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Abstract: This paper aimed to address the issue of potential noise or measurement errors in
component-based systems by utilizing separable detecting arrays (SDAs) to identify interaction faults
and assess whether the number of faulty interactions exceeded a predefined threshold. In this paper,
we established a comprehensive lower bound on the size of SDAs and explored an equivalence
between optimum SDAs and orthogonal arrays with specific properties. By leveraging this equivalence,
numerous optimum SDAs were derived from known results of orthogonal arrays. Additionally,
optimum SDAs constructed from difference matrices (DMs) possessing the ‘super-simple’ property
were presented. Several infinite classes of such DMs were provided. Specifically, the existence
of super-simple DMs with four rows was fully determined. Our study’s findings offer practical
implications for improving the reliability and accuracy of fault detection in component-based systems.
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1. Introduction

Throughout this paper, the set {1, 2, · · · , n} for a positive integer n is denoted by In. Combinatorial
interaction testing (CIT) has emerged as a fundamental software testing paradigm aimed at detecting
faults arising from intricate interactions among test parameters in complex software systems [24, 29].
Kuhn et al. studied faults in several software projects, and found that all the known faults are caused
by interactions among six or fewer parameters [25, 26]. Based on this finding, CIT has been shown to
be highly effective for specific applications, providing performance comparable to exhaustive testing
while utilizing significantly fewer test cases. Typically, the test suites employed in CIT are structured as
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arrays, with each row corresponding to an individual test case and each column representing a distinct
test parameter. The mathematical structures employed in CIT are t-way covering arrays (t-CAs). In a
t-CA, every interaction involving t parameters is guaranteed to appear in at least one test case, ensuring
comprehensive coverage of all t-way interactions.

CAs have garnered significant research attention, leading to the development of diverse
methodologies and substantial findings, which are comprehensively documented in the academic
literature. For researchers interested in further exploring this topic, the following references are highly
recommended: Colbourn provided valuable insights into CAs of strength two [7]; Chateauneuf et al.
conducted comprehensive studies on CAs of strength three [4, 5]; Colbourn et al. introduced Roux-
type constructions for CAs with strengths of both three and four [9]; Ji and Yin constructed CAs of
strength three utilizing difference covering arrays [22]; Hartman et al. discussed algorithms pertinent
to CAs in detail [18, 31]; while Tzanakis et al. illuminated special constructions derived from m-
sequences [42]. In generating test suites using CAs, each column meticulously represents distinct
factors that impact the system’s response, with the entries within each column specifying various
settings or values associated with those factors. This process constitutes a crucial step in scrutinizing a
system for potential interaction faults prior to its release.

However, while testing with a CA is effective for detecting the presence of interaction faults, it
provides little information to identify and determine faulty corrections. To address this, Colbourn and
McClary introduce (d, t)-locating arrays (LAs) and (d, t)-detecting arrays (DAs) under the assumption
that the system contains (at most) a certain number d of faults, each involving (at most) a certain
number t of interacting factors in [10]. They conducted a thorough analysis of the mathematical
properties associated with these arrays. We specifically focus on detecting arrays in this paper.
As outlined in [10], the majority of studies on detecting arrays have primarily centered on their
mathematical characteristics and constructions. For instance, uniform (1, t)-detecting arrays with a
limited number of factors were studied in [41]. Subsequently, this research was broadened to (d, t)-
detecting arrays in [36], with a focus on independent interaction faults, as discussed in [39], and later
extended to mixed detecting arrays in [37]. In [40], optimum detecting array with 5 factors was almost
determined. Notably, when t = 1, (1, 1)-detecting arrays are equivalent to (n, v)-Sperner partition
system, which was initially introduced in [28]. These arrays can be perceived as a natural extension
of the Sperner family. For a (n, v)-Sperner partition system, the maximum number of classes has been
precisely determined for an infinite number of n values, as reported in [27, 28]. Furthermore, [3]
and [16] have established both lower and upper bounds for all possible values of n and each v.
Algorithmic approaches for (1, t)-mixed level detecting arrays were developed and documented in [33].
Additionally, other array types designed specifically for fault localization include consecutive detecting
arrays, as explored in [35, 38].

In practical application, detecting arrays may encounter various challenges. For example, one or
more tests may fail to execute correctly, and resulting in either no response or outlier responses. To
tackle this issue, Seidel et al. [33] introduced the concept of “separation” into the definition of detection
arrays, aiming to quantify the tolerance for unreliable test outcomes. This concept gives rise to the
notion of detecting arrays with separation, also known as separable detecting arrays (SDAs). SDAs,
particularly those for main effects (i.e., where t = 1), are constructed using error-correcting codes and
separating hash families. The techniques are shown to yield explicit constructions with few tests for
large numbers of factors [11, 12]. Furthermore, a local optimization method for (1, 2)-detecting arrays
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with reduced separation is presented in [33]. However, to the best of our knowledge, there are currently
no widely recognized results for t > 1 with general separation, highlighting a significant research gap.

The remainder of this paper is structured as follows: Section 2 provides a detailed exposition
of the definitions of CAs, DAs, and SDAs. Section 3 establishes a general criterion for assessing
the optimality of an SDA based on its size, and subsequently characterizes the equivalence between
SDAs with optimum size and orthogonal arrays possessing specified properties. Section 4 presents
optimum SDAs based on the known results of orthogonal arrays and constructs optimum SDAs from
difference matrices (DMs) possessing the ‘super-simple’ property. Several infinite classes of such
DMs are provided. Specifically, the existence of super-simple DMs with rows 4 are fully determined.
Finally, we conclude this paper in Section 5.

2. Preliminaries

2.1. Definitions and terminology

We define the nonnegative integers d, δ, N, t, k, and v with the conditions t < k and δ > 0. We
consider a system under test (SUT) comprising k parameters (or factors), each of which assumes one
of v possible values from the symbol set V . A test case is represented as a k-tuple (σ1, σ2, · · · , σk),
where σi ∈ V for all i = 1, 2, · · · , k. Upon execution, a test case produces a response, either a pass
or a fail outcome. A collection of these k-tuples forms a test suite specifically designed for the SUT.
Typically, a test suite is visualized as an N × k array, where each row corresponds to a test case,
each column represents a distinct system parameter, and each entry within the array denotes the value
assigned to that parameter in the corresponding test case. Here, N denotes the total number of test
cases, synonymous with the size of the test suite.

Consider an array A = (ai j) (i ∈ IN , j ∈ Ik) over an alphabet V of size v. Each column of the
array A represents one of the k factors that may potentially influence the outcome of a test case (where
each test case is represented by a row). For any subset of column indices j1, j2, · · · , jt such that 1 ≤
j1 < j2 < · · · < jt ≤ k and any t-tuple (x1, x2, · · · , xt) ∈ V t, the set T = {( jr, xr) : 1 ≤ r ≤ t}
is defined as a t-way interaction of the array. The integer t signifies the strength of the interaction.
Formally, a test case σ = (σ1, σ2, · · · , σk) covers an interaction T = {( jr, xr) : 1 ≤ r ≤ t} if, and
only if, σ jr = xr for all r. Let ρ(A,T ) denote the set of indices of rows in A that cover the interaction
T , defined as ρ(A,T ) = {i : ai jr = xr, 1 ≤ r ≤ t}. For an arbitrary set T of interactions, we define
ρ(A,T ) = ∪T∈Tρ(A,T ).

Let It denote the set of all t-way interactions in A. To detect the presence or absence of faulty
interactions in the SUT, it is necessary to ensure that each t-way interaction is covered at least once.
This implies |ρ(A,T )| ≥ 1 for each t-way interaction T . Subsequently, we give the definition of a CA.
A CAλ(N; t, k, v) over V is defined as

∀T ∈ It, |ρ(A,T )| ≥ λ.

In other words, a CA of size N, strength t, degree k, index λ, and order v, or a CAλ(N; t, k, v), is an
N × k array with entries from a set V of v symbols such that in any t columns of the array, all t-tuples
in V t occur as rows at least λ times. When λ = 1, we use the notation CA(N; t, k, v). It is evident from
the definition that N ≥ λvt. If N = λvt in a CAλ(N; t, k, v), then it is defined as an orthogonal array,
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denoted by OAλ(t, k, v). Extensive research has been conducted on various related orthogonal arrays,
particularly graph-orthogonal arrays [14, 20].

In contrast to t-CAs, DAs offer the advantage of not only detecting the existence of faulty
interactions but also locating them. DAs were initially introduced by Colbourn and McClary [10]
and later extended to include DAs with separation, as discussed in [33]. Let A be a CAλ(N; t, k, v). If,
for any T ⊆ It with |T | = d and any T ∈ It, we have

|ρ(A,T ) \ ρ(A,T )| < δ⇔ T ∈ T ,

then the array A is called an SDA and denoted as a (d, t, δ)-SDA(N; k, v). Here, the parameter d signifies
the maximum number of faulty interactions that the array can accurately identify, t denotes the strength
of the target interactions, and δ represents the separation of the separable detecting arrays. Rows in
ρ(A,T ) \ ρ(A,T ) act as witnesses for T that remain unmasked by interactions in T . Separation by
distance δ ensures that any δ − 1 or fewer tests can fail to provide a response, or provide an outlier
response, without losing the differentiation supported by the SDAs.

It is evident that when T ∈ T , the set of rows covering interaction T is necessarily contained
within the set of rows covering the entire set of target interactions T , formally ρ(A,T ) ⊆ ρ(A,T ).
This direct implication ensures that |ρ(A,T ) \ ρ(A,T )| = 0 always holds. Consequently, the condition
|ρ(A,T ) \ ρ(A,T )| < δ ⇔ T ∈ T naturally translates to |ρ(A,T ) \ ρ(A,T )| ≥ δ, when T < T .
Setting d = 0 in the definition, T = ∅, and ρ(A,T ) = ∅ implies |ρ(A,T )| ≥ δ when T , ∅. This
implies that A is a CAδ(N; t, k, v). Furthermore, by assigning δ = 1 in the (d, t, δ)-SDA(N; k, v), if
|ρ(A,T ) \ ρ(A,T )| < δ = 1, then |ρ(A,T ) \ ρ(A,T )| = 0. It becomes evident that ρ(A,T ) ⊆ ρ(A,T )
due to the condition |ρ(A,T )| ≥ δ = 1. Thus, the notion of (d, t, δ)-SDA(N; k, v) can be viewed as a
generalization for (d, t)-DA(N; k, v). Since the rows of an SDA represent tests affecting money, time,
and other resources, an SDA of minimum size is of particular interest when its other parameters have
been fixed. We designate (d, t, δ)-SDAN(k, v) as the minimum N for which a (d, t, δ)-SDA(N; k, v)
exists, referring to this quantity as the SDA number. An array that achieves this minimal size, i.e.,
N = (d, t, δ)-SDAN(k, v), is said to be optimum. In the next section, we will give the lower bounds and
combinatorial characterization.

2.2. An application example

A model for the SUT in electronic commerce systems (ECS) is presented in Table 1. The ECS
comprises four components: client, operating system (OS), web server, and payment, each of which
can assume one of three distinct values. Exhaustive testing would require conducting 34 = 81 tests.
Table 2 displays a test suite consisting of 27 carefully selected tests from the total possibilities,
representing a (1, 2, 2)-SDA(4, 3). Such SDA allows for the identification of a faulty interaction of
strength two based on test outcomes, provided that the number of outlier or nonresponsive results
does not exceed 1. For instance, the interaction ((F1,Opera), (F2,Win)) is deemed faulty if tests 1, 2,
and 3 fail, test 11 yields no response or an outlier response, and all other tests pass. Suppose the
outcomes are as follows: tests 1, 2, and 3 fail; tests 11 and 20 yield no response or an outlier
response; and all other tests pass. In this case, we conclude that ((F1,Opera), (F2,Win)) is a faulty
interaction. However, ((F2,Win), (F3, Apache)) might also be faulty, but it is obscured by the presence
of ((F1,Opera), (F2,Win)).
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Table 1. Configuration parameters for ECS.

Parameter Values
F1 Client Opera (0) IE (1) Firefox (2)
F2 OS Win (0) Linux (1) Mac (2)
F3 Web Server WebSphere (0) Apache (1) NET (2)
F4 Payment MasterCard (0) Visa (1) UnionPay (2)

Table 2. Test sets corresponding to a (1, 2, 2)-SDA(4, 3).

F1: Client F2: OS F3: Web Server F4: Payment
1 0 0 0 0
2 0 0 1 2
3 0 0 2 1
4 0 1 0 2
5 0 1 1 1
6 0 1 2 0
7 0 2 0 1
8 0 2 1 0
9 0 2 2 2
10 1 0 0 2
11 1 0 1 1
12 1 0 2 0
13 1 1 0 1
14 1 1 1 0
15 1 1 2 2
16 1 2 0 0
17 1 2 1 2
18 1 2 2 1
19 2 0 0 1
20 2 0 1 0
21 2 0 2 2
22 2 1 0 0
23 2 1 1 2
24 2 1 2 1
25 2 2 0 2
26 2 2 1 1
27 2 2 2 0
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3. Lower bounds and combinatorial characterization

3.1. A lower bound on the size of (d, t, δ)-SDA(k, v)′s

This subsection aims to establish a lower bound on the size of a (d, t, δ)-SDA(k, v). There exist
specific permissible parameters that govern the existence of (d, t, δ)-SDAs. Notably, in scenarios where
k < t, d < 0, or δ < 0, the existence of (d, t, δ)-SDA’s is not feasible. Furthermore, when t = k, an
optimum SDA is simply the exhaustive array. Therefore, our focus will be on cases where k > t and
δ ≥ 1. Initially, we can deduce the following outcome from the definition of a (d, t, δ)-SDA.

Lemma 3.1. Suppose that A is a (d, t, δ)-SDA(N; k, v) with d ≥ 1. Then A is also a (d − 1, t, δ)-
SDA(N; k, v) and a (d, t, δ − 1)-SDA(N; k, v)(δ > 1), respectively.

Proof. Let A be the given (d, t, δ)-SDA(N; k, v). According to the definition, for any t-way interaction
T < T , where T ⊂ It and |T | = d, we have |ρ(A,T ) \ ρ(A,T )| ≥ δ. If we remove one t-way interaction
from T to form a set of t-way interactions T ′, it follows that T < T ′ and |ρ(A,T ) \ ρ(A,T ′)| ≥
|ρ(A,T ) \ ρ(A,T )| ≥ δ. Hence, A is also a (d − 1, t, δ)-SDA(N; k, v). The proof for the other conclusion
is straightforward and is omitted here. �

The following result can be derived from the definition of (d, t, δ)-SDA(N; k, v) and Lemma 3.1.

Lemma 3.2. Suppose that A is a (d, t, δ)-SDA(N; k, v) with d ≥ 1. Then, |ρ(A,T )| ≥ d + δ for any t-way
interaction T .

Proof. The proof proceeds by mathematical induction on d. For d = 1, a (1, t, δ)-SDA(N; k, v) must be
a (0, t, δ)-SDA(N; k, v) by Lemma 3.1. It has been proven that a (0, t, δ)-SDA(N; k, v) is equivalent to
a CAδ(N; t, k, v) [11]. This implies that |ρ(A,T )| ≥ δ for any t-way interaction T . Suppose there exists
a t-way interaction T ′ with |ρ(A,T ′)| = δ. Then, T ′ is covered by δ rows of A. Select a certain row
R = (x1, x2, . . . , xk) from these δ rows. This row R also covers (k

t ) − 1 other t-way interactions different
from T ′. Since t < k, we have (k

t ) − 1 > 0. Therefore, there exists at least one t-way interaction T ′′

(, T ′) such that both T ′ and T ′′ are covered by R. Hence, |ρ(A,T ′) \ ρ(A,T ′′)| < δ, but since T ′ < T ′′,
this contradicts the definition of a (1, t, δ)-SDA. Therefore, |ρ(A,T )| ≥ 1 + δ for any t-way interaction
T .

Now, assuming the conclusion holds for d = n − 1, we show it holds for d = n. Let A be an
(n, t, δ)-SDA(N; k, v). Suppose T is an arbitrary t-way interaction of A. By Lemma 3.1, an (n, t, δ)-
SDA must also be an (n−1, t, δ)-SDA. By the induction hypothesis, we have |ρ(A,T )| ≥ n−1+δ. Now,
assume for the sake of contradiction that |ρ(A,T )| = n − 1 + δ for some t-way interaction T . Select
n rows Ri(1 ≤ i ≤ n) from these n − 1 + δ rows of A that cover T . Each row Ri also covers (k

t ) − 1
other t-way interactions different from T . Since t < k, we can select a t-way interaction Ti from each
row Ri (1 ≤ i ≤ n) such that Ti , T . Write T = {T1,T2, · · · ,Tn}. Then, 1 ≤ |T | ≤ n. We would
have Ri ⊆ ρ(A,T ) ∩ ρ(A,T ), while T < T . Thus, |ρ(A,T ) \ ρ(A,T )| ≤ δ − 1 < δ. This contradicts
the fact that A is an (h, t, δ)-SDA with 1 ≤ h ≤ n. Therefore, |ρ(A,T )| , n − 1 + δ. It follows that
|ρ(A,T )| ≥ n + δ = d + δ. Thus, by induction, the conclusion holds for all d ≥ 1. �

It is noteworthy that the conclusion presented above can be inferred from Lemma 1 in [11], which
provides a foundational understanding of the topic. Here, we provide an alternative proof based on
the definition and properties of (d, t, δ)-SDA. Combining Lemma 3.2, we can infer that a (d, t, δ)-SDA
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does not exist if there exists a t-way interaction T such that |ρ(A,T )| < d + δ. Additionally, according
to [10,11], a necessary condition for the existence of a (d, t, δ)-SDA is that d < v [10,11]. Specifically, if
there exists a t-way interaction T such that |ρ(A,T )| = d +δ in a (d, t, δ)-SDA, it constitutes a necessary
condition for its existence. This condition can be considered as a generalization of the previous one by
setting δ = 1.

Lemma 3.3. Let A be a (d, t, δ)-SDA(N; k, v) with d ≥ 1. If there exists a t-way interaction T of A such
that |ρ(A,T )| = d + δ, then d < v − δ + 1.

Proof. Let A = (ai j)N×k be a (d, t, δ)-SDA(N; k, v) with d ≥ 1. Assume d = v−δ+1. Then, d+δ = v+1.
Without loss of generality, suppose that T = ((1, 0), (2, 0), · · · , (t, 0)) is covered by the first (v + 1) rows
Ri of A, where i = 1, 2, · · · , v + 1. Since the elements are drawn from a symbol set of size v and
v + 1 exceeds the total number of elements, it follows that among the v + 1 rows, there are b rows
(2 ≤ b ≤ v + 1) with identical elements in the (t + 1)th column. Without loss of generality, assume that
aR1,t+1 = aR2,t+1 = · · · = aRb,t+1. We now consider three cases:
Case 1. 2 ≤ b < d.

Form t-way interaction Ti = ((1, 0), (2, 0), · · · , (t−1, 0), (t+1, aRi,t+1)) for i = 1, 2, · · · , v+1. Let T =

{Tb,Tb+1, · · · ,Td+1}. It is clear that 1 ≤ |T | ≤ d and T < T . By the construction of T , the rows Ri also
cover Ti, where 1 ≤ i ≤ v+1. Thus, |ρ(A,T \Tb)| ≥ d+1−b and |ρ(A,T )∩ρ(A,T )| ≥ d+1−b+b = d+1.
Observe that |ρ(A,T )\ρ(A,T )| = |ρ(A,T )|−|ρ(A,T )∩ρ(A,T )| ≤ v+1−(d+1) = d+δ−d−1 = δ−1 < δ.
However, A is a (|T |, t, δ)-SDA, as proved by Lemma 3.1.
Case 2. 2 ≤ b = d.

Since d + 1 ≤ d + δ = v + 1, we can form t-way interactions Ti = ((1, 0), (2, 0), · · · , (t − 1, 0),
(t + 1, aRi,t+1)) for i = d, d + 1. Define T = {Td,Td+1}. Clearly, 2 = |T | ≤ d, T < T , and |ρ(A,T ) ∩
ρ(A,T )| ≥ d + 1. However, |ρ(A,T ) \ ρ(A,T )| ≤ v + 1 − (d + 1) = v − d = δ − 1 < δ. Nevertheless, A
is a (2, t, δ)-SDA, as shown by Lemma 3.1.
Case 3. b > d.

Form a t-way interaction Td = ((1, 0), (2, 0), · · · , (t− 1, 0), (t + 1, aRb,t+1)). We deduce that |ρ(A,T )∩
ρ(A,Td)| ≥ b. Clearly, T , Td, but |ρ(A,T ) \ ρ(A,Td)| ≤ v + 1 − b < v + 1 − d = δ. However, A is a
(1, t, δ)-SDA, which is proved by Lemma 3.1. �

By applying Lemma 3.2, we can derive the following lower bound on the SDA numbers, which
serves as our benchmark for measuring the optimality of (d, t, δ)-SDA’s.

Theorem 3.1. Let t, k, and v be positive integers. Then,

(d, t, δ)-SDAN(k, v) ≥ (d + δ)vt. (3.1)

Proof. Let A be a (d, t, δ)-SDA(N; k, v) over V and N = (d, t, δ)-SDAN(k, v). By definition, for any
fixed t columns { j1, j2, · · · , jt} with 1 ≤ j1 < j2 < · · · < jt ≤ k, there exist exactly vt t-way interactions
of A: {( jr, xr) : 1 ≤ r ≤ t}, where (x1, x2, · · · , xt) runs over all the t-tuples from V t. According to
Lemma 3.2, we know that |ρ(A,T )| ≥ d + δ for any t-way interaction T of A. Therefore, each sub-array
consisting of certain t columns of A must contain at least (d + δ)vt rows. This implies that N = (d, t, δ)-
SDAN(k, v) ≥ (d + δ)vt. �

When δ = 1, a (d, t, δ)-SDA is essentially a (d, t)-DA, as stated in Section 2. Therefore, by setting
δ = 1 in Theorem 3.1, we can easily obtain the following corollary, which was first presented in [36].
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Corollary 3.1. Let t, k, and v be positive integers. Then,

(d, t)-DAN(k, v) ≥ (d + 1)vt. (3.2)

It’s worth noting that optimum (d, t, δ)-SDAs that meet the lower bound Eq (3.1) are equivalent to
super-simple OAs, which will be shown in next subsection. We say that an OAλ(t, k, v) is super-simple
if any (t + 1) columns of the array contain every (t + 1)-tuple of symbols as a row at most once. We
denote it by SSOAλ(t, k, v). Clearly, from this definition, it follows that an SSOAλ(t, k, v) can only exist
if λ ≤ v .

Example 3.1. The transpose of the following array is an SSOA3(2, 4, 3) over Z3. As shown later, this
OA is an optimum (d, 2, σ)-SDA array such that (d, σ) = (1, 2) or (2, 1).

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0 2 1 2 1 0 1 0 2 2 1 0 1 0 2 0 2 1 1 0 2 0 2 1 2 1 0

.

3.2. Combinatorial characterization of optimum (d, t, δ)-SDAs

In this subsection, we aim to provide a combinatorial description of optimum (d, t, δ)-SDAs using
super-simple OAs. To establish the foundation for our ensuing discussion, we introduce the following
lemma.

Lemma 3.4. Let A be a (d, t, δ)-SDA(N; k, v). If |ρ(A,T )| = d + δ and |ρ(A,T ) \ ρ(A,T1, · · · ,Td)| < δ,
then there exists an i ∈ Id such that |ρ(A,Ti) ∩ ρ(A,T )| ≥ 2, where T is an arbitrary t-way interaction
and Ti ∈ {T1, · · · ,Td}.

Proof. From the set theory, we know that |A ∩ B| + |A \ B| = |A|. Therefore, |ρ(A,T ) ∩ ρ(A,T )| =

|ρ(A,T )| − |ρ(A,T ) \ ρ(A,T )| > d + δ − δ = d. This implies that there are at least d + 1 rows covering
both T and T . The set of row indices is denoted by I. Since T contains d t-way interactions, it follows
that at least one t-way interaction Ti appears at least twice within the set of row indices. Consequently,
|ρ(A,Ti) ∩ ρ(A,T )| ≥ 2. �

The following theorem establishes the equivalence between optimal (d, t, δ)-SDAs and SSOAs.

Theorem 3.2. Suppose that t, k, and d are positive integers with d ≥ 1. Then, an SSOAd+δ(t, k, v) is
equivalent to an optimum (d, t, δ)-SDA(N; k, v) meeting the lower bound Eq (3.1), namely, N = (d+δ)vt.

Proof. (⇒) Let A represent a super-simple OAd+δ(t, k, v). Suppose T is any arbitrary t-way interaction
of A. By definition, a super-simple OA has exactly N = (d + δ)vt rows and |ρ(A,T )| = d + δ. Consider
a set T = {T1,T2, . . . ,Td} containing d t-way interactions of A, excluding T . We aim to demonstrate
that |ρ(A,T ) \ ρ(A,T )| ≥ δ. If this were not the case, there would exist at least one T j ∈ T such that
|ρ(A,T j) ∩ ρ(A,T )| ≥ 2 by Lemma 3.4. This implies that there would be one (t + 1)-tuple of symbols
occurring in certain (t + 1) columns as the number of rows is more than once, since T , T j. This
contradicts the super-simple property of A.

(⇐) Conversely, let B be a (d, t, δ)-SDA((d + δ)vt; k, v). From Lemma 3.2, we know that |ρ(A,T )| ≥
d +δ for any t-way interaction T of B. This implies that each t-tuple of symbols occurs as a row at least
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d + δ times in any t columns of B, and, hence, exactly d + δ times (since B contains precisely (d + δ)vt

rows). Thus, we have proven that B is an OAd+δ(t, k, v). Next, we will prove that B is super-simple.
If not, without loss of generality, suppose that |ρ(A,Tt+1)| = j, where Tt+1 = ((1, 0), (2, 0), · · · ,

(t−1, 0), (t, 0), (t +1, 0)). It is evident that j is less than d +δ+1, since B is an OAd+δ(t, k, v). We denote
the rows that cover Tt+1 by S j, where 2 ≤ j ≤ d + δ. Let T ′ = ((1, 0), (2, 0), · · · , (t − 1, 0), (t, 0)) and
T ′′ = ((1, 0), (2, 0), · · · , (t − 1, 0), (t + 1, 0)). Since B is an OAd+δ(t, k, v), |ρ(A,T ′)| = d + δ, indicating
that T ′ is covered by d + δ rows of B. If d = 1, then |ρ(A,T ′) \ ρ(A,T ′′)| = 1 + δ − j < δ − 1 < δ.
This contradicts the assumption that B is a (1, t, δ)-SDA. For d > 1, we proceed with the proof by
considering two cases.
Case 1. d + 1 > j.

Select d + 1 − j rows Ri(1 ≤ i ≤ d + 1 − j) from the d + δ rows, excluding S j. This is feasible since
d + 1 − j ≤ d + δ − j. Each row Ri also covers (k

t ) − 1 t-way interactions other than T ′. As t < k by
assumption, we can select a t-way interaction Ti from each row Ri (1 ≤ i ≤ d + 1− j) such that Ti , T ′.
Let T = {T1,T2, · · · ,Td+1− j,T ′′}. Then, 1 ≤ |T | ≤ d and |ρ(A,T ′) ∩ ρ(A,T )| ≥ d + 1 − j + j = d + 1.
Thus, |ρ(A,T ′) \ ρ(A,T )| = |ρ(A,T ′)| − |ρ(A,T ′) ∩ ρ(A,T )| ≤ d + δ − (d + 1) = δ − 1 < δ, but T < T .
Consequently, B is not a (|T |, t, δ)-SDA.
Case 2. 2 ≤ d + 1 ≤ j.

Since T ′′ ⊆ Tt+1, it follows that |ρ(A,T ′′)| ≥ j. Observe that |ρ(A,T ′) \ ρ(A,T ′′)| ≤ d + δ− (d + 1) =

δ − 1 < δ. This contradicts the assumption that B is a (1, t, δ)-SDA.
The proof is completed. �

Let δ = 1 in Theorem 3.2. This allows us to derive the following corollary, originally presented
in [36].

Corollary 3.2. Suppose that t, k, and d are positive integers. Then, an SSOAd+1(t, k, v) is equivalent to
an optimum (d, t)-DA(N; k, v) with N = (d + 1)vt.

It should be noted that, as indicated by Theorem 3.2 and Corollary 3.2, SSOAs with index greater
than one can be utilized to construct optimum DAs as well as optimum SDAs. Indeed, an SSOAλ(t, k, v)
with λ ≥ 2 can produce an optimum (λ − 1, t)-DA(N; k, v) with N = λvt. An optimum (d, t, δ)-
SDA(N; k, v) with N = λvt and d + δ = λ can be obtained from it. SSOAs with the same parameters
can be applied to software system fault localization both in the presence and absence of outliers and
nonresponses. The only difference is that, when outliers and nonresponses are present, the number of
interaction faults that can be localized may be relatively smaller. From the theorem above, it follows
that optimum SDAs are equivalent to SSOAs. The definition of SSOAs implies that the number of
rows, (d + δ)vt, in an SSOAd+δ(t, k, v) cannot exceed the total number of (t + 1)-tuples of symbols, vt+1.
In other words, (d + δ)vt ≤ vt+1, which implies d + δ ≤ v. This observation aligns with the necessary
conditions outlined in Lemma 3.3 for DAs with separation.

4. Optimum SDAs

In this section, we will utilize several known SSOAs to derive optimum SDAs by using Theorem 3.2.
Furthermore, we will present a construction based on difference schemes of strength t with a specific
prescribed property.
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4.1. Optimum SDAs from SSOAs

The existence of SSOAλ(t, k, v) has been fully established for the case where t = 2 and k = 4 in [17].
For the scenario with t = 2 and k = 5, the existence was delineated in [6, 43]. Additionally, SSOAs for
t = 3 and k ≤ 6 were presented in earlier studies [39–41].

Lemma 4.1. [6, 43] Let λ ≥ 2 and v = 2α3β · u ≥ 4, with v , 6, where α and β are nonnegative
integers and gcd(u, 6)=1. An SSOAλ(2, 5, v) exists for λ ≤ ∆(v), where

∆(v) =



v, if α , 1 and β , 1;
v
2 − 1, if α = 1 and β , 1;
2v
3 − 2, if α , 1 and β = 1;
2v
3 − 2, if λeven, α = 1 and β = 1;
2v
3 − 11, if λodd, α = 1 and β = 1.

Lemma 4.2. [40, 41] Let λ ≥ 2 and v = 2α3β · u ≥ 2, where α and β are nonnegative integers and
gcd(u, 6)=1. An SSOAλ(3, 5, v) exists, except possibly in the following cases:

(1) v = 3u or v = 3 · 2αu with α ≥ 3 and λ = v − 1;
(2) v = 6u and λ ∈ {v − 1, v − 5};
(3) v = 12u and λ ∈ {v − 1, v − 2}.

For (t, k) ∈ {(2, 4), (2, 5), (3, 5)}, the following results are derived using Theorem 3.2, Table 3, and
Lemmas 4.1 and 4.2. We first establish the existence of optimum (d, 2, δ)-SDAs for specific parameters.

Table 3. SSOAs.

Parameters Constraints References
SSOAλ(2, 4, v) 2 ≤ λ ≤ v and (λ, v) < {(1, 2), (1, 6)} Theorem 18 [17]
SSOAλ(t, t + 1, v) λ ≤ v,t ≥ 1 and v ≥ 2 Theorem 3.8 [36]
SSOAλ(t, q, q) q be a prime power, t + 1 < q, λ ≤ q Theorem 3.10 [36]
SSOAλ(2, q + 1, q) q ≥ 4 is a power of 2,λ ≤ q Theorem 3.10 [36]
SSOAλ(t, k, v) v = q1q2 · · · qs, k = min{qi : 1 ≤ i ≤ s}, qi > t + 1 and λ ≤ v Theorem 3.9 [36]

Theorem 4.1. An optimum (d, 2, δ)-SDA((d +δ)v2; 4, v) exists for any d ≥ 1 and δ ≥ 1, where d +δ ≤ v.

Theorem 4.2. Let v = 2α3β · u ≥ 4, v , 6 be two integers where α and β are two nonnegative integers
and gcd(u, 6)=1. For d + δ ≤ ∆(v), an optimum (d, 2, δ)-SDA((d + δ)v2; 5, v) exists for any d ≥ 1 and
δ ≥ 1, where

∆(v) =



v, if α , 1, β , 1;
v
2 − 1, if α = 1, β , 1;
2v
3 − 2, if α , 1, β = 1;
2v
3 − 2, if λ even, α = 1, β = 1;

2v
3 − 11, if λ odd, α = 1, β = 1.

Furthermore, we extend our results to cases involving (d, 3, δ)-SDAs. Specifically, we provide the
following theorem which also accounts for certain exceptional cases.
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Theorem 4.3. An optimum (d, 3, δ)-SDA((d +δ)v3; 5, v) exists for any d ≥ 1 and δ ≥ 1, where d +δ ≤ v,
except possibly in the following cases, where gcd(u, 6)=1:

(1) v = 3u or v = 3 · 2αu with α ≥ 3 and d + δ = v − 1;
(2) v = 6u and d + δ ∈ {v − 1, v − 5};
(3) v = 12u and d + δ ∈ {v − 1, v − 2}.

We now proceed to present more generalized findings that are applicable to any given value of t.
The necessary SSOAs for these results are provided in Table 3.

Theorem 4.4. Suppose that t ≥ 1 and v ≥ 2 are integers. Then, for any d ≥ 1 and δ ≥ 1, an optimum
(d, t, δ)-SDA((d + δ)vt; t + 1, v) exists, provided that d + δ ≤ v.

We now consider the scenario where q is a prime power. The following theorem establishes the
existence of optimum SDAs under these conditions.

Theorem 4.5. Let q be a prime power and d + δ ≤ q, with d ≥ 1 and δ ≥ 1. Then an optimum
(d, t, δ)-SDA((d + δ)qt; q, q) exists, where t + 1 < q. Moreover, if q ≥ 4 is a power of 2, then an optimum
(d, 2, δ)-SDA((d + δ)q2; q + 1, q) exists.

Proof. According to Theorem 3.2, our task is simplified to constructing the corresponding SSOAs.
Fortunately, these required SSOAs are already outlined in Table 3. �

Finally, we extend our results to the case where v is factored into distinct prime powers. The
following theorem addresses this generalization.

Theorem 4.6. Suppose v = q1q2 · · · qs is a standard factorization of v into distinct prime powers,
and k = min{qi : 1 ≤ i ≤ s}. If qi > t + 1 and d + δ ≤ v, then there exists an optimum (d, t, δ)-
SDA((d + δ)vt; k, v)

Proof. The proof process is similar to that of Theorem 4.5 and, thus, we omit it here. �

4.2. Optimum SDAs from difference matrices

In this subsection, we aim to construct optimum SDAs from difference schemes possessing a
specific prescribed property. To describe the definition of a DM in a general manner, we denote G
as a finite Abelian group of order v with its operation represented by addition throughout the following
discussion. For t ≥ 1, Gt denotes the abelian group of order vt consisting of all t-tuples of elements
from G with the usual addition as the binary operation. Gt

0 refers to the subgroup of Gt isomorphic to
G, consisting of all elements of the form (g, g, · · · , g). The cosets of this subgroup in Gt will be denoted
by Gt

i, where 0 ≤ i ≤ vt−1 − 1.

Definition 4.1. For given positive integers t ≥ 2, k, and v, a k × λvt−1 array D with entries from G
of order v is termed a difference scheme of strength t and index λ, denoted as a DMλ(t, k, v), if every
t × λvt−1 sub-matrix of D contains each coset Gt

i (0 ≤ i ≤ vt−1 − 1) exactly λ times.

The aforementioned notion was first formulated by Seiden [32] and was subsequently utilized to
produce OAs of strength t. This concept was further studied by Hedayat et al. [19]. Note that
a difference scheme of strength 2 in Definition 4.1 is simply a (v, k, λ)-DM. This DM satisfies the
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property that all elements of G appear exactly λ times in the difference of any two distinct columns.
Difference matrices were introduced in a seminal paper by Bose and Bush in the case strength t = 2 [1].
Bose and Bush introduced and studied these matrices to facilitate the construction of OAs. The
definition of a difference matrix can easily be extended to non-Abelian groups. However, for the
construction of SDAs discussed in this paper, this extension is of little use and is therefore omitted.
The principal idea for the construction of OAs via DMs has received significant attention for the case
t = 2 (see [8, 21]). It is evident that an OAλ(t, k, v) can be obtained from a DMλ(t, k, v) under the
development of D. However, such an OA cannot be super-simple. To address this issue, we require a
super-simple difference scheme of strength t.

Definition 4.2. A DMλ(t, k, v) of order v over the group G is said to be super-simple, denoted by
SSDMλ(t, k, v), if, within any (t + 1) × λvt−1 sub-matrix of D, each coset Gt+1

i appears no more than
once, where 0 ≤ i ≤ vt − 1.

Example 4.1. The following array is an SSDM2(3, 4, 3) over Z3:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2

 .
For t = 2, the notion of a super-simple (v, k, λ)-DM was introduced by Hartman [17]. Let D =

(di j)4×λv be a (v, 4, λ)-DM over the group G. D is called super-simple, and it further satisfies the
following condition: for any indices r1, r2, r3 with 1 ≤ r1 < r2 < r3 ≤ 4 and any indices j, j′ with 1 ≤
j < j′ ≤ λv, if dr2 j − dr1 j = dr2 j′ − dr1 j′ , then it must hold that dr3 j − dr2 j , dr3 j′ − dr2 j′ . We denote
it by (v, k, λ)-SSDM. It is clear that λ ≤ v must hold whenever an SSDMλ(t, k, v) exists. Suppose
that D = (di j) is an SSDMλ(t, k, v) over the group G = {g0 = 0, g1, g2, · · · , gv−1}. For each column
(d1 j, di j, · · · , dk j)T of D, we form v rows given by C( j, u) = (d1 j + u, d2 j + u, · · · , dk j + u), u ∈ G. These
rows are then juxtaposed to form a λvt × k array A over G, which is an SSOAλ(t, k, v). This approach
is simple yet effective, as SSDMs are significantly smaller in size than the SSOAs that they induce,
and constructing SSDMs directly is more feasible than constructing SSOAs directly. We state this as a
lemma for convenient reference for later use.

Lemma 4.3. If an SSDMλ(t, k, v) over the group G exists with λ ≥ 2, then an SSOAλ(t, k, v) over the
group G also exists, and, therefore, an optimum (d, t, δ)-SDA(λvt; k, v) exists with d + δ = λ and d ≥ 1.

Proof. Let D be the given SSDMλ(t, k, v) over the group G. As explained previously, the generation of
an SSDM naturally leads to the formation of SSOAλ(t, k, v). Consequently, by invoking Theorem 3.2,
it follows that there exists a (d, t, δ)-SDA(λvt; k, v) satisfying the conditions d + δ = λ and d ≥ 1. �

We will now present the existence of SSDMs. Initially, we have the following lemma.

Lemma 4.4. [15] A (v, 4, 1)-DM exists if, and only if, v ≥ 4 and v . 2 (mod 4).

By applying Lemma 4.4 and following the proof of Theorem 3.13 presented in [34], we can establish
the existence of the following SSDMs.

Lemma 4.5. For any integer v ≥ 4, if v . 2 (mod 4), then there exists a (v, 4, λ)-SSDM, where the
parameter λ satisfies λ ≤ v.
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For the cases where v = 2 or v = 3, a (v, 4, λ)-SSDM is provided below, with the condition that
λ ≤ v.

Lemma 4.6. A (v, 4, λ)-SSDM exists for the pair (v, λ) ∈ {(2, 2), (3, 2), (3, 3)}.

Proof. A (2, 4, 2)-SSDM is presented as follows:
0 0 0 0
0 0 1 1
0 1 1 0
0 1 0 1

 ,
(3, 4, λ)-SSDM’s for λ = 2, 3 are given below:

0 0 0 0 0 0 0 0 0
0 0 1 1 2 2 0 1 1
0 1 0 2 1 2 1 0 2
0 1 2 0 2 1 1 2 0

 ,


0 0 0 0 0 0 0 0 0
0 0 1 2 2 0 2 1 1
0 1 2 2 0 2 1 1 0
0 2 2 0 2 1 1 0 1

 .
�

For the completeness of existence for (v, 4, λ)-SSDM’s, we require the following product
constructions, which were first stated in [34].

Lemma 4.7. If there exist a (g, k, λ1)-SSDM over G and a (g′, k, λ2)-SSDM over G′, then it follows that
there exists a (gg′, k, λ1λ2)-SSDM over G ×G′.

Lemma 4.8. A (6, 4, λ)-SSDM exists for λ ∈ {2, 4, 6}.

Proof. By Lemma 4.7, the existence of a (6, 4, λ)-SSDM is established for λ = 4, 6. The necessary
ingredients for their construction are provided in Lemma 4.6. Additionally, an explicit (6, 4, 2)-SSDM
is presented in the following array:

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 2 2 3 3 4 4 5 5
0 1 0 3 4 5 1 3 2 5 2 4
0 1 1 5 3 4 5 0 3 2 4 2

 .
�

With the existence of SSDMs for order 6 established, we now broaden our scope to investigate the
existence of such DMs for v ≥ 10 and v ≡ 2 (mod 4).

Lemma 4.9. Let v ≥ 10 be an integer. If v ≡ 2 (mod 4), then a (v, 4, λ)-SSDM exists, where λ is an
even integer satisfying λ ≤ v.

Proof. Let v = 2(2t + 1) with t ≥ 2. According to Lemma 4.5, it is known that a (2t + 1, 4, λ)-
SSDM exists, where λ ≤ 2t + 1. Consequently, by applying Lemma 4.7, the conclusion holds since
the (2, 4, 2)-SSDM is given in Lemma 4.6. �
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While we have explored the existence of SSDMs for certain cases, it is also important to consider
scenarios where such DMs do not exist. In particular, we now examine the nonexistence of DMs with
specific parameter constraints.

Lemma 4.10. [13] Let k ≥ 3 be an integer and λ be an odd integer. Then, there is no (v, k, λ)-DM,
when v ≡ 2 (mod 4).

Combing Lemmas 4.5, 4.6, and 4.8–4.10, we can determine the existence of super-simple (v, 4, λ)-
DM’s as below.

Theorem 4.7. Let v ≥ 2 be a positive integer with λ ≤ v. Then, a (v, 4, λ)-SSDM exists if, and only if,
v ≡ 2 (mod 4) and λ even, or v . 2 (mod 4).

It is notable that the existence of a (v, 4, λ)-DM was previously determined by Pan and Chang [30].
They established that a (G, 4, λ)-DM exists if, and only if, λ is even, or λ is odd and G has no nontrivial
cyclic Sylow 2-subgroups, where G is a nontrivial finite Abelian group and λ > 1 is an integer. In this
paper, we completely determine the existence of (v, 4, λ)-SSDMs. We would like to remind readers
again that SSOAλ(2, 4, v) has been completely solved, but only partial results can be obtained using
Lemma 4.3 and Theorem 4.7. As described earlier, SSDMs have relatively small sizes.

Lemma 4.11. [2] Let G be any group of order v. Then, there exists a (v, p, 1)-DM over G, where p is
the small prime power dividing v.

We begin by considering the construction of SSDMs over prime powers of strength 2. The following
theorem asserts the existence of such matrices for prime powers.

Theorem 4.8. Let q be a prime power. Then, there exists a (q, q, λ)-SSDM, where λ ≤ q.

Proof. Let q = pn, where n is a positive integer and p is an odd prime. Let α be a primitive element of
GFq, meaning that GF(q) = {0, 1, α, α2, · · · , αpn−2}. We define the matrices As = (as

xy) for x, y ∈ GF(q)
and s = 0, 1, 2, · · · , λ − 1 as follows:

a0
xy = xy, a1

xy = xy + x2, a2
xy = xy + αx2, · · · , ai

xy = xy + αi−1x2, · · · , aλ−1
xy = xy + αλ−2x2.

The matrix A0 = (a0
xy) for x, y ∈ {0, 1, α, α2, · · · , αpn−2}, represents the multiplication table of

GF(q) and forms a (q, q, 1)-DM by Lemma 4.11. It is also a (q, q, 1)-SSDM. Clearly, each Ai for
i = 1, 2, · · · , λ − 1 is a (q, q, 1)-DM. Let D = (A0, A1, · · · , Aλ−1). Thus, D is a (q, q, λ)-DM. Next,
we prove that D is super-simple. We start by showing that D′ = (Am, An) is a (q, q, 2)-SSDM
for 0 ≤ m < n ≤ λ − 1. The proof depends on two cases based on the value of m.
Case 1. m , 0.

If D′ is not super-simple, then there exist x1, x2, x3, y, y′ ∈ GF(q) with x1 , x2 , x3 such that
am

x2y − am
x1y = an

x2y′ − an
x1y′ , a

m
x3y − am

x2y = an
x3y′ − an

x2y′ . This leads to the following equations:

x2y + αm−1x2
2 − x1y − αm−1x2

1 ≡ x2y′ + αn−1x2
2 − x1y′ − αn−1x2

1 (mod q), (4.1)

and

x3y + αm−1x2
3 − x2y − αm−1x2

2 ≡ x3y′ + αn−1x2
3 − x2y′ − αn−1x2

2 (mod q). (4.2)

AIMS Mathematics Volume 9, Issue 12, 34806–34826.



34820

From Eqs (4.1) and (4.2), we deduce y + αm−1(x2 + x1) ≡ y′ + αn−1(x2 + x1) (mod q) and y +

αm−1(x3 + x2) ≡ y′ + αn−1(x3 + x2) (mod q). This implies that αm−1(x3 − x2) ≡ αn−1(x3 − x2) (mod q).
Since x2, x3 ∈ GF(q) with x2 , x3 and α is a primitive element, we conclude that m = n. However,
m , n, which leads to a contradiction.
Case 2. m = 0.

In this case, we replace αm−1 with 0 in both Eqs (4.1) and (4.2). Thus, we can conclude that
αn−1(x3 − x2) ≡ 0 (mod q). Clearly, this conclusion does not hold since α is a primitive element and
x2 , x3.

The same argument can be applied to prove that D is super-simple. If p = 2, the same reasoning
can be used to prove the conclusion. �

We will provide an example to illustrate this theorem.

Example 4.2. Let α be a root of f = x2 + x + 2 ∈ F3[x]. It is straightforward to verify that α is a
primitive element of F9 and we have the relations α2 = 2α+1, α3 = 2α+2, α4 = 2, α5 = 2α, α6 = α+2,
and α7 = α + 1. The multiplication table for the finite field F9 is as follows:

0 1 α α2 α3 α4 α5 α6 α7

0 0 0 0 0 0 0 0 0 0
1 0 1 α α2 α3 α4 α5 α6 α7

α 0 α α2 α3 α4 α5 α6 α7 1
α2 0 α2 α3 α4 α5 α6 α7 1 α

α3 0 α3 α4 α5 α6 α7 1 α α2

α4 0 α4 α5 α6 α7 1 α α2 α3

α5 0 α5 α6 α7 1 α α2 α3 α4

α6 0 α6 α7 1 α α2 α3 α4 α5

α7 0 α7 1 α α2 α3 α4 α5 α6

We replace the elements a + bα with ab, and, subsequently, three (9, 9, 1)-DM over Z3 × Z3 are
derived. Notably, the second and third arrays can be generated through the application of the formula
xy + x2 and xy + αx2, respectively.



00 00 00 00 00 00 00 00 00
00 10 01 12 22 20 02 21 11
00 01 12 22 20 02 21 11 10
00 12 22 20 02 21 11 10 01
00 22 20 02 21 11 10 01 12
00 20 02 21 11 10 01 12 22
00 02 21 11 10 01 12 22 20
00 21 11 10 01 12 22 20 02
00 11 10 01 12 22 20 02 21


,



00 00 00 00 00 00 00 00 00
10 20 11 22 02 00 12 01 21
12 10 21 01 02 11 00 20 22
20 02 12 10 22 11 01 00 21
21 10 11 20 12 02 01 22 00
10 00 12 01 21 20 11 22 02
12 11 00 20 22 10 21 01 02
20 11 01 00 21 02 12 10 22
21 02 01 22 00 10 11 20 12


.
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00 00 00 00 00 00 00 00 00
01 11 02 10 20 21 00 22 12
22 20 01 11 12 21 10 00 02
02 11 21 22 01 20 10 12 00
11 00 01 10 02 22 21 12 20
01 21 00 22 12 11 02 10 20
22 21 10 00 02 20 01 11 12
02 20 10 12 00 11 21 22 01
11 22 21 12 20 00 01 10 02


.

By juxtaposing the three arrays mentioned above, we can obtain a (9, 9, 3)-SSDM over Z3 × Z3.

We now delve into the results for k = t + 1 under specific conditions.

Theorem 4.9. Let v ≥ 3 be a positive integer. Then, an SSDMλ(t, t + 1, v) exists for v . 2 (mod 4) or t
odd.

Proof. By Theorem 4.1 in [19], a DM(t, t + 1, v) exists over the group G for v . 2 (mod 4) or t odd.
We denoted it by D. For each h ∈ G, let Dh = (dh

i j), where dh
i j = di j for i = 1, 2, · · · , t and dh

i j = di j + h
for i = t + 1. Clearly, Dh is also a DM(t, t + 1, v) over G from the definition of a difference scheme.
Define D′ = (Dx1 |Dx2 | · · · |Dxλ), where xi(i = 1, 2, · · · , λ) are mutually distinct elements in G. Then, D′

is the required SSDM. �

Further refining our results, we now consider the existence of SSDMs specifically for integers v
that are congruent to 1 or 5 (mod 6). The following theorem demonstrates that under these conditions,
SSDMs with strength 3 can be constructed over the additive group G of order v.

Theorem 4.10. Let v ≥ 5 and v ≡ 1 or 5 (mod 6). Then, there exists an SSDMλ(3, 5, v) over the
additive group of Zv.

Proof. By Lemma 3.3 in [23], a DM(3, 5, v) exists over the additive group of Zv. We denote it by
D = (di j)(i ∈ I5, j ∈ Iv2). For each h ∈ Zv, define Dh = (dh

i j), where dh
i j = di j for i = 1, 2, 3 and

dh
i j = di j + h for i = 4, 5. Clearly, Dh is also a DM(3, 5, v) over G from the definition of a difference

matrix. Define D′ = (Dx1 |Dx2 | · · · |Dxλ), where xi(i = 1, 2, · · · , λ) are mutually distinct elements in Zv.
Then, D′ is the required SSDM. �

In the remainder of this subsection, we will establish the existence of (v, 5, 2)-SSDM. Initially, we
will introduce some SSDMs of small order that will be utilized later.

Lemma 4.12. A (v, 5, 2)-SSDM exists for v ∈ {3, 4, 6, 8, 12, 16}.

Proof. A (3, 5, 2)-SSDM over Z3 is given below:
0 0 0 0 0 0
0 0 1 1 2 2
0 1 0 2 1 2
0 1 2 0 2 1
0 2 1 2 0 1


.
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A (4, 5, 2)-SSDM is constructed over over Z2 × Z2.
00 00 00 00 00 00 00 00
00 00 01 01 10 10 11 11
00 01 10 11 00 01 10 11
00 01 11 10 10 11 00 01
00 10 00 10 11 01 11 01


.

A (6, 5, 2)-SSDM over Z6 is given below:
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 4 2 2 1 5
0 0 1 0 2 4 5 2 0 3 5 3
0 1 0 2 4 5 3 1 5 1 3 4
0 1 4 5 5 4 2 3 0 3 4 2


.

A (8, 5, 2)-SSDM over Z2 × Z2 × Z2 is given below:
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111
000 001 000 001 100 101 100 101 010 011 010 011 110 111 110 111
000 001 001 000 110 111 110 111 000 001 000 001 100 101 100 101
000 010 100 110 000 010 100 110 000 010 100 110 000 010 100 110


.

A (12, 5, 2)-SSDM over Z2 × Z6 is as follows:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 01 02 03 04 05 10 11 12 13 14 15 00 01 02 03 04 05 10 11 12 13 14 15
00 03 10 01 13 15 02 12 05 04 11 14 01 04 12 11 10 03 15 00 14 13 05 02
00 12 01 15 05 13 03 14 02 11 10 04 01 14 11 05 03 15 04 02 12 10 00 13
00 04 15 14 02 11 12 10 13 01 03 05 02 12 03 01 10 15 13 05 11 00 14 04

.

A (16, 5, 2)-SSDM over Z2 × Z2 × Z2 × Z2 is the juxtaposition of the following two arrays.

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0001 0010 0100 1000 0011 0110 1100 1011 0101 1010 0111 1110 1111 1101 1001
0000 0010 0100 1000 0011 0110 1100 1011 0101 1010 0111 1110 1111 1101 1001 0001
0000 0100 1000 0011 0110 1100 1011 0101 1010 0111 1110 1111 1101 1001 0001 0010
0000 1000 0011 0110 1100 1011 0101 1010 0111 1110 1111 1101 1001 0001 0010 0100

,

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0001 0011 0010 0000 1001 1011 1010 1000 1100 1110 1111 1101 0100 0110 0111 0101
0001 0010 0000 0011 1110 1101 1111 1100 0111 0100 0110 0101 1010 1001 1011 1000
0011 0101 1010 1100 1110 1000 0001 0111 0110 0000 1011 1101 1001 1111 0010 0100

.

�
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Theorem 4.11. Let v = 2α3β · u ≥ 2, where α ≥ 0, β ≥ 0, and gcd(u, 6) = 1. A (v, 5, 2)-SSDM exists
for v ≥ 2, except possibly when v = 18, 2u with u , 1.

Proof. The proof process is divided into four cases based on the values of α and β.
Case 1. α = 0 and β ≥ 0.

By Theorem 4.8, a (3β, 3β, 2)-SSDM exists for β ≥ 2. Consequently, a (3β, 5, 2)-SSDM is guaranteed
for β ≥ 2. A (3, 5, 2)-SSDM is provided in Lemma 4.12, which further implies that a (3β, 5, 2)-SSDM
exists for β ≥ 1. If u = 1, this conclusion remains valid. However, if u , 1, then a (u, 5, 1)-DM
exists by Lemma 4.11. Then, by Lemma 4.7, a (v, 5, 2)-SSDM exists. When β = 0, a (u, 5, 2)-SSDM
exists by Theorem 4.8 if u has only one prime factor. If u has two prime factors, pi and p j, then by
Lemma 4.8, a (pa

i , 5, 2)-SSDM exists for any a ≥ 1. Similarly, by Lemma 4.11, a (pb
j , 5, 1)-DM exists

for b ≥ 1. Consequently, using Lemma 4.7, a (u, 5, 2)-SSDM can be constructed. A similar argument
can be used to demonstrate the existence of a (u, 5, 2)-SSDM when u has at least three prime factors.
Case 2. α = 1 and β ≥ 1.

When β = 1 and u = 1, a (6, 5, 2)-DM is provided by Lemma 4.12. For β = 1 and u , 1, Lemma 4.7
ensures the existence of a (v, 5, 2)-SSDM, with a corresponding (u, 5, 1)-DM given by Lemma 4.11.
If β ≥ 2 and v , 18, Lemma 4.7 also guarantees the existence of a (v, 5, 2)-SSDM, utilizing the
(3β−1u, 5, 1)-DM as given in Lemma 4.11.
Case 3. α = 2 and β ≥ 0.

A similar argument as in Case 2 can be used to show that a (v, 5, 2)-SSDM exists for v , 12. The
necessary (4, 5, 2)-SSDM is provided by Lemma 4.12. A (12, 5, 2)-SSDM is provided in Lemma 4.12.
Case 4. α ≥ 3 and β ≥ 0.

We begin by proving the existence of a (2α, 5, 2)-SSDM. Lemma 4.12 provides the (2α, 5, 2)-SSDM
for α = 2, 3, 4. A (2α−2, 5, 1)-DM for α ≥ 5 is guaranteed by Lemma 4.11, thereby establishing the
conclusion. A similar argument shows that a (2αu, 5, 2)-SSDM exists. As established in Case 1, a
(3β, 5, 2)-SSDM exists for β ≥ 1. Additionally, a (2α, 5, 1)-DM for α ≥ 3 and a (u, 5, 1)-DM with u , 1
exist, as shown in Lemma 4.11. Therefore, a (2αu, 5, 1)-DM for α ≥ 3 exists. By Lemma 4.7, this leads
to the existence of a (2α3βu, 5, 2)-SSDM. The proof is completed. �

5. Conclusions

In conclusion, this paper has made significant contributions to the field of SDAs. We have
established a comprehensive lower bound on the size of SDAs and demonstrated an equivalence
between optimum SDAs and SSOAs. By exploiting the properties of SSOAs, we have systematically
constructed numerous optimum SDAs from OAs and difference matrices. These SDAs are vital for
detecting and tolerating noisy test outcomes in various practical applications.

The results presented offer significant insights into the design of efficient test suites for complex
software systems. By utilizing SDAs, software testers can not only detect the presence of interaction
faults but also quantify tolerance to unreliable test outcomes. This dual capability has substantial
implications for improving the quality and reliability of software products through rigorous testing
processes. Looking forward, there are several promising directions for future research. One key
area is the extension of our construction methods to accommodate SDAs of higher strengths, which
would further enhance their robustness and applicability in more complex and challenging scenarios.
Additionally, exploring the potential application of SDAs beyond software testing, in domains where
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noise tolerance and interaction fault detection are critical, offers exciting opportunities for future
investigation.
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