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Abstract: The artificial neural network (ANN) in conjunction with the incompressible smoothed 

particle hydrodynamics (ISPH) approach, deals with exothermic reaction effects on Cattaneo-Christov 

(Ca-Ch) heat and mass transport of nano-enhanced phase change material (NEPCM) in a curvilinear 

cavity. The ANN model, trained on data obtained from ISPH simulations, accurately predicted the 

mean 𝑁𝑢̅̅ ̅̅   and 𝑆ℎ̅̅ ̅  values. Two cases of boundary conditions included (𝑇ℎ & 𝐶ℎ)  on top/bottom 

walls and (𝑇𝑐 & 𝐶𝑐) on vertical walls and inner ellipse for C1. The boundary walls of a curvilinear 

cavity were kept at (𝑇ℎ & 𝐶ℎ) and the inner ellipse was maintained at (𝑇𝑐 & 𝐶𝑐) for C2. The pertinent 

parameters were scaled as Frank-Kamenetskii number 𝐹𝑘 (0 − 1, ) Ca–Ch heat, mass transfer 

parameters (𝛿𝜃 & 𝛿Φ)(0 − 0.2),  Hartmann number 𝐻𝑎(0 − 60),  buoyancy ratio parameter 

𝑁(−2 − 4) , power law index parameter 𝑛 (1.1 − 1.4) , Rayleigh number 𝑅𝑎 (103 − 105) , 
Soret/Dufour numbers (𝑆𝑟&𝐷𝑢)(0 − 0.5) , and fusion temperature 𝜃𝑓(0.1 − 0.9)   The simulation 

results demonstrated the effectiveness of Ca-Ch heat and mass transport parameters in lowering 

temperature and concentration within a curvilinear cavity at C1 and C2. Increasing 𝛿𝜃 & 𝛿Φ from 0 

to 0.2 resulted in a 44.1% and 48.9% drop in velocity field at C1 and C2, respectively. Boundary 

conditions (C1 and C2) significantly affected mass, heat transfer, heat capacity ratio, and velocity field 

within a curvilinear cavity. An increase in Power law index 𝑛 from 1.1 to 1.4, reduced a velocity field 

by 64.68%  and 64.66%  at C1 and C2, respectively. Increasing 𝑆𝑟  and 𝐷𝑢  helped distribute 

concentration. When 𝑆𝑟 and 𝐷𝑢 were raised from 0 to 0.5, the velocity field increased by 34.17% 

and 29.73%, respectively, at C1 and C2. 



35433 

AIMS Mathematics  Volume 9, Issue 12, 35432–35470. 

Keywords: exothermic reaction; ANN model; ISPH method; Cattaneo-Christov; magnetic field  

Mathematics Subject Classification: 76R10, 76M28, 35Q35, 68T07 

 

Nomenclature 

Acronym Full name Acronym Full name 

𝐵𝑜 Strength of a magnetic field 𝐶 Dimensional concentration 

Cr Heat capacity ratio 𝐷𝑢 Dufour number 

𝐷1 Diffusion coefficient (m²/s) Dm Mass diffusivity (m2/s) 

𝐸 Activation energy parameter 𝑘ₛ Thermal conductivity (W/(m·K)) 

𝐹𝑘 Frank-Kamenetskii number 𝐿𝑒  Lewis number 

𝐿 Length scale (m) 𝑁 Buoyancy ratio parameter 

𝑛 Power-law index g Gravitational acceleration (𝑚/𝑠2) 

𝑁𝑢̅̅ ̅̅  Nusselt number (average) P Pressure (dimensionless) 

𝑀𝑜𝐷 Margin of deviation (%) 𝑀𝐿𝑃 Multilayer perceptron 

𝑚 Total number of particles 𝑚𝑠 Mass of each particle 

𝑀𝑆𝐸 Mean squared error 𝑅 Coefficient of determination 

𝐻𝑎 Hartmann number 𝑆𝑟 Soret number 

𝑆ℎ̅̅ ̅ Sherwood number (average) 𝑅𝑎 Rayleigh number 

𝑃𝑟 Prandtl number 𝑇 Temperature (K) 

t Time (s) (𝑈, 𝑉) Velocities, dimensionless 

(𝑋, 𝑌) 
Cartesian coordinates, 

dimensionless 
(𝑥, 𝑦) 

Cartesian coordinates, 

dimensional 

𝛼𝑓 Thermal diffusivity (m2/s) 𝛽𝑇 
Thermal expansion coefficient 

(𝐾−1) 

𝜀 Non-dimensional porosity 𝛽𝐶 
Solutal expansion coefficient 

(𝐾−1) 

𝛿𝑇 
Cattaneo heat transfer 

parameter (dimensional) 
𝛿𝐶 

Cattaneo mass transfer parameter 

(dimensional) 

𝛿𝜃 
Cattaneo heat transfer 

parameter (dimensionless) 
𝛿Φ 

Cattaneo mass transfer parameter 

(dimensionless) 

Γ𝑏 
Apparent viscosity 

(dimensional) 
Π𝑏 Dimensionless apparent viscosity 

Γ𝑟𝑒𝑓 Reference viscosity 𝜃 Non-dimensional temperature 

𝛾 Magnetic field angle 𝜏 Dimensionless time 

𝜎 Electrical conductivity (𝑆/𝑚) 𝜙 Nanoparticle concentration 

Φ Dimensionless concentration 𝜌 Density (𝑘𝑔/𝑚3) 

1. Introduction 

Contemporary computers can execute intricate numerical and symbolic calculations at an 

astonishingly rapid pace. However, they are far from matching the capabilities of human brains when 

it comes to carrying out perceptual tasks like language comprehension and image identification. 

Computers rely on accurate input data and sequentially execute instructions, but human brains carry 
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out tasks through a distributed and parallel approach. The development of artificial intelligence that is 

modeled after biological neural networks results in the creation of an ANN. The ANNs are 

computational systems that were initially introduced by McCulloch and Pitts [1] and then by 

Metropolis et al. [2]. ANN models are most effective in situations where there is a substantial amount 

of experimental data available but no cohesive theoretical framework exists to establish prediction 

relationships. ANNs gained widespread usage in the 1980s due to substantial advancements in 

computing approaches that relied on self-organizing features and parallel information systems [3]. 

Lagaris et al. [4] employed artificial neural networks to address ordinary differential equations (ODEs) 

and partial differential equations (PDEs) in the context of both boundary value problems and initial 

value problems. Shafiq et al. [5] created an ANN model to forecast the flow of a nanofluid containing 

single-walled carbon nanotubes in the boundary layer. The flow is directed towards three distinct 

nonlinear thin needles with paraboloid, cone, and cylinder shapes. The needles are subjected to 

convective boundary conditions. The thermal conductivity model of the nanofluid considers the impact 

of both particle diameter and solid-fluid interface coating. The base fluid utilized in this model is 

ethylene glycol. Mitusch et al. [6] proposed a technique that integrates neural networks with physical 

principles expressed as PDEs. An ANN model was developed by Rehman et al. [7] to analyze the 

hydrodynamic force exerted on an object by numerous impediments during a flowing liquid stream. 

The ANN model was constructed using the multilayer perceptron (MLP), backpropagation (BP), and 

feed-forward (FF) network models. Sahu et al. [8] stressed the efficiency of the ANN model in 

analyzing velocity profiles in meandering flows. Aly et al. [9] employed the ISPH methodology in 

conjunction with machine learning (ML) to examine the influence of two different domain 

configurations, namely spline star and triangular star domains, on the double diffusion of NEPCM in 

the presence of heat radiation and exothermic chemical reactions. Gholami et al. [10] assessed the 

efficacy of computational fluid dynamics (CFD) and ANN models by comparing them to experimental 

data in the analysis of flow patterns in a steep 90-degree curve. Rackauckas et al. [11] suggest the 

incorporation of neural networks into finite difference schemes to enhance ODEs and PDEs. The 

findings indicate the potential for the advancement of hybrid PDE-NN models but do not exhibit the 

integration of more adaptable PDE discretization techniques like the FEM. Neural networks are highly 

effective methods for assessing the thermophysical properties of nanofluids, hence reducing the 

expenses and time required for conducting tests. Accurate computation of dynamic viscosity is crucial 

in heat transfer and nanofluid flow problems involving nanofluids. Motahar [12] investigated the 

rheological characteristics of a nanofluid phase change material that includes mesoporous silica 

nanoparticles. Ramezanizadeh et al. [13] conducted a review of machine learning methods employed 

in the moeling of a nanofluid viscosity. Ali et al. [14] documented the viscosity measurements of EG-

water nanofluid and TiO2 nanotubes within the temperature range of 25−65℃, mass fraction ranging 

from 0% to 1%, and shear stress ranging from 150 to 500 s-1. The viscosity was predicted using ANN 

and multivariable correlation approaches utilizing experimental data. The results indicate that the ANN 

technique achieved an accuracy of 0.1981 AAD% and 0.999 R2, demonstrating a high level of 

precision compared to the correlation method. A study conducted by Ahmadi et al. [15] utilized the 

ANN model to assess the dynamic viscosity of SiO2/EG-water nanofluid. A total of 160 experimental 

data points were utilized in their investigation. Their findings indicated that the ANN model effectively 

forecasted the dynamic viscosity of the nanofluid, with an MSE of 5.5 and a correlation coefficient of 

0.998. The mesh-free approach is a promising tool for simulating astrophysical applications, free 

surface flows, and multi-phase flows. The SPH technique is a meshless method for dealing with 

these applications [16,17]. Hopp-Hirschler et al. [18] developed an SPH model to simulate thermo-

capillary flows influenced by surface tension gradients, using a continuum surface force method that 
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includes Marangoni effects. The model’s accuracy was validated through convergence studies and 

comparisons with results from Open-FOAM and literature-based finite volume method (FVM) 

simulations. The work by Shadloo et al. [19] provided an in-depth review of the SPH method, 

highlighting its motivations, industrial applications, advantages in handling complex fluid flow 

scenarios, and the challenges that remain for its broader adoption in industrial settings. Cummins and 

Rudman [28] calculated the incompressibility factor using the SPH technique. Heat and mass transfer, 

as well as fluid movement in an enclosure, have attracted much attention due to their importance in 

engineering. Solar collectors, electrical appliances, and heat exchangers are only a few examples of 

applications [20,21]. Lewis et al. [22,23]  explored the elementary numerical characteristics of heat 

transport, as well as fluid flow in porous media. PCMs were utilized to develop a new type of nanofluid 

known as NEPCMs. The natural convection of NEPCMs inside complex domains is explored in [24−30]. 

The review on thermal energy storage with phase change materials, heat transfer analysis, and 

applications is introduced by Zalba et al. [31]. The applications of PCM in thermal energy storage in 

buildings were investigated in references [32,33]. Giro-Paloma et al. [34] examined the progress of 

microencapsulated PCM in thermal energy storage (TES) systems, concentrating on the various 

encapsulation techniques and uses of these materials. Aly et al. [35] investigated how thermal radiation 

and magnetic influences affected the thermosolutal convection of NEPCMs in a wavy porous cavity 

including crescents. In the current work, ANN model with the ISPH technique is combined to 

investigate the effects of exothermic reactions on the Cattaneo-Christov (Ca-Ch) heat and mass 

transport behavior of NEPCM within a curvilinear cavity. This approach is motivated by the need for 

accurate modeling of non-Fourier heat conduction in complex industrial applications where precise 

temperature and concentration control are essential, such as in heat exchangers, advanced cooling 

systems, and thermal energy storage technologies. By focusing on non-Newtonian NEPCM influenced 

by magnetic fields, our findings have significant implications for improving the design and efficiency 

of systems dependent on rapid thermal response and stability. Moreover, the ANN-ISPH integration 

provides a novel predictive advantage in this context, supporting computational efficiency and 

accuracy for complex geometries and variable parameters. While the model presents several 

assumptions, including simplified boundary conditions, specific fluid properties, and the exclusion of 

viscous dissipation and thermal radiation, these factors are considered in interpreting the results and 

assessing their broader applicability to real-world scenarios. 

2. Mathematical analysis 

Figure 1 depicts the primary schematic diagram for the current physical challenge. A curvilinear 

cavity is suspended by non-Newtonian NEPCM, and it contains an inner ellipse. Two cases of 

boundary conditions are conducted with C1, (𝑇ℎ & 𝐶ℎ) on the top/bottom walls, and (𝑇𝑐 & 𝐶𝑐) on 

the side walls. C2 has (𝑇ℎ & 𝐶ℎ) on the boundary walls and (𝑇𝑐 & 𝐶𝑐) on the ellipse. The base fluid 

is a non-Newtonian fluid that is suspended using NEPCM. We do not consider viscous dissipation or 

thermal radiation. 
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Figure 1. A primary schematic diagram. 

The dimensional governing equations in the Lagrangian description are: 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0, (1) 

𝜌𝑏
𝐷𝑢

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥
+ (

∂𝜏𝑥𝑥
𝜕x

+
∂𝜏𝑦𝑥

𝜕𝑦
) − 𝐵𝑜

2 𝛿𝑏(𝑢 𝑠𝑖𝑛
2𝛾 − 𝑣 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾), (2) 

𝜌𝑏
𝐷𝑣

𝐷𝑡
= −

𝜕𝑝

𝜕𝑦
+ (

∂𝜏𝑥𝑦

𝜕x
+
∂𝜏𝑦𝑦

𝜕𝑦
) + (𝜌𝛽𝑇)𝑏𝑔(𝑇 − 𝑇𝑐) + (𝜌𝛽𝑇)𝑏 g(𝐶 − 𝐶𝑐)

− 𝐵𝑜
2 𝛿𝑏(𝑣 𝑐𝑜𝑠

2𝛾 − 𝑢 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾), 

(3) 

(𝜌𝐶)𝑏
𝐷𝑇

𝐷𝑡
= 𝑘𝑏 (

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
) + 𝐷1 (

𝜕2𝐶

𝜕𝑥2
+
𝜕2𝐶

𝜕𝑦2
) +

1

(𝜌𝐶𝑃)nf
 
𝑄𝑘𝑜𝑎

𝑒
𝐸
𝑅𝑇

− 𝛿𝑇 (𝑢
𝜕𝑇

𝜕𝑥

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦

𝜕𝑣

𝜕𝑦
+ 𝑢2

𝜕2𝑇

𝜕𝑥2
+ 𝑣2

𝜕2𝑇

𝜕𝑦2
+ 2𝑢𝑣

𝜕2𝑇

𝜕𝑥𝜕𝑦
+ 𝑢

𝜕𝑇

𝜕𝑦

𝜕𝑣

𝜕𝑥

+ 𝑣
𝜕𝑇

𝜕𝑥

𝜕𝑢

𝜕𝑦
), 

(4) 

𝐷𝐶

𝐷𝑡
= 𝛻 ∙ (𝐷2 𝛻𝑇) + 𝛻 ∙ (𝐷𝑚 𝛻𝐶)

− 𝛿𝐶 (𝑢
𝜕𝐶

𝜕𝑥

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦

𝜕𝑣

𝜕𝑦
+ 𝑢2

𝜕2𝐶

𝜕𝑥2
+ 𝑣2

𝜕2𝐶

𝜕𝑦2
+ 2𝑢𝑣

𝜕2𝐶

𝜕𝑥𝜕𝑦
+ 𝑢

𝜕𝐶

𝜕𝑦

𝜕𝑣

𝜕𝑥

+ 𝑣
𝜕𝐶

𝜕𝑥

𝜕𝑢

𝜕𝑦
). 

(5) 

Here, 𝜏  indicates shear stress tensor. The power-law scheme can be applied to define 𝜏  as 

follows [36,37]: 

𝜏𝑖𝑗 = Γ𝑏 (
∂𝑢𝑖
𝜕x𝑗

+
∂𝑢𝑗

𝜕𝑥𝑖
), (6) 

Γ𝑏 = 𝜇𝑏 (2 (
𝜕𝑢

𝜕𝑥
)
2

+ 2(
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
2

)

𝑛−1
2

, (7) 

where Γ𝑏 ,   , and 𝜇𝑏  illustrate apparent viscosity, power-law index, and consistency index, 

respectively. 
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The mixture’s density is: 

𝜌𝑏 = 𝜑𝜌𝑝 + 𝜌𝑓 − 𝜑𝜌𝑓 , (8) 

𝜌𝑝 is provided by: 

𝜌𝑝 =
(1 + 𝜒)𝜌𝑠 𝜌𝑐
𝜌𝑠 + 𝜒 𝜌𝑐

. (9) 

The dynamic viscosity, thermal conductivity, and thermal expansion are as follows: 

𝜇𝑏 = 𝜇𝑓(1 + 𝑁1𝜑), 𝑘𝑏 = 𝑘𝑓(1 + 𝑁2𝜑), 𝛽𝑏 = 𝛽𝑓 − 𝜑𝛽𝑓 + 𝜑𝛽𝑝. (10) 

The specific heat capacity ratio is: 

(𝐶𝑝)𝑏 =
𝜑𝜌𝑝(𝐶𝑝)𝑝+𝜌𝑓(𝐶𝑝)𝑓−𝜑𝜌𝑓(𝐶𝑝)𝑓

𝜌𝑏
. (11) 

The heat capacity ratio of NEPCM: 

(𝐶𝑝)𝑝 =
((𝐶𝑝)𝑐,𝑙+𝜒(𝐶𝑝)𝑠)𝜌𝑠 𝜌𝑐

(𝜌𝑠+𝜒 𝜌𝑐)𝜌𝑝
. (12) 

The rectangular, triangular, or sine profiles are: 

(𝐶𝑝)𝑐 = (𝐶𝑝)𝑐,𝑙 +
ℎ𝑠𝑓

𝑇𝑀𝑟
 (13) 

(𝐶𝑝)𝑐 = (𝐶𝑝)𝑐,𝑙 + 2(
ℎ𝑠𝑓

𝑇𝑀𝑟
2 −

(𝐶𝑝)𝑐,𝑙

𝑇𝑀𝑟
) (𝑇 − 𝑇1) (14) 

(𝐶𝑝)𝑐 = (𝐶𝑝)𝑐,𝑙 + [
𝜋

2
(
ℎ𝑠𝑓

𝑇𝑀𝑟
− (𝐶𝑝)𝑐,𝑙) sin(𝜋

𝑇 − 𝑇𝑓 +
𝑇𝑀𝑟
2

𝑇𝑀𝑟
)]𝜔 (15) 

where 

𝜔 =

{
 
 

 
 0                                      𝑇 < 𝑇𝑓 −

𝑇𝑀𝑟
2

1     (𝑇𝑓 −
𝑇𝑀𝑟
2
) < 𝑇 < (𝑇𝑓 +

𝑇𝑀𝑟
2
)

0                                      𝑇 > 𝑇𝑓 +
𝑇𝑀𝑟
2

. (16) 

The sine profile was employed in this investigation. The dimensionless amounts are: 

𝜏 =
𝑡𝛼𝑓 
𝐿2

, 𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
, 𝑈 =

𝑢𝐿

𝛼𝑓 
, 𝑉 =

𝑣𝐿

𝛼𝑓 
, Φ =

𝐶 − 𝐶𝑐
𝐶ℎ − 𝐶𝑐

, 𝑃 =
𝑝𝐿2

𝜌𝑓𝛼𝑓
2 , 𝜃 =

𝑇 − 𝑇𝑐
𝑇ℎ − 𝑇𝑐

. (17) 

After incorporating dimensionless quantities (Eq (17)) to Eqs (1)−(5), the dimensionless equations that 

regulate a physical issue according to the Lagrangian description are: 
∂𝑈

𝜕𝑋
= −

∂𝑉

𝜕𝑌
, 

(18) 

𝐷𝑈

𝐷𝜏
+
𝜎𝑏
𝜎𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟 𝐻𝑎2(𝑈 𝑠𝑖𝑛2𝛾 − 𝑉 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾)

= −
𝜌𝑓

𝜌𝑏

𝜕𝑃

𝜕𝑋
+
𝜇𝑏
𝜇𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟 (

𝜕

𝜕𝑋
(2Π𝑏

𝜕𝑈

𝜕𝑋
) +

𝜕

𝜕𝑌
(Π𝑏 (

𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
))), 

(19) 
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𝐷𝑉

𝐷𝜏
+
𝜎𝑏
𝜎𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟 𝐻𝑎2(𝑉 𝑐𝑜𝑠2𝛾 − 𝑈 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾)

= −
𝜌𝑓

𝜌𝑏

𝜕𝑃

𝜕𝑌
+
𝜇𝑏
𝜇𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟(

𝜕

𝜕𝑌
(2Π𝑏

𝜕𝑉

𝜕𝑌
) +

𝜕

𝜕𝑋
(Π𝑏 (

𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
)))

+
(𝜌𝛽)𝑏
(𝜌𝛽)𝑓

𝜌𝑓

𝜌𝑏
𝑅𝑎 𝑃𝑟(𝜃 + 𝑁Φ), 

(20) 

𝐶𝑟
𝐷𝜃

𝐷𝜏
=
𝑘𝑏
𝑘𝑓
(
𝜕2𝜃

𝜕𝑋2
+
𝜕2𝜃

𝜕𝑌2
) + 𝐷𝑢 (

𝜕2Φ

𝜕𝑋2
+
𝜕2Φ

𝜕𝑌2
) + 𝐹𝑘 𝑒𝜃

− 𝛿𝜃 (𝑈
𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑌
+ 𝑈2

𝜕2𝜃

𝜕𝑋2
+ 𝑉2

𝜕2𝜃

𝜕𝑌2
+ 2𝑈𝑉

𝜕2𝜃

𝜕𝑋𝜕𝑌
+ 𝑈

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑋

+ 𝑉
𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑌
), 

(21) 

𝐷Φ

𝐷𝜏
=
1

𝐿𝑒
(
𝜕2Φ

𝜕𝑋2
+
𝜕2Φ

𝜕𝑌2
) +  𝑆𝑟 (

𝜕2𝜃

𝜕𝑋2
+
𝜕2𝜃

𝜕𝑌2
)

− 𝛿Φ (𝑈
𝜕Φ

𝜕𝑋

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕Φ

𝜕𝑌

𝜕𝑉

𝜕𝑌
+ 𝑈2

𝜕2Φ

𝜕𝑋2
+ 𝑉2

𝜕2Φ

𝜕𝑌2
+ 2𝑈𝑉

𝜕2Φ

𝜕𝑋𝜕𝑌
+ 𝑈

𝜕Φ

𝜕𝑌

𝜕𝑉

𝜕𝑋

+ 𝑉
𝜕Φ

𝜕𝑋

𝜕𝑈

𝜕𝑌
). 

(22) 

where, 

Π𝑏 = (2 (
𝜕𝑈

𝜕𝑋
)
2

+ 2(
𝜕𝑉

𝜕𝑌
)
2

+ (
𝜕𝑈

𝜕𝑌
+
𝜕𝑉

𝜕𝑋
)
2

)

𝑛−1
2

. (23) 

The dimensionless boundary conditions: 

C1 
Top/bottom walls: 𝑈 = 0 = 𝑉, 𝜃 = 1 = Φ, 

(24) 
Inner ellipse and vertical walls: 𝑈 = 0 = 𝑉, 𝜃 = 0 = Φ, 

C2 
Top/bottom and vertical walls: 𝑈 = 0 = 𝑉, 𝜃 = 1 = Φ, 

Inner ellipse: 𝑈 = 0 = 𝑉, 𝜃 = 0 = Φ. 

The heat capacity ratio: 

𝐶𝑟 = 𝜑(𝜆 − 1) +
𝜑

𝛿𝑆𝑡𝑒
[
𝜋

2
Γ sin (

𝜋

𝛿
(𝜃 − 𝜃𝑓 +

𝛿

2
)] + 1,  (25) 

with 

Γ =

{
 
 

 
 0  𝜃 < 𝜃𝑓 −

𝛿

2

1 (𝜃𝑓 −
𝛿

2
) < 𝜃 < (𝜃𝑓 +

𝛿

2
)

0 𝜃 > 𝜃𝑓 +
𝛿

2

,        (26) 

where, 𝑆𝑡𝑒 =
(𝜌𝐶𝑝)𝑓

Δ𝑇(𝜌𝑠+𝜒 𝜌𝑐)

(1+𝜒)ℎ𝑠𝑓𝜌𝑠 𝜌𝑐
, 𝜆 =

((𝐶𝑝)𝑐,𝑙+𝜒(𝐶𝑝)𝑠)𝜌𝑠 𝜌𝑐

(𝜌𝑠+𝜒 𝜌𝑐)(𝜌𝐶𝑝)𝑓

, 𝜃𝑓 =
𝑇𝑓−𝑇𝑐

Δ𝑇
, 𝛿 =

𝑇𝑀𝑟

Δ𝑇
. 

The Sherwood and Nusselt average numbers are: 

𝑆ℎ̅̅ ̅  =  
−1

𝐿ℎ
∫

𝜕Φ

𝜕𝒏

𝐿ℎ

0

 𝑑𝜁, (27) 

𝑁𝑢̅̅ ̅̅  =  
−1

𝐿ℎ
∫

𝑘𝑚,𝑏
𝑘𝑓

𝜕𝜃

𝜕𝒏

𝐿ℎ

0

 𝑑𝜁, (28) 
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3. Numerical method 

3 1  The SPH formulatio  

The core idea behind SPH representation for any function is: 

𝑓(𝑿𝑖) =∑
𝑚𝑠𝑗

𝜌𝑗
𝑓(𝑿𝑗)𝑊(𝒓𝑖𝑗, ℎ)

𝑚

𝑗=1

, (29) 

𝑊(𝑞, ℎ) =
7

478 𝜋 ℎ2

{
 

 
(3 − 𝑞)5 − 6(2 − 𝑞)5 + 15(1 − 𝑞)5,   0 ≤ 𝑞 < 1  

                      (3 − 𝑞)5 − 6(2 − 𝑞)5,         1 ≤ 𝑞 < 2

                              (3 − 𝑞)5,                         2 ≤ 𝑞 < 3  
                                    0,                                          𝑞 ≥ 3

. (30) 

Here,  𝑊 is a kernel function.  

The modified first derivative in the SPH method, as referenced in [38], is: 

∇̃𝑊𝑖𝑗 = 𝑳(𝒓𝑖𝑗)∇𝑊𝑖𝑗,         (31) 

where 

𝑳(𝒓𝑖𝑗) = (
∑

𝑚𝑠𝑗

𝜌𝑗
(𝑋𝑗 − 𝑋𝑖)

𝜕𝑊𝑖𝑗

𝜕𝑋𝑖

𝑚
𝑗=1 ∑

𝑚𝑠𝑗

𝜌𝑗
(𝑋𝑗 − 𝑋𝑖)

𝜕𝑊𝑖𝑗

𝜕𝑌𝑖

𝑚
𝑗=1

∑
𝑚𝑠𝑗

𝜌𝑗
(𝑌𝑗 − 𝑌𝑖)

𝜕𝑊𝑖𝑗

𝜕𝑋𝑖

𝑚
𝑗=1 ∑

𝑚𝑠𝑗

𝜌𝑗
(𝑌𝑗 − 𝑌𝑖)

𝜕𝑊𝑖𝑗

𝜕𝑌𝑖

𝑚
𝑗=1

)

−1

 .   (32) 

The expressions for the velocity divergence, pressure gradient, and the second derivative 

approximation are outlined below: 

∇ ∙ 𝐔(𝑿𝑖) = ∑
𝑚𝑠𝑗

𝜌𝑗
(𝐔(𝑿𝑗) − 𝐔(𝑿𝑖)) ∙ ∇̃𝑊𝑖𝑗

𝑚
𝑗=1 ,      (33) 

∇𝑃(𝑿𝑖) = 𝜌𝑖 ∑ 𝑚𝑠𝑗 (
𝑃𝑖

𝜌𝑖
2 +

𝑃𝑗

𝜌𝑗
2)𝛻𝑊𝑖𝑗

𝑚
𝑗=1 ,        (34) 

𝛻2𝑓(𝑿𝑖) = ∑ 𝑚𝑠𝑗 (
𝜌𝑖+𝜌𝑗 

𝜌𝑖𝜌𝑗

(𝒓𝑖−𝒓𝑗)∙𝛻𝑖𝑊𝑖𝑗

𝑟𝑖𝑗
2+0.0001 ℎ2

) (𝑓(𝑿𝑗) − 𝑓(𝑿𝑖))
𝑚
𝑗=1 .     (35) 

In SPH, dummy wall particles (as shown in Figure 2) are used to enforce boundary conditions by 

preventing fluid penetration and ensuring correct interaction with the boundary. They replicate solid 

surfaces, aiding in stable pressure distribution and accurate momentum transfer. 
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Figure 2. Sketch for dummy wall boundary particles. 

3 2  The ISPH method 

The solving steps of the present ISPH scheme are: 

Predicted velocities: 

𝑈∗  =  𝑈𝑚 + 𝛥𝜏 (−
𝜎𝑏
𝜎𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟 𝐻𝑎2(𝑈 𝑠𝑖𝑛2𝛾 − 𝑉 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾)𝑚

+
𝜇𝑏
𝜇𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟 (

𝜕

𝜕𝑋
(2Π𝑏

𝜕𝑈

𝜕𝑋
) +

𝜕

𝜕𝑌
(Π𝑏 (

𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
)))

𝑚

), 

(36) 

𝑉∗  =  𝑉𝑚 + 𝛥𝜏 (−
𝜎𝑏
𝜎𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟 𝐻𝑎2(𝑉 𝑐𝑜𝑠2𝛾 − 𝑈 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾)𝑚

+
𝜇𝑏
𝜇𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟 (

𝜕

𝜕𝑌
(2Π𝑏

𝜕𝑉

𝜕𝑌
) +

𝜕

𝜕𝑋
(Π𝑏 (

𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
)))

𝑚

+
(𝜌𝛽)𝑏
(𝜌𝛽)𝑓

𝜌𝑓

𝜌𝑏
𝑅𝑎 𝑃𝑟(𝜃 + 𝑁Φ)𝑚). 

(37) 

Solving the pressure Poisson equation:  

𝛻2𝑃𝑚+1  =  
1

 𝛥𝜏

𝜌𝑏

𝜌𝑓
(
𝜕𝑈∗

𝜕𝑋
+
𝜕𝑉∗

𝜕𝑌
) + Υ

(𝜌f−𝜌
𝑛𝑢𝑚)

𝜌f 𝛥𝜏
2

. (38) 

Υ represents a relaxation coefficient. 

Velocity corrections:  

 

𝑈𝑚+1  =  𝑈∗ − 𝛥𝜏 
𝜌𝑓

𝜌𝑏
(
𝜕𝑃

𝜕𝑋
)
𝑚+1

, (39) 

Dummy

Fluid
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𝑉𝑚+1  =  𝑉∗ − 𝛥𝜏 
𝜌𝑓

𝜌𝑏
(
𝜕𝑃

𝜕𝑌
)
𝑚+1

. (40) 

Thermal and concentration are updated as:  

𝜃𝑚+1  =  𝜃𝑚 +
𝛥𝜏

𝐶𝑟
(
𝑘𝑏
𝑘𝑓
(
𝜕2𝜃

𝜕𝑋2
+
𝜕2𝜃

𝜕𝑌2
)

𝑚

+𝐷𝑢 (
𝜕2Φ

𝜕𝑋2
+
𝜕2Φ

𝜕𝑌2
)

𝑚

+ 𝐹𝑘 (𝑒𝜃)
𝑚

− 𝛿𝜃 (𝑈
𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑌
+ 𝑈2

𝜕2𝜃

𝜕𝑋2
+ 𝑉2

𝜕2𝜃

𝜕𝑌2
+ 2𝑈𝑉

𝜕2𝜃

𝜕𝑋𝜕𝑌
+ 𝑈

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑋

+ 𝑉
𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑌
)

𝑚

), 

(41) 

Φ𝑚+1  = Φ𝑚 +  𝛥𝜏 (
1

𝐿𝑒
(
𝜕2Φ

𝜕𝑋2
+
𝜕2Φ

𝜕𝑌2
)

𝑚

+  𝑆𝑟 (
𝜕2𝜃

𝜕𝑋2
+
𝜕2𝜃

𝜕𝑌2
)

𝑚

− 𝛿Φ (𝑈
𝜕Φ

𝜕𝑋

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕Φ

𝜕𝑌

𝜕𝑉

𝜕𝑌
+ 𝑈2

𝜕2Φ

𝜕𝑋2
+ 𝑉2

𝜕2Φ

𝜕𝑌2
+ 2𝑈𝑉

𝜕2Φ

𝜕𝑋𝜕𝑌
+ 𝑈

𝜕Φ

𝜕𝑌

𝜕𝑉

𝜕𝑋

+ 𝑉
𝜕Φ

𝜕𝑋

𝜕𝑈

𝜕𝑌
)

𝑚

). 

(42) 

The updated positions are: 

𝑋𝑚+1  =  𝑋𝑚 + 𝛥𝜏  𝑈𝑚+1, (43) 

𝑌𝑚+1  =  𝑌𝑚 + 𝛥𝜏 𝑉𝑚+1. (44) 

The shifting strategy is: 

ℱ𝑖′  =  −(∇ℱ)𝑖 ∙ (𝒟 ∇𝐶
′
𝑖) + ℱ𝑖 + 𝒪(𝛿𝒓𝑖𝑖′

2 ). (45) 

4. Validation tests 

In this section, a mesh independence test is conducted as a preliminary step to ensure the 

numerical accuracy and stability of the ISPH method, followed by several numerical and experimental 

tests to demonstrate the efficiency and reliability of the present scheme. Table 1 demonstrates the mesh 

independence test results for various particle sizes, 𝑑0, ranging from 0.02 to 0.0025. The test evaluates 

the average Nusselt number (𝑁𝑢̅̅ ̅̅ ) and Sherwood number (𝑆ℎ̅̅ ̅) for both cases. As the particle size 

decreases, the results stabilize, indicating mesh independence. The particle size 𝑑0 = 0.01 is selected as 

the suitable choice, balancing accuracy and computational cost effectively. 

Table 1. Mesh independence test results for two cases of boundary conditions (C1 and C2). 

Particle size (𝒅𝒐) 
𝑪𝟏 𝑪𝟐 

Suitable Choice 
𝑵𝒖̅̅ ̅̅  𝑺𝒉̅̅̅̅  𝑵𝒖̅̅ ̅̅  𝑺𝒉̅̅̅̅  

0.02 1.54012 1.14015 1.05011 1.47022 No 

0.015 1.56489 1.14508 1.07023 1.47514 No 

0.01 1.57491 1.14902 1.08067 1.47813 Yes 

0.005 1.57502 1.14915 1.081 1.47845 No 

0.0025 1.57499 1.14925 1.08105 1.4786 No 
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For validation, three distinct numerical and experimental comparisons are presented to evaluate 

the performance of the ISPH method. These comparisons include finite element method (FEM) results, 

prior SPH models, and experimental data, ensuring a robust assessment of the method’s accuracy and 

reliability. The current study incorporates refinement in particle resolution, specifically at 𝑑0 = 0.015 

and 𝑑0 = 0.01, to address discrepancies and improve alignment with FEM results. Such refinements 

demonstrate the ISPH method’s ability to replicate established numerical outcomes and experimental 

observations effectively, emphasizing its robustness across a wide range of thermal and fluid dynamic 

conditions. Figure 3 compares the average Nusselt number (𝑁𝑢̅̅ ̅̅ ) obtained using the ISPH and FEM 

methods across varying Rayleigh numbers. The solid black line represents FEM results, while the blue 

and red markers indicate ISPH outcomes at 𝑑0 = 0.015 and 𝑑0 = 0.01, respectively. Both methods 

show an increase in 𝑁𝑢̅̅ ̅̅  with higher Rayleigh numbers, reflecting enhanced convective heat transfer. 

The close agreement between ISPH and FEM results validates the accuracy of the ISPH method for 

natural convection simulations. Minor deviations may be attributed to differences in numerical 

approaches, particle discretization, and resolution effects. Figure 4 illustrates the temperature profiles 

(𝜃) along the 𝑋-axis as obtained using FEM, ISPH, and SPH methods. The refined ISPH profiles align 

closely with FEM benchmarks and prior SPH results from Hopp-Hirschler et al. [18], validating the 

accuracy of ISPH in capturing detailed temperature fields. This comparison highlights the suitability 

of ISPH for scenarios requiring precise thermal analysis, with improvements due to refined particle 

resolution. Figure 5 illustrates a comparative analysis of isotherm patterns generated using the ISPH 

method alongside numerical and experimental results from Paroncini and Corvaro [39]. The top row 

corresponds to a lower Rayleigh number 𝑅𝑎 = 1.02 × 105 with a heater height 𝜁 = 0.25 showing 

how thermal gradients distribute under moderate convective conditions. The ISPH method replicates 

the isotherm structures seen in both numerical and experimental results, indicating consistency in 

capturing temperature fields. The bottom row presents results at a higher Rayleigh number 𝑅𝑎 =

2.25 × 105 and 𝜁 = 0.5 where stronger convection leads to more pronounced and complex isotherm 

patterns. The close agreement among all three approaches underscores the reliability of the ISPH 

method in simulating convective heat transfer, aligning well with established numerical data and 

physical experiments. 

 
Figure 3. Comparison of the average Nusselt number (𝑁𝑢̅̅ ̅̅ ) at different Rayleigh numbers 

obtained using the present ISPH method at two particle resolutions (𝑑0 = 0.015 and 

𝑑0 = 0.01) and FEM. 
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Figure 4. Comparison of temperature profiles (𝜃) along the 𝑋 −axis between FEM 

results, the present ISPH method at two particle resolutions (𝑑0 = 0.015 and 𝑑0 = 0.01), 

and SPH results from Hopp-Hirschler et al. [18]. 

ISPH method 
Numerical results of Paroncini 

and Corvaro  [39] 

Experimental results of 

Paroncini and Corvaro  [39] 

   
(a) 𝑅𝑎 = 1.02 × 105and 𝜁 = 0.25 

   
(b) 𝑅𝑎 = 2.25 × 105 and 𝜁 = 0.5 

Figure 5. Comparison of isotherm lines between ISPH method, 

numerical/experimental results from Paroncini and Corvaro [39].  



35444 

AIMS Mathematics  Volume 9, Issue 12, 35432–35470. 

5. ANN modeling 

The primary goal of employing the ANN model is to increase the accuracy of forecasting the 

thermosolutal convection of non-Newtonian NEPCM within a curvilinear cavity. The proposed ANN 

model is a great tool for dealing with the system’s complexity, giving a robust and efficient method of 

forecasting the values of 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅. In this study, the ANN model supplements the ISPH simulation 

by providing a more computationally efficient solution. This decrease in processing costs is especially 

useful for simulations with complicated geometries and huge dataset sizes. The ANN model is a form 

of machine learning model founded on connectionism’s neuronal architecture principles that were 

discovered in animal brains' biological neural networks [40,41]. ANN is taught by experience rather 

than programming. ANN helps with data-related problems by constructing complicated nonlinear 

connections between the response variable and its predictors. The ANN model is utilized to predict the 

values of 𝑁𝑢̅̅ ̅̅   and 𝑆ℎ̅̅ ̅ . The Levenberg-Marquardt algorithm (LMA) is a well-known trust region 

method for determining the minimum of a function across a range of parameters. A quadratic function 

defines a target function’s trustworthy zone internally. The ANN model was built using the LMA and 

multilayer perceptron (MLP) architectures. MLP networks are commonly used in ANN models 

because of their layered structure, which significantly boosts their learning capacity [42]. Figure 6 

portrays the network design and essential structure of the proposed MLP network architecture. The 

MLP network model’s input layer defined the Soret and Dufour numbers (𝑆𝑟 & 𝐷𝑢)  and 

dimensionless time τ, while the output layer evaluated 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅.  

The MLP network model’s hidden layer has fourteen neurons and consumes 4188 data points. 

Here, 15%  is designated for testing, 15%  for validation, and 70%  for model training. The 

following are the transfer functions for the MLP network’s output and hidden layers, mean squared 

error (𝑀𝑆𝐸), coefficient of determination (𝑅), and margin of deviation (𝑀𝑜𝐷): 

𝑓(𝑥) = 𝑡𝑎𝑛𝑠𝑖𝑔(𝑥) = −1 +
2

𝑒(−2𝑥) + 1
, (46) 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥)  =  𝑥 (47) 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑋𝑡𝑎𝑟𝑔 (𝑖) − 𝑋𝑝𝑟𝑒𝑑(𝑖))

2

𝑁

𝑖=1

, (48) 

𝑅 = √1 −
∑ (𝑋𝑡𝑎𝑟𝑔(𝑖) − 𝑋𝑝𝑟𝑒𝑑(𝑖))

2𝑁
𝑖=1

∑ (𝑋𝑡𝑎𝑟𝑔(𝑖))
2𝑁

𝑖=1

, (49) 

𝑀𝑜𝐷 = [
𝑋𝑡𝑎𝑟𝑔 − 𝑋𝑝𝑟𝑒𝑑

𝑋𝑡𝑎𝑟𝑔
]. (50) 

Figures 7–9 show the 𝑀𝑆𝐸 , error histogram, and regression curves for 𝑀𝐿𝑃  model training 

performance. Figure 7 depicts how 𝑀𝑆𝐸 values fell with each epoch following the start of the training 

period. When each of the three data sets provided the best validation value, the 𝑀𝐿𝑃 model’s training 

phase was completed. Figure 8 depicts the error histogram for the 𝑀𝐿𝑃 model during training, which 

indicates that the error values are primarily grouped around the zero-error line. The numerical values of the 

errors were small. Figure 9 shows the regression curve for the MLP model, indicating that 𝑅 = 1  is 

utilized for training, validation, and testing. Figure 10 illustrates the MLP model’s gradient state. The 

graphical results show that the proposed MLP model converges at epoch 7, with a gradient value of 

4.574𝑒-06 and Mu value of 1𝑒-08.  



35445 

AIMS Mathematics  Volume 9, Issue 12, 35432–35470. 

Principal component analysis (PCA) transforms the input data (𝑋) into new axes defined by the 

eigenvectors (𝑣𝑖) of the covariance matrix. The transformation is: 

(51) 𝑃𝐶𝑖 = 𝑋 ⋅ 𝑣𝑖 for 𝑖 = 1,2, … , 𝑘, 

where 𝑃𝐶𝑖  is the 𝑖 -th principal component, and 𝑣𝑖  is its corresponding eigenvector. Figure 11 

displays the 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ values obtained using the ANN model and the target values. The top row 

presents the original plots with data points indexed sequentially, highlighting the accurate match 

between the ANN predictions and the actual values for both 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅. The bottom row provides 

PCA-based plots, where the 𝑋 −axis reflects the primary component of the input data, derived using 

Principal Component Analysis (PCA). These plots offer a more meaningful representation of the 

variance in the input parameters, emphasizing the ANN model’s ability to predict 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ values 

with precision. The perfect alignment of the actual and predicted values in both representations 

confirms the model’s accuracy. 

 

Figure 6. The network design and essential structure of the proposed MLP network architecture. 
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Figure 7. Training, validation, and test mean squared error (MSE) over 8 epochs, 

showing the best validation performance achieved at epoch 8. 

 

 

Figure 8. Error histogram with 20 bins showing the distribution of errors for training, 

validation, and test data. 
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Figure 9. Regression plots showing the relationship between targets and outputs for 

training, validation, test, and combined datasets with correlation coefficients (𝑅) 

close to 1, indicating high predictive accuracy . 

 

Figure 10. Training progress plots showing gradient reduction, mu updates, and 

validation checks across 8 epochs. 
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Figure 11. ANN predictions versus actual values for the average Nusselt 𝑁𝑢̅̅ ̅̅  and 

Sherwood 𝑆ℎ̅̅ ̅ numbers across data points. 

6. Results and discussion 

In this section, we provide the ISPH numerical simulations for pertinent parameters like Frank-

Kamenetskii number 𝐹𝑘 = 0 − 1,  Cattaneo-Christov (Ca-Ch) heat, mass transfer parameters 𝛿𝜃 =

𝛿Φ = 0 − 0.2, Hartmann number 𝐻𝑎 = 0 − 60, buoyancy ratio parameter 𝑁 = −2 − 4, power law 

index parameter 𝑛 = 1.1 − 1.4, Rayleigh number 𝑅𝑎 = 103 − 105, Soret – Dufour numbers 𝑆𝑟 =
𝐷𝑢 = 0 − 0.5,  and fusion temperature 𝜃𝑓 = 0.1 − 0.9  Here, C1 symbolizes high temperature and 

concentration at the top and bottom of the curved lines, and low temperature and concentration in the 

vertical walls and inner ellipse. C2 depicts high temperature and concentration on the boundary walls, 

while low temperature and concentration are depicted on an inner ellipse. Figure 12 indicates the 

impacts of Frank-Kamenetskii number 𝐹𝑘 on isotherms 𝜃, heat capacity ratio 𝐶𝑟, isoconcentration 

Φ, and velocity field V. The isotherms are strengthened across a curvilinear cavity under an increment 

in 𝐹𝑘 , demonstrating enhanced thermal gradients due to intensified heat release from exothermic 

reactions. This behavior underscores the significance of 𝐹𝑘  as a parameter in controlling heat 

generation within reactive systems, influencing the temperature distribution across the medium. 

Consequently, the 𝐶𝑟  contour adjusts in response to variations in 𝐹𝑘 , reflecting changes in the 

balance between heat storage and transfer. The isoconcentration Φ shows a minor response to 𝐹𝑘 

variations, indicating that the chemical concentration profile remains relatively stable despite increased 

thermal effects. The velocity field experiences fluctuations at 𝐶1, while at 𝐶2, an increase of 2.31% 

is observed, highlighting the role of 𝐹𝑘 in enhancing convective flow and influencing the overall 

fluid movement within the cavity. These findings illustrate the critical impact of 𝐹𝑘  on thermal 

management and flow behavior in systems involving exothermic reactions. Figure 13 illustrates the 

impacts of the Cattaneo heat (𝛿𝜃) and mass ( 𝛿Φ) transmission parameters on the isotherms (𝜃), 
heat capacity ratio (𝐶𝑟) , concentration (Φ) , and velocity field (V ). An increment in 𝛿𝜃  and 𝛿Φ 

results in a noticeable decrease in the strength of isotherms at both C1 and C2. This reduction reflects 

the influence of non-Fourier heat and mass transfer effects, which slow the propagation of thermal and 
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concentration waves, leading to less steep temperature gradients. The decreased strength of 𝜃 around 

the inner ellipse highlights areas of lower temperature and concentration, impacting thermal and solutal 

stability within the cavity. As a response to the increased 𝛿𝜃 and 𝛿Φ, the 𝐶𝑟 contour shows upward 

and downward shifts, indicating that the thermal storage properties adapt to altered temperature 

distributions, which are influenced by delayed heat conduction. This effect emphasizes the importance 

of these parameters in defining the system’s response to rapid thermal and solutal variations, especially 

in environments where wave-like transport phenomena are present. The concentration (Φ ) also 

weakens across the curvilinear cavity at C1 and C2, further confirming the slower mass diffusion 

attributed to the higher 𝛿𝜃  and 𝛿Φ . The velocity field undergoes a significant decrease, showing 

reductions of 44.1% and 48.9% at C1 and C2, respectively, when 𝛿𝜃 and 𝛿Φ increase from 0 to 0.2. 

This reduction illustrates the strong coupling between thermal and solutal wave transport and 

convective motion, underscoring the importance of 𝛿𝜃 and 𝛿Φ in managing heat and mass transfer 

rates within such systems, which is crucial for optimizing processes involving rapid changes in 

temperature and concentration. Figure 14 illustrates the influence of the Hartmann number (𝐻𝑎) on 

the isotherms (𝜃), heat capacity ratio (𝐶𝑟), concentration (Φ), and velocity field (V). The Hartmann 

number represents the ratio of electromagnetic forces to viscous forces in a conducting fluid, originally 

defined by Julius Hartmann (1881−1951). At higher 𝐻𝑎  values, the presence of the Lorenz force 

significantly impacts the flow by slowing the velocity field and suppressing convection. This braking 

effect, induced by the magnetic field, results in a dramatic decrease in the convective strength, reducing 

the overall motion within the cavity. This magnetic damping is a crucial aspect in controlling heat 

transfer rates and stabilizing fluid behavior in applications where magnetic fields are employed to 

modulate fluid dynamics. The reduction in the velocity field, defined by its peak values, underscores 

the capacity of 𝐻𝑎 to act as a regulatory factor for convective flow. This is particularly important for 

applications in magnetohydrodynamics (MHD) where magnetic fields are used to manage flow 

stability and thermal characteristics in various systems. The 𝐶𝑟 contour shows only slight variations 

in response to changes in 𝐻𝑎 , indicating that the heat capacity properties remain relatively stable 

despite significant electromagnetic intervention. This stability implies that, while the velocity field is 

suppressed, the inherent thermal storage properties of the fluid are not greatly affected, enabling 

controlled thermal energy distribution even under magnetic influence. The isotherms (𝜃 ) exhibit 

moderated gradients as 𝐻𝑎 increases, illustrating the reduced convective transport and highlighting 

how the magnetic field dampens the temperature distribution within the cavity. Similarly, the 

concentration field (Φ) is impacted to a lesser extent, maintaining its structure while experiencing a 

subdued transport rate due to the weakened convective currents. These findings emphasize the role of 

(𝐻𝑎) in modulating both thermal and flow characteristics, which is essential for optimizing heat and 

mass transfer processes in MHD applications where magnetic field manipulation is used for improved 

process control and stability. Figure 15 shows the impacts of buoyancy ratio parameter 𝑁 on 𝜃, 𝐶𝑟, 

Φ, and V. The buoyancy ratio, which is a measure of fluid density contributions by the two solutes 

and shows the degree of system disequilibrium, has steadily shifted from near stable to highly unstable. 

Increasing 𝑁 enhances slightly the isotherms, 𝐶𝑟, and isoconcentration at C1 and C2. The velocity 

field is strongly enhanced according to an increment in 𝑁. At 𝑁 = −2, the maximum of V appears 

at the top area over an ellipse while it appears at the lower area below an ellipse at 𝑁 ≥ 0. Figure 16 

represents the influences of power-law index 𝑛  on 𝜃 , 𝐶𝑟 , Φ,  and V . The Power Law model 

categorizes fluids as Newtonian (𝑛 = 1 ), Shear Thinning (pseudoplastic) (0 < 𝑛 < 1 ), and Shear 

Thickening (dilatant) (𝑛 > 1 ). As 𝑛  is increased from 1.1 to 1.4, there is a noticeable yet slight 

enhancement in the temperature distribution 𝜃 and concentration Φ at C1 and C2. This enhancement 

suggests that the flow characteristics change to accommodate more resistance to deformation as the 
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fluid transitions towards a more shear-thickening behavior. The heat capacity ratio 𝐶𝑟  contour 

displays slight shifts with changes in 𝑛 at C1 and C2. These minor changes indicate that the capacity 

of the fluid to store thermal energy is somewhat affected by the power-law index but not drastically, 

reflecting a stable thermal response even as the fluid’s rheological properties shift. A significant impact 

is observed in the velocity field, which decreases markedly by 64.68% at C1 and 64.66% at C2 when 

𝑛 is increased from 1.1 to 1.4. This reduction in velocity is attributed to the increased resistance to 

flow present in shear-thickening fluids, where the effective viscosity increases with the rate of shear 

strain. These characteristics highlight the importance of the power-law index in controlling the 

convective behavior of non-Newtonian fluids. The sharp decline in the velocity field points to a 

dampened convective motion, leading to reduced momentum transfer within the fluid. These findings 

underscore the significance of the power-law index in determining the overall thermal and flow 

dynamics in non-Newtonian fluid systems. Adjusting 𝑛 can be a strategic means of controlling heat 

and mass transfer in engineering applications where precise modulation of fluid behavior is required, 

such as in industrial processes involving complex fluids or in systems where customized thermal 

management is essential. Figure 17 indicates the impacts of 𝑅𝑎  on 𝜃 , 𝐶𝑟 , Φ,  and V . 𝑅𝑎  is an 

indicator that describes heat transport in natural convection processes. Convection does not occur 

below the critical 𝑅𝑎; instead, heat is transmitted by thermal conduction. Above a certain 𝑅𝑎, heat is 

transported via convection. The distributions of 𝜃 and Φ are enhanced according to an increase in 

𝑅𝑎. The velocity field is strongly raised according to an increase in 𝑅𝑎 at C1 and C2. Figure 18 

presents the effects of the Soret number (𝑆𝑟) and the Dufour number (𝐷𝑢) on 𝜃, 𝐶𝑟, Φ, and V. The 

Soret number (𝑆𝑟) quantifies the ratio of temperature gradients to concentration gradients, highlighting 

the influence of thermal diffusion on mass transport. Moreover, the Dufour number (𝐷𝑢) represents 

the contribution of concentration gradients to thermal energy flux within the flow, capturing the cross-

coupling between heat and mass transfer mechanisms. An increase in (𝑆𝑟 ) and (𝐷𝑢 ) leads to an 

enhancement in the distribution of the concentration field Φ , indicating stronger solutal transport 

effects and emphasizing the interplay between thermal and concentration gradients in driving diffusion 

processes. This enhancement showcases how these coupled phenomena facilitate the redistribution of 

solutes within the flow, which can be pivotal in applications involving mixed convection and 

thermosolutal interactions. The distribution of the temperature 𝜃 and the heat capacity ratio (𝐶𝑟) at 

C1 and C2 are only slightly influenced by the increase in 𝑆𝑟 and 𝐷𝑢. This indicates that while mass 

transfer effects are more pronounced with higher 𝑆𝑟  and 𝐷𝑢 , the overall temperature field and 

thermal storage properties maintain relative stability. Such behavior highlights that the energy transfer 

in the system is not drastically affected by the solutal cross-diffusion effects. A more significant impact 

is observed in the velocity field, which experiences an increase of 34.17% at C1 and 29.73% at C2 as 

𝑆𝑟 and 𝐷𝑢 rise from 0 to 0.5. This boost in the velocity field suggests enhanced convective currents 

driven by the combined thermal and concentration gradients. The increased flow velocity underscores 

the role of the Soret and Dufour effects in augmenting fluid motion through the synergistic influence 

of heat and mass fluxes. These findings emphasize the importance of 𝑆𝑟 and 𝐷𝑢 as key parameters 

in systems involving double diffusion, where the interplay between temperature and concentration 

gradients plays a critical role. Understanding their impacts can aid in optimizing processes involving 

heat and mass transfer, such as in chemical reactors, enhanced oil recovery, and various environmental 

engineering applications where precise control over diffusion and convection is required. Figure 19 

shows the impacts of 𝜃𝑓 on a heat capacity ratio (𝐶𝑟). Increasing 𝜃𝑓 causes the 𝐶𝑟 contour to move 

towards the top/bottom of a curvilinear at 𝐶1 and extend towards the curvilinear sides at 𝐶2. The 

intensity of the 𝐶𝑟 contour diminishes as 𝐶𝑟 increases. It is generally known that 𝜃𝑓 is important 

in altering the placements and strength of 𝐶𝑟 contour within a curvilinear cavity. Figure 20 presents 



35451 

AIMS Mathematics  Volume 9, Issue 12, 35432–35470. 

the average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ under the variations of 𝑁, 𝐻𝑎, (𝑆𝑟& 𝐷𝑢), and (𝛿𝜃 & 𝛿Φ) at C1 and C2. 

The average Nusselt number 𝑁𝑢̅̅ ̅̅  , representing the rate of convective heat transfer, is consistently 

higher under boundary case C1 compared to C2, indicating more effective heat transfer when C1 

conditions are applied. This behavior underscores the importance of boundary definitions in 

determining heat transfer performance. An increase in 𝑁 , 𝐻𝑎 , and 𝑆𝑟& 𝐷𝑢  enhances 𝑁𝑢̅̅ ̅̅  , 

demonstrating that non-Newtonian properties, electromagnetic effects, and coupled thermal-solutal 

interactions significantly boost heat transfer efficiency. The 𝛿𝜃 & 𝛿Φ parameters show minor effects 

on 𝑁𝑢̅̅ ̅̅ , suggesting that wave-like transport phenomena impact transient responses more than steady-

state behavior. The average Sherwood number (𝑆ℎ̅̅ ̅) , which measures convective mass transfer, 

increases under all parameters examined, including 𝑁, 𝐻𝑎, and 𝑆𝑟& 𝐷𝑢 and 𝛿𝜃 & 𝛿Φ. Initially, the 

C1 case supports higher 𝑆ℎ̅̅ ̅ than C2, indicating that the initial mass transfer benefits more under C1 

conditions. However, at steady-state, C2 exhibits a higher 𝑆ℎ̅̅ ̅ compared to C1, implying that over 

time, C2 becomes more effective for mass transfer, likely due to a redistribution of concentration 

gradients influenced by boundary conditions. These findings demonstrate the critical role of boundary 

conditions in influencing heat and mass transfer within a curvilinear cavity. Understanding how 

boundary cases like C1 and C2 affect 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ is essential for designing and optimizing systems 

involving non-Newtonian fluids, MHD flows, and applications where thermal and mass transfer 

control is vital. 
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Figure 12. Impacts of 𝐹𝑘 on 𝜃, 𝐶𝑟, Φ, and 𝐕. 
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Figure 13. Impacts of (𝛿𝜃 & 𝛿Φ) on 𝜃, 𝐶𝑟, Φ, and 𝐕. 
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Figure 14. Impacts of 𝐻𝑎 on 𝜃, 𝐶𝑟, Φ, and 𝐕. 
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Figure 15. Impacts of 𝑁 on 𝜃, 𝐶𝑟, Φ, and 𝐕. 
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Figure 16. Impacts of 𝑛 on 𝜃, 𝐶𝑟, Φ, and 𝐕. 
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Figure 17. Impacts of 𝑅𝑎 on 𝜃, 𝐶𝑟, Φ, and 𝐕. 
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Figure 18. Impacts of (𝑆𝑟 &𝐷𝑢) on 𝜃, 𝐶𝑟, Φ, and 𝐕. 
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Figure 19. Impacts of 𝜃𝑓 on 𝜃, 𝐶𝑟, Φ, and 𝐕. 
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Figure 20. Average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ under the variations of 𝑁, 𝐻𝑎, (𝑆𝑟& 𝐷𝑢), and 

(𝛿𝜃 & 𝛿Φ) at C1 and C2. 
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6. Conclusions 

The ANN model is used in conjunction with the ISPH simulation to manage Ca-Ch heat and 

NEPCM mass transport within a curvilinear cavity during an exothermic process. Two cases of 

boundary conditions for curvilinear cavities are conducted in this work. ANN model forecasts the 

values of 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ based on the ISPH simulations. We investigated the transfer of heat and mass 

under the numbers of Frank-Kamenetskii, Hartmann, Rayleigh, Soret, and Dufour and the buoyancy 

ratio parameter. Our major conclusions are as follows: 

• The ANN model predicted the values of 𝑁𝑢̅̅ ̅̅   and 𝑆ℎ̅̅ ̅  based on the target values of ISPH 

simulation. 

• Two boundary conditions for a curvilinear cavity have a significant impact on enhancing mass, 

heat transfer, heat capacity ratio, and velocity field within a cavity. 

• The Ca–Ch heat and mass transfer parameters effectively reduce the temperature and 

concentration inside a curvilinear cavity at C1 and C2. The velocity field decreases by 44.1% 

and 48.9% at C1 and C2, respectively when 𝛿𝜃 & 𝛿Φ are increased from 0 to 0.2. 

• An increase in the Power law index 𝑛 from 1.1 to 1.4, declines the velocity field by 64.68% 

and 64.66% at C1 and C2, respectively. 

• Increasing Soret and Dufour numbers (𝑆𝑟 & 𝐷𝑢) supports the distribution of concentration. 

When 𝑆𝑟 and 𝐷𝑢 are increased from 0 to 0.5, the velocity field increases by 34.17% and 

29.73%, respectively at C1 and C2. 
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