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Abstract: In this paper, we use the Riccati–Bernoulli sub-ODE method in conjunction with
the Bäcklund transformation to find out the exact solutions of the nonlinear time–space fractional
Bogoyavlenskii equation. The obtained solutions encompass multiple kink solitary wave solutions
that are quite unique and important in addition to solutions presented in hyperbolic, trigonometric,
and rational function forms. This equation describes central factors influencing its behavior including
fluid dynamics in shallow water waves and plasma, which demonstrates our conclusions have broad
applications for such systems. We also study the effect of the fractional order parameter (α) on
solutions and plot their behavior using MATLAB in two dimensions. This work also contributes
to the knowledge of the physical structures of the fractional Bogoyavlenskyi equation apart from
showcasing the potential of the Riccati–Bernoulli sub-ODE method when applied to nonlinear
fractional differential equations.
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1. Introduction

The topic of non-linear partial differential equations (NPDEs) is fundamental in progressing
every scientific and engineering fields, such as physics, engineering, and chemistry. These
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equations are developed directly from the first principles to reflect the basic nature of the systems
concerned irrespective of the field, such as fluid mechanics, orbital mechanics, structural mechanics,
aerodynamics, etc. The solution of nPDEs, either through analytical solutions or numerical
approximations, is a great deal in the sense that it gives insights that enhance the understanding of
various phenomena. It is evident that several applications of analytical solutions of NPDEs are in
the field of fluids engineering, mechanics, economy, solid-state physics, astrophysics, ionized gases,
computational mechanics, and hydrodynamics [1–5]. In the last few decades, great advancement
has been seen in a number of innovative methods and approaches that have been employed and
evolved to look for these solutions and improve the modeling features and the predictive behavior
of these systems, i.e., (G/G’)-expansion technique [6], auxiliary equation method [7], homotophy
analysis technique [8], Sine-Gordon expansion technique [9], trigonometric function series method
[10], modified mapping method [11], bifurcation method [12], and meshfree techniques [13–15].

Furthermore, fractional calculus (FC) has become increasingly popular in various fields that
are related to science and engineering. It has been used to simulate and explain a number
of active techniques and complicated non-linear physical phenomena in such areas as physics,
electromagnetism, and engineering, as well as anomalous diffusion, chemical kinetics, viscoelasticity,
and electrochemistry [16–18]. Over the last few decades there has been a remarkable increase in the use
of fractional calculus in these fields [19]. Many algorithms have been designed for solving nonlinear
FDEs, which again emphasizes the significance as well as the broad applicability of (FC) in extending
the existing knowledge and capability of analyzing and modeling complex processes [20–22].
Fractional calculus is further enhanced by looking into the impact of fractional-order derivatives on
the multi-coupled discrete nonlinear transmission electrical network and the q-deformed Sinh–Gordon
equation. Thus, for the first time, the performance and differences between beta, Conformable,
M-truncated, and modified Riemann–Liouville derivatives are established. Fractional orders are
proved to affect soliton propagation, signal behavior, and wave dynamics, their sensitivity to physical
parameters, such as obliqueness angles and initial conditions proving the applicability of the fractional
modeling [23, 24]. From the above discussion, it was clear that these technique enhancements for
solving FDEs have spear head the researchers to solve problems that could not be solved before,
this has also borne many understandings and ideas in many scientific and engineering disciplines.
Several differential operators, such as the fractal Hausdorff derivative and J. H. He fractal derivative,
are applied in mathematical modeling of phenomena on fractal geometries especially for solving fractal
PDEs [25–28]. Nevertheless, in the present work, we investigate another direction, considering the
conformable fractional derivative, which enriches standard calculus by taking into account non-local
interactions and memory inherent to these systems. In turn, this derivative is most suitable when
modeling the time-space fractal nonlinear Bogoyavlenskii equation to determine interactions of waves
and dispersion effects more conveniently.

4
∂α f
∂tα
+
∂α

∂yα

(
∂2α f
∂x2α

)
− 4 f 2

(
∂α f
∂yα

)
− 4

∂α f
∂xα
= 0, 0 < α ≤ 1,

f
(
∂α f
∂yα

)
=
∂αg
∂xα

.

(1.1)

The fractional Bogoyavlenskii equation is one of the important nonlinear dynamical equations that
is used to study many important physical applications like the propagation of the wave in shallow water
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and plasma physics. The classical models often incorporate fractional integro-differential equations
rather than such derivatives since it provides the opportunity to describe memory and hereditary
effects while modeling realistic systems. Still, the fractional order parameter (α) was central to the
determination of such wave characteristics as amplitude, velocity, and dispersion. For example, values
of (α) that are possible indicate a strong memory effect, which in turn leads to slow dispersive waves,
while large values of (α) signify sharp and localized waves. It is the reason the discovered instances of
analytical solutions in the shape of the solitary wave and shock waves give a stable and dynamic view
of such physical systems, thus making the fractional Bogoyavlenskii equation relevant in nonlinear
wave dynamics. To the equation, the theory of the conformable fractional derivative is used so that the
description of systems with memory and non-local effects is possible. Provided assumptions are that
nonlinearity or rather its approximation, is quite weak, and the medium is homogeneous, and the time
and space effects, are represented by the fractional order (α). That is why Eq (1.1) is most suitable
for exploring physical processes such as dispersion of perturbations in a fluid and wave processes in
plasma, as well as in the case of deviation from standard conditions, it explains the behavior of waves.
In this regard, let (t) and (x, y) be the time and spatial dimensions, respectively. Further, the operator
integrating α-derivatives of powers agrees exactly to the idea of conformable fractional derivatives [29].

Dα
ΘZ(Θ) = lim

l→0

Z(l(Θ)1−α − Z(θ))
l

, 0 < α ≤ 1. (1.2)


Dα
ΘΘ

m = mΘm−α.

Dα
Θ (m1η(Θ) ± m2t(Θ)) = m1Dα

Θ(η(Θ)) ± m2Dα
Θ(t(Θ)).

Dα
Θ

[
f ◦ g

]
= Θ1−αg (Θ) Dα

Θ f (g(Θ)) .
(1.3)

In addition, when (α = 1), the equation under study can be transformed into the conventional
form of the Bogoyavlenskii equation [30]. Various solutions to the Bogoyavlenskii equation have been
applied for describing the wave propagation process of it. More especially, the shock wave solution
and the complex solitary wave solution to the equation were obtained by employing the travelling
wave method and the singular manifold method, respectively [31]. Malik et al. also discussed the
same equation and employed the G′/G-expansion method and one of its modifications, finding exact
travelling wave solutions of the Bogoyavlenskii equation [32]. Zahran and Khater used the method
known as the modified extended tanh-function method to investigate travelling wave solutions [33].
Furthermore there are obtained several travelling wave solutions by the help of exp−(−ϕ(ξ))-expansion
method [34] and other fractional nonlinear partial differential equations [35–39].

This work revolves around finding wave solutions of the time–space fractional Bogoyavlenskii
equation, more so given the difficulties in simulating wave dispersion and nonlinearity in various
systems. It can be very challenging to obtain sharp traveling wave solutions employing such equations
within the classical frameworks. To address these challenges, we use the conformable fractional
derivative that can effectively incorporate non-local interactions and memory effects existing in the
system and follow the structured methodology. Therefore, the purpose of this paper is to obtain
more precise and algebraically sound soliton solutions using the Riccati–Bernoulli sub-ODE method
and [40–42] Bäcklund transformation, herein offering a methodological solution to the effect of
nonlinear waves in the fractional Bogoyavlenskii system.
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2. Algorithm

Consider a non-linear partial differential equation of the form:

R1

(
h,Dα

t (h),Dα
x1

(h),Dα
x2

(h), hDα
x1

(h), . . .
)
= 0, 0 < α ≤ 1, (2.1)

where h = h(t, x1, x2, x3, . . . , xr) is an unknown function and R1 is represented as a polynomial in h and
its partial derivatives and non-linear terms.

Perform a wave transformation to decompose the given differential equation into a nonlinear
ordinary differential equation. g(ζ) = h(t, x1, x2, x3, . . . , xr). This transformation reduces the
differential equation to a nonlinear ODE with respect to the variable (ζ) of the form:

R2
(
g, g′(ζ), g′′(ζ), gg′(ζ), . . .

)
= 0, (2.2)

Assume that; Eq (2.2) has a formal solution of the form:

g(ζ) =
k∑

j=−k

ciG(ζ)i. (2.3)

where ci are constants to be determined. It is assumed that, either cl , 0 or c−l , 0 and G(ζ) are
obtained from the following Bäcklund transformation.

G(ζ) =
−RB + AΘ(ζ)

A + BΘ(ζ)
. (2.4)

The constants (R), (A), and (B) are fixed parameters with B , 0, also Θ(ζ) satisfies a generalized
Riccati equation:

dΘ
dζ
= R + Θ(ζ)2, (2.5)

Hence, the structure of the Riccati equation simplifies the nature of perfectly acceptable multiple
solution types [43].

Θ =

−
√
−R tanh(

√
−Rζ), as R < 0,

−
√
−R coth(

√
−Rζ), as R < 0,

Θ = −
1
ζ
, as R = 0,

Θ =


√

R tan(
√

Rζ), as R > 0,
−
√

R cot(
√

Rζ), as R > 0.

(2.6)

It is required to identify the positive integer (m) in the assumed solution by comparing the orders of
derivative terms and nonlinear terms in the given ordinary differential equation. Substitute the assumed
solution, the generalized Riccati equation, into the ODE. Set the coefficients of the obtained expression
Θ(ζ) equal to zero, and you will receive a set of algebraic equations. Substitute the values of the
constants (ci), (ω), (l), and (R) obtained in the previous step into the algebraic equations, which are
derived from the expansion of the functions, and solve them, generally through Maple. Replace the
solutions of the algebraic equations into the assumed formal solution to give exact solutions of Eq (2.1).
It is helpful for the readers to have the next step clearly outlined as follows to enable them to solve the
problem:
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1) Output: Introducing a new type of partial differential equations (PDE) widely known as fractional
(FPDE).

2) For a direct evolution of FPDE into ODE, it is required to apply the transformation.

3) If one can posit an overall form of a solution.

4) Perform the Bäcklund transformation on the supposed solution.

5) Transform the topological system into an algebraic one.

6) We are to solve the algebraic system of unknown parameters.

7) Replace the parameters into the assumed solution so as to get the exact solutions.

8) Visualize solutions: Plot (2D and intensity).

3. Problem execution

This section describes a new algorithm to analytically solve the space–time fractional
Bogoyavlenskii equation, pertinent especially to the main fluid flow in shallow water waves and plasma
physics. The fundamental purpose of the study is to obtain the analytical solitary wave solution
for the respective model fractional PDE. Here, f (x, y, t), is considered with respect to the retarded
time (t) along the direction of propagation (x). Thereby, we apply the following wave transformation
in order to bring Eq (1.1) into a form of an ordinary differential equation that can be more easily solved
analytically.

f (x, t) = F(ζ), where ζ =
lxα

α
+

myα

α
−
ωtα

α
. (3.1)

where (l), (m), and (ω) are constants to be determined and 0 < α ≤ 1. In this respect, the wave
transformation F(ζ) is found to be critical in reducing the generalized nonlinear time-space fractional
Bogoyavlenskii equation to the form of an ODE that can easily be solved analytically. The constants
(l), (m), and (ω) contained in this transformation are dimensionally convenient factors that control the
nature of and characteristics belonging to the solitary wave solutions. The coefficient (ω) denotes the
scaling of the temporal part (t), and its relation is closely associated with the temporal behavior of a
wave. In a physical sense, it may be taken as a frequency-dependent parameter that defines the rate
at which the wave travels. Thus, higher values of (ω) are being associated with the higher rates of
oscillations or wavefront advance. This coefficient is basic in explaining the change with time of the
wave as it propagates through the medium.

Coefficient (l) controls the extent of spatial variable (x), the portion of propagation direction riding
the wave profile. It is related to the wave amplitude and the wave length in the x-direction. Fluctuations
in l determine the spatial dimensions of the wave and energy density that can be related to either the
wave propagation or dispersion in the direction of the dominant motion axis. Likewise, the coefficient
(m) controls the transverse spatial variable (y) and represents the lateral changes in the profile of the
wave. This parameter is important in simulating again transverse distribution or interaction with
boundaries in such fields as shallow water waves or plasmas. The fractional order parameter (α)
makes the system non-local and memory-based, thereby changing the physical context of the parameter
space (l), (m), and (ω) drastically. As (α) approaches 1, this yields the more traditional case for
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the coefficients, and when (α = 1), the system is identical to the traditional system. For (α < 1),
they represent the intricate nature of the fractional-order processes that arise from fractional-order
derivatives, including anomalous diffusion and wave transport phenomena, adding depth to the model’s
utility.

By substituting Eq (3.1) into Eq (1.1), it simplifies the current equation into the form of an ordinary
differential equation in the spatial variable (ζ), making the analysis and identification of the solitary
wave solution easier.

−ω
dF
dζ
+ ml2 d3F

dζ3 − 4mF2 dF
dζ
− 4l

dF
dζ

(g) = 0,

mF
dF
dζ
= l

dg
dζ
.

(3.2)

Integrating the second part of Eq (3.2) and keeping constant of integration zero for simplicity, we have

g =
mF2

2l
. (3.3)

By substituting Eq (3.3) into the first Eq (3.2), we obtain a nonlinear equation in terms of (F).
Integrating this equation, with the constant of integration set to zero, we have:

ml2 d2F
dζ2 − 2mF3 − 4ωF = 0. (3.4)

Solving for (k) by equating the highest order of derivatives (F′′) and the nonlinear term (F3) , we get
k = 1 [44]. Subsequently, by substituting Eqs (2.4), (2.5), and (2.3) into Eq (3.4), we get the following
algebraic equation where the coefficients of G(ζ) are equal to zero.

− 2 mc−1
3B6 + 2 l2mc−1B6R2 = 0,

6 mc−1
2B6c0R = 0,

2 l2mc−1B6R3 − 4ω c−1B6R2 − 6 mc−1
2B6c1R2 − 6 mc−1B6c0

2R2 = 0,
12 mc−1B6c0c1R3 + 2 mc0

3R3B6 + 4ω c0R3B6 = 0,
− 4ω c1R4B6 − 6 mc−1B6c1

2R4 − 6 mc0
2c1R4B6 + 2 l2mc1B6R5 = 0,

6 mc0c1
2R5B6 = 0,

− 2 mc1
3R6B6 + 2 l2mc1B6R6 = 0.

(3.5)

Solving this system of algebraic equations using Maple yields the following results:
Case 1:

c0 = 0, c1 = 0, c−1 = c−1,m = m, ω = 1/2
c−1

2m
R

,R = R, l =
c−1

R
. (3.6)

Case 2:

c0 = 0, l = c1, c1 = c1, c−1 = 0,m = m, ω = 1/2 c1
2mR,R = R. (3.7)

Case 3:

c0 = 0, c1 = l, c−1 = c−1,m = m, ω = −mc−1l,R =
c−1

l
, l = l. (3.8)
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Solution family 1. In case 1 of Eq (1.1), the solitary wave solutions, under the condition R < 0, are
presented as follows:

f1(x, y, t) =c−1

(
A − B

√
−R tanh

(
√
−R

(
c−1xα

Rα
+

myα

α
− 1/2

c−1
2mtα

Rα

)))
(
−RB − A

√
−R tanh

(
√
−R

(
c−1xα

Rα
+

myα

α
− 1/2

c−1
2mtα

Rα

)))−1

.

(3.9)

or

f2(x, y, t) =c−1

(
A − B

√
−R coth

(
√
−R

(
c−1xα

Rα
+

myα

α
− 1/2

c−1
2mtα

Rα

)))
(
−RB − A

√
−R coth

(
√
−R

(
c−1xα

Rα
+

myα

α
− 1/2

c−1
2mtα

Rα

)))−1

.

(3.10)

f2(x, y, t) =
c−1

(
A − B

√
−R coth

(√
−R

(
c−1(x+(Γ(α))−1)α

Rα +
m(y+(Γ(α))−1)α

α
− 1/2 c−1

2m(t+(Γ(α))−1)α
Rα

)))
(
−RB − A

√
−R coth

(√
−R

(
c−1(x+(Γ(α))−1)α

Rα +
m(y+(Γ(α))−1)α

α
− 1/2 c−12m(t+(Γ(α))−1)α

Rα

))) . (3.11)

Solution family 2. In case 1 of Eq (1.1), the solitary wave solutions, under the condition R > 0, are
presented as follows:

f3(x, y, t) =c−1

(
A + B

√
R tan

(
√

R
(
c−1xα

Rα
+

myα

α
− 1/2

c−1
2mtα

Rα

)))
(
−RB + A

√
R tan

(
√

R
(
c−1xα

Rα
+

myα

α
− 1/2

c−1
2mtα

Rα

)))−1

.

(3.12)

or

f4(x, y, t) =c−1

(
A − B

√
R cot

(
√

R
(
c−1xα

Rα
+

myα

α
− 1/2

c−1
2mtα

Rα

)))
(
−RB − A

√
R cot

(
√

R
(
c−1xα

Rα
+

myα

α
− 1/2

c−1
2mtα

Rα

)))−1

.

(3.13)

f4(x, y, t) =
c−1

(
A − B

√
R cot

(√
R

(
c−1(x+(Γ(α))−1)α

Rα +
m(y+(Γ(α))−1)α

α
− 1/2 c−1

2m(t+(Γ(α))−1)α
Rα

)))
(
−RB − A

√
R cot

(√
R

(
c−1(x+(Γ(α))−1)α

Rα +
m(y+(Γ(α))−1)α

α
− 1/2 c−12m(t+(Γ(α))−1)α

Rα

))) . (3.14)

Solution family 3. In case 2 of Eq (1.1), the solitary wave solutions, under the condition R < 0, are
presented as follows:

f5(x, y, t) =c1

(
−RB − A

√
−R tanh

(
√
−R

(
c1xα

α
+

myα

α
− 1/2

c1
2mtα

α

)))
(
A − B

√
−R tanh

(
√
−R

(
c1xα

α
+

myα

α
− 1/2

c1
2mtα

α

)))−1

.

(3.15)
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or

f6(x, y, t) =c1

(
−RB − A

√
−R coth

(
√
−R

(
c1xα

α
+

myα

α
− 1/2

c1
2mtα

α

)))
(
A − B

√
−R coth

(
√
−R

(
c1xα

α
+

myα

α
− 1/2

c1
2mtα

α

)))−1

.

(3.16)

Solution family 4. In case 2 of Eq (1.1), the solitary wave solutions, under the condition R > 0, are
presented as follows:

f7(x, y, t) = c1

(
−RB + A

√
R tan

(
√

R
(

c1xα

α
+

myα

α
− 1/2

c1
2mtα

α

))) (
A + B

√
R tan

(
√

R
(

c1xα

α
+

myα

α
− 1/2

c1
2mtα

α

)))−1

.

(3.17)

or

f8(x, y, t) = c1

(
−RB − A

√
R cot

(
√

R
(

c1xα

α
+

myα

α
− 1/2

c1
2mtα

α

))) (
A − B

√
R cot

(
√

R
(

c1xα

α
+

myα

α
− 1/2

c1
2mtα

α

)))−1

.

(3.18)

Solution family 5. In case 2 of Eq (1.1), the solitary wave solutions, under the condition R = 0, are
presented as follows:

f9(x, y, t) = c1

−A
(
c1xα

α
+

myα

α
− 1/2

c1
2mtα

α

)−1 A − B
(
c1xα

α
+

myα

α
− 1/2

c1
2mtα

α

)−1−1

. (3.19)

Solution family 6. In case 3 of Eq (1.1), the solitary wave solutions, under the condition R < 0 and
ψ = c1 xα

α
+

myα

α
− 1/2 c1

2mtα

α
, are presented as follows:

f10(x, y, t) =c−1

(
A − B

√
−

c−1

l
tanh

(√
−

c−1

l
ψ

)) (
−

c−1B
l
− A

√
−

c−1

l
tanh

(√
−

c−1

l
ψ

))−1

+

l
(
−

c−1B
l
− A

√
−

c−1

l
tanh

(√
−

c−1

l
ψ

)) (
A − B

√
−

c−1

l
tanh

(√
−

c−1

l
ψ

))−1

.

(3.20)

or

f11(x, y, t) =c−1

(
A − B

√
−

c−1

l
coth

(√
−

c−1

l
ψ

)) (
−

c−1B
l
− A

√
−

c−1

l
coth

(√
−

c−1

l
ψ

))−1

+

l
(
−

c−1B
l
− A

√
−

c−1

l
coth

(√
−

c−1

l
ψ

)) (
A − B

√
−

c−1

l
coth

(√
−

c−1

l
ψ

))−1

.

(3.21)

Solution family 7. In case 3 of Eq (1.1), the solitary wave solutions, under the condition R < 0, are
presented as follows:

f12(x, y, t) =c−1

(
A + B

√
c−1

l
tan

(√
c−1

l
ψ

)) (
−

c−1B
l
+ A

√
c−1

l
tan

(√
c−1

l
ψ

))−1

+

l
(
−

c−1B
l
+ A

√
c−1

l
tan

(√
c−1

l
ψ

)) (
A + B

√
c−1

l
tan

(√
c−1

l
ψ

))−1

.

(3.22)
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or

f13(x, t) =c−1

(
A − B

√
c−1

l
cot

(√
c−1

l
ψ

)) (
−

c−1B
l
− A

√
c−1

l
cot

(√
c−1

l
ψ

))−1

+

l
(
−

c−1B
l
− A

√
c−1

l
cot

(√
c−1

l
ψ

)) (
A − B

√
c−1

l
cot

(√
c−1

l
ψ

))−1

.

(3.23)

Solution family 8. In case 3 of Eq (1.1), the solitary wave solutions, under the condition R = 0, are
presented as follows:

f14(x, y, t) = c−1

(
A −

B
ψ

) (
−

c−1B
l
−

A
ψ

)−1

+ l
(
−

c−1B
l
−

A
ψ

) (
A −

B
ψ

)−1

. (3.24)

4. Results and discussion

In investigating the solutions of our model related to leading fluid flow in shallow water waves and
plasma physics, we generated 2D and intensity plots and discussed a fractional perspective of solutions.
Changing the form from integral to fractional enabled us to put more focus on the localization of
the plots, which offered a better understanding of the system tendencies. For solving the given
multiple wave patterns, we presented the Riccati-Bernoulli sub-ODE method for lump and kink wave
structures through the 2D and intensity plots. From different applications of the value of α in the 2D
representation, we got an updated view regarding these wave structures. The obtained kink and lump
soliton solutions have enormous importance in the analysis of leading fluid flow in shallow water waves
and plasma science. Following this, we illustrated different types of kink and lump solitons derived
from the fractional Bogoyavlenskii equation by graphing them and noting that these are functions of
hyperbolic, trigonometric, and rational kinds. In this case, with the help of MATLAB, we adjusted the
figures for various parameters to the specific solutions in order to illustrate the kink, as well as the lump
solitary wave solution. The following graphical presentations give sufficient information regarding the
general nature and characteristics of such solutions so that we are ready to investigate their behavior
further.

Figure 1 shows a lump soliton solution changing from an integer type to a fractional type and
the intensity plot showing the change. The waveforms obtained with the fractional method are much
more localized than in the integer case and are a key component of the model we have developed.
This localization means that the fractional method is capable of offering more precision in the
description of the wave interactions and energy in the shallow water area and of representing plasma
particle confinement and stability in plasma physics and therefore, improving the predictability and the
controllability in these applied fields.

Figure 2 describes the behavior of a lump soliton solution, how it has a transition from integer to
fractional, highlighting the localization effect through, intensity plot. Similar to Figure 1, the use of the
fractional approach in Figure 2 yields a much more localized wave form than the integer form of the
same model, hence displaying the significant effects of fractional models. That this kind of increased
localization is possible in the fractional form indicates that the fractional approach can give a closer-
to-reality description of the interactions of waves and the distribution of energies in the shallow waters
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as well as plasma confinements and stabilities. This in turn results in improved accuracy to forecast
and control the fluid stream and plasma that is crucial for real-life use in these fields.

(a) Exploring the effect of the fractional parameters α

through 2D graphical analysis. (b) Intensity plot visualization of the function f2(x, y, t).

Figure 1. Analyzing the influence of fractional parameters (α) and the intensity
representation of the solution (F2).

(a) Exploring the effect of the fractional parameters α

through 2D graphical analysis. (b) Intensity plot visualization of the function f4(x, y, t).

Figure 2. Analyzing the influence of fractional parameters (α) and the intensity
representation of the solution (F4).

In Figure 3, the response of a dark-bright kink soliton solution is shown with reference to the
change from integer to fractional. It can be seen that as a consequence of the fractional approach, the
waveform of kink is more localized than for the integer case, which reinforces the necessity to apply
the fractional modeling in the context of the present work. In the case of shallow water waves, use
of this improvement reduces the diffusion in the fractional form, hence it will provide better detail of
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wave interactions and energy distribution, especially in limited zones. As for the plasma confinement
and stability, the so-called localized kink soliton is more appropriate in plasma particle confinement
and stability approximation in plasma physics for better understanding and optimization of plasma in
applications such as fusion reactors. Obviously, this enhances ability to forecast and dictate fluid and
plasma movements much more efficiently as it increases the level of precision.

(a) Exploring the effect of the fractional parameters α

through 2D graphical analysis. (b) Intensity plot visualization of the function f7(x, y, t).

Figure 3. Analyzing the influence of fractional parameters (α) and the intensity
representation of the solution (F9).

Figure 4 shows the kink soliton solution of the given model characterized by transformation from
integer to fractional forms as indicated by the intensity plot for the soliton envelope, which reveals the
localization effect. Hence, the fractional approach leads to a smaller region of the waveform being
associated with the kink, as shown in Figure 3, emphasizing the importance of including fractional
modeling. This increased localization is important for the realistic modeling of wave interactions and
energy distribution characteristics of shallow water waves and for the contouring of the plasma particle
confinement and plasma stability in plasma physics. This has improved our capacity to predict control
and overall behavior of fluids and plasma in a more realistic manner, which is very vital in these areas
especially when working with real-life problems.

In Figure 5, one can see the behavior of a lump soliton solution and the change in forms to integer
and fractional, where the intensity plot best demonstrates the soliton localization tendency. As it can
be observed, the fractional modeling produces a more localized waveform of the lump than the integer
form, providing an evidence for the need to model in fractions. This degree of localization is crucial
for the proper depiction of the wave interference pattern and the energy spread of shallow water waves
in the fluids, as well as for the portrayal of plasma particle containment and equilibrium in plasma
physics uses. It improves the predictive power and manipulation in fluid dynamics and plasma work,
which is important for the general advancement in the field of study and work in these areas.

In the present research work, mainly the conformable fractional derivative was used to analyze
the nonlinear time-space fractional-order Bogoyavlenskii equation. This approach preserved many
solution structures, among them multiple kinks and solitary wave solutions, and demonstrated the
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utility of the conformable fractional derivative in probing intricate wave behaviors. To enhance the
analysis we wanted to introduce the beta fractional derivative. While the conformable fractional
derivative mainly established kink solitary wave solutions, the beta fractional derivative established
essentially different solitary wave solutions as well as shock wave patterns (see Figure 6). This
comparison confirms the stability of the conformable fractional derivative for describing complex
wave phenomena and shows that other fractional derivatives can produce complementary physical
effects.

(a) Exploring the effect of the fractional parameters α

through 2D graphical analysis. (b) Intensity plot visualization of the function f9(x, y, t).

Figure 4. Examining how f9(x, t) changes with different (α) and (β) values, including a 3D
view for α, β = 1, alongside a 2D plot.

(a) Exploring the effect of the fractional parameters α

through 2D graphical analysis. (b) Intensity plot visualization of the function f12(x, y, t).

Figure 5. Analyzing the influence of fractional parameters (α) and the intensity
representation of the solution (F12).
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(a) (b)

Figure 6. Analyzing the influence of the fractional beta-parameter (α) of the solutions (F4)
and (F2).

Table 1. Comparison of the fractional Bogoyavlenskii equation with the variational approach
[45].

Case Riccati-Bernoulli sub-ODE method Variational approach

Case I: R < 0 f1(x, t) =
c−1

(
A−B

√
−R tanh

(√
−R

(
c−1 xα

Rα +
myα

α −1/2 c−1
2mtα

Rα

)))
(
−RB−A

√
−R tanh

(√
−R

(
c−1 xα

Rα +
myα
α −1/2 c−1

2mtα

Rα

))) u = ±
√
− 7a2

12 −
35c
3b /

(
1 + cosh

(
axβ + byγ − ctα

))
Case II: R > 0 f3(x, t) =

c−1

(
A+B

√
R tan

(√
R
(

c−1 xα

Rα +
myα

α −1/2 c−1
2mtα

Rα

)))
(
−RB+A

√
R tan

(√
R
(

c−1 xα

Rα +
myα
α −1/2 c−1

2mtα

Rα

))) u = ±
√
− 7a2

12 −
35c
12b sech2

(
axβ + byγ − ctα

)
Case III: R = 0 f9(x, t) =

c1

(
−A

(
c1 xα

α +
myα

α −1/2 c1
2mtα

α

)−1)
(
A−B

(
c1 xα

α +
myα
α −1/2 c1

2mtα

α

)) u = ±

√
− 7a2

12 −
35c
3b
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Table 1 shows the comparison of the fractional Bogoyavlenskii equation with the variational
approach [45]. Our intensity plots in the manuscript emphasize the localization features of the
fractional solutions within the nonlinear time–space fractional Bogoyavlenskii equation. The intensity
plots reveal that the fractional models, especially considering the conformable fractional differential
equations, enhance the precision of the wave dynamics, low diffusion, and better predictability of fluids
and plasmas.

5. Conclusions

Therefore, this research examine, the fractional-order derivative parameter (α) that controls lump
and kink soliton solutions important in the flow of fluids through shallow water and plasma systems.
To explain the behavior of the system with respect to this parameter, we show a number of figures with
amplitude fluctuations and changes of plot type. To improve our technique further, we included integer
as well as fractional orders and compared the solutions of a given nonlinear fractional differential
equation by employing the Riccati-Bernoulli sub-ODE method as well as the Bäcklund transformation.
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This methodology offered a better characterization of dynamic response and particular features of fluid
and plasma flow. The conclusion recognizes the importance of the results showing an essential function
of the fractional derivatives in understanding the more general perspectives; the results provide valuable
insights for the further development of this field of study. For further development of the study, a deeper
investigation of the nonlinear time-space fractional Bogoyavlenskii equations could be the focus of
future research carried out on the basis of the modern theories of chaos and nonlinear dynamics. The
inclusion of fractional order differentials makes it possible to study such phenomena as bifurcations,
strange attractors, and sensitivity to initial conditions in models of systems with memory. Also, it
seemed possible that by using machine learning algorithms and numeric analysis as tools to predict
Parry curves in chaotic regions, some useful information may be provided. More work could also be
directed towards the impact of changes of fractional orders on the stability as well as the complexity
of chaotic solutions.
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