

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

AIMS Mathematics, 9(12): 35326–35354.

DOI: 10.3934/math.20241679

Received: 07 July 2024

Revised: 29 November 2024

Accepted: 04 December 2024

Published: 18 December 2024

https://www.aimspress.com/journal/Math

Research article

Modified artificial fish swarm algorithm to solve unrelated parallel

machine scheduling problem under fuzzy environment

Azhar Mahdi Ibadi1,2,* and Rosshairy Abd Rahman1

1 School of Quantitative Sciences, Universiti Utara Malaysia, Sintok, Kedah 06010, Malaysia
2 Department of Physics, College of Science, University of Sumer, Al Rifaee, Thi-Qar 64005, Iraq

* Correspondence: Email: azhar_mahdi_ibadi@ahsgs.uum.edu.my.

Abstract: Unrelated parallel machine scheduling problem (UPMSP) in a fuzzy environment is an

active research area due to the fuzzy nature of most real-world problems. UPMSP is an NP-hard

problem; thus, finding optimal solutions is challenging, particularly when multiple objectives need to

be considered. Hence, a metaheuristic algorithm based on a modified artificial fish swarm algorithm

(AFSA) is presented in this study to minimize the multi-objective makespan and total tardiness. Three

modifications were made to the proposed algorithm. First, aspiration behavior was added to AFSA

behaviors to increase effectiveness. Second, improved parameters such as step and visual were used to

balance global search capability and convergence rate. Finally, a transformation method was injected

to make the algorithm suitable for discrete optimization problems such as UPMSP. The proposed

algorithm was compared with AFSA and five modified versions of AFSA to verify and measure the

algorithm's effectiveness by conducting three different sizes of problems. Afterward, the Wilcoxon

signed-rank test was used to statistically evaluate the algorithm's performance. The results indicate that

the proposed algorithm significantly outperformed the other algorithms, especially for medium and

large-sized problems.

Keywords: unrelated parallel machine scheduling problem; fuzzy sets; multi-objective; artificial fish

swarm algorithm; modified algorithm

Mathematics Subject Classification: 90C27, 90C70

mailto:azhar_mahdi_ibadi@ahsgs.uum.edu.my

35327

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

1. Introduction

In the domain of operations research, the parallel machine scheduling problem (PMSP) is

important and difficult. The importance of PMSP comes from its ability to optimize the use of several

machines and allocate a specific set of jobs to satisfy the customer's demands. This is vital for industries

where resource optimization is essential, such as maximizing productivity and minimizing overall

machine time. Additionally, a wide range of industries, especially in high-demand environments like

data centers or manufacturing facilities, can adapt PMSP models for various scenarios, ranging from

small-scale operations to large, complicated systems [1]. The challenges of PMSP stem from its

complex nature, which has gained popularity and led to its classification as NP-hard [1,2]. This means

that finding an optimal solution is computationally costly and becomes more difficult as the number

of jobs and machines increases. Real-world scenarios frequently include dynamic changes and

uncertainties, such as machine breakdowns or different job durations. Machine constraints and

multiple objectives must be considered and balancing them can complicate the scheduling process.

Therefore, the challenge of developing effective algorithms contributes to the complexity of the

problem. According to [3], the successful solution of the PMSP requires simultaneous determination

of assignment and sequencing policies for the available parallel machines and jobs.

Academic literature primarily categorizes research on PMSP into three main groups [3]: identical,

uniform, and unrelated PMSP (UPMSP). UPMSP can be regarded as a general representation of the

other two groups, wherein distinct machines are employed to execute identical jobs but possess varying

processing capacities or capabilities. However, addressing real-world UPMSPs poses a significant

challenge for both practitioners and researchers, primarily due to their inherent complexity. Notably,

UPMSPs are typically classified as NP-hard, even without considering the multi-objective functions [4].

In addition, UPMSPs are considered more realistic than the other groups because machine speeds,

technology, and machine types in the shop may differ from one another. Therefore, solving UPMSPs

has attracted many researchers and professionals from scientific and engineering disciplines [5].

UPMSPs have found widespread application in production scheduling and manufacturing systems,

particularly in semiconductor manufacturing [6], electronic assembly [4], and manufacturing

electricity costs [7].

The most effective method for both exact and approximate solutions in small problem instances

intended for single-objective optimization is linear programming [8]. In recent years, considerable

attention has been given to multi-objective optimization, as seen by a substantial body of literature,

particularly in the years 2019 and 2020 [9]. For instance, Sarçiçek [10] proposed a multi-objective

UPMSP model that aims to minimize makespan and maximize machine preferences for jobs with

sequence-dependent setup times and introduces a simulated annealing metaheuristic to address large-

scale problems. Additionally, Meng et al. [11] presented a mathematical model that integrates identical

UPMSPs in a structural metal-cutting facility to minimize total makespan and total tardiness. A new

metaheuristic algorithm combines the variable neighborhood structure strategy (VNSGA-III) and the

non-dominated sorting genetic algorithm III (NSGA-III). Experimental results show that the suggested

algorithm statistically outperforms the comparison algorithms. In the meantime, in [12], the UPMSP

model was adapted and expanded based on previous mathematical models by focusing on minimizing

makespan and a set of constraints for small instances. Then, different types of simulated annealing

were suggested to solve large-scale instances in the packaging industry. The comprehensive evaluation

and performance analysis show that the proposed methods often outperform state-of-the-art methods.

35328

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

The most multi-objective scheduling challenges across all fields were minimizing makespan and

total tardiness, which also happened to be the multi-objective that most researchers looked at [13,14].

The application of fuzzy sets enhanced the accuracy of schedules to evaluate UPMSPs and deal with

the complexities of real-world problems [1,15]. For example, in the transport industry, where the

operators are the resources and the jobs are the freight delivery of the real-world UPMSP problem,

Rivera Zarate [16] employed a fuzzy relational system to represent the decision makers’ preferences

and solve the three objective functions: minimizing completion time and risk and maximizing delivery

reliability. The outranking-based particle swarm optimization algorithm (O-PSO) is a metaheuristic

developed in that study. The study demonstrated its ability to generate high-quality solutions in

comparison to a commonly used policy. Another study conducted by [17] aimed to minimize makespan

and total cost simultaneously within manufacturing production systems, and a fuzzy programming

method was employed to solve large-scale instances of the proposed UPMSP problem. Meanwhile,

Zhou et al. [18] developed a tri-objective optimization model for UPMSP to minimize the total cost of

the order delay and early penalty, makespan, and workload imbalance; the processing time is fuzzy

due to many uncertain variables associated with actual production. A metaheuristic of Pareto-based

discrete particle swarm optimization (PDPSO) was employed to evaluate the model across various

scales. The findings indicate that the proposed PDPSO surpasses the other algorithms, particularly for

small and medium-sized instances.

Prior studies have proposed fuzzy UPMSPs to enhance performance metrics and determine

appropriate schedules across a range of scenarios. Such methods encompass exact methods [15,19],

heuristic methods [20], and artificial swarm intelligence methods [21]. Therefore, quite a few

metaheuristic algorithms have been proposed for UPMSP, with many demonstrating the capability to

achieve near-optimal solutions within reasonable time frames [9]. Even though various algorithms

have exhibited commendable performance results, the multiple and conflicting objectives remain an

open issue [22]. The primary objectives under consideration are the minimization of makespan and

total tardiness. Machine scheduling commonly employs makespan, but it can surpass due dates,

thereby requiring the inclusion of an additional objective. As a result, even if the optimal makespan

solution is identified, many jobs will probably be completed after their due dates. Consequently,

simultaneously considering total tardiness and makespan minimization could lead to increased

efficiency. While scheduling machines commonly use this multi-objective [14], the information

required to define the time parameters and constraint conditions may be vague or not precisely

measurable. This is because most real-world problems are fuzzy. For improvement in the quality of

the schedule and making it more reflective of scheduling issues that occur in the real world, fuzzy sets

can be utilized to evaluate UPMSPs.

Limited research has been conducted on UPMSP with the multi-objective makespan and total

tardiness in the fuzzy environment [15]. Recently, Pourpanah et al. [23] conducted a comprehensive

review of the artificial fish swarm algorithm (AFSA). The authors revealed that most modifications of

AFSA focus on controlling the parameter values of the algorithm, particularly the visual distance,

maximum step length, and crowding factor, along with updates and enhancements to existing

behaviors or the development of new ones. AFSA has seen a lot of modifications recently to enhance

optimization's effectiveness, most of which aimed for a balance among the exploration and exploitation

procedures. Even so, currently used fish swarm algorithms have not yet achieved a global optimum at

remarkably high convergence rates. Thus, AFSA development still has a tremendous deal of potential.

In recent years, the improved and modified AFSA became a valuable tool that can be efficiently

35329

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

applied in a variety of applications. Zhao et al. [24] adopted the improved AFSA for route planning of

autonomous vessels by introducing a directional operator to improve efficiency, a probability weight

factor to avoid local optima, and an adaptive operator to achieve better convergence performance. Tan

& Mohamad-Saleh [25] presented a new algorithm of AFSA to improve the performance of global and

local search techniques in optimization. The proposed algorithm includes several improvements, such

as hybridizing characteristics, introducing normative communication and memory behaviors, and

adapting parameters in terms of visuals and steps. Meanwhile, Huang et al. [26] proposed three

adaptive step methods to speed up and address the shortcomings of the standard AFSA for solving

sensor layout optimization problems in fiber grating networks. Research by Wang et al. [27]

customized four operators and an adaptive factor to enhance the algorithm's convergence performance

and suggested a modified AFSA when combined with a local path optimizer to resolve the path

planning issue. Jin et al. [28] proposed a modified AFSA for unit commitment optimization to

overcome the disadvantages of premature convergence and local extremes in the original algorithm.

The improvements include variable vision, adjusting the movement strategy, and combining the

mutation operation of genetic algorithms. A study by Gao et al. [29] introduced novel AFSA by using

Cauchy mutation to accelerate the algorithm's speed of convergence to solve the parameter selection

problem for the twin support vector machine. Li et al. [30] proposed improving AFSA to determine

the best scheduling to minimize time delay for the multidimensional knapsack problem. These

modifications attempted to improve the algorithm's performance in terms of convergence, optimality,

and escape from local optimality, among others. However, the development of the algorithm continues

to this day.

While there is limited research on the use of modified AFSA in machine scheduling, Tirkolaee

et al. [31] introduced an improved version of AFSA to solve flow shop scheduling (FSS) problems.

The aims were to minimize total cost and total energy consumption by adding self-adaptive behavior

to enhance the algorithm's performance. To our knowledge, AFSA has never been used to solve the

scheduling problem on unrelated machines for the proposed multi-objective problem under fuzzy

environments. Therefore, in this study, a modified AFSA is proposed to minimize the proposed multi-

objective problem with considerations of fuzzy triangular numbers to mitigate the uncertainty

associated with the processing times and due dates. The proposed modified AFSA is a new algorithm

designed to solve UPMSP by exploiting the capabilities of the AFSA, which is modified through three

aspects: the addition of new behavior for the four main behaviors, the use of improved visual and step

parameters, and converting AFSA from a continuous to a discrete solution space to deal with the

discrete proposed model. Therefore, after creating a random fish population to represent UPMSP

solutions, the proposed modified AFSA starts with the best individual solution generated by the

standard AFSA. Additionally, the AFSA's constant value is replaced with improved visual and step

parameters, and the performance is updated based on the best and current individual using aspiration

behavior expression. Subsequently, the fitness value of the best individual is calculated using a

transformation method to convert the continuous solution into a discrete solution. Therefore, all

solutions will be updated according to the previous steps and implemented until the termination

criterion is satisfied.

In short, the main contributions of this research are described as follows:

• Adapt and extend the linear multi-objective model introduced by [32] for UPMSP by

embedding triangular fuzzy parameters.

• Apply the total integral value defuzzification method that converts a fuzzy output into a crisp

35330

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

output value.

• Modify standard continuous AFSA to deal with the discrete UPMSP model in solving the

proposed UPMSP model.

• Evaluate the performance of the proposed modified algorithm by conducting computational

experiments and comparing the results with AFSA and five versions of modified AFSA

algorithms. The evaluation results confirmed the superior performance of the modified

algorithm.

The performance of the proposed algorithm was compared against standard AFSA and three

modified versions proposed by Zhao et al. [24] and Tan & Mohamad-Saleh [25] and three versions of

methods outlined by Huang et al. [26].

This paper is structured as follows: Section 2 presents the problem formulation, while Section 3

explains the preliminaries. The standard AFSA is described in Section 4, and the proposed modified

AFSA is detailed in Section 5. Section 6 provides computational and statistical results, along with the

analysis of the evaluation process. Finally, Section 7 discusses the conclusions and future research

directions.

2. Problem formulation

Based on the classification scheme of scheduling problems by Graham et al. [33], the UPMSP for

the multi-objective can be indicated as 𝑅//(𝐶𝑚𝑎𝑥 + ∑ 𝑇𝑗), where R denotes an unrelated machine and

𝐶𝑚𝑎𝑥 + ∑ 𝑇𝑗 represents a proposed multi-objective function. The following assumptions are

considered before formulating the mathematical model for the proposed multi-objective UPMSP.

Assumptions:

1- Every machine and job are available at the start of time.

2- Parallel machines are unrelated (each job's processing time differs and is determined by the

machine).

3- Preemption is not allowed.

4- There is only one job that each machine can process at once.

Indices and sets:

N: A set of jobs.

M: A set of machines.

𝑗, 𝑘 : Index for jobs, 𝑗, 𝑘 ∈ 𝑁 = {1, … , 𝑛 }.

𝑁0 : Indicates a set of jobs that involve a dummy job, 𝑁0 = {0,1, … , 𝑛}.

i: Index for machine, 𝑖 ∈ 𝑀 = {1, … , 𝑚}.

Parameters and decision variables:

𝑝𝑖𝑗 : The processing time of job 𝑗 on machine 𝑖, which could differ depending on different machines.

𝑑𝑗 : The due date of job j.

𝐶𝑗 : The completion time of job j.

𝐶𝑚𝑎𝑥 : The maximum completion time (makespan).

w: The value of weight.

𝑣: Sufficiently large number.

𝑇𝑗 : The tardiness of job j.

35331

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

𝑋𝑖𝑘𝑗 = {
1, if job 𝑗 immediately follows job k on machine 𝑖
0, Otherwise

The notation definitions above and the current model have been inspired by the models that were

introduced in papers [34,35]. Meanwhile, the proposed multi-objective model for UPMSP is extended

to the linear multi-objective model introduced by [32], which is formulated as follows:

𝑀𝑖𝑛 𝐹 = 𝑤𝐶𝑚𝑎𝑥 + (1 − 𝑤) ∑ 𝑇𝑗

𝑛

𝑗=1

 (1)

Subject to:

∑ ∑ 𝑋𝑖𝑘𝑗

𝑘∈𝑁0,𝑘≠𝑗𝑖∈𝑀

= 1 ∀ 𝑗 ∈ 𝑁, (2)

∑ ∑ 𝑋𝑖𝑘𝑗

𝑗∈𝑁0,𝑗≠𝑘𝑖∈𝑀

= 1 ∀ 𝑘 ∈ 𝑁, (3)

∑ 𝑋𝑖𝑘𝑗

𝑗∈𝑁0,𝑗≠𝑘

− ∑ 𝑋𝑖ℎ𝑘

ℎ∈𝑁0,𝑗≠𝑘

= 0 ∀ 𝑖 ∈ 𝑀, 𝑘 ∈ 𝑁, (4)

∑ 𝑋𝑖0𝑗 ≤ 1
𝑗∈𝑁

 ∀𝑖 ∈ 𝑀, (5)

𝐶0 = 0, (6)

𝐶𝑗 − 𝐶𝑘 + 𝑣(1 − 𝑋𝑖𝑘𝑗) ≥ 𝑝𝑖𝑗 ∀𝑖 ∈ 𝑀, ∀𝑘 ∈ 𝑁0, ∀𝑗 ∈ 𝑁: 𝑗 ≠ 𝑘, (7)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗 ∀𝑗 ∈ 𝑁, (8)

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑗 ∀j ∈ 𝑁, (9)

𝑝𝑖𝑗 , 𝐶𝑗 , 𝑇𝑗 , 𝐶𝑚𝑎𝑥 ≥ 0, (10)

𝑋𝑖𝑘𝑗 ∈ {0,1}. (11)

Equation (1) works to minimize multi-objective functions’ makespan and total tardiness

simultaneously. Constraint (2) guarantees that every job is done by just one machine. When job 𝑗𝑡ℎ is

executed after the job 𝑘𝑡ℎ on the machine 𝑖𝑡ℎ, the 𝑋𝑖𝑘𝑗 value is equal to 1; otherwise, the value will be

0. Constraint (3) demonstrates that there is only one job that is scheduled first at each machine, which

means 𝑋𝑖𝑘𝑗 = 1 when the 𝑘𝑡ℎ job is the first job on a machine 𝑖𝑡ℎ, otherwise 𝑋𝑖𝑘𝑗 = 0. Constraint (4)

specifies the job's flow balance at each machine, which means only one preceding job and one

succeeding job. Constraint (5) determines the machine's initial job. Constraint (6) gives zero

completion time at job 0. Constraint (7) ensures that the completion time of job 𝑗𝑡ℎ equals the

completion time of the preceding job plus the processing time of job 𝑗𝑡ℎat each machine; this can be

performed using a large number 𝑣 . When 𝑋𝑖𝑘𝑗 = 1 if the job 𝑗𝑡ℎ is ordered after job 𝑘𝑡ℎ , then

35332

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

𝑣(1 − 𝑋𝑖𝑘𝑗) = 0 and 𝐶𝑗 = 𝐶𝑘 + 𝑝𝑖𝑗. Otherwise, when job 𝑗𝑡ℎ is not ordered after job 𝑘𝑡ℎ, then 𝑋𝑖𝑘𝑗 =

0, and thus, 𝑣(1 − 𝑋𝑖𝑘𝑗) = 𝑣. Constraint (8) demonstrates that the maximum completion time for all

machines is equal to the makespan. Constraint (9) calculates each job's tardiness value. Constraint (10)

ensures that no value for any of the decision variables can be negative. Constraint (11) illustrates binary

variables.

3. Preliminaries

In the literature, fuzzification refers to the process of converting a crisp set into a specific fuzzy

set [36]. The primary objective of a fuzzy scheduling process is to identify the "best" solution, or

decision, given the presence of uncertain data. Zadeh [37] introduced the fuzzy set theory, which

expands the classical set theory's 0–1 integer range to include the values [0,1]. This section introduces

some basic prerequisites for fuzzy sets and triangular fuzzy numbers that will be used later.

Definition 1 [38]: A fuzzy set �̃� in 𝑋 is specified by the function 𝜇�̃�: 𝑋 ⟶ [0, 1], a set of ordered pairs

if 𝑋 is a collection of items represented by 𝑥:

�̃� = {(𝑥, 𝜇�̃�(𝑥)): 𝑥 ∈ 𝑋} (12)

As shown in Figure 1, the membership function 𝜇�̃�(𝑥) of the fuzzy set �̃� is the relationship

between various crisp values x and values in the interval [0,1].

Figure 1. Crisp set A with fuzzy set �̃�.

In fuzzy theory applications, the most widely used and basic model of fuzzy numbers is called a

triangular fuzzy number (TFN), which is represented by �̃� ((𝑎1, 𝑎2, 𝑎3). The parameter 𝑎2 is the

maximum possible evaluation data value of 𝑥, and parameters 𝑎1and 𝑎3 denote the lower and upper

bounds of the evaluation data's available area [39]. The graph of the membership function (x) in Figure

2 has a triangular shape, with the base over the interval [𝑎1, 𝑎3] and the vertex at 𝑥 = 𝑎2.

35333

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Figure 2. Membership function for the triangular fuzzy number Ã = (a1, a2, a3).

Definition 2: Let �̃� = (𝑎1, 𝑎2, 𝑎3) and �̃� = (𝑏1, 𝑏2, 𝑏3) be two TFNs. The main operations are also

TFNs and can be performed as follows [40]:

 �̃� + �̃� = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3)

 �̃� − �̃� = (𝑎1 − 𝑏3, 𝑎2 − 𝑏2, 𝑎3 − 𝑏1)

The fuzzy mathematical model is the proposed deterministic model that has been fuzzified using

TFNs for the primary parameters of processing time and due date stated here as follows:

𝑀𝑖𝑛 𝐹 = 𝑤𝐶𝑚𝑎�̃� + (1 − 𝑤) ∑ ∑ �̃�𝑗

𝑚

𝑖=1

𝑛

𝑗=1

, (13)

�̃�0 = 0, (14)

�̃�𝑗 − �̃�𝑘 + 𝑣(1 − 𝑋𝑖𝑘𝑗) ≥ �̃�𝑗 ∀𝑖 ∈ 𝑀, ∀𝑘 ∈ 𝑁0, ∀𝑗 ∈ 𝑁: 𝑗 ≠ 𝑘, (15)

𝐶𝑚𝑎�̃� ≥ �̃�𝑗
∀𝑗 ∈ 𝑁, (16)

�̃�𝑗 ≥ �̃�𝑗 − �̃�𝑗 ∀𝑖 ∈ 𝑀, ∀j ∈ 𝑁, (17)

�̃�𝑖𝑗 , �̃�𝑗 , �̃�𝑗 , 𝐶𝑚𝑎�̃� ≥ 0. (18)

Considering the above model, an optimal solution cannot be obtained in such a fuzzy environment

[41]. Defuzzification is the process of transforming a fuzzy output into a single, crisp output value. A

study conducted a performance evaluation and comparison of the nine defuzzification methods

introduced in [42] to understand the impact of fuzziness on the fuzzy parameters in the UPMSP. The

integral method introduced by [43] was found to have significantly better performance than the other

methods based on comprehensive testing. To calculate the maximum fuzzy makespan and tardiness, it

is necessary to use a method that compares TFNs. According to [43], the total integral value can be

used and denoted as:

35334

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

𝐼𝑇
𝛼(𝐴) =

1

2
𝛼(𝑏 + 𝑐) +

1

2
(1 − 𝛼)(𝑎 + 𝑏)

=
1

2
[𝛼𝑐 + 𝑏 + (1 − 𝛼)𝑎]

(19)

for triangular fuzzy number 𝐴 = (𝑎, 𝑏, 𝑐), and given 𝛼 ∈ [0, 1].

4. Artificial fish swarm algorithm

A novel swarm intelligence-based optimization technique known as the artificial fish swarm

algorithm (AFSA) was introduced by Li Xiao Lei [44], which involves randomly searching for a set

of solutions to solve NP-hard problems [23]. Compared to other intelligent algorithms, AFSA has a

limited number of parameters to manage, making it relatively simple to implement. The amount of

time needed to find good solutions is reasonable, and the algorithm is parallel, has a strong global

search capability, converges quickly, and is less sensitive to the needs of the objective functions. These

benefits have led to the successful application of AFSA and its variants in a diverse array of

optimization problems [25], such as flexible job shop scheduling problems [45], logistics distribution

[46], network design problems [47], wireless sensor networks [48], cloud computing [49], the traveling

salesman problem [50], and the exam timetabling problem [51]. Furthermore, Peraza et al. [52]

demonstrated the successful implementation of AFSA in various benchmarking optimization problems.

The basic idea behind AFSA is to mimic the various environmental behaviors that schooling fish

exhibit in the water, where a fish serves as a fictitious representation of a true fish within a population,

and the movements of the swarm are random. This algorithm trains each artificial fish (AF) to react to

its current position and teaches it four basic behaviors: prey, swarm, follow, and random. Prey behavior

is the foundation of the algorithm's convergence; swarm behavior improves the algorithm's stability and

global convergence; follow behavior accelerates the convergence of the algorithm; and random behavior

balances the contradiction of the other three behaviors. Here is a description of AFSA's behaviors:

Preying behavior: This essential behavior enables AF to get to locations where there is a greater

concentration of food. This behavior is modeled within a radius of a fish's neighborhoods by using an

AF's current location and its nearest neighbors as determined by the AF's field of view. Let 𝑋𝑖 be the

current position of the 𝑖𝑡ℎAF, and 𝑋𝑗 be an arbitrary state of an AF as follows:

𝑋𝑗 = 𝑋𝑖 + 𝑉isual × 𝑅 (0,1) (20)

𝑉𝑖𝑠𝑢𝑎𝑙 is the visual length between two AFs that are placed in 𝑋𝑖 and 𝑋𝑗, where the Euclidean

distance can be defined as 𝑑𝑖𝑠𝑡𝑖𝑗 =∥ 𝑋𝑖 − 𝑋𝑗 ∥, and 𝑅 is a random vector with each element between

0 and 1.

In minimization problems, if 𝑓(𝑋𝑗) ≤ 𝑓(𝑋𝑖), the 𝑖𝑡ℎAF moves a step toward 𝑋𝑗 and, using the

following formula:

𝑋𝑝𝑟𝑒𝑦 = 𝑋𝑖 +
𝑋𝑗−𝑋𝑖

∥𝑋𝑗−𝑋𝑖∥
× 𝑆𝑡𝑒𝑝 × 𝑅 (0,1) (21)

where 𝑋𝑝𝑟𝑒𝑦 is the position of the 𝑖𝑡ℎ AF after executing praying behavior, which is next to the 𝑋𝑗 −

𝑋𝑖, and ∥ 𝑋𝑝𝑟𝑒𝑦 − 𝑋𝑖 ∥≤ 𝑆. However, if 𝑓(𝑋𝑗) > 𝑓(𝑋𝑖), another position 𝑋𝑗 is randomly selected by

applying Eq (1). If the fitness value (objective function), which could be the amount of food the AF

is currently concentrating, fails to be satisfied after trying for a given number of iterations, 𝑋𝑖

35335

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

randomizes its next step as follows:

𝑋𝑝𝑟𝑒𝑦 = 𝑋𝑖 + 𝑉isual × 𝑅(0,1) (22)

Swarming behavior: In this behavior, the fish collect and move toward the center position to avoid

crowding. Let 𝑛 denote the total number of AFs, 𝑛𝑓 be the number of neighbors within the 𝑖𝑡ℎAF's

visual range with 𝑑𝑖𝑠𝑡𝑖𝑗 < 𝑉isual , and 𝑋𝑐𝑒𝑛𝑡𝑒𝑟 be the central position of the swarm, which is the

average of all AFs' positions:

 𝑋𝑐𝑒𝑛𝑡𝑒𝑟 =
1

𝑛
∑ 𝑋𝑘

𝑘
𝑛=1 (23)

The 𝑖𝑡ℎ AF relocates in the direction of 𝑋𝑐𝑒𝑛𝑡𝑒𝑟 if 𝑓(𝑋𝑐𝑒𝑛𝑡𝑒𝑟) ≤ 𝑓(𝑋𝑖) and
𝑛𝑓

𝑛
⋗ 𝜇 , where 𝜇 ∈

[0,1] is the crowding factor; this indicates that there is greater availability of food in the center and

that the location is not overcrowded. As a result, 𝑋𝑖 takes a movement toward the neighbor’s center as

follows:

 𝑋𝑠𝑤𝑎𝑟𝑚 = 𝑋𝑖 +
𝑋𝑐𝑒𝑛𝑡𝑒𝑟−𝑋𝑖

∥𝑋𝑐𝑒𝑛𝑡𝑒𝑟−𝑋𝑖∥
× 𝑆𝑡𝑒𝑝 × 𝑅(0,1) (24)

otherwise, the 𝑖𝑡ℎAF will carry out the preying behavior.

Following behavior: For 𝑖𝑡ℎ AF, if at least another 𝑗𝑡ℎ AF is represented where ∥ 𝑋𝑗 − 𝑋𝑖 ∥≤

𝑉isual and 𝑓(𝑋𝑗) > 𝑓(𝑋𝑖) with low crowded factor, i.e.,
𝑛𝑓

𝑛
< 𝜇, then 𝑖𝑡ℎAF move one step toward the

𝑗𝑡ℎ AF position is as follows:

 𝑋𝐹𝑜𝑙𝑙𝑜𝑤 = 𝑋𝑖 +
𝑋𝑗−𝑋𝑖

∥𝑋𝑗−𝑋𝑖∥
× 𝑆𝑡𝑒𝑝 × 𝑅(0,1) (25)

If there are no neighbors around 𝑋𝑖 or if none of them satisfy the condition, then 𝑖𝑡ℎ AF performs

preying behavior.

Random behavior: Each AF makes its random search process and lets the fish swim freely or

follow a swarm in a larger space. The next state of AF is 𝑋𝑛𝑒𝑥𝑡 and defined as follows:

 𝑋𝑛𝑒𝑥𝑡 = 𝑋𝑖 + 𝑉isual × 𝑅(0,1) (26)

5. The proposed modified artificial fish swarm algorithm

In standard AFSA, AF typically randomly searches its visual range for the next state before

proceeding to the next position. This method is particularly time-consuming. The AF must explore

every direction until it finds its position. To address this weakness, we incorporate aspiration behavior

into the four primary behaviors of the AFSA, which are influenced by the best position of AFs. The

proposed algorithm starts by initializing the population size of a fish swarm, followed by the initiation

of the AFSA and the proposed AFSA parameters. Every AF signifies a solution to the problem, receives

a fitness value to assess its performance, and records its results on the bulletin board following each

iteration. Like standard AFSA, each AF in the proposed algorithm changes its position based on its

individual best solution for the whole swarm through each iteration. However, there is a major

difference in how the best solution is updated. The modified algorithm compares the current position

of an AF with the best position achieved across all behaviors. This enhances the search process and

helps AFs to escape from the local optimums. Figure 3 illustrates the flowchart of the modified

algorithm, highlighting the modified steps in yellow. Creating new behavior depends on the best,

35336

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

current, and random movement solutions. The update processes are formulated as Eq (27).

Suppose that 𝑋𝑏𝑒𝑠𝑡 represents the potential position of AF in the step range and ∥ 𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖 ∥ ≤

𝑆𝑡𝑒𝑝, which can be stated as:

 𝑋𝐴𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑋𝑖 +
𝑋𝑏𝑒𝑠𝑡−𝑋𝑖

∥𝑋𝑏𝑒𝑠𝑡−𝑋𝑖∥
× 𝑆𝑡𝑒𝑝 × 𝑅(0,1) (27)

The aspiration behavior guarantees that the computing time is greatly reduced because AF can

determine the best position in just one cycle of calculations.

However, through iterative processes, the visual and step parameters in the standard AFSA are

fixed. The algorithm's convergence speed is increased at the beginning with large visual and step values.

Nevertheless, the large values will result in problems like local optimum or iterative jumps when AFs

approach the final position. However, values that are too low reduce effectiveness [24,25]. As a result,

there are specifications for the algorithm for the visual's size and step at various phases. To achieve a

balance between convergence rate and global search capability, the improved adaptive parameters

(visual, step) utilized in [25] were adapted by the modified algorithm and are given as follows:

𝑣𝑖𝑠𝑢𝑎𝑙𝑡+1 = 𝑣𝑖𝑠𝑢𝑎𝑙𝑡 − 𝑣𝑖𝑠𝑢𝑎𝑙𝑡 × 𝜆 + 𝑣𝑖𝑠𝑢𝑎𝑙𝑚𝑖𝑛 (28)

𝑠𝑡𝑒𝑝𝑡+1 = 𝑠𝑡𝑒𝑝𝑡 − 𝑠𝑡𝑒𝑝𝑡 × 𝜆 + 𝑠𝑡𝑒𝑝𝑚𝑖𝑛 (29)

𝜆 = 𝑒
(−

𝜎

√(𝑡𝑚𝑎𝑥)34 ∗(𝑡𝑚𝑎𝑥−𝑡)

(30)

where 𝑣𝑖𝑠𝑢𝑎𝑙𝑚𝑖𝑛 is the minimum visual value; 𝑠𝑡𝑒𝑝𝑚𝑖𝑛 is the minimum step value; t ((1, 2, …, 𝑡𝑚𝑎𝑥)

is the index number of iterations; 0.5 < 𝜎 < 1 at any stage.

The AFSA was originally created to address continuous problems; solving combinatorial

optimization problems such as UPMSP remains challenging. Therefore, it is crucial to make the

algorithm suitable for solving discrete mathematical scheduling problems and improving the original

algorithm's search capabilities. The major contribution of the proposed algorithm is the use of the

transformation method to transform the continuous solution into a discrete solution. To achieve this,

the modified algorithm's continuous solution was encoded, and the fractional parts were sorted in a

non-decreasing order. Let us illustrate the proposed procedure as follows: Assume that a UPMSP has

five jobs and three machines and let the lower bound for algorithm search space be equal to 0 and the

upper bound be equal to 1. Let the generated solution by AFSA, S ([0.23 0.43 0.1 0.7 0.2], be

continuous, and then encode the solution by integer numbers N ([1 2 3 4 5]. After a combination of

solution and index, the solution turns out to be:

1 2 3
0.23 0.43 0.1

4 5

0.7 0.2

continuous solution

35337

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Figure 3. Flowchart of the proposed modified algorithm.

35338

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Now, the solution is sorted by increasing order, and the index is arranged based on the solution.

After sorting, the corresponding solution should be:

3 5 1
0.1 0.2 0.23

2 4

0.43 0.7

discrete solution

Thus, the discrete solution D ([3 5 1 2 4].

This method is used to compute the best solution for each solution in the population, and then the

best solution is selected according to the value of the multi-objective function. The entire optimization

process is performed and runs simultaneously by employing the three proposed modification steps,

which are interconnected and depend on the quality of the solution.

The proposed algorithm was applied for each machine and job combination, which were

randomly generated, with three types of problem instances: small, medium, and large size. Each

instance was repeated 10 times, and the results were recorded. The smallest minimum value is

determined to be the optimum value for each instance. The details of the results and comparisons are

discussed in the following section.

6. Results and discussion

Various experiments were conducted on three differently sized problem instances to confirm the

proposed algorithm's performance for the multi-objective UPMSP. Each size of the problem consists

of 10 instances and was run 10 times. Small size problems consist of the number of jobs N (

[5,10,15,20,25,30,35,40,45,50] and the number of machines M ([3,3,4,4,5,5,6,6,7,7]. Medium size

problems instances had N ([60,80,100,120,140,160,180,200,220,240] and M (

[8,8,9,9,10,10,11,11,12,12], while large size problems had N (

[250,270,290,310,330,350,370,390,410,430] and M ([13,13,15,15,16,16,17,17]. The proposed AFSA

results are compared with standard AFSA, other versions of modified AFSA (presented in previous

works by Zhao et al [24] and Tan & Mohamad-Saleh [25]), and three methods outlined by Huang et al

[26]. The performance evaluation of the solution methodology is made based on the minimum values,

mean, and standard deviation of the objective function obtained. Further analysis of the proposed

algorithm's performance was also conducted using the Wilcoxon signed-rank test. The experiments

were conducted based on different parameter values, as given in Table 1, using 12th Gen Intel(R) Core

(TM) i7-1280P 2.00 GHz and 16 GB RAM under Windows 11 (64-bit) with MATLAB R2023a.

Table 1. Parameter settings for the proposed modified algorithm.

Parameter Values

Try-number 10

Fish population (𝑛𝑃𝑜𝑝) 40

𝑣𝑖𝑠𝑢𝑎𝑙𝑚𝑖𝑛 30

𝑠𝑡𝑒𝑝𝑚𝑖𝑛1 1

𝑠𝑡𝑒𝑝𝑚𝑖𝑛2 2

Crowd factor, 𝜇 0.3

σ 0.6

Max-Iterations 1000

35339

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

a) Comparison of results based on the minimum values

In minimization problems, the minimum values are used to determine the best performance of the

proposed solution approach. Tables 2, 3, and 4 illustrate the minimum values of the proposed algorithm

for 10 instances of different size problems. The results are then compared with the standard AFSA,

Modified 1 [24], Modified 2 [25], and three methods presented in Modified 3 [26].

Table 2. Minimum values of proposed AFSA and their comparison with other versions of

AFSA for small-sized instances.

 N M Proposed AFSA Modified

1

Modified

2

Modified 3 -

method 1

Modified 3 -

method 2

Modified 3 -

method 3

1 5 3 23.25 23.25 23.25 23.25 23.25 23.25 23.25

2 10 3 42 42.75 42 42 42 42 42

3 15 4 47.25 48 50.25 48.75 49.5 51 48

4 20 4 62.25 60 62.25 59.25 62.25 63.75 58.5

5 25 5 63.75 63 65.25 64.5 66.75 64.5 62.25

6 30 5 74.25 72 75 70.5 76.5 78.75 70.5

7 35 6 83.25 81.75 82.5 78.75 86.25 91.5 78.75

8 40 6 96.25 94 102.25 94 96.25 100 92.5

9 45 7 90 87.75 96 88.5 94.5 102 89.25

10 50 7 91.5 89.25 97.5 90 98.25 99 91.5

Table 3. Minimum values of proposed AFSA and their comparison with other versions of

AFSA for medium-sized instances.

Table 4. Minimum values of proposed AFSA and their comparison with other versions of

AFSA for large-sized instances.

 N M Proposed AFSA Modified

1

Modified

2

Modified 3 -

method 1

Modified 3 -

method 2

Modified 3 -

method 3

1 60 8 62.5 63 66 63 67.5 68.5 65

2 80 8 107.5 101 118.5 102.5 123 133 110

3 100 9 105.5 106 117.5 108.5 117.5 117.5 113.5

4 120 9 123.5 141.5 147.5 131.5 173 164 136

5 140 10 136.5 136.5 201 142.5 193 221 154

6 160 10 161.5 173.5 230.5 178.5 221.5 348 192

7 180 11 154 154.5 208.5 163 269.5 326 183.5

8 200 11 181.5 192.5 269.5 187.5 282.5 372 209.5

9 220 12 205 238 538 262.5 660.5 697.5 340

10 240 12 251.5 308.5 621 294.5 664.5 1206 351

 N M Proposed AFSA Modified

1

Modified

2

Modified 3 -

method 1

Modified 3

-method 2

Modified 3 -

method 3

1 250 13 262 287.5 629 287 684 1058 384.5

2 270 13 270 276 715 347 971.5 1876 429

3 290 14 409 452.5 1463.5 432.5 1249.5 2580 715.5

4 310 14 303 404 1191 327.5 1313 3215 514

5 330 15 559 542.5 1695.5 448.5 1543 4593 716.5

6 350 15 565 898 2014.5 884 2624.5 8196.5 1121

7 370 16 449.5 475.5 1510 463.5 1772 6986 668

8 390 16 847 891 2647.5 801 3150 10149.5 1369.5

9 410 17 517 649 2584.5 841.5 2437.5 9709 1191

10 430 17 696.5 938 2752 977 3666.5 11626.5 1411.5

35340

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

As shown in Tables 2, 3 and 4, the bold value is the minimum value obtained that represents the best-

found solution in comparison with all seven versions of AFSA. The proposed algorithm exhibits relative

performance improvements when dealing with small-sized problems, as demonstrated by the results in

Table 2. It is notable that the best minimum values that the proposed algorithm yields are 23.25, 42, and

47.25, which happened in the instances of (N(5, M(3), (N(10, M(3), and (N(15, M(4), respectively.

However, as the number of jobs and machines increases to medium and large sizes (as seen in Table 3 and

Table 4), the algorithm demonstrates an even more pronounced enhancement in its superior performance.

We noticed that the proposed algorithm provides the best minimum values in nine instances of medium-

sized problems, 62.5, 105.5, 123.5,136.5,161.5,154, 181.5, 205, 251.5, which happened in the instances of

(N(60, M(8), (N(100, M(9), (N(120, M(9), (N(140, M(10), (N(160, M(10), (N(180, M(11), (N(200,

M(11), (N(220, M(12), and (N(240, M(12), respectively. Meanwhile, the standard AFSA provides the

best minimum values in the second instance when (N(80, M(8). In large-sized problems, the proposed

algorithm also provides the best minimum values in nine instances and gives the values 262, 270,409, 303,

565, 449.5, 847, 517, 696.5, which happened in the instances of (N(250, M(13), (N(270, M(13), (N(290,

M(14), (N(310, M(14), (N(350, M(15), (N(370, M(16), (N(390, M(16), (N(410, M(17), and (N(430,

M(17), respectively. The standard AFSA provides the best minimum value in the fifth instance when

(N(330, M(15). We observe that in medium and large size problems, the AFSA algorithm converges with

an unsatisfactory solution. However, when modifications are added to the AFSA, the proposed modified

algorithm converges to the best solutions in 9 out of 10 instances for each problem for the proposed multi-

objective function. This reflects the effectiveness of the proposed modifications, making the modified

algorithm more effective in solving the proposed multi-objective UPMSP.

b) Comparison of results based on statistical values

A descriptive statistical analysis of the performance of AFSA and several modified AFSA

algorithms was conducted to demonstrate the superior accuracy and computational efficiency of the

proposed algorithm. The results in Tables 5, 6, and 7 present the numerical outcomes of all algorithms

after 10 independent runs of the proposed UPMSP model. In the tables, “Mean” refers to the average

value, and “STD” refers to the standard deviation, which was used to verify the reliability of the

performance of the proposed algorithm. The results show that as more jobs and machines are added to

the problem, the mean and STD of all algorithms increase. A smaller mean value represents the best

average solution performed by the algorithms, and a lower STD indicates that the results are closer to

the mean, suggesting more consistent or stable performance.

35341

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Table 5. Statistical values of proposed AFSA and their comparison with other versions of AFSA for small-sized instances.

 N M Proposed AFSA Modified 1 Modified 2 Modified 3 -method 1 Modified 3 -method 2 Modified 3 -method 3

1 5 3 Mean 23.475 23.475 23.7 24.6 23.925 24.075 23.7

 STD 0.711512 0.711512 0.9486833 1.161895 1.08685326 1.38969421 0.9486833

2 10 3 Mean 43.275 43.8 44.55 43.95 44.55 44.475 43.575

 STD 1.325236 0.880341 2.12720474 1.665833 2.15638587 2.0630681 1.02774024

3 15 4 Mean 51.975 53.625 53.175 52.125 54.825 56.025 51.99

 STD 2.646932 3.14742 2.67978544 2.430278 4.09954266 2.69374275 2.97489496

4 20 4 Mean 64.05 62.55 66.3 62.775 66.375 66.9 61.95

 STD 1.589025 1.627882 2.94108823 2.265226 2.65165043 1.6507574 1.73925271

5 25 5 Mean 67.075 65.325 70.275 67.875 70.025 72.075 65.3

 STD 1.852363 1.982738 2.84421928 2.430278 3.06741386 4.61586937 1.97132217

6 30 5 Mean 76.275 73.65 79.275 74.25 78.975 80.625 72.6

 STD 1.371587 1.573213 3.85762232 2.236068 2.39921862 2.3782872 1.6881943

7 35 6 Mean 87.9 85.125 91.65 83.55 90.85 97.35 83.325

 STD 3.274905 2.378287 7.58122681 3.28253 4.74517299 4.79322438 2.67978544

8 40 6 Mean 98.875 98.5 108.55 97.75 105.55 109.375 98

 STD 2.243045 3.391165 9.38216393 3.221025 5.61471282 11.3976423 3.61132478

9 45 7 Mean 95.025 94.725 105.025 95.85 107.025 116.8 96.45

 STD 4.184047 3.708942 8.32453702 3.933828 7.31574596 11.5426744 4.86312657

10 50 7 Mean 94.65 93.6 108.65 93.125 107.475 112.95 96.375

 STD 1.864135 2.202272 7.22284185 2.118864 4.89961733 9.4647005 3.10745072

35342

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Table 6. Statistical values of proposed AFSA and their comparison with other versions of AFSA for medium-sized instances.

 N M Proposed AFSA Modified 1 Modified 2 Modified 3 -method 1 Modified 3 -method 2 Modified 3 -method 3

1 60 8 Mean 65.9 64.65 69 65.45 69.8 72.35 66.45

 STD 1.449138 1.155903 2.47206616 1.403369 1.70293864 4.0828231 1.32182534

2 80 8 Mean 117.35 112.2 148.5 113.65 155.2 164.8 128.1

 STD 8.3335 6.028635 29.3342803 7.742559 25.2005291 19.3249982 12.8101522

3 100 9 Mean 110 112.8 133.9 113.9 147.1 141.3 121.25

 STD 3.146427 3.851407 12.8491245 4.677369 24.4151592 14.2150155 9.98123239

4 120 9 Mean 141.65 148.2 195.85 146.75 218.1 254.9 167.3

 STD 5.869885 10.43245 37.7131351 18.29731 39.0894985 65.5802308 26.462972

5 140 10 Mean 151.75 156.15 231.25 153.9 238.2 297.3 177

 STD 181 196.2 307.35 193.8 363.1 449.6 240.85

6 160 10 Mean 17.02449 17.20982 59.1960256 9.724539 90.8407642 105.066064 26.5842999

 STD 177.95 175.15 299.65 181.45 326.7 456.3 217.45

7 180 11 Mean 12.71143 15.90606 70.8876458 12.38604 46.1923515 94.8976642 23.2360472

 STD 3.274905 2.378287 7.58122681 3.28253 4.74517299 4.79322438 2.67978544

8 200 11 Mean 203.85 213 310.3 204.5 393.2 580.55 240.6

 STD 18.0909 20.45863 33.4964343 11.19524 101.628736 99.4899353 26.4215821

9 220 12 Mean 281.1 317.2 752.55 302.9 837.35 1138.65 402.9

 STD 60.7096 50.07949 116.875397 27.08403 141.488133 306.002637 58.3784587

10 240 12 Mean 324.25 373.45 944.45 376.15 931.85 1702 442.95

 STD 47.46768 47.62379 231.365085 52.06942 162.443845 418.957038 66.6468512

35343

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Table 7. Statistical values of proposed AFSA and their comparison with other versions of AFSA for large-sized instances.

 N M Proposed AFSA Modified 1 Modified 2 Modified 3 -method 1 Modified 3 -method 2 Modified 3 -method 3

1 250 13 Mean 344.6 377.95 918.3 356.85 956.35 1705.35 481.45

 STD 56.49916 45.5689 195.281876 67.45412 166.979049 448.824146 65.4393061

2 270 13 Mean 336.15 430.4 1142.9 410.5 1181.6 2809.5 515.65

 STD 43.07361 78.93943 193.103714 47.35387 157.181919 954.20147 80.3202099

3 290 14 Mean 573.9 634.95 1753.05 566.2 1790.5 3777.8 866.9

 STD 118.7923 76.78341 138.85473 90.48732 292.947853 681.76899 118.181076

4 310 14 Mean 432.8 495 1440.4 448.3 1586.95 4748.05 608.55

 STD 106.8431 80.23611 180.931202 79.73156 247.053689 1065.97672 78.5367748

5 330 15 Mean 637.45 674.55 2187.55 699.15 2123.25 6812.7 985.8

 STD 79.19822 142.6311 339.222104 124.8408 317.492192 1292.51091 178.974579

6 350 15 Mean 779.25 1068.15 2767.5 1060.1 3106.25 9727.05 1408.65

 STD 144.6231 131.5367 475.518664 148.3487 367.185864 804.673172 154.263852

7 370 16 Mean 652.7 634.75 1965.45 689.65 2187.8 8790.5 927.1

 STD 133.5825 144.9935 257.429219 135.1053 309.22225 752.913858 208.926064

8 390 16 Mean 993.9 1304.75 3357.75 1120.05 3575.9 11184.05 1705.4

 STD 117.9894 253.0275 637.852833 199.1058 375.70303 627.130744 325.749034

9 410 17 Mean 866.35 1003.4 2927.1 983.95 2892.75 10599.05 1325.1

 STD 221.4315 201.1979 212.070193 207.7379 449.840666 611.269465 109.244069

10 430 17 Mean 1178.25 1325.9 3723.55 1270.55 4417.7 12701.75 1798.85

 STD 269.3216 270.0505 541.578631 241.2811 561.6097 871.22099 266.459508

35344

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Table 5 demonstrates that the proposed algorithm produced the best mean values of the proposed

model in the first three instances, with values of 23.475, 43.275, and 51.975. Additionally, the

algorithm achieved the best STD value in six instances: 0.711512, 1.589025, 1.852363, 1.371587,

2.243045, and 1.864135, for (N=5, M(3), (N=20, M(4), (N=25, M(5), (N=30, M(5), (N=40, M(5),

and (N=50, M(6), respectively, for small-sized problems. Table 6 and Table 7 show that the proposed

algorithm achieved the best mean values in six instances, such as 110 and 336.15 for (N=100, M(9),

and (N=270, M(13), respectively, and the best STD values in four instances, such as 3.146427 and

79.19822 for (N=100, M(9), and (N=330, M(15), respectively, compared to the other algorithms for

medium and large-sized problems. The summarized results based on the mean criterion indicate that

the superiority and efficiency of the proposed algorithm improves as the number of machines and jobs

increases and low values of STD imply more consistency in the performance of the algorithm.

The best possible solutions for the proposed model are analyzed and illustrated in figures after 10

runs of each algorithm. It is guaranteed that the proposed algorithm will converge to the best domain

solutions for each of the three size test problems. The provided graph samples illustrate the

performance of the proposed algorithm in Figures 4, 5, and 6, on two instances of each size problem,

clarifying the best convergence to the best solution and demonstrating that the proposed algorithm can

stably converge when compared to other algorithms. Small-sized problems are illustrated in Figure 4,

with (N(10, M(3) and (N=15, M(4); medium-sized problems are illustrated in Figure 5, with (N(60,

M(8) and (N(220, M(12); and large-sized problems are illustrated in Figure 6, with (N(290, M(14)

and (N(370, M(18). In all figures, the x-axis represents the number of iterations used in the

comparison process, and the y-axis represents the function evaluation in terms of getting closer to

minimum values. As the number of jobs and iterations increases, the proposed algorithm has a notable

impact when approaching the best values. As shown in Figure 4, the proposed algorithm has a slight

impact on getting close to the best values. Figures 5 and 6 demonstrate a significant impact, confirming

the effectiveness of the proposed algorithm. This is evident from the smaller minimum values of the

objective function, which expanded the convergence range and accelerated the algorithm toward the

best feasible solutions. Additionally, the update process is guided to enhance the global search ability.

As a result, the convergence results and quality of the solutions produced by the proposed algorithm

improve as the number of jobs and iterations increase.

Figure 4. Performance of modified AFSA for small-size problems.

35345

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Figure 5. Performance of modified AFSA for medium-size problems.

Figure 6. Performance of modified AFSA for large-size problems.

c) Comparison of results based on the Wilcoxon signed-ranks test

A common practice in computational intelligence is to use statistical tests as part of the

performance evaluation process of a new method [54]. Therefore, the Wilcoxon signed-ranks test [55]

is utilized in this research since it is non-parametric, meaning it does not assume a normal distribution

of the data and is appropriate for small sample sizes. It is specifically formulated for pairwise

comparisons to determine significant differences between the proposed algorithm and the algorithms

under comparison, which is advantageous when evaluating two related samples. It is also robust, safe,

and easy to use. Tables 11, 12, and 13 summarize the results for small, medium, and large instances,

respectively, in comparison of the proposed algorithm with other AFSA versions

35346

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Table 11. Results of the Wilcoxon signed-rank test for small-size problems.

Problems
 1 2 3 4 5 6 7 8 9 10

Proposed VS p-value 9.77E-02 1.95E-02 7.81E-02 1.86E-01 3.16E-01 1.39E-01 3.22E-01 4.92E-01 3.22E-01 2.93E-02

AFSA R+ 14.5 19 50.5 45 47 45 27 45 49 52

 R- 40.5 36 4.5 10 8 10 28 10 6 3

 Ind. -1 -1 1 1 1 1 -1 1 1 1

Proposed VS

 Modified 1
p-value 0.021484 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03

R+ 52 55 55 55 55 55 55 55 55 55

R- 3 0 0 0 0 0 0 0 0 0

Ind. 1 1 1 1 1 1 1 1 1 1

Proposed VS

 Modified 2
p-value 0.578125 0.125 1.05E-01 8.28E-01 9.80E-01 9.96E-02 4.80E-01 9.22E-01 3.75E-01 3.71E-02

R+ 33.5 14.5 47 40 40 52 45 45 45 52

R- 21.5 40.5 8 15 15 3 10 10 10 3

Ind. 1 -1 1 1 1 1 1 1 1 1

Proposed VS

Modified 3

method 1

p-value 0.001953 0.001953 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03

R+ 55 55 55 55 55 55 55 55 55 55

R- 0 0 0 0 0 0 0 0 0 0

Ind. 1 1 1 1 1 1 1 1 1 1

Proposed VS

Modified 3

method 2

p-value 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953

R+ 55 55 55 55 55 55 55 55 55 55

R- 0 0 0 0 0 0 0 0 0 0

Ind. 1 1 1 1 1 1 1 1 1 1

Proposed VS

Modified 3

 method 3

p-value 0.375 0.003906 0.003906 0.013672 0.009766 0.001953 0.009766 0.019531 0.005859 0.009766

R+ 47 54 54.5 52 54 55 52 52 54 52

R- 8 1 0.5 3 1 0 3 3 1 3

Ind. 1 1 1 1 1 1 1 1 1 1

35347

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Table 12. Results of the Wilcoxon signed-rank test for medium-size problems.

Problems 1 2 3 4 5 6 7 8 9 10

Proposed VS AFSA

p-value 1.00E+00 3.20E-01 2.71E-01 1.56E-02 2.34E-02 1.17E-02 1.13E-01 8.59E-01 9.49E-01 5.16E-01

R+ 32 50.5 49 18.5 14.5 14.5 30.5 41.5 42.5 26.5

R- 23 4.5 6 36.5 40.5 40.5 24.5 13.5 12.5 28.5

Ind. 1 1 1 -1 -1 -1 1 1 1 -1

Proposed VS Modified 1

p-value 1 2.34E-01 2.85E-01 2.54E-02 2.54E-02 9.77E-02 4.16E-01 3.91E-03 1.56E-02 1.95E-03

R+ 36.5 45 50.5 52 54 50.5 40 54.5 54 55

R- 18.5 10 4.5 3 1 4.5 15 0.5 1 0

Ind. 1 1 1 1 1 1 1 1 1 1

Proposed VS Modified 2 p-value 0.0625 0.449219 7.93E-01 2.73E-01 3.11E-01 6.64E-02 4.30E-02 1.95E-01 6.45E-01 9.77E-02

R+ 47.5 40 42.5 30.5 45 23 14.5 30.5 47 30.5

R- 7.5 15 12.5 24.5 10 32 40.5 24.5 8 24.5

Ind. 1 1 1 1 1 -1 -1 1 1 1

Proposed VS Modified 3

method 1

p-value 0.5 0.1875 1.95E-01 3.52E-02 5.86E-03 5.86E-03 6.25E-02 1.17E-02 3.91E-03 1.95E-03

R+ 37 48.5 48.5 53 54 54 49 54 54 55

R- 18 6.5 6.5 2 1 1 6 1 1 0

Ind. 1 1 1 1 1 1 1 1 1 1

Proposed VS Modified3

method 2

p-value 0.5 0.128906 0.015625 0.015625 0.001953 0.001953 0.003906 0.007813 0.001953 0.001953

R+ 40.5 50.5 54 53 55 55 54.5 53 55 55

R- 14.5 4.5 1 2 0 0 0.5 2 0 0

Ind. 1 1 1 1 1 1 1 1 1 1

Proposed VS Modified 3

method 3

p-value 1 0.6875 0.929688 0.039063 0.0625 0.001953 0.027344 0.46875 0.425781 0.080078

R+ 36.5 41.5 42.5 23 19 0 19 37 42.5 54

R- 18.5 13.5 12.5 32 36 55 36 18 12.5 1

Ind. 1 1 1 -1 -1 -1 -1 1 1 1

35348

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Table 13. Results of the Wilcoxon signed-rank test for large-size problems.

Problems 1 2 3 4 5 6 7 8 9 10

Proposed VS AFSA

p-value 1.93E-01 1.37E-02 1.31E-01 1.93E-01 6.25E-01 1.95E-03 7.70E-01 5.86E-03 1.60E-01 3.75E-01

R+ 45 54 49 49 45 55 34 54 52 45

R- 10 1 6 6 10 0 21 1 3 10

Ind. 1 1 1 1 1 1 1 1 1 1

Proposed VS Modified 1

p-value 0.001953 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03

R+ 55 55 55 55 55 55 55 55 55 55

R- 0 0 0 0 0 0 0 0 0 0

Ind. 1 1 1 1 1 1 1 1 1 1

Proposed VS Modified 2

p-value 0.769531 0.005859 9.22E-01 4.92E-01 2.75E-01 3.91E-03 4.32E-01 1.93E-01 5.57E-01 6.95E-01

R+ 49 54 45 45 45 54 49 49 45 45

R- 6 1 10 10 10 1 6 6 10 10

Ind. 1 1 1 1 1 1 1 1 1 1

Proposed VS Modified 3 method 1

p-value 0.001953 0.001953 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03

R+ 55 55 55 55 55 55 55 55 55 55

R- 0 0 0 0 0 0 0 0 0 0

Ind. 1 1 1 1 1 1 1 1 1 1

Proposed VS Modified 3 method 2

p-value 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953

R+ 55 55 55 55 55 55 55 55 55 55

R- 0 0 0 0 0 0 0 0 0 0

Ind. 1 1 1 1 1 1 1 1 1 1

Proposed VS Modified 3 method 3

p-value 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953 0.013672 0.001953 0.001953 0.001953

R+ 55 55 55 55 55 55 54 55 55 55

R- 0 0 0 0 0 0 1 0 0 0

Ind. 1 1 1 1 1 1 1 1 1 1

35349

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

Tables 11, 12, and 13 present the results of the Wilcoxon signed-rank test obtained by the proposed

algorithm, AFSA, Modified 1, Modified 2, Modified 3-method 1, Modified 3-method 2, and Modified

3- method 3. The p-value is the assessment index between zero and one, carried out with a significance

level of 0.05. R+ represents the total ranking indicating that the first method is superior to the second

one, while R− represents the total ranking indicating that the second method is superior to the first one.

Indicate (Ind) denotes a difference in performance scores between the two algorithms; if Ind (+1, the

proposed modified AFSA is superior to the other; if Ind (-1, the other algorithm is superior to the

proposed modified AFSA; and if Ind (0, the performance of the two algorithms is equal.

Subsequently, Table 11 shows that the p-value in most pairwise comparisons is lower than the

significance level of 0.05. For instance, the p-value in all ten instances in the comparison between the

proposed algorithm and AFSA is lower than 0.05, which proves that the proposed algorithm

outperforms AFSA. The comparison results with other algorithms based on the Wilcoxon signed-ranks

test demonstrate that, except for the results with AFSA for small-size problems and the results with

AFSA and Modified 3-method 3 for medium-size problems, the proposed algorithm outperforms the

other compared algorithms and has great significant differences in performance. Furthermore, the

proposed algorithm outperforms all compared algorithms and shows great significant differences for

large-sized problems in each pairwise comparison.

To sum up the discussions above, it is evident that the proposed algorithm's effectiveness stems

from leveraging AFSA's advantages, including its multi-stage solution updates and search domain

exploration. The algorithm enhances the exploitation and exploration phases by utilizing the best

solution extracted from AFSA. Additionally, by adapting improved visual and step parameters, it

balances global search capability with convergence speed and effectively applies AFSA to machine

scheduling problems. However, the proposed algorithm has limitations, particularly in achieving

optimal results for machines 4 to 10. Thus, improvements are necessary to solve small-sized jobs and

machine problems. While the stability of the proposed algorithm is commendable, further

enhancements are required.

7. Conclusions and future research

This research adopts UPMSP to minimize multi-objective makespan and total tardiness. A fuzzy

programming model is presented, which is transformed into a deterministic model using the total

integral value defuzzification method. The proposed algorithm is developed by adding aspiration

behavior to improve the performance of AFSA. Visual and step are crucial parameters for optimizing

AFSA; thus, improved visual and step parameters are adopted into the modified algorithm.

Additionally, transforming the continuous solution of AFSA into a discrete solution enables the

algorithm to handle the discrete model of UPMSP. Three sets of problem sizes, each including 10

randomly generated instances, are used to evaluate the performance of the algorithm. The proposed

algorithm's best performance metrics on the test problems are determined by the minimum values in

the proposed minimization problem. The first three instances provide good performance for small-

sized problems with up to 50 jobs and up to 7 machines, whereas the best performance is achieved in

nine instances for medium and large-sized problems with up to 240 jobs and 12 machines, and up to

430 jobs and 17 machines, respectively. According to computational results, the proposed algorithm

improves the exploitation capability of the AFSA and demonstrates superior performance compared to

the AFSA and other modified AFSA variants in identifying the best solutions for almost all test

35350

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

problems. The Wilcoxon signed-rank test supports the conclusion that the proposed algorithm

significantly outperforms the other algorithms. Based on the good performance of the proposed

modified algorithm, it might be used in the future to solve more complex scheduling problems, such

as job shop machine scheduling or flow shop scheduling, as well as various performance measures.

Author contributions

Azhar Mahdi Ibadi conceptualized the research methodology and led the development of the

algorithm and programming, focusing on results analysis and writing the initial draft. Rosshairy Abd

Rahman led the supervision and validation, thoroughly checking it for significant conceptual content.

All authors participated in carefully editing the manuscript. All authors have read and approved the

final version of the manuscript for publication.

Acknowledgments

The authors are deeply grateful to the School of Quantitative Sciences, Universiti Utara Malaysia,

for their invaluable support in facilitating this research.

Conflict of interest

The authors declare no conflicts of interest.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this

article.

References

1. K. Salimifard, D. Mohammadi, R. Moghdani, A. Abbasizad, Green fuzzy parallel machine

scheduling with sequence-dependent setup in the plastic moulding industry, Asian J. Manag. Sci.

Appl., 4 (2019), 27–48. https://doi.org/10.1504/AJMSA. 2019.101423

2. M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NP-

completeness, Freeman, San Francisco, (1979). https://doi.org/10.1137/1024022

3. A. E. Ezugwu, A. K. Shukla, R. Nath, A. A. Akinyelu, J. O. Agushaka, H. Chiroma, et al.,

Metaheuristics: A comprehensive overview and classification along with bibliometric analysis.

Artif. Intell. Rev., 54 (2021), 4237–4316. https://doi.org/10.1007/s10462-020-0952-0

4. D. Y. Lin, T. Y. Huang, A hybrid metaheuristic for the unrelated parallel machine scheduling

problem, Mathematics, 9 (2021). 1–20. https://doi.org/10.3390/math9070768

5. A. E. Ezugwu, F. Akutsah, An improved firefly algorithm for the unrelated parallel machines

scheduling problem with sequence-dependent setup times, IEEE Access, 6 (2018), 54459–54478.

https://doi.org/10.1109/access.2018.2872110

https://doi.org/10.1504/AJMSA.%202019.101423
https://doi.org/10.1137/1024022
https://doi.org/10.1007/s10462-020-0952-0
https://doi.org/10.3390/math9070768
https://doi.org/10.1109/access.2018.2872110

35351

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

6. C. Chen, M. Fathi, M. Khakifirooz, K. Wu, Hybrid tabu search algorithm for unrelated parallel

machine scheduling in semiconductor fabs with setup times, job release, and expired times,

Comput. Ind. Eng., 165 (2022), 107915. https://doi.org/10.1016/j.cie. 2021.107915

7. J. B. Abikarram, K. McConky, R. Proano, Energy cost minimization for unrelated parallel

machine scheduling under real time and demand charge pricing, J. Clean. Prod., 208 (2019), 232–

242. https://doi.org/10.1016/j.jclepro.2018.10.048

8. N. Vakhania, On preemptive scheduling on unrelated machines using linear programming, AIMS

Math., 8 (2023), 7061–7082. https://doi.org/10.3934/math.2023356

9. Y. Fu, Y. Hou, Z. Wang, X. Wu, K. Gao, L. Wang, Distributed scheduling problems in intelligent

manufacturing systems, Tsinghua Sci. Technol., 26 (2021), 625–645.

https://doi.org/10.26599/tst.2021.9010009

10. İ. Sarıçiçek, Multi-objective scheduling by maximizing machine preferences for unrelated parallel

machines, Sigma J. Eng. Nat. Sci., 38 (2020), 405–419.

https://doi.org/10.5829/idosi.ije.2017.30.02b.09

11. R. Meng, Y. Rao, Q. Luo, Modeling and solving for bi-objective cutting parallel machine

scheduling problem, Ann. Oper. Res., 285 (2020), 223–245. https://doi.org/10.1007/s10479-019-

03208-z

12. M. Moser, N. Musliu, A. Schaerf, F. Winter, Exact and metaheuristic approaches for unrelated

parallel machine scheduling, J. Scheduling, 25 (2022), 507–534. https://doi.org/10.1007/s10951-

021-00714-6

13. M. Đurasević, D. Jakobović, Heuristic and metaheuristic methods for the unrelated machines

scheduling problem: A Survey, IEEE T. Cybernetics, (2021). http://arxiv.org/abs/2107.13106

14. A. F. Guevara-Guevara, V. Gómez-Fuentes, L. J. Posos-Rodríguez, N. Remolina-Gómez, E. M.

González-Neira, Earliness/tardiness minimization in a no-wait flow shop with sequence-

dependent setup times, J. Proj. Manag., 7 (2022). 177–190.

https://doi.org/10.5267/j.jpm.2021.12.001

15. A. Sadati, R. Tavakkoli-Moghaddam, B. Naderi, M. Mohammadi, A bi-objective model for a

scheduling problem of unrelated parallel batch processing machines with fuzzy parameters by two

fuzzy multi-objective meta-heuristics, Iran. J. Fuzzy Syst., 16 (2019), 21–40.

https://doi.org/10.3233/ifs-151846

16. G. Rivera Zarate, Outranking-based multi-objective PSO for scheduling unrelated parallel

machines with a freight industry-oriented application, Instituto de Ingeniería Tecnología. (2021).

https://doi.org/10.1016/j.engappai.2021.104556

17. A. Fallahi, B. Shahidi-Zadeh, S. T. A. Niaki, Unrelated parallel batch processing machine

scheduling for production systems under carbon reduction policies: NSGA-II and MOGWO

metaheuristics, Soft Comput., 27 (2023), 17063–17091. https://doi.org/10.1007/s00500-023-

08754-0

18. W. Zhou, F. Chen, X. Ji, H. Li, J. Zhou, A Pareto-based discrete particle swarm optimization for

parallel casting workshop scheduling problem with fuzzy processing time, Knowl. Based Syst.,

(2022), 256, 109872. https://doi.org/10.1016/j.knosys.2022.109872

19. M. Z. Erişgin Barak, M. Koyuncu, Fuzzy order acceptance and scheduling on identical parallel

machines, Symmetry, 13 (2021), 1236. https://doi.org/10.3390/sym13071236

https://doi.org/10.1016/j.cie.%202021.107915
https://doi.org/10.1016/j.jclepro.2018.10.048
https://doi.org/10.3934/math.2023356
https://doi.org/10.26599/tst.2021.9010009
https://doi.org/10.5829/idosi.ije.2017.30.02b.09
https://doi.org/10.1007/s10479-019-03208-z
https://doi.org/10.1007/s10479-019-03208-z
https://doi.org/10.1007/s10951-021-00714-6
https://doi.org/10.1007/s10951-021-00714-6
http://arxiv.org/abs/2107.13106
https://doi.org/10.5267/j.jpm.2021.12.001
https://doi.org/10.3233/ifs-151846
https://doi.org/10.1016/j.engappai.2021.104556
https://doi.org/10.1007/s00500-023-08754-0
https://doi.org/10.1007/s00500-023-08754-0
https://doi.org/10.1016/j.knosys.2022.109872
https://doi.org/10.3390/sym13071236

35352

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

20. J. Rezaeian, S. Mohammad-Hosseini, S. Zabihzadeh, K. Shokoufi, Fuzzy scheduling problem on

unrelated parallel machine in JIT production system, Artif. Intell. Evol., 1 (2020), 17–33.

https://doi.org/10.37256/aie.112020202

21. K. Li, J. Chen, H. Fu, Z. Jia, W. Fu, Uniform parallel machine scheduling with fuzzy processing

times under resource consumption constraint, Appl. Soft Comput., 82 (2019), 1–13.

https://doi.org/10.1016/j.asoc.2019.105585

22. H. A. Alsattar, A. A. Zaidan, B. B. Zaidan, Novel meta-heuristic bald eagle search optimisation

algorithm, Artif. Intell. Rev., 53 (2020), 2237–2264. https://doi.org/10.1007/s10462-019-09732-5

23. F. Pourpanah, R. Wang, C. P. Lim, X. Z. Wang, D. Yazdani, A review of artificial fish swarm

algorithms: Recent advances and applications, Artif. Intell. Rev., 56 (2020), 1867–1903.

https://doi.org/10.1007/s10462-022-10214-4

24. L. Zhao, F. Wang, Y. Bai, Route planning for autonomous vessels based on improved artificial

fish swarm algorithm, Ships Offshore Struc., 18 (2023), 897–906.

https://doi.org/10.1080/17445302.2022.2081423

25. W. H. Tan, J. Mohamad-Saleh, Normative fish swarm algorithm (NFSA) for optimization, Soft

Comput., 24 (2020), 2083–2099. https://doi.org/10.1007/s00500-019-04040-0

26. J. Huang, J. Zeng, Y. Bai, Z. Cheng, Z. Feng, L. Qi, et al., Layout optimization of fiber Bragg

grating strain sensor network based on modified artificial fish swarm algorithm, Opt. Fiber

Technol., 65 (2021), 102583. https://doi.org/10.1016/j.yofte.2021.102583

27. F. Wang, L. Zhao, Y. Bai, Path planning for unmanned surface vehicles based on modified

Artificial Fish Swarm Algorithm with local optimizer, Math. Probl. Eng., (2022).

https://doi.org/10.1155/2022/1283374

28. J. Jin, Z. Zhang, L. Zhang, A modified artificial fish swarm algorithm for unit commitment

optimization, in 2023 Eighth International Conference on Electromechanical Control Technology

and Transportation (ICECTT), 760–767. https://doi.org/10.1117/12.2689449

29. Y. Gao, L. Xie, Z. Zhang, Q. Fan, Twin support vector machine based on improved artificial fish

swarm algorithm with application to flame recognition, Appl. Intell., 50 (2020), 2312–2327.

https://doi.org/10.1007/s10489-020-01676-6

30. T. Li, F. Yang, D. Zhang, L. Zhai, Computation scheduling of multi-access edge networks based

on the artificial fish swarm algorithm, IEEE Access, 9 (2021), 74674–74683.

https://doi.org/10.1109/ACCESS.2021.3078539

31. E. B. Tirkolaee, A. Goli, G. W. Weber, Fuzzy mathematical programming and self-adaptive

artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with

outsourcing option, IEEE T. Fuzzy Syst., 28 (2020), 2772–2783.

https://doi.org/10.1109/TFUZZ.2020.2998174

32. P. Kongsri, J. Buddhakulsomsiri, A mixed integer programming model for unrelated parallel

machine scheduling problem with sequence dependent setup time to minimize makespan and total

tardiness, In 2020 IEEE 7th International Conference on Industrial Engineering and Applications

(ICIEA), 605–609. https://doi.org/10.1109/iciea49774.2020.9102086

33. R. L. Graham, E. L. Lawler, J. K. Lenstra, A. R. Kan, Optimization and approximation in

deterministic sequencing and scheduling: a survey, Annals Discrete Math., 5 (1979), 287–326.

https://doi.org/10.1016/s0167-5060(08)70356-x

https://doi.org/10.37256/aie.112020202
https://doi.org/10.1016/j.asoc.2019.105585
https://doi.org/10.1007/s10462-019-09732-5
https://doi.org/10.1007/s10462-022-10214-4
https://doi.org/10.1080/17445302.2022.2081423
https://doi.org/10.1007/s00500-019-04040-0
https://doi.org/10.1016/j.yofte.2021.102583
https://doi.org/10.1155/2022/1283374
https://doi.org/10.1117/12.2689449
https://doi.org/10.1007/s10489-020-01676-6
https://doi.org/10.1109/ACCESS.2021.3078539
https://doi.org/10.1109/TFUZZ.2020.2998174
https://doi.org/10.1109/iciea49774.2020.9102086
https://doi.org/10.1016/s0167-5060(08)70356-x

35353

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

34. Y. Li, J. F. Côté, L. Callegari-Coelho, P. Wu, Novel formulations and logic-based benders

decomposition for the integrated parallel machine scheduling and location problem, INFORMS J.

Comput., 34 (2022), 1048–1069. https://doi.org/10.1287/ijoc.2021.1113

35. Y. Li, J. F. Côté, L. C. Coelho, P. Wu, Novel efficient formulation and matheuristic for large-sized

unrelated parallel machine scheduling with release dates, Int. J. Prod. Res., 60 (2022), 6104–6123.

https://doi.org/10.1080/00207543.2021.1983224

36. S. Chakraverty, D. M. Sahoo, N. R. Mahato, Defuzzification, In Concepts of Soft Computing,

Springer Singapore, 2019, 117–127. https://doi.org/10.1007/978-981-13-7430-2_7

37. L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10. 1016/s0019-

9958(65)90241-x

38. H. J. Zimmermann, Fuzzy set theory, WIRES Comput. Stat., 2 (2010), 317–332.

https://doi.org/10.1002/wics.82

39. H. T. Lee, S. H. Chen, H. Y. Kang, Multicriteria scheduling using fuzzy theory and tabu search,

Int. J. Prod. Res., 40 (2002), 1221–1234. https://doi.org/10.1080/ 00207540110098832

40. S. Banerjee, T. K. Roy, Arithmetic operations on generalized trapezoidal fuzzy number and its

applications, Turkish J. Fuzzy Syst., 3 (2012), 16–44.

41. J. Shen, An uncertain parallel machine problem with deterioration and learning effect, Comput.

Appl. Math., 38 (2019), 1–17. https://doi.org/10.1007/s40314-019-0789-5

42. T. W. Liao, P. Su, Parallel machine scheduling in fuzzy environment with hybrid ant colony

optimization including a comparison of fuzzy number ranking methods in consideration of spread

of fuzziness, Appl. Soft Comput. J., 56 (2017), 65–81. https://doi.org/10.1016/j. asoc.2017.03.004

43. T. S. Liou, M. J. Wang, Ranking fuzzy numbers with integral value, Fuzzy Sets Syst., 50 (1992),

247–255. https://doi.org/10.1016/0165-0114(92)90223-q

44. X. L. Li, An optimizing method based on autonomous animats: fish-swarm algorithm, Syst. Eng.

Theory Practice, 22 (2002), 32–38.

45. A. W. Abdulqader, S. M. Ali, Diversity operators-based Artificial Fish Swarm Algorithm to solve

flexible job shop scheduling problem, Baghdad Sci. J., (2023).

https://doi.org/10.21123/bsj.2023.6810

46. L. Zhang, M. Fu, T. Fei, X. Pan, Application of FWA-Artificial Fish Swarm Algorithm in the

Location of Low-Carbon Cold Chain Logistics Distribution Center in Beijing-Tianjin-Hebei

Metropolitan Area, Sci. Programming, (2021), 1–10. https://doi.org/10.1155/2021/9945583

47. Y. Liu, X. Feng, L. Zhang, W. Hua, K. Li, A pareto artificial fish swarm algorithm for solving a

multi-objective electric transit network design problem, Transportmetrica A, 16 (2020),1648–

1670. https://doi.org/10.1080/23249935.2020.1773574

48. S. Gorgich, S. Tabatabaei, Proposing an energy-aware routing protocol by using fish swarm

optimization algorithm in WSN (wireless sensor networks), Wireless Pers. Commun., 119 (2021),

1935–1955. https://doi.org/10.1007/s11277-021-08312-7

49. R. A. Hasan, R. A. I. Alhayali, M. A., Mohammed, T. Sutikno, An improved fish swarm algorithm

to assign tasks and cut down on latency in cloud computing, TELKOMNIKA (Telecommunication

Computing Electronics and Control), 20 (2022), 1103–1108. https://doi.org/10.12928/telk

omnika.v20i5.22645

50. N. M. Sureja, S. P. Patel, Solving a combinatorial optimization problem using artificial fish swarm

algorithm, Int. J. Eng. Trends Technol, 68 (2020), 27–32. https://doi.org/10.14445/22315381/ijett-

v68i5p206s

https://doi.org/10.1287/ijoc.2021.1113
https://doi.org/10.1080/00207543.2021.1983224
https://doi.org/10.1007/978-981-13-7430-2_7
https://doi.org/10.%201016/s0019-9958(65)90241-x
https://doi.org/10.%201016/s0019-9958(65)90241-x
https://doi.org/10.1002/wics.82
https://doi.org/10.1080/%2000207540110098832
https://doi.org/10.1007/s40314-019-0789-5
https://doi.org/10.1016/j.%20asoc.2017.03.004
https://doi.org/10.1016/0165-0114(92)90223-q
https://doi.org/10.21123/bsj.2023.6810
https://doi.org/10.1155/2021/9945583
https://doi.org/10.1080/23249935.2020.1773574
https://doi.org/10.1007/s11277-021-08312-7
https://doi.org/10.12928/telk%20omnika.v20i5.22645
https://doi.org/10.12928/telk%20omnika.v20i5.22645
https://doi.org/10.14445/22315381/ijett-v68i5p206s
https://doi.org/10.14445/22315381/ijett-v68i5p206s

35354

AIMS Mathematics Volume 9, Issue 12, 35326–35354.

51. M. Yadollahi, S. S. Razavi, Using Artificial Fish Swarm Algorithm to solve university exam

timetabling problem, J. Adv. Comput. Res., 10 (2019), 109–117.

52. C. Peraza, P. Ochoa, L. Amador, O. Castillo, Artificial Fish Swarm Algorithm for the Optimization

of a Benchmark Set of Functions, In New Perspectives on Hybrid Intelligent System Design based

on Fuzzy Logic, Neural Networks and Metaheuristics, Studies in Computational Intelligence,

1050 (2022), (77–92). https://doi.org/10.1007/978-3-031-08266-5_6

53. S. P. M. Villablanca, An artificial fish swarm algorithm to solve the set covering problem doctoral

dissertation, pontificia universidad católica de valparaíso, (2016).

54. J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric

statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,

Swarm Evol Comput, 1 (2011), 3–18. https://doi.org/10.1016/j.swevo.2011.02.002

55. F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin, 1 (1945), 80–83.

https://doi.org/10.2307/3001968

© 2024 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (https://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1007/978-3-031-08266-5_6
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.2307/3001968

