
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(12): 34734–34752.
DOI:10.3934/math.20241654
Received: 25 September 2024
Revised: 17 November 2024
Accepted: 29 November 2024
Published: 12 December 2024

Research article

Two accelerated gradient-based iteration methods for solving the Sylvester
matrix equation AX + XB = C

Huiling Wang1,*, Nian-Ci Wu2 and Yufeng Nie3

1 College of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006,
China

2 School of Mathematics and Statistics, South-Central Minzu University, Wuhan 430074, China
3 School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China

* Correspondence: Email: wanghuiling@sxufe.edu.cn.

Abstract: In this paper, combining the precondition technique and momentum item with the gradient-
based iteration algorithm, two accelerated iteration algorithms are presented for solving the Sylvester
matrix equation AX + XB = C. Sufficient conditions to guarantee the convergence properties of the
proposed algorithms are analyzed in detail. Varying the parameters of these algorithms in each iteration,
the corresponding adaptive iteration algorithms are also provided, and the adaptive parameters can be
explicitly obtained by the minimum residual technique. Several numerical examples are implemented
to illustrate the effectiveness of the proposed algorithms.

Keywords: Sylvester matrix equation; gradient-based iteration; momentum term; precondition
technique; minimum residual technique
Mathematics Subject Classification: 15A24, 65F30

1. Introduction

In this paper, we consider the iterative solution of the following Sylvester matrix equation:

AX + XB = C, (1.1)

where A ∈ Rm×m, B ∈ Rn×n, C ∈ Rm×n are constant matrices and X ∈ Rm×n is the unknown matrix to be
obtained.

Due to the extensive applications of Eq (1.1) in control theory and stability analysis [1,10,14], it has
garnered considerable attention, and many algorithms have been proposed over the past few decades.
For example, the gradient-based iteration (GI) algorithm described in [6, 8, 9] has proven to be an

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.20241654

34735

effective method for solving Eq (1.1). By incorporating a tunable parameter into the GI algorithm, a
relaxed gradient-based iteration (RGI) algorithm [18] was introduced, which demonstrates improved
performance over the GI algorithm when the relaxed parameter is appropriately adopted. To enhance
the RGI algorithm’s efficiency, an accelerated gradient-based iteration (AGBI) algorithm was proposed
by leveraging the latest information from the preceding half-step in [25]. In order to achieve a lower
computational cost, a Jacobi gradient iteration (JGI) method was outlined in [13] based on the Jacobi
splitting of A and B. Drawing inspiration from the AGBI and JGI algorithms, Tian et al. [21] further
developed an accelerated JGI (AJGI) algorithm. Additionally, various other iteration algorithms [7,20,
22] have been devised for solving Eq (1.1) and other related matrix equations [17, 23, 24, 29], because
of its wide applications.

Preconditioning techniques aim to alter the spectral characteristics of matrices through linear
transformations, which are often integrated with other iteration methods and lead to various
new algorithms such as the preconditioned HSS method [2, 16], generalized preconditioned HSS
methods [28], and preconditioned MHSS iteration methods [4], etc. The heavy-ball momentum method
is widely applied to accelerate the convergence rate of the gradient method [5, 19]. In this paper,
inspired by the references [2, 5, 19], we combine the precondition technique and the momentum item
with the gradient-based iteration algorithm, and the specific work can be summarized as follows:

(a) Novel Methodology. We have developed the preconditioned gradient-based iteration (PGI) and
gradient-based momentum iteration (GMI) algorithms for solving Eq (1.1), which are more efficient
than existing methods in terms of computational complexity and accuracy.

(b) Theoretical Insights. Our work provides new theoretical insights into gradient-based iteration
algorithms. The convergences of PGI and GMI algorithms are rigorously proved.

(c) Adaptive Parameter Selection. We have developed a new parameter selection strategy that
minimizes the current residual norm, leading to improved performance of the proposed algorithms.
This strategy is practical and can be easily implemented in various numerical algorithms, enhancing
their efficiency and accuracy.

(d) Empirical Results. Through extensive numerical experiments, we have shown that our methods
outperform current state-of-the-art techniques in the solving of Eq (1.1).

The remainder of this paper is organized as follows: In Section 2, we first review the GI algorithm,
and present the PGI and GMI algorithms, whose convergence properties are analyzed in detail. In
Section 3, we construct the adaptive PGI and GMI algorithms in which the parameters are updated by
utilizing the iterative information. In Section 4, several numerical examples are employed to show the
robustness and efficiencies of the proposed algorithms. Finally, some conclusions are drawn in the last
section.

2. Two accelerated GI algorithms

In this section, we first review the GI algorithm. Subsequently, two accelerated GI algorithms
are presented, and detailed analyses are conducted on their convergence properties. In the following,
several lemmas are given, which will be used in the subsequent proofs.
Lemma 2.1. [12] Let A ∈ Rm×n, B ∈ Rp×q, and

R(A, B) := {M ∈ Rn×p|∃ Z ∈ Rm×q, s.t. M = AT ZBT }.

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34736

For any matrix M ∈ R(A, B), it holds that

∥AMB∥2F ≥ σ
2
min(A)σ2

min(B)∥M∥2F ,

where σmin(A) and σmin(B) are the smallest singular values of the matrices A and B, respectively.
Lemma 2.2. [11, 15] Both roots of the real quadratic equation x2 − bx + c = 0 are less than one in
modulus if and only if |c| < 1 and |b| < 1 + c.

By utilizing the hierarchical identification principle, Eq (1.1) can be reformulated into two
subsystems as follows:

AX = C − XB, XB = C − AX. (2.1)

The GI algorithm for solving (2.1) can be described as follows:

Algorithm 1 The GI algorithm [8].
Require: Given an initial approximate matrix X(0) and the parameter µ
Ensure: X(k)

1: For k = 1, 2, · · · , until converges, do
2: X(k)

1 = X(k−1) + µAT [C − AX(k−1) − X(k−1)B],
3: X(k)

2 = X(k−1) + µ[C − AX(k−1) − X(k−1)B]BT ,
4: X(k) = [X(k)

1 + X(k)
2]/2.

5: End

It is shown that the GI algorithm [8] converges when

0 < µ <
2

λmax(AAT) + λmax(BT B)
,

where λmax(AAT) and λmax(BT B) are the largest eigenvalues of AAT and BT B, respectively.

2.1. The PGI algorithm

By introducing two preconditioners, P and Q, in Algorithm 1, a preconditioned gradient-based
iterative (i.e., PGI) algorithm is constructed and summarized as follows:

Algorithm 2 The PGI algorithm.
Require: Given an initial matrix X(0), two preconditioners P and Q, and the parameter µ
Ensure: X(k)

1: For k = 1, 2, · · · , until converges, do
2: X(k)

1 = X(k−1) + µP−1AT [C − AX(k−1) − X(k−1)B],
3: X(k)

2 = X(k−1) + µ[C − AX(k−1) − X(k−1)B]BT Q−1,
4: X(k) = [X(k)

1 + X(k)
2]/2.

5: End

Remark 1. If P = Im and Q = In are adopted, the PGI iteration method is reduced to the original GI
algorithm in [8], where Is is an identity matrix with size s.

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34737

Remark 2. Two practical choices of the matrices P and Q are listed as follows:

1) P = diag(A),Q = diag(B), where diag(A) and diag(B) are the diagonal matrices of A and B,
respectively.
2) P = tridiag(AT A),Q = tridiag(BBT), where tridiag(AT A) and tridiag(BBT) are the tridiagonal
matrices of AT A and BBT , respectively.
Theorem 2.1. Let X∗ be the solution of Eq (1.1). The iterative solution X(k) generated by Algorithm 2
converges to X∗ for any initial value if and only if the parameter µ satisfies the condition

∥2Imn − µ(I ⊗ P−1AT A + BT ⊗ P−1AT + Q−T B ⊗ A + Q−T BBT ⊗ I)∥2 < 2, (2.2)

where ∥ · ∥2 is the 2-norm of the matrix.
Proof: For k = 1, 2, · · · , define the kth error matrices X̃(k) := X(k) − X∗, which satisfy the following
recurrence:

X̃(k) =X̃(k−1) −
µ

2
P−1AT AX̃(k−1) −

µ

2
P−1AT X̃(k−1)B

−
µ

2
AX̃(k−1)BT Q−1 −

µ

2
X̃(k−1)BBT Q−1.

(2.3)

By using the Kronecker product [26], the above equation can be reformulated by

vec(X̃(k)) =vec(X̃(k−1)) −
µ

2
(In ⊗ P−1AT A)vec(X̃(k−1)) −

µ

2
(BT ⊗ P−1AT)vec(X̃(k−1))

−
µ

2
(Q−T B ⊗ A)vec(X̃(k−1)) −

µ

2
(Q−T BBT ⊗ Im)vec(X̃(k−1)).

Taking the 2-norm of vec(X̃(k)), it follows that

∥vec(X̃(k))∥2 ≤ η∥vec(X̃(k−1))∥2,

where
η =

1
2
∥2Imn − µ(In ⊗ P−1AT A + BT ⊗ P−1AT + Q−T B ⊗ A + Q−T BBT ⊗ Im)∥2.

Thus,
∥vec(X̃(k))∥2 ≤ η∥vec(X̃(k−1))∥2 ≤ · · · ≤ ηk∥vec(X̃(0))∥2.

If µ satisfies (2.2), we know that X̃(k) → 0 as k → ∞. The proof is completed.

2.2 The GMI algorithm

In order to make full use of the information from the previous iteration step, a momentum term
will be added to the GI algorithm, and then the second accelerated GI (i.e., GMI) algorithm will be
proposed and summarized as follows:

Algorithm 3 The GMI algorithm.
Require: Given two initial matrices X(0) and X(1), and two parameters µ and β
Ensure: X(k)

1: For k = 2, 3, 4, · · · , until converges, do
2: X(k)

1 = X(k−1) + µAT [C − AX(k−1) − X(k−1)B],
3: X(k)

2 = X(k−1) + µ[C − AX(k−1) − X(k−1)B]BT ,
4: X(k) = [X(k)

1 + X(k)
2]/2 + β(X(k−1) − X(k−2)).

5: End

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34738

Remark 3. If β is chosen to be 0, then the GMI algorithm is just the GI algorithm.

Theorem 2.2. Assume that the matrices A and B are non-singular. If Eq (1.1) has a unique solution
X∗, then the iterative solution X(k) obtained from Algorithm 3 converges to X∗ for any initial values if
and only if the parameters µ and β satisfy the following conditions:
Case 1: When 3q2 − q2

1 > 0,

√
q2

1 − 2q2

4q2
≤ β < a,

q1 −
√

c
q2

< µ <
q1 +

√
c

q2
,

(2.4)

or
0 < β < b,

q1 −
√

c
q2

< µ ≤
q1 −

√
d

q2
or

q1 +
√

d
q2

≤ µ <
q1 +

√
c

q2
,

(2.5)

where q1 = σ2
min(A) + σ2

min(B) − 2∥A∥2∥B∥2, q2 = (∥A∥22 + ∥B∥
2
2)(∥A∥2 + ∥B∥2)2, a = min

{
1
2 ,

√
q2

1−q2

8q2

}
,

b = min
{

1
2 ,

√
q2

1−2q2

4q2

}
, c = q2

1 − q2(8β2 + 1) and d = q2
1 − q2(4β2 + 2).

Case 2: When 3q2 − q2
1 ≤ 0,

0 < β < a,

q1 −
√

c
q2

< µ ≤
q1 −

√
d

q2
or

q1 +
√

d
q2

≤ µ <
q1 +

√
c

q2
.

(2.6)

Proof: Define the error matrices

X̃(k)
1 := X(k)

1 − X∗, X̃(k)
2 := X(k)

2 − X∗, X̃(k) := X(k) − X∗, k = 1, 2, · · · .

From Algorithm 3, it follows thatX̃(k)
1 = X̃(k−1) + µAT [−AX̃(k−1) − X̃(k−1)B],

X̃(k)
2 = X̃(k−1) + µ[−AX̃(k−1) − X̃(k−1)B]BT .

(2.7)

Taking the F-norm on (2.7), it yields that∥∥∥X̃(k)
1

∥∥∥2

F
=

∥∥∥X̃(k−1)
∥∥∥2

F
+ 2µtr{(AX̃(k−1))T [−AX̃(k−1) − X̃(k−1)B]}

+ µ2
∥∥∥AT [−AX̃(k−1) − X̃(k−1)B]

∥∥∥2

F

≤
∥∥∥X̃(k−1)

∥∥∥2

F
+ 2µtr{(AX̃(k−1))T [−AX̃(k−1) − X̃(k−1)B]}

+ µ2 ∥A∥22
∥∥∥AX̃(k−1) + X̃(k−1)B

∥∥∥2

F
,

(2.8)

and ∥∥∥X̃(k)
2

∥∥∥2

F
≤

∥∥∥X̃(k−1)
∥∥∥2

F
+ 2µtr{[−AX̃(k−1) − X̃(k−1)B](X̃(k−1)B)T }

+ µ2 ∥B∥22
∥∥∥AX̃(k−1) + X̃(k−1)B

∥∥∥2

F
.

(2.9)

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34739

By the triangle inequality and the property of the F-norm, we have

∥AX̃(k−1)∥F − ∥X̃(k−1)B∥F ≤ ∥AX̃(k−1) + X̃(k−1)B∥F

≤ ∥AX̃(k−1)∥F + ∥X̃(k−1)B∥F ≤ (∥A∥2 + ∥B∥2)∥X̃(k−1)∥F ,

or

∥X̃(k−1)B∥F − ∥AX̃(k−1)∥F ≤ ∥AX̃(k−1) + X̃(k−1)B∥F ≤ (∥A∥2 + ∥B∥2)∥X̃(k−1)∥F .

Squaring both sides, we obtain:

∥AX̃(k−1)∥2F + ∥X̃
(k−1)B∥2F − 2∥AX̃(k−1)∥F∥X̃(k−1)B∥F ≤ ∥AX̃(k−1) + X̃(k−1)B∥2F

≤ (∥A∥2 + ∥B∥2)2∥X̃(k−1)∥2F .

According to Lemma 2.1, we have

(σ2
min(A) + σ2

min(B) − 2∥A∥2∥B∥2)
∥∥∥X̃(k−1)

∥∥∥2

F
≤

∥∥∥AX̃(k−1) + X̃(k−1)B
∥∥∥2

F

≤ (∥A∥2 + ∥B∥2)2
∥∥∥X̃(k−1)

∥∥∥2

F
.

(2.10)

Combining (2.8)–(2.10), it yields that

∥X̃(k)∥2F =

∥∥∥∥∥∥∥ X̃(k)
1 + X̃(k)

2

2
+ β(X̃(k−1) − X̃(k−2))

∥∥∥∥∥∥∥
2

F

≤2

∥∥∥∥∥∥∥ X̃(k)
1 + X̃(k)

2

2

∥∥∥∥∥∥∥
2

F

+ 2β2
∥∥∥X̃(k−1) − X̃(k−2)

∥∥∥2

F

≤
∥∥∥X̃(k)

1

∥∥∥2

F
+

∥∥∥X̃(k)
2

∥∥∥2

F
+ 2β2

∥∥∥X̃(k−1) − X̃(k−2)
∥∥∥2

F

≤2
∥∥∥X̃(k−1)

∥∥∥2

F
− 2µ

∥∥∥AX̃(k−1) + X̃(k−1)B
∥∥∥2

F
+ µ2(∥A∥22 + ∥B∥

2
2)∥∥∥AX̃(k−1) + X̃(k−1)B

∥∥∥2

F
+ 2β2

∥∥∥X̃(k−1) − X̃(k−2)
∥∥∥2

F

≤2
∥∥∥X̃(k−1)

∥∥∥2

F
− 2µ

(
σ2

min(A) + σ2
min(B) − 2∥A∥2∥B∥2

) ∥∥∥X̃(k−1)
∥∥∥2

F

+ µ2
(
∥A∥22 + ∥B∥

2
2

)
(∥A∥2 + ∥B∥2)2

∥∥∥X̃(k−1)
∥∥∥2

F
+ 4β2

(∥∥∥X̃(k−1)
∥∥∥2

F
+

∥∥∥X̃(k−2)
∥∥∥2

F

)
=
[
2 − 2µ(σ2

min(A) + σ2
min(B) − 2∥A∥2∥B∥2) + µ2(∥A∥22 + ∥B∥

2
2)

· (∥A∥2 + ∥B∥2)2] ∥∥∥X̃(k−1)
∥∥∥2

F
+ 4β2

∥∥∥X̃(k−1)
∥∥∥2

F
+ 4β2

∥∥∥X̃(k−2)
∥∥∥2

F
.

(2.11)

By (2.11), we have [
∥X̃(k)∥2F
∥X̃(k−1)∥2F

]
≤ H

[
∥X̃(k−1)∥2F
∥X̃(k−2)∥2F

]
≤ Hk−1

[
∥X̃(1)∥2F
∥X̃(0)∥2F

]
,

where

H =
[

q2µ
2 − 2q1µ + 2 + 4β2 4β2

1 0

]
.

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34740

Let λ be the eigenvalue of the matrix H. We know that

λ2 − λ(q2µ
2 − 2q1µ + 2 + 4β2) − 4β2 = 0.

It then follows from Lemma 2.2 that |λ| < 1 if and only if4β2 < 1,∣∣∣q2µ
2 − 2q1µ + 2 + 4β2

∣∣∣ < 1 − 4β2,

which implies that 0 < β <
1
2
,

− 1 + 4β2 < q2µ
2 − 2q1µ + 2 + 4β2 < 1 − 4β2.

(2.12)

In addition, H ≥ 0 (H ≥ 0, if hi j ≥ 0 holds for all 1 < i < 2, 1 < j < 2.) if and only if

q2µ
2 − 2q1µ + 2 + 4β2 ≥ 0. (2.13)

Together with (2.12) and (2.13), we have0 < β <
1
2
,

0 ≤ q2µ
2 − 2q1µ + 2 + 4β2 < 1 − 4β2.

(2.14)

In the following, we mainly solve the inequalities (2.14) to obtain the range of µ and β. The second
inequality of (2.14) is equivalent to q2µ

2 − 2q1µ + 8β2 + 1 < 0,
q2µ

2 − 2q1µ + 4β2 + 2 ≥ 0.
(2.15)

Consider (2.15) as a system of quadratic inequalities in terms of µ, and determine the range of µ to
make the inequalities hold. Let’s first solve the first inequality of (2.15). When ∆1 = 4q2

1−4q2(8β2+1) >

0, i.e., 0 < β <

√
q2

1−q2

8q2
, there are two solutions

q1−
√

q2
1−q2(8β2+1)

q2
and

q1+
√

q2
1−q2(8β2+1)

q2
for the quadratic

equation q2µ
2 − 2q1µ + 8β2 + 1 = 0. So the solution of the first inequality in (2.15) is

q1 −

√
q2

1 − q2(8β2 + 1)

q2
< µ <

q1 +

√
q2

1 − q2(8β2 + 1)

q2
.

When ∆1 ≤ 0, q2µ
2 − 2q1µ + 8β2 + 1 is always greater than or equal to 0. So the inequality of

q2µ
2 − 2q1µ + 8β2 + 1 < 0 has no solution.
Solving the the second inequality of (2.15) by the same method in the following. When ∆2 =

4q2
1 − 4q2(4β2 + 2) ≤ 0, i.e., β ≥

√
q2

1−2q2

4q2
, q2µ

2 − 2q1µ + 4β2 + 2 is always greater than or equal to 0.

So the solution of the second inequality of (2.15) is µ ∈ R; when ∆2 > 0, i.e., 0 < β <

√
q2

1−2q2

4q2
, the

solution of the second inequality of (2.15) is

µ ≤
q1 −

√
q2

1 − q2(4β2 + 2)

q2
or µ ≥

q1 +

√
q2

1 − q2(4β2 + 2)

q2
.

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34741

In order to find the solution for (2.15), we need to consider the following cases:
Case 1: If 3q2 − q2

1 > 0, then

√
q2

1 − 2q2

4q2
≤ β <

√
q2

1 − q2

8q2
,

q1 −

√
q2

1 − q2(8β2 + 1)

q2
< µ <

q1 +

√
q2

1 − q2(8β2 + 1)

q2
,

(2.16)

or

0 < β <

√
q2

1 − 2q2

4q2
,

q1 −

√
q2

1 − q2(8β2 + 1)

q2
< µ ≤

q1 −

√
q2

1 − q2(4β2 + 2)

q2
or

q1 +

√
q2

1 − q2(4β2 + 2)

q2
≤ µ <

q1 +

√
q2

1 − q2(8β2 + 1)

q2
.

(2.17)

Case 2: If 3q2 − q2
1 ≤ 0, then

0 < β <

√
q2

1 − q2

8q2
,

q1 −

√
q2

1 − q2(8β2 + 1)

q2
< µ ≤

q1 −

√
q2

1 − q2(4β2 + 2)

q2
or

q1 +

√
q2

1 − q2(4β2 + 2)

q2
≤ µ <

q1 +

√
q2

1 − q2(8β2 + 1)

q2
.

(2.18)

Together with the first inequality of (2.14) and (2.16)–(2.18), (2.4)–(2.6) are obtained. Thus, the proof
is completed. □

Remark 4. When the error iteration matrix of the proposed algorithm is of size 2×2, the idea of using
Lemma 2.2 to determine the range of the coefficients in quadratic equations, thereby ensuring the
convergence of the algorithm, has been widely applied in many literatures. For example, the SOR-like
methods for solving the absolute value equations [11, 15].

3. The APGI and AGMI algorithms

In this section, explicitly giving the varied parameters in the proposed algorithms by minimizing
the residual in every iteration, the PGI and GMI algorithms with adaptive parameters are constructed.

3.1. The adaptive PGI algorithm

We first present the calculation rule for the parameter used in Algorithm 2 by minimizing the current
residual norm. The details are described below:

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34742

Suppose the parameter µk is taken in Algorithm 2 and for k = 1, 2, 3, · · · , the previous k−1 residuals
are defined by

R(k−1) = C − AX(k−1) − X(k−1)B, (3.1)

then the PGI algorithm can be simply rewritten as

X(k) = X(k−1) +
µk

2
P−1AT R(k−1) +

µk

2
R(k−1)BT Q−1. (3.2)

According to (3.1) and (3.2), the kth residual is given by

R(k) = R(k−1) −
µk

2
M(k−1) (3.3)

with M(k−1) = P−1AT R(k−1)B + R(k−1)BT Q−1B + AP−1AT R(k−1) + AR(k−1)BT Q−1.

Taking the F-norm on both sides of (3.3), it holds that

∥R(k)∥2F =tr[(R(k−1) −
µk

2
M(k−1))T (R(k−1) −

µk

2
M(k−1))]

=∥R(k−1)∥2F − µktr((M(k−1))T R(k−1)) +
µ2

k

4
∥M(k−1)∥2F .

Let ϕ(µk) = ∥R(k)∥2F . The first-order derivative of ϕ(µk) yields

∂ϕ

∂µk
=
µk

2
∥M(k−1)∥2F − tr((M(k−1))T R(k−1)).

It is easy to see that the unique stationary point of the function ϕ(µk) is

µk =
2tr((M(k−1))T R(k−1))
∥M(k−1)∥2F

. (3.4)

It is obvious that the sencond-order derivative of ϕ(µk) i.e., ∂2ϕ

∂µ2
k
= 1

2∥M
(k−1)∥2F > 0, which implies that

the stationary point mentioned in (3.4) is the unique minimum point of the function ϕ(µk).
Through the above arrangement, we formally outline the APGI method in Algorithm 4.

Algorithm 4 The APGI algorithm.
Require: Given two preconditioners P and Q, an initial matrix X(0) and the parameter µ1

Ensure: X(k)

1: For k = 1, 2, · · · , until converges, do
2: X(k)

1 = X(k−1) + µkP−1AT [C − AX(k−1) − X(k−1)B],
3: X(k)

2 = X(k−1) + µk[C − AX(k−1) − X(k−1)B]BT Q−1,
4: X(k) = [X(k)

1 + X(k)
2]/2,

5: according to (3.4), compute µk+1.
6: End

Remark 5. If P = Im and Q = In are adopted, the APGI algorithm is reduced to AGI algorithm.

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34743

3.2. The adaptive GMI algorithm

The kth iteration of the GMI algorithm can be simply rewritten as:

X(k) = X(k−1) +
µk

2
AT R(k−1) +

µk

2
R(k−1)BT + βk(X(k−1) − X(k−2)).

The residual of the kth iteration is

R(k) = R(k−1) −
µk

2
M(k−1) + βkN(k−1) (3.5)

with M(k−1) = AT R(k−1)B + R(k−1)BT B + AAT R(k−1) + AR(k−1)BT , and N(k−1) = R(k−1) − R(k−2). Taking the
F-norm on both sides of (3.5), it follows that

∥R(k)∥2F = tr[(R(k−1) −
µk

2
M(k−1) + βkN(k−1))T (R(k−1) −

µk

2
M(k−1) + βkN(k−1))]

= ∥R(k−1)∥2F − µktr((M(k−1))T R(k−1)) + 2βktr((N(k−1))T R(k−1))

− βkµktr((M(k−1))T N(k−1)) +
µ2

k

4
∥M(k−1)∥2F + β

2
k∥N

(k−1)∥2F .

Let ψ(µk, βk) = ∥R(k)∥2F . The first-order derivative of ψ(µk, βk) yields
∂ψ

∂µk
=
µk

2
∥M(k−1)∥2F − tr((M(k−1))T R(k−1)) − βktr((M(k−1))T N(k−1)),

∂ψ

∂βk
= 2βk∥N(k−1)∥2F + 2tr((N(k−1))T R(k−1)) − µktr((M(k−1))T N(k−1)).

It is easy to see that the unique stationary point of the function ψ(µk, βk) is
µk =

2ak−1ek−1 − 2bk−1ck−1

dk−1ek−1 − b2
k−1

,

βk =
bk−1ak−1 − ck−1dk−1

dk−1ek−1 − b2
k−1

,

(3.6)

where ak−1 = tr((M(k−1))T R(k−1)), bk−1 = tr((M(k−1))T N(k−1)), ck−1 = tr((N(k−1))T R(k−1)), dk−1 = ∥M(k−1)∥2F ,
ek−1 = ∥N(k−1)∥2F . We also know that the sencond-order derivative of the function ψ(µk, βk) is

∂2ψ

∂µ2
k

=
1
2
∥M(k−1)∥2F ,

∂2ψ

∂µk∂βk
=

∂2ψ

∂βk∂µk
= −tr((M(k−1))T N(k−1)),

∂2ψ

∂β2
k

= 2∥N(k−1)∥2F ,

whose Hessian matrix of the function ψ(µk, βk) at the stationary point is(1
2∥M

(k−1)∥2F −tr((M(k−1))T N(k−1))
−tr((M(k−1))T N(k−1)) 2∥N(k−1)∥2F

)
.

It is obvious that the Hessian matrix is symmetric positive definite, which implies that the stationary
point mentioned in (3.6) is the unique minimum point of the function ψ(µk, βk).

According to the above explanation, the AGMI algorithm is formulated as described in Algorithm 5.

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34744

Algorithm 5 The AGMI algorithm.
Require: Given two initial approximate matrices X(0) and X(1), and two parameters µ2 and β2

Ensure: X(k)

1: For k = 2, 3, 4 · · · , until converges, do
2: X(k)

1 = X(k−1) + µkAT [C − AX(k−1) − X(k−1)B],
3: X(k)

2 = X(k−1) + µk[C − AX(k−1) − X(k−1)B]BT ,
4: X(k) = [X(k)

1 + X(k)
2]/2 + βk(X(k−1) − X(k−2)),

5: according to (3.6), compute µk+1 and βk+1.
6: End

4. Numerical results

In this section, some examples are illustrated to verify the efficiencies of the proposed PGI, GMI,
APGI, and AGMI algorithms compared with the GI [8], RGI [18], AGBI [25], AJGI [21], HSS [3], and
NPHSS [16] algorithms. All examples are performed under MATLAB on a personal computer with a
1.61 GHz central processing unit (Intel(R) Core(TM) i7-10710) and 16GB memory.

The number of the iteration steps (denoted by IT), the computing time in seconds (denoted by CPU),
and the relative residual norm (denoted by RRN) are listed in the tables below. All the initial matrices
are set to be zero matrices, and the iterations are stopped if the RRN in the current step satisfies

RRN :=
∥C − AX(k) − X(k)B∥
∥C − AX(0) − X(0)B∥

≤ 10−6,

or the numbers of iteration steps exceeds 10000.
Example 1. Consider Eq (1.1) with the matrices A and B defined byA = diag(1, 2, · · · , n) + rLT ,

B = 2−tIn + diag(1, 2, · · · , n) + rLT + 2−tL

with L is the strictly lower triangular matrix having ones in the lower triangle part, r = 2 and t = 1
2 .

The right-hand side C = AX + XB with X = ones(n), where ones is a MATLAB built-in function.
The numerical results of the tested algorithms for Example 1 are listed in Table 2, and the

corresponding error convergence curves are shown in Figure 1. The matrices P and Q in the PGI and
APGI algorithms are the identity matrices, so the PGI and APGI algorithms are just the GI and AGI
algorithms. The parameters in AGBI (Algorithm 2.4 in [25]), GI ((13)–(15) in [8]), RGI (Algorithm 1
in [18]), and GMI algorithms are experimentally optimal, which are denoted by µexp and βexp in Table
1. Like [18] and [25], the relaxation parameters in RGI and AJBI algorithms are both 0.5. Figure 1
shows the RRN of the AGBI, GI, AGI, GMI, and AGMI algorithms with n = 200. From the figure, it
can be observed that the AGMI algorithm performs best among all these algorithms.

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34745

Table 1. The experimental optimal parameters for Example 1.

Algorithms 100 200 300 400
GI µexp 9.713E-06 2.424E-06 1.077E-06 6.057E-07
RGI µexp 2.356E-05 5.879E-06 2.612E-06 2.120E-06
AGBI µexp 0.390E-04 0.901E-05 3.790E-06 8.500E-06
GMI µexp 2.428E-05 6.062E-06 2.692E-06 1.514E-06

βexp 6.000E-01 6.000E-01 6.000E-01 6.000E-01

0 50 100 150 200 250 300

Iteration number

10-8

10-6

10-4

10-2

100

R
R

N

GI
AGBI
AGMI
AGI
GMI

Figure 1. Convergence curves of different algorithms for Example 1.

From Table 2, compared with the GI, RGI, AGBI, and AGI algorithms, the GMI and AGMI
algorithms have more effectiveness in terms of IT and CPU time. In addition, since the parameters
µk and βk in AGI and AGMI algorithms are varied and adaptive in each iteration, the two algorithms
are more efficient than the GI and GMI algorithms, respectively.

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34746

Table 2. Numerical results of different algorithms for Example 1.

Algorithms 100 200 300 400
GI IT 5413 5235 5174 5142

CPU 3.349 14.091 39.421 116.627
RRN 9.997E-07 9.999E-07 9.997E-07 9.999E-07

RGI IT 4464 4318 4267 4241
CPU 2.905 11.317 39.024 105.797
RRN 9.997E-07 9.998E-07 9.998E-07 9.999E-07

AGBI IT 2772 2879 2992 2985
CPU 2.218 10.852 34.857 88.261
RRN 9.996E-07 9.998E-07 9.995E-07 9.997E-07

AGI IT 1681 1627 1608 1598
CPU 2.212 9.114 31.939 86.779
RRN 9.996E-07 9.992E-07 9.992E-07 9.995E-07

GMI IT 864 836 826 821
CPU 0.371 1.504 5.739 13.950
RRN 9.993E-07 9.986E-07 9.988E-07 9.987E-07

AGMI IT 94 93 92 91
CPU 0.162 0.622 2.135 5.891
RRN 9.785E-07 9.744E-07 9.753E-07 9.948E-07

Example 2. The matrices A and B in Eq (1.1) are given as

A =

10 1 1 · · · 1 1
2 10 1 · · · 1 1
1 2 10 · · · 1 1
...

...
. . . 1 1

1 1 1 · · · 2 10

, B =

8 1 1 · · · 1 1
3 8 1 · · · 1 1
1 3 8 · · · 1 1
...

...
. . . 1 1

1 1 1 · · · 3 8

.

The right-hand side C = AX + XB with X = ones(n).
The numerical results of the tested algorithms for Example 2 are listed in Table 3, and the

corresponding error convergence curves are shown in Figure 2. The matrices P and Q in the PGI
and APGI algorithms are the diagonal parts of the matrices A and B, respectively. The experimentally
optimal parameters contained in GI (see (13)–(15) in [8]), HSS (“The HSS Iteration Method” in [3]),
NPHSS (Algorithm 1 in [16]), PGI, and GMI algorithms are given in Table 4. From Table 3, it is clear
that the seven algorithms are convergent for all cases. Furthermore, the APGI and AGMI algorithms
need fewer iteration numbers and CPU time than other algorithms, and the AGMI algorithm performs
best among the seven algorithms. Figure 2 illustrates the convergence curves of the HSS, NPHSS,
PGI, GMI, APGI, and AGMI algorithms for the case n = 256. It is clear that the RRN of the AGMI
and NPHSS algorithms rapidly decreases below 10−13, but NPHSS needs much more CPU time. So,
AGMI is the most efficient one.

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34747

0 5 10 15 20 25

Iteration number

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
R

N

HSS
NPHSS
PGI
AGMI
APGI
GMI

Figure 2. Convergence curves of different algorithms for Example 2.

Table 3. Numerical results of different algorithms for Example 2.

Algorithms 128 256 512 1024
GI IT 43 38 35 31

CPU 0.047 0.213 1.216 7.249
RRN 9.362E-07 9.739E-07 9.743E-07 9.345E-07

HSS IT 6 6 5 4
CPU 0.344 1.817 8.361 46.524
RRN 1.917E-07 4.749E-07 6.788E-07 6.678E-07

NPHSS IT 5 5 4 3
CPU 0.054 0.321 2.154 14.542
RRN 6.137E-07 4.381E-08 3.839E-08 4.305E-07

PGI IT 17 15 13 12
CPU 0.026 0.106 0.588 3.919
RRN 6.848E-07 7.719E-07 6.914E-07 6.468E-07

GMI IT 22 18 19 18
CPU 0.021 0.069 0.474 2.995
RRN 8.216E-07 8.211E-07 7.853E-07 8.068E-07

APGI IT 4 4 3 3
CPU 0.023 0.084 0.337 2.365
RRN 9.739E-07 1.733E-07 4.279E-07 1.525E-07

AGMI IT 3 3 3 3
CPU 0.029 0.064 0.247 1.961
RRN 1.228E-07 1.204E-08 4.862E-09 1.592E-09

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34748

Table 4. The experimental optimal parameters for Example 2.

Algorithms 128 256 512 1024
GI µexp 1.323E-05 3.547E-06 8.273E-07 1.872E-07
HSS α1 1.329E+02 3.229E+02 6.462E+02 1.091E+03

α2 1.046E+02 2.548E+02 5.104E+02 8.624E+02
NPHSS α1 2.248E+00 2.499E+00 1.999E+00 2.125E+00

α2 1.439E+01 1.599E+01 1.279E+01 1.359E+01
PGI µexp 3.059E-04 8.201E-05 2.125E-05 5.409E-06
GMI µexp 1.984E-05 5.675E-06 1.195E-06 2.575E-07

βexp 1.490E-01 1.550E-01 1.750E-01 1.850E-01

Example 3. The matrices in Eq (1.1) are described as

A = B = M + 2N +
100

(n + 1)2 In,

where M = tridiag(−1, 2.6,−1) and N = tridiag(0.5, 0,−0.5). The right-hand side C = AX + XB with
X = ones(n).

The numerical results of the tested algorithms for Example 3 are listed in Table 6, and the
corresponding error convergence curves are shown in Figure 3. Let P and Q be the tridiagonal parts of
the matrices AT A and BBT , respectively. The experimentally optimal parameters contained in GI ((13)–
(15) in [8]), AJGI (Algorithm 5 in [21]), PGI, and GMI algorithms are given in Table 5. Like [21],
the relaxation parameters ω1 and ω2 in the AJGI algorithm are 0.5 and 3, respectively. From Table 6
it follows that all the algorithms are effective for this example. In addition, the APGI algorithm is the
most efficient one among the six algorithms. Figure 3 shows their convergence performances for the
case n = 256, and the APGI algorithm has the remarkably best convergence result.

0 20 40 60 80 100 120

Iteration number

10-20

10-15

10-10

10-5

100

105

R
R

N

GI
GMI
AJGI
PGI
APGI
AGMI

Figure 3. Convergence curves of different algorithms for Example 3.

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34749

Table 5. The experimental optimal parameters for Example 3.

Algorithms 128 256 512 1024
GI µexp 4.714E-02 4.723E-02 4.725E-02 4.726E-02
AJGI µexp 2.400E-02 2.400E-02 2.300E-02 2.300E-02
GMI µexp 8.800E-02 8.300E-02 8.700E-02 8.800E-02

βexp 8.700E-01 8.700E-01 8.700E-01 8.700E-01
PGI µexp 4.400E-01 4.200E-01 3.900E-01 3.900E-01

Table 6. Numerical results of different algorithms for Example 3.

Algorithms 128 256 512 1024
GI IT 398 397 398 399

CPU 0.429 2.085 14.791 117.676
RRN 9.954E-07 9.703E-07 9.822E-07 9.751E-07

AJGI IT 180 183 185 185
CPU 0.166 0.941 5.978 51.097
RRN 9.129E-07 9.161E-07 8.603E-07 8.928E-07

GMI IT 190 186 182 181
CPU 0.211 0.799 6.713 42.489
RRN 8.229E-07 7.694E-07 7.376E-07 6.119E-07

PGI IT 96 95 95 109
CPU 0.209 0.768 5.23 46.233
RRN 8.448E-07 7.775E-07 9.507E-07 9.342E-07

AGMI IT 51 50 48 47
CPU 0.138 0.642 4.217 38.757
RRN 7.780E-07 8.138E-07 9.664E-07 8.567E-07

APGI IT 30 28 26 24
CPU 0.093 0.437 2.802 24.721
RRN 9.078E-07 9.643E-07 9.197E-07 8.501E-07

5. Conclusions

In this paper, we provide two accelerated GI algorithms for solving Eq (1.1), which are the
preconditioned gradient-based iteration (PGI) algorithm and the gradient-based momentum iteration
(GMI) algorithm, respectively. Convergence analyses show that the proposed algorithms converge
to the exact solution for any initial value with some assumptions. Moreover, the adaptive PGI and
GMI algorithms are also established, and the adaptive parameters can be computed by minimizing
the residual norms in the corresponding algorithms. Numerical experiments illustrate the excellent
performances of our proposed algorithms. In addition, how to use the APGI and AGMI algorithms for
solving other matrix equations will be investigated in our future work.

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

34750

Use of Generative-AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Author contributions

Huiling Wang: gave the algorithms proposed in the manuscript, provided the numerical results and
wrote the original draft of the manuscript; Nian-Ci Wu and Yufeng Nie: gave the clear guidance on
the proof of the theorem and polished the language of the entire manuscript. All authors have read and
agreed to the published version of the manuscript.

Acknowledgments

The work is supported by the National Natural Science Foundation of China (12201651),
the Fundamental Research Funds for the Central Universities, South Central Minzu University
(CZQ23004), and the Research Project Supported by Shanxi Scholarship Council of China(2023-117).

Conflict of interest

The authors declare no conflicts of interest.

References

1. A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl., 7 (1973), 151–162.
http://dx.doi.org/10.1016/0024-3795(73)90049-9

2. Z. Z. Bai, G. H. Golub, J. Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting
methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1–32.
http://dx.doi.org/10.1007/s00211-004-0521-1

3. Z. Z. Bai, On hermitian and skew-hermitian splitting iteration methods for continuous sylvester
equations, J. Comput. Math., 29 (2011), 185–198. http://dx.doi.org/10.4208/jcm.1009-m3152

4. Z. Z. Bai, M. Benzi, F. Chen, Z. Q. Wang, Preconditioned MHSS iteration methods for a class of
block two-by-two linear systems with applications to distributed control problems, IMA J. Numer.
Anal., 33 (2013), 343–369. http://dx.doi.org/10.1093/imanum/drs001

5. A. Bhaya, E. Kaszkurewicz, Steepest descent with momentum for quadratic functions
is a version of the conjugate gradient method, Neural Networks, 17 (2004), 65–71.
http://dx.doi.org/10.1016/S0893-6080(03)00170-9

6. Z. B. Chen, X. S. Chen, Conjugate gradient-based iterative algorithm for solving generalized
periodic coupled Sylvester matrix equation, J. Franklin I., 359 (2022), 9925–9951.
http://dx.doi.org/10.1016/j.jfranklin.2022.09.049

7. M. Dehghan, A. Shirilord, The double-step scale splitting method for solving complex Sylvester
matrix equation, Comp. Appl. Math., 38 (2019), 146. http://dx.doi.org/10.1007/s40314-019-0921-
6

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

https://dx.doi.org/http://dx.doi.org/10.1016/0024-3795(73)90049-9
https://dx.doi.org/http://dx.doi.org/10.1007/s00211-004-0521-1
https://dx.doi.org/http://dx.doi.org/10.4208/jcm.1009-m3152
https://dx.doi.org/http://dx.doi.org/10.1093/imanum/drs001
https://dx.doi.org/http://dx.doi.org/10.1016/S0893-6080(03)00170-9
https://dx.doi.org/http://dx.doi.org/10.1016/j.jfranklin.2022.09.049
https://dx.doi.org/http://dx.doi.org/10.1007/s40314-019-0921-6
https://dx.doi.org/http://dx.doi.org/10.1007/s40314-019-0921-6

34751

8. F. Ding, T. W. Chen, Gradient based iterative algorithms for solving a class of matrix equations,
IEEE T. Automat. Contr., 50 (2005), 1216–1221. http://dx.doi.org/10.1109/TAC.2005.852558

9. F. Ding, P. X. Liu, J. Ding, Iterative solutions of the generalized Sylvester matrix equations
by using the hierarchical identification principle, Appl. Math. Comput., 197 (2008), 41–50.
http://dx.doi.org/10.1016/j.amc.2007.07.040

10. F. Ding, X. H. Wang, Q. J. Chen, Y. S. Xiao, Recursive least squares parameter estimation for
a class of output nonlinear systems based on the model decompositions, Circuits Syst. Signal
Process., 35 (2016), 3323–3338. http://dx.doi.org/10.1007/s00034-015-0190-6

11. X. Dong, X. H. Shao, H. L. Shen, A new SOR-like method for solving absolute value equations,
Appl. Numer. Math., 156 (2020), 410–421. http://dx.doi.org/10.1016/j.apnum.2020.05.013

12. K. Du, C. C. Ruan, X. H. Sun, On the convergence of a randomized block coordinate
descent algorithm for a matrix least squares problem, Appl. Math. Lett., 124 (2022), 107689.
http://dx.doi.org/10.1016/j.aml.2021.107689

13. W. Fan, C. Gu, Z. Tian, Jacobi-gradient iterative algorithms for Sylvester matrix equations, 14th
Conference of the International Linear Algebra Society, Shanghai, China, 2007, 16–20.

14. C. Q. Gu, H. Y. Xue, A shift-splitting hierarchical identification method for
solving Lyapunov matrix equations, Linear Algebra Appl., 430 (2009), 1517–1530.
http://dx.doi.org/10.1016/j.laa.2008.01.010

15. B. H. Huang, W. Li, A modified SOR-like method for absolute value equations
associated with second order cones, J. Comput. Appl. Math., 400 (2022), 113745.
http://dx.doi.org/10.1016/j.cam.2021.113745

16. X. Li, H. F. Huo, A. L. Yang, Preconditioned HSS iteration method and its non-alternating
variant for continuous Sylvester equations, Comput. Math. Appl., 75 (2018), 1095–1106.
http://dx.doi.org/10.1016/j.camwa.2017.10.028

17. M. S. Mehany, Q. W. Wang, Three symmetrical systems of coupled Sylvester-like quaternion
matrix equations, Symmetry, 14 (2022), 550. http://dx.doi.org/10.3390/sym14030550

18. Q. Niu, X. Wang, L. Z. Lu, A relaxed gradient based algorithm for solving Sylvester equations,
Asian J. Control, 13 (2011), 461–464. http://dx.doi.org/10.1002/asjc.328

19. B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Comp. Math.
Math. Phys., 4 (1964), 1–17. http://dx.doi.org/10.1016/0041-5553(64)90137-5

20. S. G. Shafiei, M. Hajarian, An iterative method based on ADMM for solving
generalized Sylvester matrix equations, J. Franklin I., 359 (2022), 8155–8170.
http://dx.doi.org/10.1016/j.jfranklin.2022.07.049

21. Z. L. Tian, M. Y. Tian, C. Q. Gu, X. N. Hao, An accelerated Jacobi-gradient based
iterative algorithm for solving Sylvester matrix equations, Filomat, 31 (2017), 2381–2390.
http://dx.doi.org/10.2298/FIL1708381T

22. Z. L. Tian, Y. D. Wang, Y. H. Dong, S. Y. Wang, New results of the IO iteration
algorithm for solving Sylvester matrix equation, J. Franklin I., 359 (2022), 8201–8217.
http://dx.doi.org/10.1016/j.jfranklin.2022.08.018

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

https://dx.doi.org/http://dx.doi.org/10.1109/TAC.2005.852558
https://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2007.07.040
https://dx.doi.org/http://dx.doi.org/10.1007/s00034-015-0190-6
https://dx.doi.org/http://dx.doi.org/10.1016/j.apnum.2020.05.013
https://dx.doi.org/http://dx.doi.org/10.1016/j.aml.2021.107689
https://dx.doi.org/http://dx.doi.org/10.1016/j.laa.2008.01.010
https://dx.doi.org/http://dx.doi.org/10.1016/j.cam.2021.113745
https://dx.doi.org/http://dx.doi.org/10.1016/j.camwa.2017.10.028
https://dx.doi.org/http://dx.doi.org/10.3390/sym14030550
https://dx.doi.org/http://dx.doi.org/10.1002/asjc.328
https://dx.doi.org/http://dx.doi.org/10.1016/0041-5553(64)90137-5
https://dx.doi.org/http://dx.doi.org/10.1016/j.jfranklin.2022.07.049
https://dx.doi.org/http://dx.doi.org/10.2298/FIL1708381T
https://dx.doi.org/http://dx.doi.org/10.1016/j.jfranklin.2022.08.018

34752

23. Q. W. Wang, R. Y. Lv, Y. Zhang, The least-squares solution with the least norm to a system
of tensor equations over the quaternion algebra, Linear Multilinear A., 70 (2022), 1942–1962.
http://dx.doi.org/10.1080/03081087.2020.1779172

24. Q. W. Wang, X. Wang, A system of coupled two-sided Sylvester-type tensor
equations over the quaternion algebra, Taiwanese J. Math., 24 (2020), 1399–1416.
http://dx.doi.org/10.11650/tjm/200504

25. Y. J. Xie, C. F. Ma, The accelerated gradient based iterative algorithm for solving a class of
generalized Sylvester-transpose matrix equation, Appl. Math. Comput., 273 (2016), 1257–1269.
http://dx.doi.org/10.1016/j.amc.2015.07.022

26. A. L. Yang, Y. Cao, Y. J. Wu, Minimum residual Hermitian and skew-Hermitian splitting iteration
method for non Hermitian positive definite linear systems, BIT Numer. Math., 59 (2019), 299–319.
http://dx.doi.org/10.1007/s10543-018-0729-6

27. A. L. Yang, On the convergence of the minimum residual HSS iteration method, Appl. Math. Lett.,
94 (2019), 210–216. http://dx.doi.org/10.1016/j.aml.2019.02.031

28. J. F. Yin, Q. Y. Dou, Generalized preconditioned Hermitian and skew-Hermitian splitting methods
for non-Hermitian positive-definite linear systems, J. Comput. Math., 30 (2012), 404–417.
http://dx.doi.org/10.4208/jcm.1201-m3209

29. X. F. Zhang, Q. W. Wang, Developing iterative algorithms to solve Sylvester tensor equations,
Appl. Math. Comput., 409 (2021), 126403. http://dx.doi.org/10.1016/j.amc.2021.126403

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 12, 34734–34752.

https://dx.doi.org/http://dx.doi.org/10.1080/03081087.2020.1779172
https://dx.doi.org/http://dx.doi.org/10.11650/tjm/200504
https://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2015.07.022
https://dx.doi.org/http://dx.doi.org/10.1007/s10543-018-0729-6
https://dx.doi.org/http://dx.doi.org/10.1016/j.aml.2019.02.031
https://dx.doi.org/http://dx.doi.org/10.4208/jcm.1201-m3209
https://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2021.126403
https://creativecommons.org/licenses/by/4.0

	Introduction
	 Two accelerated GI algorithms
	The APGI and AGMI algorithms
	 The adaptive PGI algorithm
	 The adaptive GMI algorithm

	 Numerical results
	Conclusions

