughtful experiments were conducted and
evaluated utilizing several evaluation metrics together with the Wilcoxon signed rank test to accentuate
the effectiveness and efficiency of the proposed algorithm.
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1. Introduction

The discovery of several real-world applications is crucially related to delay differential equations
and algorithms. Different algorithms are designed to solve global optimization problems. Global
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optimization problems are inherently intractable. Conventional algorithms (deterministic algorithms)
are not efficient to solve global problems. One of the main reasons for this is that deterministic
algorithms seek the exact global optimum among all feasible regions, which is a time-consuming
procedure for problems of moderate to high dimension. Ideal surrogate for deterministic algorithms in
solving these problems are algorithms with a stochastic element, called heuristic algorithms, as the
randomness in the global search guides the search toward regions where a better solution is likely to
be found. Metaheuristic algorithms are a type of heuristic applicable for a wide range of problems. In
the past few decades several nature-inspired metaheuristics have been developed. One class of them is
based on the social interactions of animal communities, called swarm intelligence (SI) algorithms,
such as the genetic algorithm [1], particle swarm optimization (PSO) algorithm [2], ant colony
optimization (ACO) [3], artificial fish swarm algorithm (AFSA) [4], and bat algorithm (BA) [5].
Recently, several other metaheuristic algorithms were proposed such as the liver cancer algorithm
(LCA) [6], fata morgana algorithm (FATA) [7], snow geese algorithm (SGA) [8], and more.

Over time, diligent research has shown some defects that affect the performance of standard
metaheuristics in solving certain problems. Accordingly, numerous impressive algorithms were
reported that combine metaheuristics with different techniques or other algorithms to improve new
versions that overcome the deficiencies in the component algorithms. In [9], the author combined the
firefly algorithm (FA) with extremal optimization to tackle the defects of FA in slow convergence and
falling into local minimum. In [10], the author built a framework for conducting an effective analysis
for recurrent spontaneous abortion. This framework was presented by a combination between the
joint self-adaptive sime mould algorithm (JASMA) with the common kernel learning support vector
machine with maximum-margin hyperplane theory. BA was not excluded from this cutting-edge
phenomenon. The BA has some advantages over other algorithms that make it promising and
interesting such as its simplicity in structure, speed in processing, and ease in hybridization with other
algorithms. Furthermore, the BA efficiently succeeded in dealing with several optimization problems
in different fields such as power systems, economic load dispatch problems, image processing, and
medical applications, see [11] for a detailed description. However, the exploration in the BA is weak
as the BA focuses in the exploitation rather than exploration which makes it fall into local optimum.
For that, many works proposed variants of the BA to improve its performance by introducing different
techniques. For instance, the researcher in [12] incorporated a chaotic sequence and chaotic Levy
flight schemes to enrich the searching behavior and improve the local and global search capabilities.
In [13], the author introduced, first, the iterative local search in the local search of the BA to avoid
falling into local minimum and, second, a stochastic inertia weight in the velocity updating formula of
the BA. The researcher [14] incorporated quantum evolution and an annealing strategy into the BA to
achieve a balance between intensification and diversification. Other works tend to combine the BA
with other algorithms in which the combination is referred to as hybrid metaheuristics. This
hybridization accentuates the mettle of its components and creates an algorithm capable of solving
many hard optimization problems. For instance, [15] introduced a step in the harmony search (HS)
algorithm in the BA and added an HS attribute as an operator. Author in [16] introduced a hybrid
strategy that combines the genetic algorithm (GA) with BA to improve the efficiency of the global
search of the standard BA. In their work, the mean magnitude of relative error was applied as an
objective function. Other variants of the BA were proposed by combining the benefits of the BA with
the local search Nelder-Mead algorithm (NM). In [17], the author started by following the BA routine
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to generate a new set of solutions. If any inferior solution was obtained, NM was performed by taking
the inferior solution as the starting point of the simplex to refine it. While, in [18], the researcher took
the best solution obtained after performing the BA routine as the starting point of the simplex in the
NM algorithm. In [19], the NM method was used as a local search instead of the random walk method
that is applied in the standard BA to refine the best solution found so far, which helped to accelerate
the search process. In [20], the author replaced the random walk that is used as a local search in the
standard BA by the pattern search method to increase the intensification ability. Furthermore, the NM
method was employed in the final stage of the algorithm to improve the best found solution.

The motivation of this work is to tackle the main drawback of the BA, which is the weakness
in exploration, by making changes in its structure, specifically in the updating process, using the NM
algorithm rather than the technique used in [17–19], which is refining the solution found by the standard
BA utilizing the NM method. For that, a novel hybridization is carried out utilizing the BA and NMA
at which the global search ability of the standard BA is enhanced in the proposed algorithm (HBNMA)
in premier iterations by the intervention of the NMA in the updating process of the solutions. This
helped at first to distract solutions from heading only toward best solution found so far to avoid falling
into local minimum. Second, it helped to penetrate deeply in a region where further potential best
solutions may be found using sequential expansion steps that are defined in the NM algorithm. This
can be seen in the Experiments and results section. By the lapse of iterations, the exploitation arises by
the usual local search mechanism of the classic BA. This balance between exploration and exploitation
enables HBNMA to solve complex global optimization problems. The contributions of this paper are
as follows:

• The fast hybrid bat-NM algorithm is proposed with a new contribution of the NM in a
hybridization. The NM in this work is used to tackle the main drawback of the BA by improving
the updating process of the BA. The proposed algorithm is able to solve complex and
high-dimensional global problems.
• Breaking the tradition of following a uniform route for all particles, in the proposed algorithm,

particles determine their next step by choosing whether to follow the proposed hybrid updating
process or the classic one of the standard BA according to which one is able to achieve better
results.
• Precise analysis of the working mechanism of the proposed algorithm and thoughtful experiments

are presented with statistical measurements to perfectly evaluate the merit of the HBNMA.

The rest of this paper is organized as follows: Section 2 gives an overview on the classic NM and
classic BA. Furthermore Section 2 describes the proposed algorithm. In Section 3, experiments and
numerical results are illustrated. The time complexity is described in Section 4. In Section 5, the
study’s conclusion is presented. Finally, future work is described in Section 6.

2. Materials and methods

2.1. Classic Nelder-Mead algorithm (NM)

In this section, the classic NMA is presented as stated in the original version [21]. The main thrust
of the NM is to solve a multidimensional, unconstrained optimization with no need for derivatives.

min f (x), (2.1)
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where the objective function f : Rd → R and x ∈ Rd.
This algorithm constructs a design framework called simplex with d+1 vertices for a d-dimensional

problem, in which the worst vertex is replaced by a better one at each iteration. The surrogate vertex is
obtained utilizing one or more procedures including reflection, expansion, contraction, or reduction.

The NM starts by initializing the points xi (the vertices of the simplex). Next, the fitness value
(objective function) f is evaluated for each point xi. The points are reordered according to their
objective function value to determine the best xb, the second worst xw2, and the worst xw, which
satisfy:

f (xb) < ... < f (xw2) < f (xw).

After that, the centroid xc of all points except xw is calculated using:

xc =
1
d

d∑
i=1

xi. (2.2)

The NMA implements different procedures to decide the most effective step in a direction expressed
utilizing a line segment joining xc with xw. The procedures are described in the following in which the
values of the hyperparameters µr, µe, µoc, µic, and µre that are used in these procedures are assigned to
the same values as in [21].

(1) Reflection:
This step indicates a reflection of the point xw using the point xc. The reflection point xr is
calculated utilizing the following equation:

xr = xc + (xc − xw). (2.3)

(2) Expansion:
This step expands the reflection step as long as an improvement is achieved. The expansion point
xe is calculated utilizing:

xe = xc + 2(xc − xw). (2.4)

(3) Contraction:
This step shrinks the size of the simplex utilizing either an outside contraction xoc or inside
contraction xic. The points xoc and xic are calculated as follows:

xoc = xc + 0.5(xc − xw), (2.5)

xic = xc − 0.5(xc − xw). (2.6)

(4) Reduction:
This is the last resort after the failure of all previous attempts. In this step, all points xi are updated
toward the best point xb using:

xi = xb + 0.5(xi − xb). (2.7)
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2.2. Classic bat algorithm (BA)

The bat algorithm emulates the echolocation trait and hunting behavior of microbats. [5] designed
the classic BA from the following idealized rules:

(1) Different bats utilize echolocation to sense the distance between them and the target with a
magical ability to distinguish between food and background barriers.

(2) Bats fly randomly with velocity vi at position xi with a fixed frequency fm and a varied wavelength
λi and loudness Ai to seek out prey. They can adjust automatically their wavelength (or frequency)
according to the proximity of their target.

(3) Loudness is assumed to vary from a large value A0 to a minimum value Amin.

According to these rules, the BA is designed as follows:

(1) Initialize randomly a population of n solutions xi ∈ Rd.
(2) Update the frequency fi and the velocity vi using:

fi = fmin + rand ( fmax − fmin), (2.8)

vt
i = vt−1

i + (xt−1
i − x∗) fi, (2.9)

where fmin and fmax are prespecified minimum and maximum values for f , rand is a random
number, t is the current iteration, and x∗ is the current global solution. Then a new solution xi is
generated as follows:

xt
i = xt−1

i + vt
i. (2.10)

(3) If rand < ri, evaluate a new local solution around the current global one using:

xnew = xi + εAt, (2.11)

where ε ∈ [−1, 1], and At is the average loudness of all solutions at iteration t.
(4) Update the best individual solutions and both the loudness and rate of pulse emissions using the

following formulae if an improvement is achieved:

At
i = αAt−1

i , (2.12)

rt
i = r0

i (1 − exp(−γt)), (2.13)

where α ∈ (0, 1), γ > 0, At
i → 0, and rt

i → r0
i , as t → ∞.

(5) Select the current global solution from the best individual solutions.

2.3. Proposed HBNMA

A novel hybridization strategy between the BA and NMA is introduced in this section called the
HBNMA. The standard BA guides particles toward the best solution whereas the standard NM guides
the worst particle (vertex) toward the centroid, or the center of gravity, of the other particles. The
HBNMA is based on the concept that a solution at the beginning of the iterations should experience
a different direction besides the direction toward the best solution in order to avoid falling into local
minimum. Accordingly, the HBNMA developed a new updating formula for the velocity of a particle
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composed of the usual direction of the BA and the direction of the NM in order to enhance the global
search ability of the proposed HBNMA.

The proposed algorithm starts by initializing n solutions xi randomly using:

xi = xmin + rand (xmax − xmin), (2.14)

where [xmin, xmax] is the range of the search space, i = 1, 2, ..., n, and rand ∈ (0, 1) is a random number.
Further, the velocity, frequency, loudness, and pulse emission rate are initialized. Utilizing the
solution’s initial information, the HBNMA evaluates the fitness value. The solution with the best
fitness is stored as a current global solution x∗.

Each particle has two choices from which its step can be determined. The first is a combination
between the classic BA step vbat (2.9) and the reflection step vr of the NM:

vr = xc + (xc − xi), (2.15)

where xc is defined in (2.2). Figure 1 shows this combination geometrically in green-colored lines or
more detailed in blue-colored lines that generate the step from vt to vt+1. Hence the improved updating
formula of each particle’s velocity vi becomes:

vi = vbat + vr. (2.16)

If progress is achieved in the fitness value for xi, that is, f (xt+1
i ) < f (xt

i), sequential expansion
steps are carried out as long as progress is made to exploit the area deeply. The expansion steps are
performed by replacing vr in (2.16) by ve which is calculated as:

ve = xc + µ(xc − xi), (2.17)

with µ = 2 ∗ µpr, where µpr is the value of µ in the previous expansion step. The expansion steps are of
the form:

vi = vbat + ve. (2.18)

The term vbat solely guides particles toward the current global solution as in the classic BA, as
shown in Figure 1 with red-colored lines, which may make particles fall easily in a local optimum.
Combining the terms vr or ve with vbat in (2.16–2.18), shown graphically in Figure 1, distracts the
particle’s concentration from the exclusive dependence on the direction toward the best one, especially
at the beginning of the iterations. This helps to target new areas in the search space which may be
promising. Accordingly, it allows one to effectively explore the region. This choice of the particle’s
step is accepted if progress in the fitness value is achieved. If not, the second choice is to keep the same
updating process as in the standard BA (2.9). The proposed mechanism takes place at the beginning
of the iterations. While in the later iterations, as is usually done in the standard BA, if rand < ri ,
solutions are updated locally around the current global solution using (2.11). This local intensification
occurs in the area where the global optimal is expected.
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Figure 1. Clarification of the direction vt+1
bat and the proposed direction vt+1 .

The full description of the HBNMA is shown in the following algorithm and flowchart (Figure 2):

Initialize
population

Store the current
global solution x∗

Perform the improved formula
(2.16). Compute xt+1

r and f t+1
r

f t+1
r < f t

Perform the expanded formula
(2.18). Compute xt+1

e and f t+1
e

Perform the standard formula
(2.9). Compute xt+1and f t+1

f t+1
e < f t+1

r

Set f t+1
r = f t+1

e & xt+1
r =

xt+1
e . Set µ = 2 ∗ µpr

Accept xt+1
rrand < ri

Generate a
local solution

Keep the
previous position

Update global
solution

Termination
criteria
met?

Output

Yes

No

Yes

No

Sequental expansions

Yes

No

Yes

No

Figure 2. Flowchart of the proposed HBNMA.
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Algorithm 1: HBNMA
Input: Initial population of solutions xi;

The prespecified parameters
Output: The global optimal solution x∗
Evaluate the fitness value f of each solution;
Store the current global solution xt

∗

while stopping criterion is not met do
for each bat individual i do

Update the frequency;
Update the velocity using (2.16);
Calculate the fitness ( f t+1

i )r;
if ( f t+1

i )r < f t
i then

Expansion step is performed using (2.18);
Calculate the fitness after expansion ( f t+1

i )e;
if ( f t+1

i )e < ( f t+1
i )r then

Set f t+1
i = ( f t+1

i )r;
while ( f t+1

i )e < f t+1
i do

Set f t+1
i = ( f t+1

i )e;
Perform another expansion step with µ = 2 ∗ µpr

The expansion step is accepted
else

The reflection step is accepted

else
Update the velocity using (2.9)

if rand < ri then
Generate a local solution around the global solution using equation (2.11)

Evaluate the fitness value;
if rand > Ai & f (xt+1

i ) < f (xt
∗) then

Update the best individual solution;
Update the loudness Ai and the rate of pulse emission ri using equations (2.12) and
(2.13)

Update the global solution.
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3. Experiments and results

In this section, we validate the efficiency of the proposed HBNMA and its counterparts using
classical and complex benchmark test functions along with the Wilcoxon signed rank test.
Furthermore, the working mechanism of the HBNMA is analyzed numerically.

3.1. Benchmark test functions

The performance of the HBNMA is examined utilizing two sets of test functions which provide a
good representation of real-world optimization problems and show the merit of the proposed
algorithm. The first set is the classical test functions whose definitions are found in [22]. The selected
functions vary in their characteristics. Some are unimodal to test the intensification ability of the
proposed algorithm while the others are multimodal functions to test the ability to jump out of the
local optimum. Moreover, the selected test functions vary in separability that measures the difficulty
of the problem. The dimensions of the selected functions, the range used, their optimum values, and
their characteristics are described in the table found in the Supplementary Materials. The second set is
the IEEE CEC2014 special session and competition on a single-objective real-parameter, numerical
optimization benchmarking suit [23]. This set of complex test functions contains 3 rotated unimodal
functions F1–F3, 13 rotated and shifted multimodal functions F4–F16, 6 hybrid functions F17–F23,
and 8 composition functions F24–F30 that validate the performance of the proposed algorithm.

3.2. Statistical analysis

The significance of the proposed HBNMA is measured using some evaluation metrics and the
Wilcoxon signed-rank test on the results of the experiments in Section 3.3.

3.2.1. Evaluation metrics

The performance of the proposed HBNMA in optimizing an objective function is evaluated using
three metrics which are the best value (BV), the mean value (MV), and the standard deviation (SD)
over several runs.

3.2.2. Wilcoxon signed-rank test

This test is a non-parametric statistical test that aims to detect whether there is a significant
difference between two sample means or not.

In this research, the Wilcoxon signed-rank test is applied at a significance level of α < 0.05. The
sum of the ranks for the functions in which the HBNMA outperformed its counterpart is denoted by
R+. While the sum of the ranks for the opposite is denoted by R−. The two criteria R+ and R− are
calculated as described in [24] in which the average ranks are used in dealing with ties. The Wilcoxon
test produces a test statistic value (Z) which is converted into a probability (p-value). A low p-value
(p < 0.05) reflects a significant difference between the HBNMA and its counterpart. IBM SPSS
software is used in this work to calculate the p-value.
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3.3. Experiments and discussions

In this section, three experiments are performed to show the merit of the proposed HBNMA on
different dimensional problems. The first experiment is a comparison against the standard BA using
problems with d = 5 up to d = 1000 for each to show the positive impact of the hybridization of
the BA with the NMA in the performance of the proposed algorithm. Furthermore, Experiment 1
provides an analysis of the positive impact of the hybridization numerically. The second experiment
is a comparison against different variants of the BA that is described in Section 3.3.2 using standard
benchmark test functions with different properties to perfectly validate the proposed algorithm. The
third experiment is against state-of-the-art heuristics utilizing CEC2014. The results obtained from
these experiments are evaluated utilizing three evaluation metrics and the Wilcoxon signed-rank test
as described in Section 3.2. The code of the HNMBA was written and run in MATLAB 2013, on
Windows 10 with an Intel® Core i5-1035G CPU processor and 8.00 GB RAM.

3.3.1. Experiment 1 (Analysis of the HBNMA working mechanism with a comparison utilizing
high-dimensional problems)

This experiment is divided into two parts. The first part is a comparison between the proposed
variant of the BA which is the HBNMA and the standard BA on low- and high-dimensional problems
to show the effect of the hybridization of the BA with the NM in the performance of the HBNMA. The
second part is an analysis of the algorithm’s working mechanism which gives an explanation of the
good results obtained for the HBNMA.

Tables 2 and 3 show the results of the comparison utilizing several test functions of dimensions
d = 5, 10, 100 and 1000 for each. The experimental parameter values are the same in this comparision
for both the BA and HBNMA to ensure fairness and they are shown in Table 1. The results are
evaluated using the error between the global optimal and the obtained solution, the mean number of
function evaluations NFE of 40 independent runs needed to obtain the accuracy indicated, as well as
the average time taken to perform one run. Each algorithm terminates if either the error equals zero
or the maximum number of function evaluations is reached (MaxFE = 2 ∗ 104). The results showed
the ability of the proposed HBNMA in convergence to the global optimal with zero error and a very
low number of function evaluations in most functions with low or high dimension. In contrast, the BA
failed to obtain good results in most indicated functions, even though it took the prespecified maximum
number of function evaluations, at which the results got worse with an increasing function dimension
as illustrated in Tables 2 and 3 and clarified in the example shown in Figure 3 using the Schwefel
function. The figure demonstrated that the error value was getting worse in the BA with the increase
in dimension, up to 90 in the left-hand figure and from 100 up to 800 in the right-hand figure, because
of its weakness to handle the high dimensionality of the problems. Meanwhile, the performance of
the HBNMA with the increase in dimension was stable with an error equal to zero. This comparison
indicates that the hybridization in the HBNMA at first enhances the exploration ability in the proposed
algorithm than that in the standard BA. This enhancement enables the HBNMA to search deeply for the
global optimum and jump out from any local optimum no matter the dimension of the test function, as
illustrated in the results of the error values of the HBNMA and BA. Second, the hybridization decreases
the time consumed to reach the global optimum in the HBNMA from that in the BA. This proves the
merit of this work.
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Table 1. Conditions and common parameters of all experiments.
Definition Experiment 1 Experiment 2 Experiment 3

Condition
Population size n = 40 n = 30 n = 50
Number of runs r = 40 r = 30 r = 51
Maximum number of function evaluations MaxFE = 2 ∗ 104 - MaxFE = d ∗ 105

Maximum number of iterations - MaxIt = 200 -

Common
Parameter

Minimum frequency fmin = −1 fmin = −1 fmin = −1
Maximum frequency fmax = 1 fmax = 1 fmax = 1
Decay coefficient of loudness α = 0.5 α = 0.9 α = 0.5
Enhancement coefficient of pulse emission rate γ = 0.5 γ = 0.6 γ = 0.5

Figure 3. Effect of increasing dimension on the performance of the BA and HBNMA.

Further in this experiment, the behavior of the particles in the HBNMA is demonstrated using four
metrics to give a clarification to the superiority of the algorithm. Table 4 illustrates the percentage
of the mean number of particles that follow the improved updating formulae (2.16) and (2.18) (Mim)
in several iterations in one random run and those that follow the standard updating formula of the
BA (2.9) (Mba). Also, the success in any iteration (t + 1) to achieve an improvement in the global
solution ( f (xt+1

∗ ) < f (xt
∗)) is studied whether referring to a particle that follows the improved formulae

or the standard formula. Then the percentages of the successes are calculated and denoted in Table 4
as (S ucim) or (S ucba), respectively. The results indicated that the majority, around two-thirds, of the
particles follow the standard updating process of the BA. The reason behind this is that the particles
follow the improved updating process if progress in their previous fitness value is achieved which is not
continuously done. However, the high percentage of success in improving the global solution is due
to particles that follow the improved updating process in all multimodal and some unimodal functions.
The high percentage of success in few unimodal functions is in favour of particles that follow the
classic updating formula as there is no need in these functions for high diversification. This proves
the positive impact of the improved version to search precisely for better solutions as clarified in the
following flowchart.
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Table 2. Results of comparison in Experiment 1.
Function Dim. Algorithm Error NFE AVT Function Dim. Algorithm Error NFE AVT
Sphere 5 HBNMA 0 400 0.04 Sumsquares 5 HBNMA 0 320 0.02

BA 1.38 × 10−2 2 × 104 0.56 BA 1.89 × 10−4 2 × 104 0.48
10 HBNMA 0 400 0.02 10 HBNMA 0 400 0.02

BA 1.45 × 101 2 × 104 0.44 BA 4.26 × 10−1 2 × 104 0.46
100 HBNMA 0 560 0.04 100 HBNMA 0 480 0.05

BA 5.97 × 103 2 × 104 0.70 BA 2.80 × 103 2 × 104 0.53
1000 HBNMA 0 560 0.11 1000 HBNMA 0 640 0.11

BA 1.39 × 105 2 × 104 0.67 BA 8.54 × 105 2 × 104 0.65
Schwefel 2.21 5 HBNMA 0 400 0.03 Schwefel 2.22 5 HBNMA 0 320 0.02

BA 3.35 × 10−1 2 × 104 0.43 BA 5.48 × 10−2 2 × 104 0.45
10 HBNMA 0 480 0.04 10 HBNMA 0 400 0.02

BA 2.37 × 100 2 × 104 0.42 BA 2.00 × 100 2 × 104 0.76
100 HBNMA 0 1360 0.12 100 HBNMA 0 480 0.03

BA 1.27 × 101 2 × 104 0.49 BA 1.85 × 102 2 × 104 0.97
1000 HBNMA 0 9760 1.74 1000 HBNMA 0 720 0.12

BA 3.34 × 101 2 × 104 0.59 BA 2.12 × 103 2 × 104 0.76
Step 5 HBNMA 0 320 0.02 Dixon-Price 5 HBNMA 2.15 × 10−1 2 × 104 0.71

BA 8.50 × 10−1 2 × 104 0.57 BA 2.14 × 10−1 2 × 104 1.97
10 HBNMA 0 400 0.03 10 HBNMA 6.67 × 10−1 2 × 104 0.77

BA 8.57 × 100 2 × 104 0.54 BA 3.61 × 101 2 × 104 0.51
100 HBNMA 0 480 0.04 100 HBNMA 6.67 × 10−1 2 × 104 0.94

BA 4.73 × 102 2 × 104 0.80 BA 2.52 × 104 2 × 104 0.50

Table 3. Results of comparison in Experiment 1.
Function Dim. Algorithm Error NIT AVT Function Dim. Algorithm Error NIT AVT

1000 HBNMA 0 560 0.14 1000 HBNMA 9.85 × 10−1 2 × 104 3.72
BA 6.27 × 103 2 × 104 0.76 BA 4.70 × 107 2 × 104 0.79

Sum of Diff- 5 HBNMA 0 320 0.02 Griewank 5 HBNMA 0 320 0.02
erent Powers BA 2.71 × 10−8 2 × 104 0.53 BA 3.08 × 10−1 2 × 104 0.54

10 HBNMA 0 320 0.02 10 HBNMA 0 480 0.03
BA 2.00 × 10−7 2 × 104 0.56 BA 8.78 × 10−1 2 × 104 0.53

100 HBNMA 0 480 0.05 100 HBNMA 0 560 0.05
BA 1.70 × 10−5 2 × 104 0.64 BA 5.15 × 101 2 × 104 0.60

1000 HBNMA 0 560 0.19 1000 HBNMA 0 640 0.18
BA 3.91 × 10−4 2 × 104 1.82 BA 1.47 × 103 2 × 104 1.29

Ackley 5 HBNMA 8.8818 × 10−16 2 × 104 0.79 Alpine 5 HBNMA 0 400 0.02
BA 8.14 × 10−1 2 × 104 0.47 BA 2.43 × 10−1 2 × 104 0.43

10 HBNMA 8.8818 × 10−16 2 × 104 0.77 10 HBNMA 0 400 0.02
BA 1.50 × 100 2 × 104 0.45 BA 2.02 × 100 2 × 104 0.39

100 HBNMA 8.8818 × 10−16 2 × 104 1.05 100 HBNMA 0 560 0.04
BA 2.36 × 100 2 × 104 0.58 BA 3.95 × 101 2 × 104 0.52

1000 HBNMA 8.8818 × 10−16 2 × 104 5.45 1000 HBNMA 0 560 0.15
BA 2.87 × 100 2 × 104 1.09 BA 3.41 × 102 2 × 104 0.88

Rastrigin 5 HBNMA 0 320 0.04 Xin-She 5 HBNMA 0 320 0.02
BA 5.88 × 100 2 × 104 0.71 Yang N.1 BA 2.77 × 10−2 2 × 104 0.46

10 HBNMA 0 400 0.04 10 HBNMA 0 400 0.02
BA 2.01 × 101 2 × 104 0.42 BA 4.02 × 10−1 2 × 104 0.57

100 HBNMA 0 480 0.05 100 HBNMA 0 480 0.05
BA 5.13 × 102 2 × 104 0.52 BA 1.43 × 1030 2 × 104 0.55

1000 HBNMA 0 480 0.14 1000 HBNMA 0 3440 1.08
BA 4.57 × 103 2 × 104 0.96 BA In f 2 × 104 2.02

Zakharov 5 HBNMA 0 400 0.03 Salomon 5 HBNMA 0 320 0.02
BA 3.80 × 10−3 2 × 104 0.41 BA 2.53 × 10−1 2 × 104 0.44

10 HBNMA 0 400 0.03 10 HBNMA 0 400 0.03
BA 2.10 × 101 2 × 104 0.42 BA 8.29 × 10−1 2 × 104 0.48

100 HBNMA 0 560 0.03 100 HBNMA 0 560 0.04
BA 1.81 × 1010 2 × 104 0.54 BA 9.88 × 100 2 × 104 0.54

1000 HBNMA 0 560 0.10 1000 HBNMA 0 560 0.12
BA 1.79 × 1022 2 × 104 0.78 BA 3.62 × 101 2 × 104 0.67
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Table 4. Performance analysis of the HBNMA.

Function Mim(%) Mba(%) S ucim(%) S ucba(%)
Sphere 34.8649% 65.1351% 38.4615% 61.5385%
Sumsquares 33.1383% 66.8617% 39.1304% 60.8696%
Schwefel 2.21 43.2065% 56.7935% 69.5652% 30.4348%
Schwefel 2.22 33.2622% 66.7378% 100% 0%
Step 34.2692% 65.7308% 62.5000% 37.5000%
Dixon-Price 32.6144% 67.3856% 50% 50%
Sum of Different Powers 34.1429% 65.8571% 60.6061% 39.3939%
Griewank 35.2727% 64.7273% 64.2857% 35.7143%
Ackley 37.5000% 62.5000% 88.8889% 11.1111%
Alpine 40.7317% 59.2683% 65.3846% 34.6154%
Rastrigin 41.5714% 58.4286% 78.9474% 21.0526%
Xin-She Yang N.1 42.6250% 57.3750% 66.6667% 33.3333%
Xin-She Yang N.2 39.4565% 60.5435% 83.3333% 16.6667%
Salomon 38.9063% 61.0938% 72.7273% 27.2727%

Improved

route (13
)

Standardroute ( 2
3 )

any progress in

x∗ is due to

Figure 4. Clarification of the behavior of bats in the HBNMA.
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Table 5. Results of Experiment 2.
Function HBNMA QABA IQBA LMBA BADE BA

Sphere

BV 0.000 0.000 2.658 × 10−137 7.060 × 10−29 4.777 × 10−35 2.912 × 10−1

MV 0.000 0.000 2.743 × 10−31 4.584 × 10−10 8.720 × 10−11 9.552 × 10−1

SD 0.000 0.000 1.480 × 10−30 1.570 × 10−9 4.154 × 10−10 4.532 × 10−1

Rank (MV) 1 1 2 4 3 5

Sumsquares

BV 0.000 0.000 9.882 × 10−148 8.600 × 10−29 2.089 × 10−38 1.617 × 100

MV 0.000 0.000 1.977 × 10−41 4.704 × 10−9 7.812 × 10−11 5.836 × 100

SD 0.000 0.000 1.060 × 10−40 1.950 × 10−8 2.978 × 10−10 2.121 × 100

Rank (MV) 1 1 2 4 3 5

Schwefel’s
2.20

BV 0.000 0.000 1.843 × 10−78 1.743 × 10−15 4.767 × 10−21 1.116 × 100

MV 0.000 1.301 × 10−309 5.869 × 10−28 2.406 × 10−5 1.226 × 10−7 2.393 × 100

SD 0.000 0.000 3.160 × 10−27 5.680 × 10−5 3.977 × 10−7 5.264 × 10−1

Rank (MV) 1 2 3 5 4 6

Step

BV 0.000 2.982 × 10−19 3.813 × 10−3 1.046 × 10−6 3.920 × 10−2 4.111 × 10−1

MV 0.000 2.819 × 10−9 4.323 × 10−1 8.421 × 10−3 4.551 × 10−1 1.340 × 100

SD 0.000 4.534 × 10−9 4.601 × 10−1 1.396 × 10−2 2.892 × 10−1 6.187 × 10−1

Rank (MV) 1 2 4 3 5 6

Dixon-Price

BV 6.667 × 10−1 6.322 × 10−2 2.426 × 10−1 2.263 × 10−1 6.667 × 10−1 2.342 × 100

MV 6.668 × 10−1 1.791 × 10−1 3.626 × 10−1 2.748 × 10−1 9.245 × 10−1 9.981 × 100

SD 2.3 × 10−4 5.924 × 10−2 1.604 × 10−1 4.146 × 10−2 9.194 × 10−2 6.783 × 100

Rank (MV) 4 1 3 2 5 6

Sum of
Different
Powers

BV 0.000 0.000 6.107 × 10−157 3.394 × 10−21 2.748 × 10−40 1.142 × 10−2

MV 0.000 0.000 1.992 × 10−54 2.817 × 10−9 3.252 × 10−18 2.295 × 10−1

SD 0.000 0.000 1.070 × 10−53 1.172 × 10−8 1.746 × 10−17 2.039 × 10−1

Rank (MV) 1 1 2 4 3 5

Griewank

BV 0.000 0.000 0.000 0.000 0.000 3.485 × 10−2

MV 0.000 0.000 0.000 6.655 × 10−11 5.361 × 10−13 1.207 × 10−1

SD 0.000 0.000 0.000 1.719 × 10−10 2.592 × 10−12 4.767 × 10−2

Rank (MV) 1 1 1 3 2 4

3.3.2. Experiment 2 (Comparisons against variants of the BA)

In this experiment, The operational results of the HBNMA using several standard benchmark test
functions with dimension d = 10 for all test functions except those of certain dimensions are
compared with the standard BA and four variants of the BA to examine the ability of the proposed
variant HBNMA in competing efficient different variants. The HBNMA in this comparison competes
with the quantum annealing bat algorithm (QABA) [14], improved quantum annealing bat algorithm
(IQBA) [25], group evolution hybrid bat algorithm (LMBA) [26], bat differential hybrid algorithm
(BADE) [27], and the BA [5]. All algorithms involved in this experiment undergo the same conditions
and common parameter values as stated in [14] and shown in Table 1 for fair comparison. The values
of the other parameters related to a certain algorithm used in this comparison are found in their
corresponding original literature. Following the same conditions that are stated by other established
literature and yielding better results shows the adaptability and the efficiency of the HBNMA under
any circumstances. Tables 5 and 6 show superior mean values (MV) compared to the BA and BADE
in all test functions. In comparing with the LMBA, the HBNMA achieved the best MV in 13 of 15
functions, equal value in 1 function, and the worst value in 1 function. The competition was increased
when comparing the HBNMA against the IQBA and QABA, but the superiority was in favor of the
HBNMA. The HBNMA, with respect to the mean value, achieved the best values in 6 functions, the
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same in 8 functions, and the worst in only one function against the IQBA. In comparing with the
QABA, the HBNMA recorded the best in 4, the same in 9, and the worst in 2. To statistically compare
the mean results of the HBNMA against its counterparts, the Wilcoxon signed-rank test was used and
is illustrated in Table 7. The p-value indicates whether or not there is a significant difference between
the competing algorithms. Table 7 indicates that the HBNMA provided significantly better results
than the IQBA, LMBA, BADE, and BA with p < 0.05 . However, no significant difference was seen
between the HBNMA and IQBA as p > 0.05. In terms of standard deviation (SD), the HBNMA
recorded the best in 4, the same in 8, and the worst in 3 when comparing with the QABA. In
comparing with the IQBA, the HBNMA had the best values in 11 functions, the same in 3, and the
worst in 1. According to the LMBA and BADE, the HBNMA outperformed the SD results of them in
most test functions. When comparing the HBNMA against the BA in SD, the superiority was in favor
of the HBNMA. The similarity in some results in this comparison between the HBNMA and any
other algorithm means that both algorithms achieved the optimum value. The low SD results reflected
the stability of the HBNMA.

Table 6. Rest of Experiment 2.
Function HBNMA QABA IQBA LMBA BADE BA

Ackley

BV 8.882 × 10−16 8.882 × 10−16 8.882 × 10−16 8.882 × 10−16 8.882 × 10−16 1.835 × 100

MV 8.882 × 10−16 8.882 × 10−16 8.882 × 10−16 3.260 × 10−5 2.810 × 10−1 2.727 × 100

SD 0.000 0.000 0.000 9.776 × 10−5 7.249 × 10−1 4.061 × 10−1

Rank (MV) 1 1 1 2 3 4

Alpine

BV 0.000 0.000 5.506 × 10−70 7.231 × 10−14 1.271 × 10−19 2.632 × 10−1

MV 0.000 1.785 × 10−306 6.224 × 10−19 5.990 × 10−5 3.797 × 10−3 9.019 × 10−1

SD 0.000 0.000 2.650 × 10−18 2.306 × 10−4 4.400 × 10−3 4.235 × 10−1

Rank (MV) 1 2 3 4 5 6

Rastrigin

BV 0.000 0.000 0.000 0.000 3.330 × 100 2.700 × 101

MV 0.000 0.000 0.000 1.047 × 10−5 3.051 × 101 5.209 × 101

SD 0.000 0.000 0.000 5.512 × 10−5 1.320 × 101 1.025 × 101

Rank (MV) 1 1 1 2 3 4

Michalewicz

BV −8.299 −7.768 −5.736 −4.441 −5.566 −5.202
MV −6.000 −5.782 −2.529 −3.694 −3.695 −3.575
SD 1.298 × 100 1.101 × 100 7.607 × 10−1 5.159 × 10−1 9.096 × 10−1 6.495 × 10−1

Rank (MV) 1 2 6 4 3 5

Goldstein-
Price

BV 3.000 3.000 3.000 3.000 3.000 3.003
MV 3.000 3.009 22.450 11.605 12.005 5.236
SD 5.888 × 10−5 3.135 × 10−2 2.025 × 101 1.236 × 101 2.124 × 101 6.072 × 100

Rank (MV) 1 2 6 4 5 3

Schubert

BV −186.7309 −186.7309 −186.3490 −186.7309 −186.7309 −186.7272
MV −186.7308 −186.7307 −142.4349 −186.2162 −164.2457 −179.5836
SD 1.2217 × 10−4 5.618 × 10−4 4.594 × 101 9.798 × 10−1 3.054 × 101 1.088 × 101

Rank (MV) 1 2 6 3 5 4

Hartmann
3-D

BV −3.8628 −3.8627 −3.8039 −3.8540 −3.8628 −3.8566
MV −3.7339 −3.8615 −2.5718 −3.4375 −3.5619 −3.4144
SD 7.052 × 10−1 1.097 × 10−3 8.506 × 10−1 3.661 × 10−1 4.712 × 10−1 4.684 × 10−1

Rank (MV) 2 1 6 4 3 5

Six-Hump
Camel

BV −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
MV −1.0316 −1.0316 −0.9460 −1.0316 −1.0068 −1.0260
SD 5.820 × 10−5 1.970 × 10−7 1.001 × 10−1 1.384 × 10−4 9.946 × 10−2 1.215 × 10−2

Rank (MV) 1 1 4 1 3 2
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Table 7. Wilcoxon signed-ranks test of the results of Experiment 2.

Comparison R+ R− Z p-value Better Equal Worse
HBNMA versus QABA 69.5 50.5 −0.105 0.917 4 9 2
HBNMA versus IQBA 92 28 −2.028 0.043 6 8 1
HBNMA versus LMBA 107.5 12.5 −2.605 0.009 13 1 1
HBNMA versus BADE 120 0 −3.296 < 0.001 15 0 0
HBNMA versus BA 120 0 −3.408 < 0.001 15 0 0

3.3.3. Experiment 3 (comparisons against well-known heuristics utilizing IEEE CEC2014)

This experiment aims to show the efficiency of the proposed HBNMA using the 30 functions of
the IEEE CEC2014 benchmark suite against state-of-the-art heuristics which are the genetic algorithm
(GA) [1], particle swarm optimization (PSO) [2], differential evolution (DE) [28], and bat algorithm
(BA) [5]. Each function for all competing algorithms is of dimension d = 10 that runs for 51 times
independently with d∗105 function evaluations for each run as a stopping criterion and a population size
equal to 50 as shown in Table 1. Also, the values of the common parameters between the HBNMA and
BA are stated in Table 1. The crossover and mutation probabilities of the GA are assigned as 0.9 and
0.05, respectively. In PSO, the inertia weight ranges from 0.9 to 0.4 and the coefficients of acceleration
are of value 1.2. The parameters, that are used in DE, are the scale factor which belonging [0.5, 0.9]
and the crossover rate belonging to [0.1, 0.9]. Tables 8 and 9 illustrate the findings of the experiment in
terms of MV and SD. The HBNMA succeeded to obtain the best mean error in 29 of 30 test functions
and the same in 1 function when comparing with the GA and BA. In comparing with the PSO, the
HBNMA obtained the best mean value in 21 of 30 test functions, the same value in 1 functions, and
the worst in 8 functions. Furthermore, the HBNMA achieved the best mean value in 23 of 30 test
functions, the same in 2 functions, and the worst in 5 functions when comparing against DE. The
results showed the superiority of the HBNMA compared with all other algorithms in this experiment.
This superiority is also translated in the p-value in Table 10 which demonstrated a significant difference
between the HBNMA and the indicated algorithms.

The experimental results illustrated the superior behavior of the HBNMA in different test functions,
which mimics real world problems. This is indicated in the following:

(1) In classical unimodal functions, there exists a single global optimum, but there are no local
optima. So, these functions need fair intensification in the algorithm to be solved. The HBNMA
succeeded easily in obtaining the global optimum for these functions because it has a good
intensification ability as indicated in Experiments 1 and 2.

(2) The rotated unimodal functions, specifically functions F1–F3 from the CEC2014 benchmarking
suit, are harder than the classical ones. So this suit of problems is perfect in evaluating the local
searchability of the algorithm. The HBNMA obtained the best mean value in these functions
relative to the state-of-the-art heuristics that are illustrated in Experiment 3 due to its strong local
search.

(3) In classical multimodal functions, there are many local minima but only one global optimal. So,
these functions are good to test the global searchability of any algorithm. The HBNMA behaved
superiorly in these functions due to the strong diversification ability that is enhanced in this work
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as shown in Experiments 1 and 2.
(4) In shifted and rotated multimodal functions, specifically functions F4–F16 from the CEC2014

benchmarking suit, the HBNMA succeeded in obtaining the global optimum in the separable
functions F8 and F10, but failed to obtain the global optimum in the other non-separable functions
as shown in Experiment 3.

(5) In hybrid functions, F17–F22, which more closely approximate real-world benchmarks, the
HBNMA obtained the best mean value in 4 of 6 when comparing against other algorithms.
Furthermore, HBNMA has superior results with all composition functions, F23–F30, when
comparing with the others.

Table 8. Results of Experiment 3.
Function HBNMA GA PSO DE BA

F1
MV 1.50 × 103 1.93 × 107 3.71 × 104 7.68 × 104 1.51 × 108

SD 9.54 × 102 5.20 × 106 1.99 × 104 2.50 × 104 9.11 × 107

F2
MV 2.02 × 103 6.01 × 103 2.10 × 103 2.99 × 106 5.76 × 109

SD 4.04 × 103 5.01 × 103 2.37 × 103 1.50 × 106 4.22 × 1010

F3
MV 4.08 × 10−1 9.53 × 102 2.20 × 102 9.08 × 101 4.01 × 105

SD 6.44 × 10−2 1.56 × 104 2.54 × 103 1.70 × 101 2.98 × 106

F4
MV 2.29 × 101 3.80 × 101 3.40 × 101 1.51 × 101 7.35 × 102

SD 1.61 × 101 1.62 × 101 2.40 × 101 2.66 × 101 7.89 × 102

F5
MV 1.80 × 101 2.00 × 101 2.02 × 101 2.05 × 101 2.00 × 101

SD 5.91 × 100 4.52 × 10−3 7.89 × 10−2 9.30 × 10−2 3.17 × 10−6

F6
MV 2.82 × 100 4.79 × 100 1.32 × 100 3.13 × 100 2.21 × 102

SD 1.27 × 100 1.73 × 100 1.11 × 100 3.21 × 100 1.33 × 100

F7
MV 3.30 × 10−1 5.19 × 10−1 1.20 × 10−1 1.25 × 100 9.15 × 101

SD 1.34 × 10−1 1.80 × 10−1 6.15 × 10−2 1.20 × 100 3.51 × 102

F8
MV 0.00 × 100 1.78 × 100 1.12 × 100 2.30 × 101 6.51 × 101

SD 0.00 × 100 1.30 × 100 1.32 × 100 0.29 × 101 2.12 × 101

F9
MV 1.52 × 101 1.13 × 101 9.02 × 100 3.27 × 101 7.11 × 101

SD 5.75 × 100 9.09 × 100 2.92 × 100 1.09 × 101 2.67 × 101

F10
MV 0.00 × 100 1.08 × 102 9.86 × 101 1.31 × 103 1.20 × 103

SD 0.00 × 100 1.48 × 103 7.31 × 102 2.14 × 103 4.18 × 103

F11
MV 1.94 × 102 6.40 × 102 2.11 × 102 1.41 × 103 1.23 × 103

SD 1.65 × 102 3.13 × 102 1.40 × 102 2.35 × 103 3.40 × 102

F12
MV 8.57 × 10−2 2.70 × 10−1 2.81 × 10−1 2.31 × 100 0.74 × 100

SD 6.42 × 10−3 9.50 × 10−3 2.30 × 10−2 2.60 × 10−2 5.69 × 10−2

F13
MV 3.25 × 10−1 4.95 × 10−1 0.56 × 10−1 2.50 × 10−1 3.34 × 100

SD 1.36 × 10−1 1.33 × 10−1 8.22 × 10−2 1.50 × 10−1 1.30 × 100
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Table 9. Rest of Experiment 3.
Function HBNMA GA PSO DE BA

F14
MV 1.71 × 10−2 2.60 × 10−2 1.40 × 10−2 2.10 × 10−2 3.42 × 100

SD 1.65 × 10−1 1.13 × 10−1 4.34 × 10−2 1.86 × 10−1 1.36 × 101

F15
MV 1.46 × 100 2.60 × 100 9.58 × 10−1 3.74 × 100 1.13 × 104

SD 5.79 × 10−1 1.24 × 100 3.72 × 10−1 1.21 × 100 1.86 × 104

F16
MV 2.32 × 100 2.49 × 100 0.94 × 100 4.36 × 100 5.45 × 100

SD 4.10 × 10−1 3.88 × 10−1 3.98 × 10−1 4.63 × 10−1 1.60 × 10−1

F17
MV 6.05 × 103 3.81 × 106 7.06 × 103 1.03 × 102 1.36 × 106

SD 8.23 × 103 2.05 × 106 3.30 × 103 1.90 × 102 5.01 × 106

F18
MV 7.95 × 102 7.45 × 103 6.06 × 103 1.30 × 103 7.94 × 106

SD 2.79 × 103 9.20 × 103 9.81 × 103 1.57 × 103 1.26 × 105

F19
MV 5.96 × 10−1 1.49 × 101 1.51 × 101 1.41 × 101 5.44 × 101

SD 4.32 × 10−1 8.75 × 101 8.15 × 100 1.10 × 101 4.24 × 101

F20
MV 1.93 × 101 7.52 × 104 1.03 × 104 6.43 × 103 8.58 × 106

SD 1.63 × 100 8.60 × 103 2.71 × 103 5.11 × 102 3.21 × 105

F21
MV 7.93 × 102 1.70 × 106 2.68 × 102 1.30 × 102 3.61 × 105

SD 4.13 × 103 2.81 × 107 2.65 × 102 1.39 × 102 9.68 × 104

F22
MV 8.04 × 10−1 2.24 × 102 2.82 × 102 2.13 × 102 4.53 × 102

SD 8.89 × 10−1 5.17 × 101 1.30 × 102 3.70 × 102 2.24 × 102

F23
MV 2.00 × 102 3.31 × 102 3.29 × 102 3.34 × 102 5.18 × 102

SD 0.00 × 100 1.15 × 10−1 0.00 × 100 6.67 × 102 9.74 × 101

F24
MV 1.33 × 102 1.46 × 102 1.74 × 102 1.33 × 102 2.01 × 102

SD 9.45 × 100 2.03 × 101 5.51 × 101 1.18 × 101 3.03 × 101

F25
MV 1.39 × 102 1.80 × 102 3.01 × 102 1.96 × 102 2.00 × 102

SD 1.07 × 101 2.75 × 101 4.68 × 101 3.92 × 101 2.29 × 101

F26
MV 1.00 × 102 1.00 × 102 1.00 × 102 1.00 × 102 1.00 × 102

SD 1.05 × 10−1 1.21 × 10−1 5.60 × 10−2 2.49 × 10−1 1.92 × 100

F27
MV 4.64 × 101 2.91 × 102 2.37 × 102 2.27 × 102 5.79 × 102

SD 9.68 × 101 1.78 × 102 1.73 × 102 2.62 × 102 1.23 × 102

F28
MV 2.03 × 102 5.63 × 102 5.39 × 102 5.82 × 102 7.89 × 102

SD 2.50 × 101 1.04 × 102 5.87 × 101 1.10 × 102 3.26 × 102

F29
MV 4.64 × 101 4.67 × 105 1.20 × 105 8.54 × 102 7.35 × 104

SD 9.68 × 101 7.57 × 106 6.39 × 106 2.20 × 103 1.97 × 105

F30
MV 2.00 × 102 2.63 × 103 9.55 × 102 6.50 × 102 9.40 × 103

SD 0.00 × 100 1.25 × 103 3.16 × 102 2.23 × 102 3.40 × 103

Table 10. Wilcoxon signed-ranks test of the results of Experiment 3.

Comparison R+ R− Z p-value Better Equal Worse
HBNMA versus GA 435 0 −4.703 < 0.001 29 1 0
HBNMA versus PSO 375 60 −3.406 < 0.001 21 1 8
HBNMA versus DE 346 60 −3.256 0.001 23 2 5
HBNMA versus BA 435 0 −4.703 < 0.001 29 1 0
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4. Time complexity

In this section, the time complexity of the chosen algorithms is discussed using big O notation. In
the standard BA, the time complexity is O(n* MaxIt) [29], where n is the population size and MaxIt is
the maximum number of iterations. The maximum number of iterations is taking as the stopping
criterion in all algorithms in computing time complexity instead of the number of function evaluations
for simplicity. In the proposed HBNMA, the population initialization process has a computational
time of O(n). In the main optimization of the proposed algorithm, the calculation of the centroid of
the simplex that is needed to compute the reflection and expansion steps is of time complexity
O(n*d), where d is the dimension of the problem. In addition, each particle undergoes one of two
updating processes which are constant time operations, O(1). Also, continuous expansions may occur
as long as refining in the best solution found so far occurs. These continuous expansions have a time
complexity of O(k), where k is the maximum number of improved expansions found. The value of the
parameter k in the HBNMA is small because if there is an improved expansion, and the probability of
obtaining another improved expansion sequentially is small. As a consequence, this probability
decreases during further sequential expansions. So, this parameter can be neglected in the time
complexity of the HBNMA despite its importance in the robustness of the algorithm. Therefore, the
overall time complexity of the HBNMA is O(n*d*MaxIt). The time complexity of the DE algorithm,
PSO algorithm, and GA is O(n*d*MaxIt) [30, 31].

Hence, the proposed HBNMA has the same time complexity as in the state-of-the-art metaheuristics
GA, PSO, and DE. In comparing with the BA in low-dimensional problems, the HBNMA has almost
the same time complexity as in the BA. In high-dimensional problems, the HBNMA is more complex
than the BA, but this does not affect the robustness of the HBNMA as it needs a lower number of
iterations than that in the BA to reach the global optimal.

5. Conclusions

In this work, a hybrid bat-Nelder-Mead algorithm (HBNMA) is presented to solve
multidimensional, unconstrained optimization problems. This algorithm is based on introducing two
steps of the NM in the updating formula of the particle’s velocity of the standard BA. The reflection
step is first introduced besides the standard updating formula of the BA. If an improvement in the
fitness value is achieved, sequential expansion steps are then introduced to explore the area deeply,
which accelerates the performance of the algorithm. Otherwise, the classic updating process, as in the
standard BA, is performed. This mechanism enables particles to globally discover the search space
and exploit any progress for deeper research for even better results. Accordingly, a satisfactory
balance is achieved between global and local searches in the proposed algorithm. Finally, several
numerical experiments were established and the simulation results of the proposed HBNMA showed
superiority of the algorithm.

6. Future work

In future research, multi-objective and constrained optimization are going to be addressed as most
real-world continuous problems are of that form. New techniques are going to be innovated to deal
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with the selection of solutions in multiobjective problems rather than the common used approaches.
These new techniques are going to be integrated with the HBNMA and any other single-objective,
continuous optimization algorithm to be able to handle complex multiobjective problems. Furthermore,
greater emphasis can be devoted to create new techniques that can handle constraints in constrained
optimization problems.
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Supplementary

The following table describes the benchmark test functions used in Section 3.3:

Function Dimension Range Optimum Description
Sphere vary [−100, 100] 0 Unimodal, separable
Sumsquares vary [−10, 10] 0 Unimodal, separable
Schwefel 2.20 vary [−100, 100] 0 Unimodal, separable
Schwefel 2.21 vary [−100, 100] 0 Unimodal, separable
Schwefel 2.22 vary [−10, 10] 0 Unimodal, non-separable
Step vary [−100, 100] 0 Unimodal, separable
Dixon-Price vary [−10, 10] 0 Unimodal, non-separable
Sum of Different Powers vary [−1, 1] 0 Unimodal
Griewank vary [−600, 600] 0 Multimodal, non-separable
Ackley vary [−30, 30] 0 Multimodal, non-separable
Alpine vary [−10, 10] 0 Multimodal, separable
Rastrigin vary [−5.12, 5.12] 0 Multimodal
Michalewicz vary [0, π] −9.6602 Multimodal
Goldstein-Price 2 [−2, 2] 3 Multimodal, non-separable
Shubert 2 [−10, 10] −186.7309 Multimodal
Hartmann 3-D 3 [0, 10] −3.8628 Multimodal, non-separable
Six-Hump Camel 2 [−2, 2] −1.0316 Multimodal
Qing vary [−500, 500] 0 Multimodal, separable
Xin-She Yang N.1 vary [−5, 5] 0 Multimodal, separable
Salomon vary [−100, 100] 0 Multimodal, non-separable
Xin-She Yang N.2 vary [−2π, 2π] 0 Multimodal, non-separable
Penalized vary [−50, 50] 0 Multimodal
Zakharov vary [−5, 10] 0 Multimodal, non-separable
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