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1. Introduction

Fractional differential equations have attracted extensive attention for their ability to accurately
describe complex physical phenomena in both micro and macro perspectives [1-3]. The differential
equations with fractional derivative in time variable can better describe genetic and memory
characteristics of some physical processes. For different physical situations, different memory function
arise from various fractional derivative operators, such as the power memory kernel, exponential
memory kernel, and Mittag-Leffler memory kernel functions [4].
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In this work, we consider the following initial boundary value problem:

95 u(x, 1) = Au(x, 1) + f(x,1),x € Q,1 € (0,T],
u(x,1) = 0,x € 0Q,1 € (0,T], (1.1)
u(x,0) = up(x),x € Q,

where A = 66—; + % denotes the Laplace operator, Q = [—1, 1]* denotes the computational domain with
1 2

a,A(t)

o; denotes the generalized Caputo

boundary 09, x = (x1, x,) € Q stands for the space variables, and 9
time-fractional derivative [5]

1 "A(t — ) Ou
O Ou(x, 1) = —(x, s)ds, 0 1. 1.2
0p u(x,1) o Jy (t_s)aas(xs)s <a< (1.2)
In fractional derivative (1.2), we assume that the kernel function satisfies A(f) € C?[0, T'], A(¥) > 0 and
A'(t) <0 for all t € [0,T]. Particularly, if kernel takes A(f) = e (b > 0), fractional derivative (1.2)

gives

bt 1 L e oy
oe N -
o WD = FaT ) =) Bs
provides the tempered fractional derivative and integral

(x, s)ds, (1.3)

e—b(t—s)

_ e_bt ' —a 0 bs _ b '
u(x, 1) = m j; (t—1) %(u(x, s)e”*)ds r—a j; 7 u(x, s)ds. (1.4)

Obviously, from a mathematical perspective, the Caputo-type fractional derivative (1.2) can be
interpreted as a kind of generalized fractional derivative [4, 6, 7]. From Figure 1, we can see the
influence of parameters on the solution. More application (in macroscopic and microscopic scales) of
the model given in problem (1.1) with tempered fractional derivative, see references [3,8,9]. There
are many research works on the discretization of fractional derivative (1.2). By splitting into two parts,
Alikhanov first discussed the L1 formula of fractional derivative (1.2) in the work [5], and proposed a
new difference scheme for the time-fractional diffusion equation with the fractional derivatives (1.2).
Recently, in view of relation (1.4), Chen et al. [10] established two different L1 discretizations for
tempered Caputo fractional derivative on the graded meshes, which developed in reference [11].
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Figure 1. The evolution of solution of problem (1.1) with A(f) = e™*. Here, we take zero
source term (i.e., f = 0). The left figure illustrates behavior of solution with different «, the
right figure illustrates behavior of solution with different b.
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The nonlocality of the fractional derivative will make storage and computation very expensive if
we adopt a lower-order method. For example, if we use the L1 scheme to calculate (1.1), the required
computational and storage amounts are O(NN7) and O(NN%), respectively, where N is the number
of spatial grid points and N7 stands for the number of grid points in time. When the time step is
small enough, it means that the numerical calculation needs expensive storage costs and computational
costs, so it is particularly important to develop fast or high-order numerical schemes. The sum-of-
exponential (SOE) technique is one of the effective techniques to approximate the fractional derivatives
with the power kernel function [12, 13]. In this topic, Jiang et al. [13] used the SOE method to
approximate the kernel function r~@*)(0 < @ < 1) and solved fractional diffusion equations on
unbounded domains. Yan et al. [14] combined the L2-1, scheme with SOE approximation successfully
solved an initial boundary value problem of the time fractional diffusion equation. Combining the SOE
approximation, Xu et al. [15] proposed a fast L2 discretization of Caputo fractional derivatives, and
they get the error estimates by rearranging the coefficients of the fast L2 difference approximation.
With the help of the SOE technique, Gu et al. [16] proposed a fast difference algorithm to solve the
generalized time-space fractional diffusion equation with fractional derivative (1.3). It seems that the
authors of [16] fail to give any convergence analysis of the fast L1 difference scheme.

As a higher-order numerical method, the spectral method has been widely used for solving many
kinds of differential equations [17, 18] including fractional differential equations [15]. Lin and Xu [19]
solved the time-fractional diffusion equation based on the finite difference method in the time direction
and the Legendre spectral method in space. Later, Li and Xu [20] improved their previous results
and proposed a time-space spectral method for the time-fractional diffusion equation. Compared with
one-dimensional problems, solving high-dimensional problems is more difficult due to the increase
in storage and computational cost. Zeng et al. [21] proposed the Legendre Galerkin spectral method
for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations and obtained the
optimal spatial error estimation. Guo et al. [22] used the Legendre spectral method to solve two-
dimensional fractional nonlinear reaction-diffusion wave equations. Recently, combining the fast L2
discretization of Caputo fractional derivatives, Xu et al. [ 15] proposed a fast difference/spectral method
for a time fractional equation in one dimension. In their numerical scheme, the convergence order
in the temporal direction is (3 — @) and the convergence order in the spatial direction is O(N'™),
where m is the regularity of the exact solution in the spatial direction. This work suggests that the
fast difference approximation with high-order discretization schemes is an effective way to solve the
time fractional differential equations. Following this line, in this paper, we try to develop a fast finite
difference/Legendre spectral collocation method for problem (1.1) with smooth solution and discuss
the error estimates for the present numerical schemes. First, the generalized fractional derivative is
discretized by L1 discretization, and the time direction convergence order is analyzed. Secondly, by
using SOE approximation of exponential kernel function, a fast L1 scheme with exponential memory
kernel function is obtained. Therefore, it can be seen that the calculation and storage costs of the fast
scheme are significantly reduced. With the similar technique given in [15], we will discuss the error
estimates when the fast L1 method is used to solve problem (1.1).

The rest of this paper is organized as follows: In Section 2, we present time discretizations for
problem (1.1) and discuss the stability and convergence of the present semi-discrete scheme. Combing
the Legendre spectral collocation method for spatial variables, in Section 3, we discuss the finite
difference/spectral collocation method for problem (1.1). The error estimates of the fully discrete
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scheme are also established in this section. For the generalized fractional derivative with exponential
kernel, we develop the sum-of-exponentials technique developed in [13] to accelerate the calculation
process. The error estimates of the related numerical schemes are discussed in Section 4. In Section 5,
we present two numerical examples to verify the efficiency of our numerical algorithm and theoretical
results. Finally, some conclusions are provided in Section 6.

2. Time semi-discrete scheme

First, we discretize the fractional derivative with a generalized memory kernel, assuming the
solution u(tf) € C?*[0,T]. The computational domain [0, 7] is uniformly divided into Ny intervals
with the uniform grids #; = k7, k = 0,1, ..., Ny. For A(t) € C*[0, T], the time fractional derivative with
a generalized memory kernel is discretized as [5]

@, A(1) T+ 1 /l(tk+1
P Dl = F(l s S N ra—T s)“ W (s)ds
+
2.1
WZW o128k + (At = Age)bi-Dtgy + RY + RS,
where

! ! -1 fog —

=AU, u M, Iy ju(s) = u(tl+1)s I + u(t) l+1T S’

1 1
a =1+ 1) - p = g [(1 + 1) - lz‘“] -5 [(l + e 4 l“"‘], 1>0,

and the error

RE = Tl i y fl Ak—ts1—z — Ak—is12 — (ko — A1) — 1/2)dz
T - &, (k—1+1-2) ’

k

Rt = 1 f " Atesr — $)(u(s) =TI u(s))’ J
I -a) — (Tre1 — $)° ’
give [5]
l-a
k+1 2 ” k ” 2—-a
IR}l < T2 —a) omax |u’ (l)|omaii1 |7 (D], IR;] < Comaiil | (DIA0)T,

where ¢ depends on a.
We rewrite (2.1) as follows:

k-1

A -1 ket
ay; Uiy, = a [ g (Cjs1 — cpulti—;j) + coultysr) — Cku(to)] +r
=0

where @y = T°T(2— @), ¢; = (A1 2a1+ (A4 — Ai:1)b)(1 > 0), and the truncation error gives ri*! = RY + R,

For the sake of simplification, we define the fractional differential operator L;" A0 (X, t1) by
k=1
L ux, i) = ap' [ Z(CjH — cu(X, fr_j) + cou(X, fy1) — cru(X, fo)]- (2.2)
Jj=0
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Using L™ u(x, 1,1) to approximate 6g’f(’)u(x, f) in problem (1.1) at t,,, and denoting u**! is

an approximation of u(x, 1), f*! = f(X,txs1), we obtain the time semi-discrete scheme of
problem (1.1), i.e.,

cou' — apAu' = cou’ + ozofl, (2.3)
for k = 0.
For1 <k <Nr-1,
k=1
Z(cj - cj+1)uk_] + e’ = o™t — AUt — g fCH 2.4)
=0

After a simple calculation, the truncation error of the semi-discretized schemes (2.6) and (2.7) give
1 = qork*! and satisfies

I = ol < @ max 107 u(x, H)|A(0)7°. (2.5)

O<t< Jj+1

Considering the variational formulation of (1.1), we define some functional spaces endowed with
standard norms and inner products that will be used hereafter [17, 18,26]

H™(Q) = {ulu € L*(Q), D’u € L(Q) for 0 < |8] < m}, Hy(Q) = {ulu € H'(Q), uls = 0},

where 8 = (B1,52), |8l = B1+ B2, DP = . f?v; wx L*(Q) is the space of measurable functions whose square
1 2

is Lebesgue integrable in 2, which equip with the inner products
(u,v) = f uvdx, (u,v); = (u,v) + aocal(Vu, Vv),
Q
and the normH' is defined by

12 2 1 2\!/2
M = @12 vl = (IMP + aocg IVvIP)

The weak formulation of the (2.3) and (2.4) reads: Find u**' € H}j(€Q), such that

(', v) + aocal(Vul, Vv) = (uo, V) + aocal(fl, V), (2.6)
for k = 0, and
k-1
W v) + aocal(Vuk“, V) = cal Z(cj - cj+1)(uk_j, V) + calck(uo, V) + ozocal(fk”, V), 2.7
=0

forallve Hy(Q)and 1 <k <Ny - 1.

2.1. Stability analysis of the semi-discrete scheme

Lemma 1. /5] If A(t) > 0,2°(¢t) < 0, and A(t) € C*[0, T], the weighted coefficients a;, b; and ¢, (I =
0,1,...) are given by (2.1), satisfy
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1 —
ap > a >a2>...>a,>—a, by >b;>...b >0,
I+ 1)~
apA(t1/2) apA(T)

> .
rd-ay,  T(-aTe

Co>CL>...>C >

Theorem 1. For all T > 0, the semi-discretized schemes (2.6) and (2.7) are unconditionally stable, i.e.,

k+l o . = ~1 j
Ny < Nl + Caoc,” max ||f/|l,k=0,1,...,Nr — 1. (2.8)
0<j<k+1

Proof. For k = 0, substituting v = u' in (2.6) and using |ju'|| < ||u'||;, we have

112 O((15,! —1p 2111 0((1,1 -1 11111
{17 < Ml [lllze’ ] + @ocy ILf Ml 1] < Hlee”llflee 1 + @ocy (gg%llf’llllu . (2.9)

From (2.9), we have [lu'll; < [|u°|] + Caocy’ max Ilf/ll. For k > 1, we prove (2.8) by mathematical
<J<

induction. Assume that there holds

j 0 ~ -1 ! .
le/[l; < [lu”l] + Eaocyy {)rslgllfll,J =12,...,k (2.10)

Now prove (2.8) using inequality (2.10). Substituting v = #**! into (2.7), we obtain

k-1
k+1)12 -1 k+112 -1 k—j . k+1 -1/ pck+1  k+1 -1,..0  k+1
AP + oy IV = 65t > ey = )@, i) + aoe (4 1) + ey (1, uth),(2.11)
=0
which implies

k—1
k+1112 -1 k—j k+1 -1 k+1 k+1 -1 0 k+1
"7 < ¢ E (c; = cip)N ™| + aocy I e + creg e MMl

J=0
Using Lemma 1 and the inequality |[u**!|| < ||lu**!||;, we have
k-1
k+1 -1 0 ~ -1 j -1y,,0 =1 pk+1
Ml <cg" D es = e lu’ll + aocy! max (D + ey Il + aocy Il
=0 SJsk=J
k-1
_ -1 0 ~ -1 j 0 K+l
=Cg (¢j = cjr)(lull + Caocy” max [IF71]) + cillul] + aoll .
- SJsk=J
Jj=0

Note that [|u’|| + ¢apcy' max ||If/|| < [lul] + Eaocy' max ||f7]I(j =0, 1,...,k — 1). Therefore
0<j<k—j 0<j<k

k-1
k+1 -1 0 ~ -1 j =1y £k+1
It < 5[ Qe = eion) + )l + ooy max ILFID] + aocg Il
j=0 o

0 ~ -1 j
< |lu|| + cagc max .
il + Eaoeg" max [1£]
Finally, we obtain (2.8). O
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2.2. Convergence analysis of the semi-discrete scheme

Here we provide some lemmas to analyze coeflicients ¢; and a;, which will help to study the
convergence analysis of the solution. In the following sections, ¢ is used to represent a constant, which
may be different under different situations. Here, we employ the technique used in reference [19] to do
the error estimates of schemes (2.6) and (2.7).

Theorem 2. Let u(x, t;) be the exact solution of problem (1.1), {u* } be the solution of schemes (2.6)
and (2.7), there holds

¢T® max ||07u(x, )|l *,0 < a < 1,
te(0,T]

e, 10 =l <4 o o JRuce, e @ — 1, 2.12)
1€(0,T]
where € is independent of u,t and T.
Proof. Firstly, we prove that the following inequality
llu(x, ) — |y < &l max ?u(x, £)|A(0)72, j = 1,2,...,Ny. (2.13)
Let e/ = u(x,t;) — u’, for j = 1, we obtain
(e',v) + aocal(Vel, ) = (% v) + (', v). (2.14)

If we assume the initial value is exact (i.e., e’ = 0), let v = e' in (2.14), using (2.5), we obtain

1 1 ~ 1 2 2
llesll < il < e max |67 u(x, DIA0)T".

Suppose (2.13) holds for all j = 1,2,...,k, we need to prove it also holds for j = k + 1. In view of

k-1
(€, v) + apcy (Ve V) = ¢! Z(cj - cj+1)(ek_j, V) + cyler(e,v) + (L), (2.15)
j=0
Letv = ¢! in (2.15), we have
k-1
€M + aocy IVEH P = ¢ Z(c, ci)(@ T, )+ opl (e, ) + (L . (2.16)
j=0
We rewrite (2.16) as follows:
k-1
12 < 5t Z(c] — cj)eci! ; max 107 u(x, | A0)7* + & max |62u(x DIAO)7 Il
j=0

Using Lemma 1, we have ck < ck , it follows that

k-1
k 1 ~ —1 2 2 ~ 2 2
I, < Co Z(cj Cjr1)CC trel(loa])g] |07 u(x, H)|A(0)T" + ctrer(l(?y)g] 10; u(x, H|A(0) ]
Jj=0 ' '
< &c;! max |0%u(x, 1)|A(0)72,
¢! max [6fu(x, D1A(0)
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which implies (2.13). Lemma 1 suggests that

AT Id - o A r(d-ar 1
gﬂ(zkﬁ/z) < (1 — )7 Atgs1/2) < ( a)Ta _ |
aoA(t-1/2) o Aticrp) TR - )T o

ke Atgaryn) < k°°

Hence, we have

llu(x, 1) — ully < & max 107 u(x, D|A0)7*
te(0,T

1€(0,T]

1
= ak—aﬂ(zk+1/z)c;llm max |07 u(x, )|A(0)7°
+

1
I —a Ati1)2)

< ¢T" max |6fu(x, )lks
1€(0.T]

< (kT)” max |62u(x HIA0)T*

2—a

Next we consider the case @ — 1, we firstly prove that
i o 2 2 .
[Juct)) = u]), < ¢j max |0;ux D%, j = 1,2,..., Nr. (2.17)
Inequality (2.17) obviously holds for j = 1. Suppose (2.17) holds for j = 1,2,...,k. Now we will

prove that (2.17) still holds when j = k + 1. In fact, with the similar method given in Theorem 1,
we have

kt1
Nue(tier) — w0y
0 k+1
< c'(eo = en)llefll + c5 Z(c] cille I+ e calle®ll + 117+
j=1
k-1
[(co —cy)ck max Iazu(x Dir* + Z(cj cjr)k = ])c max Iazu(x HIr*] + ¢ max Iazu(x Hlr?
j=1

+ Z(C] C]+])

= CBI[(CO - Cl) ](k + 1)¢ max |62u(x DT

(2.18)
Simple calculations, we can check that
k-1 - k-1
(co=epr + D (€)= )y + g = e+ Z(c, ¢je) = (co =)
= (2.19)
j+1
- Z(Cj - Cj+1)m +
j=1
With the help of (2.18), Eq (2.19) provides that
k-1 J— it
lle Iy < cal[(c()—cl)+Z(C,,-—cm)—(cO—cl)k Z T
j=1 j=1 (2.20)

co 1~ 2 2
S 1]c(k +1) max |97u(x, Ol
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Since
k=1 i+l k=1 c
0
(co — Cl)k 1 + ;(Cj - Cj+1)m +c [(Co -c))+ ;(C] —Cjp1) + Ck] i1
we have .
] +1 Co
~(eo—en)y Z‘ ) T T S O (2.21)
Substituting (2.21) into (2.20), we obtain
k-1
el < ¢y [(co —c))+ Z(c, Cj1) + ck](k + )¢ max Iazu(x s
j=1
< ¢T max |(9,2u(x, D|t.
(0,1
We finally obtain our conclusion. O

3. The fully discrete scheme

Let Py(I,) and Py(I,) be the spaces of all polynomials of degree less than or equal to N defined
on domains I, = (=1,1) and I, = (=1, 1), respectively. Let Vy(Q) = Py(I,) ) Pn(1,), {.fj}jio,{fi}l’.‘io
are Legendre-Gauss-Labatoo (LGL) points, and {w j} o and {w }1 o are the weights, which satisfy the
following quadrature formula [25,26]

f f o(x1, X)dx1 X = Z Z o€, Epwjw), Yo € Voy 1(Q).

J1=0 j2=0

Define the inner product and norm as follows [18,25,26]
N N
@0 = ) > 0 EQEEDwiws Wllow = (6, 0))/%.
i=0 j=0
We will use the Hj-orthogonal projection operator 7y such that [24]
(V(u — miyu), Vv) = 0,¥v € Vi(Q), 3.1
for all u € H}(Q). Here V(Q) is defined as
VR(Q) = (Py(L) ® Py(I)) N H)(Q).
For this projection, there have estimates [25,26]
lu — myull; < ENTlull, w € H™(Q) N Hy(Q),m > 1,1=0,1. (3.2)
Lemma 2. [25] Forall p € H"(Q)(m > 1), vy € Py(Q), there holds

(@, vn) = (@, vw)n < EN"llllnllvallon- (3.3)
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Finite difference/Legendre collocation approximation of problem (1.1) gives: Find uf, € Vo (<),

k-1
k+1 -1 k+1 -1 k—j 1,0 k+1
(uy ", vnn + aocy (Vuy™, Voy)y = ¢ Z(Cj — ¢y, v + erey Uy, vy + (FL vn)y, (3.4)
J=0

for all vy € Vi (Q). The discrete H'-norm is defined by

Wl = (st + a0y (T, V) Wy € Vi),

To do the error estimate, we split the error as u(ty) —uk, = (u(f) —wyu(ty)) — (uh, —myu(ty)) = ey —ek,.

Without loss of generality, we only consider the homogeneous case of problem (1.1), i.e., f = 0.

Theorem 3. Let u(x,t) be the exact solution of problem (1.1), and u’;v be the solution of fully discrete
scheme (3.4) with the initial condition uS, = nyu’. Suppose 87u € L¥((0, T]; H"(Q))(m > 1), then

L s (N1 Ol gaamy + T AONN 162l =gy + 1020l 12)))
+EN"lul| oo gy, O < @ < 1,

e, 1) = uplliw < (3.5)
E% (N_m||3;’vl(t)u||Loo(Hm) + TAO)YN |0 ul| o (gmy + ||812u||L°°(L2)))

+5N1_m||u||L°°(Hm),a/ -1,

L,A(t At

where 107" Vullzogmy = supeonllof Cue, Ollm, Nullisgs = supeorlluce, Ol 102ullpogm =
2 2 2

Supte(o,T)H@, u(x, O, and ||0; ull=2) = SUP,E(O,T)Ha, u(x, ||

Proof. Subtracting ek, = uf, — myu(t;) on both sides of Eq (3.4), we obtain
(e’f\,”, VN)N + oy’ (Velf\,”, VVN)N
k-1

-1 k—j —1,.0 -1
= ¢ Z(cj = c)ty vy + crcy Uy, N = (nutea), vy = aoc (Vayu(te), Voy)y -
j=0

Rewriting the above formula, we obtain

k+1 -1 k+1
(eN , vN)N + apc, (VeN , VVN)N

k-1
4 k= “1(.0 ka1 ket
= ¢} Z(cj — Cj41) (eN I, vN)N + ey (eN, vN)N + (81+ , vN)N + (82+ , vN)N ,
=
where
k-1
ket -1
7 = (utysr) — myultisr)) — ¢ Z(Cj = Cjp1)W(ti-j) — Tyu(ty—;))
J=0
-1
— ey (ulty) — myu(tp)),
and
k-1
ket -1 -1
g5 = —(utp1) — Tyu(tes)) + ¢ Z(Cj = cjr)u(tr—;) + ckcy ulto)
=0

-1
— aiyu(tr1) + aocy Amyu(tysy).

AIMS Mathematics Volume 9, Issue 12, 34647-34673.



34657

For term (s’l‘” , vN)N, we have

k-1

(SlfH, VN)N =Wy - ﬂN)(u(lkH) ~q' Z(Cj — cir)ulty-j) — cxey ulty), VN)N
=0

= CYOCBI((LJ — )0 utinr) — H, VN)N,
where [, is the identity operator. Using (3.3), we have
‘(811{“’ VN)N‘
< aocy" [((a = )@ Oultinr) = ), vn) + ENTIU = )@ ultin) = O vallo |
< aocy! [IUa = 1)@ utin) = 5 Mo + ENTNs = )@ Putinr) = O | Ivwllo.n-
By using of (3.2), we obtain

k ~ -1 - LA(E 2— - 2
(e, vv), | < Eaocs" (N 1008 llqrmy + T AN 132l ol

Note that
k-1
k+1 -1 -1 -1
(62+ ,vN)N = —(u(tk+1) — ¢ Z(Cj = Cjp DUl ) = CiCy u(to),vN)N — ¢ (VﬂNu(tk+1),VvN)N,
j=0

the facts (Vayu(t), Voy)y = (Vayu(ty), Vvy) and (67" Vu(te), vy) = = (Vu(t), Vvy), we obtain

'(8’5”, VN)N| < agcy’ (Lf”’ﬂ(’)u(tkﬂ), vN) — acy” (L;”/l(t)u(tk+ D, VN)

-1 AL A
+ @oC (8? Ou(ti) - L} Dutinr), VN) .

N

Furthermore, we obtain

k+1 ~ -1 — ,A(t 2— 2 - 2
(5%, vw) | < Gocg! [N Ol + AP (162ull o + NNl Il

. . . k
Combining the estimates of (sl, vN)N and (s’ﬁ, vN)N, we have

k-1

k+1 -1 k—j -1y1,0
el v < ¢ D (ej = ejenlley Nl + ey llelloy
=0 (3.6)

U | A 2- 2 —m)| 52
+ Zaocy N0 O ullsoamy + AO)T (167 ullz2) + N0 ull i) )| -
Moreover, with the same technique used in Theorem 2, using inequality (3.6), we can prove that

€N I.N = c,:_léozoca -m ;L u Lo(H™) T @ tu L°°(L2) -m tu Le(H™)

leflhn < ! HIN™165 | + A0V (10%ull o 12) + N7"|0%ul|

r2-a)

Atk+172)

+ T AO)N "0 ul| = (1my)

cT?

< — —

(1 — a)(A(T))

~ -1 71— — Al 2— 2
< K At )2) KT (N 10O ul| o ggmy + T2 AONNO 1 o 12

- A 2— 2 - 2
[N 100 Ol s gy + AOYT (107ull 2y + N 71607 ullsaamy) | -
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Hence, applying triangle inequality, we obtain

() — gl < i) — ayulelhy + iy — mvu(lly
cT®
—X
(1 - a)AT)
| N85 Ol gy + AOYT (107l 2y + N0 s aamy) | -

~a7l—
< EN "l o cmy +

For @ — 1, similar to the case discussed in Theorem 2, we obtain

T —m @ —m
(N7 105l aamy + TAONOtll 22 + TAOIN 167l =1 )-

k <z
||€N||1,N = C/l(T)

Applying triangle inequality once again, we have

k k
lu(te) — uyllin < |lute) — eyultlhy + lluy — myu@oll v,

ol O A AN——
< C]V1 ||u||L°°(H’”) + CE(N ”at ’/l(t)u”L"“(Hm) + T/l(O)”a?M”Lw(LZ)

+ TAO)N 167 ull (am) ).
which implies the desired result. O
4. Fast time discretization

4.1. Construction of the fast difference operators

Applying the same technique given in reference [13], we use the sum-of-exponentials (SOE)
approximation to approximate the power function ~*(0 < @ < 1) in fractional derivative (2.1). And
for the approach error, we have the following results:

Lemma 3. [13] For a given absolute error g, the kernel functions t%(a € (0, 1)), there exist positive
Ne)m NSX
real numbers {ni'}. " and {w}."\" such that

N, exp

= E wle it
i=1

where N, = O (log é (log log é + log %) + log % (log log é + log %)) .

<gtelr,T], 4.1)

For the details of the proof of Lemma 3, see [13]. Following the same idea given in references [13,
16], we split the Caputo fractional derivative (1.3) into a local term L(#;) and a history term H(#;) in
discretized fractional derivative (2.1) with kernel A(¢) = e™”(b > 0), i.e.,

o 1 fhol - pb(ti—s) 1 e blt=s)

DD o, = ‘(s)ds + = (5)d

0 UDli=t r(1—a)£ (tk—s)a”(s) *"Ta-a et (tk—s)"u(s) ’
= H(ty) + L(ty).
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For the local term, we discrete it as the follows

u(ty) — u(te_y) % e P
Tr(l - a) T—1 (tk - s)Q

= —M(tk) — ulti1) el 4 bf e 0" do|.
T2 - a) 0

L) : =
4.2)

The history term, using SOE approximation, we obtain

Ti-1 —b(t/\ s)
H(t) : F(l = f = S)wu "(s)ds

1 e e\p

~ n(t S‘) —b(t v)/

~r(1—a)f0 Zwe =9 g b= 7 ()l s
npmzf“wmwm“

where 77 = ¢ + b. For simplicity, we rewrite H(t) as

N, exp

H(t) ~ wam>

with
k-1

U, i(t) :e_ﬁ?TUZl.(tkl)+f e Ty (5)ds.

-2

Using linear interpolation operators to approximate u’(s), we have

k-t g fi-1 >l ~
f e Y (5)ds = f e MM yoyu(s)) ds = au(tr) + bu(tiy) + O™,
17 Tk

-2 -2

1 Uity

where a; = b; = —a;. Hence, history term has recurrence relation

i e &
(i +b)ei T’

hit0) = €U (1) + Qi) + bin(ti-o).
Collecting the above formulas, we obtain the fast finite difference operator of fractional derivative (1.3)
FrOut = L70®), k=1,
Rexg (4.3)

t) —u(t=1) [ _pe 1- VIS 1
F(x,/l(t) k: u(k br__1 a/+bf b@gl ade I — (YUQ.I ,2<k<N ,
@Ay, —TF(Z—a/) e’ r Oe F(l—a);wl nit);2 <k < Nr

where U,‘f,l.(tl) =0
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4.2. The fast semi-discrete problem

If we use the difference operator (4.3) to approximate fractional derivatives (1.3) at time level #;, we
get the semi-discrete scheme
F* % — Auf = f(1),1 < k < Ny.

t

The weak form in L*-inner product gives: Find u* € Hy(Q)(1 < k < Nr), such that
(FOut, v) + (Vu, ¥v) = (ff,v), Vv € Hy(Q). (4.4)

For the sake of simplification, (2.2) can be rewritten as

k
T—(Y
L u(t) = —[u(lk) - Zpk’a-u(fk— ')]
_ -1 k—j 77
I'(2 - a)c, =
where p’,z’_‘”j = "’C‘—O_” asl < j<k-1, p’;’_“j = %L as j = k. By comparing the two operators F’ *A0 and
L™ we have

t 2

Futee) = L Ou(n)

1 k f['/ Nexp X )
= — (ty —5) % — we ) =P S(TT u(s)) ds
F(l—a); ,,l[k Z ] (ILs.u(s)
1 : —
= (i) + by u(t)),
(1’()(1 —a)‘l ;Wk ju( Jj 1) k ]u( ])]

N

where IT; ju(s) = u(t;-) =" + u(t) =, s € [tj_1, 1],

Nexp

1j
Ek—j = _TUZ—I f [(tk _ S)—a _ Z W?e_n,- (tk_S):Ie_b([k_s)dS,
! i=1

Jj-1

and
Nexp

— j N
brj=1"" f [(tk —5)7% = Z wie ™ (tk_s)]e_b(”‘_s)ds.
t i

J-1 i=1

Simple calculations, we can check that

@] = [bici| < .
For the truncation error of the fast difference operator F ,a’/l(’ ) gives
RE = 9" Ou(r) — F™"Pu(ty),2 < k < Ny.

Lemma 4. Suppose that u(t) € C*[0,T], for any 0 < a < 1, there holds

IRM| < &1 max |u”(f)| + ¢ max |u(t)],2 < k < Ny.
0<t<t 0<t<t
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Proof. By the triangle inequality

IRE| = 07" u(ty) — Fou(ty)] < 107" Pu(t) — Leut)| + |Lou(t) — Fu(t)|

1 o ~
<~2—cx ”l - Cult b, u(t;
< &Y max |u”’ (1) + = ]Z:;fﬁk ju(tiy) + by ju(t))]

01t ao(

< &% max |u” (1)| + ¢e max |u(7)|.
0<t<ty

0<t<ty
O
Furthermore, we can rewrite the fast difference operator as
1 £ 1 :
FOAOyk = uk — I Tantl I — Tt + by
t CL’0C61[ ]Z:;pk—] ] ao(l—a/)‘l Z[ k—j k—j ]
1 k
— k ka  k—j ka k Jj
= u — ) plu ,
afocal[ JZ:; k= ] ao(l —a) Z

where 1 L~

0" = a0, " = bo;

ot =ay, 0 =T+ b1, 5" = by

0=, 0 =T + b0, 5 =T+ b1, 3" = bo;

Lo =@, =i+ b = bk 24, /=23, k- 1.
The coefficients pk ‘“ have the following properties.
Lemma 5. For k > 1, the coefficients p',zf’/. and cal satisfy
k
(1) pi* >0,j=12..,k=1; (2) Zpi’_aj: L,j=1,2...,k—1;
j=1

(3) ph > Xtz (4)0<ph <1,  (5)1<c' <e?.
Proof. See the Appendix A. O

To do the error estimates of the fast difference scheme, we follow the technique used in
reference [24]. Introducing a parameter o, then u* — 3 1 pk" u*~J can be rewritten as following

I/t _ Zpka k=j — _ O'btk_]) _ (plliftl _ O')(I/tk_] _ O_Mk—Z) _
_ (pl;(t + O_p/;,a ¥ O_k 3p/]§a/1 k—Z)(MZ _ O'Ltl)
— (" + oph e+ 2 = W - o)

k, : 1 kv, 0
— (" +op) "t +- + ok pkl—O')u
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_ 1 ka i
where o~ = 3p,”|, o/ means power of o, and

J

00 =i 1 j—l _ka P

i =0 =u - ou” ,pkj E o —al,j=12,.. k.
=1

Similarly, the sum-of-exponentials part can be rewritten as

QO(I_Q)IZ kak]_a(l_) Zkakj’

where Z,’(‘_“J = Z{:o 0'/'";'{"_‘7, j=0,1,...,k. The above statements show that the fast difference operator
can be rewritten as

Fta/,/l(t)ﬁk :Fta,/l(t)uk — [u _Zpllja ~k— ]]+ (1 = Z Fha k=i

a’oCO

Thus, the semi-discrete scheme (4.4) can be rewritten as
(B0t v) + (Vi Wv) = (ffv), Vv € HY(Q). 4.5)
For the weighted coefficients p and ke py , there holds

Lemma 6. For k > 2, the coeﬁicients [)k’a. and Z/]f_a, satisfy
(DP >0, 7= 1,2,k (2) 55 < o5 < g,
0

2(1-=a) k=172 ;
—k,a 20(1-a)dk-12 , @ ;o . 1
(3)Zpk] _W (4)|{ |S48T,]—1,2...,k,(5)0<0'<§.
Proof. See the Appendix B. O

- . . f1 [ Td-weaT)  Td-w)
Theorem 4. Assume that the permissible error € satisfies € < min {Z - TN T & }, then the

semi-discrete scheme (4.4) is stable, and its solution satisfies

Il < (e + E@oco)™ ) (Ulull + (I)g%llfjll), 1 <k <Nr. (4.6)

Proof. For k = 1, taking v = u' in (4.4), there holds
', u") + ap(Vu', Vu') = @, u') + (f', u').

Using Schwarz inequality, we arrive at |[u||? < |ju!|||[u°]|+]|£|llle'||, which produces [ju'||; < ||u]|+]|f]].
Using (5) of Lemma 5, we have

'l < e Al + 11£11D) < e (1 + E@oco)™ )l + maXIIf’II)

For k > 2, using mathematical induction on the index k, we will prove the following result:

aocg IV < (eI + max 1F1),2 < k < N (4.7)
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Firstly, substituting v = 2ii* into semi-discrete scheme (4.5), it yields

230, @) + 2aocy (Vi Vit + 2¢5' (1 - Q)ng (@, i) = 22 pre @) + 21, 7).

J=0 J=1

Using the identity 2(Vu*, VitX) = ||Vut|? + ||Vi"||? — o||Vu*~!||?> and (3) of Lemma 6, we have

k12 -1 k12 1 k12
l&*11” + aocy IVU'(]” + aocy IVl
k
—k—12 -1 k—112 —k, k—
< alli P + aocy VIR + ) B kP
= (4.8)

26,1 - a)Z§ gCN RS Vg g

j=0
Furthermore, using Poincaré inequality [26]

&) < ellvatl, (4.9)

and (5) of Lemma 5, if ¢ < F(L 9 we obtain

- o @oC _
| = 265" (1 = )" @, )] < 2eec ' (1 = )llIl” < — =V,

where we used the relation Z,’f“ = {,’f’“ = by < "¢ in above derivation. Setting 6; = 1 — Z pi“} and
J=1

using Young inequality, we obtain

k
21— ) Y B < Z 11 + Z@:Cp 1.
j=1

According to (3) and (4) of Lemma 6, we obtain 6, = 1 — Z ph > W Moreover, with the

help of Poincaré inequality, we obtain

3ecy* (1 — )*(1 — o)kt

k k
_ . 0 .
L ka (=k—j -k Yk —k—ji|2 @ N2 5k)12
|-25'1 - j§:l L@ i) < 2 j§:1 I+ = eIV
Ife<i 1/%, there holds
k k P 2 +1
~ _ . O, . 3ecy" (1 —a)“(1 — o)k 5 )
=2y A=) Y 0@, < — )y a1 + (417’ Vid"|
‘ ; J ' k Z 20(1 = a)A(T)

6k & @pC
SN el ° — L va|P.
j=1
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Rewriting (4.8) as follows:

k
7 0 .
-1 k(2 k k=112 -1 k=112 _k, k\j1=k—ji12 k12
aocy (IVuI” < (o + M1 + aocy VU 17+ > (0,7 + e |1~ + 17117
k = Ik

In view of relation o + 6, + ,[)(2)"’ = 1, we obtain (4.7) for k = 2. Assuming that (4.7) is already correct
forallk =2,3,...,n— 1, we can check that

k
0 0
- 2 _ £, 012 2
aocy IIVU'IP < (o + =+ > p + == D)l’lI” + Il
n k=i " p
=2
~201..0012 2
= co (I + 119
-2 N2
< o2l + max |[f/[)*, Y n = 2,...,Nr,
0<j<n

which implies
oy IVl < "l + max [L71D. (4.10)
Furthermore, using (4.10) and Poincaré inequality (4.9), we obtain

lu”I* < elIVu|> < Eaoco)™ P (lu’ll + (I)g%llfjll)- (4.11)

Combining (4.10) and (4.11), we obtain the desired results. O

For the convergence of time semi-discrete scheme (4.4), we have

Theorem 5. Let u(x, t) be the exact solution of problem (1.1), and {u* }iv:T | be the semi-discrete solution
of scheme (4.4) with the initial u® = u(0). Under the assumption given in Theorem 4 and 6t2u(x, 1 €
L>((0, TT; L*(Q)), there holds

et) = ]|, < Cor (PN Ul + ellullog)). 2 < k < Ny, (4.12)

where ¢, depends only on a and T.

Proof. Let é* = u(ty) — u*. Subtracting (4.4) from problem (1.1) at time level #, it follows that
(F ;”’l(t)ek , v) + (Vek, Vv) = (R]T“"’, v) Vv e H(l)(Q).
With the similar technique in Theorem 4, we obtain
ey 12 —Iw k2« & a2
lle"]|” + aocy [IVE||” < Cor zlgnglRT Ik = 2.
Applying Lemma 4, we obtain (4.12). O
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4.3. Fast difference/Legendre spectral collocation

We consider the spectral collocation method in space as follows: Find uf, € VIQ,(Q), such that
(FOul,v), + (Vuh Vow) = 0,¥vy € VR(Q). (4.13)

Theorem 6. Let u(x,t) be the exact solution of (1.1), and uN be the solution of scheme (4.13) with
the initial condition u?\, = ayu’. Suppose 82u(x 1) € L0, T, H"(Q)(m > 1), for k = 2,...,Nr,
there holds

k ~ 2—ay 92 —m_2-a) 2
llue(ti) — MN||1 < C(z,T(T ”||5, M||L°°(L2) + Nt a||3,M||L°°(Hm)
- LAt 1-
+ N m||(9f ()M||L°°(Hm) + N 7"l oo ) 4.14)
+ &llulli2y + Nl aamy).

Proof. Let e = u}, — myu(ty), using (4.13), we have

(F" M)ef\,, vy)y + (Vek, Vow)y

= (F"uly, v + (Vidy, Vo) — (FE Oryu(te), v — (Vrgu(te), Yy
= (F“’”’) & = FOmvu(t), vw — (FPOult), vy — (Yawuty), Vvw)n

= &(vy) + Ei(vy), Yoy € VI(Q),

(4.15)

where k A) . k LA(t)
a,A(t a,A(t
g\(vy) = (F,"Vuy — F, " nyu(ty), v,

vn) = —(FOuty), vin — (Vayu(t), Vvy)w.
~a, A1) — k Fa LA(L) k

(4.16)

Using equality F, , scheme (4.15) can be rewritten as

(FO vy + (Vek, Von)y = evy) + i (vy), Yoy € Vo(Q),

where &k, = ek, — oek!. Moreover, using Lemma 2, we have

ev) = (Fuly = F{" Oyt viow
= ((Ia = mn)(@ " ulty) — RE™), vy)n
< (g = 7))@ Pulte) = RED), vw)l + EN'I(Lg — )07 P ult) = REDIlIvwllow
< |Itta = 7@ utt) = REo + NI = )@ Vute) = REDI | vl

4.17)

According to Lemma 4, for [ = 0, 1, we have
I(Is = T )REly < Ear max [[(1g — mn)O; ()T + Eare max |1y — mx)07u(®);-
0<t<ty 0<t<ty
Combing (3.2), Eq (4.17) produces
k)l < & (N0 Vull oy + N7 |07 ullsozmy + Nty ) vl
According to the definition of the || - [|[o y and projection operator 7y, we have

(Vayu(ty), Vvn)y = (Vayu(t), Vvy) = (Vu(ty), Vvy), Yy € VI(\),(Q). (4.18)
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Applying (1.1), (4.16), and (4.18), we obtain

&n) = =(F"u(ty), vy)y — (Vayu(to), Von)y
(FPOu(ty), vy) — (FEut), vin + (R, vy).

Furthermore, using Lemmas 2 and 4, we obtain

k ~AT— Al k, k,
leb )l < @NT"107 Pu(ty) — RSl + IR llow)Ivillow

~ — LA(E —m_2— 2 _
< Car (N85 ull sy + N7 72071l gy + &Nl g,

2— 2
+ 770 ull 2y + Elullsi vallow-
Combining the estimates of Is’f vn)l, Is’g(vN)l and the Poincaré inequality, we have

k k ~ - LA(E -m_2— 2 -
)| + 1E5m)] < Eor (N 7100 Vtllpoiamy + N7 |07 ullsoimy + Nl g

2-a)) 92
+ 70, ullps ) + 8||M||L°°(L2))||VVN”0,N-

With the similar argument given in Theorem 4, we obtain

k - k ~ - A(t —m_2— 2 -
lleyll + aocolllVeNll < ca,T(N "oy ()ulle(Hm + N0 ull oy + ENT" ||| oo iy

2— 2
+ 02Ul ) + el

our conclusion. O

By the triangle inequality llu(r) — v < llu(t0) — myu@llsy + ek, = mau(tlly v, we finally obtain

5. Numerical experiments

In this section, we will test our theory results given in previous sections. The error in time direction
at terminal time 7 = 1 is measured by the point-wise maximum norm. In the following numerical
experiments, we used two examples with the exponential kernel function A(f) = e™’, which modify
the numerical examples given in reference [5]. In our numerical experiments, all the algorithms are
implemented by MATLAB R2022b, which were run on a 2.90 GHz PC with 32 GB of RAM and the
Windows 11 operating system.

Example 1. First, we consider problem (1.1) with exact solution u(x,y,t) = (1 + (6 — (6 + 61 + 3> +
£)e™") sin(rrx) sin(ry). The source term and initial values are given by the exact solution.

In Table 1, we list the errors and convergence orders of the present numerical scheme (3.4). Here,
we fix the degree of polynomial N, = N, = 20. It can be observed that the time direction convergence
order is O(t>~®), which is consistent with our theoretical analysis. To test the convergence order in
spatial direction, we set 7 = 1/1000 for @ = 0.3,0.5, and 0.9. The relationship between the errors and
polynomial degree N is shown in the semi-log graph in Figure 2. We find that the numerical solution
has the exponential accuracy.
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Table 1. Maximum errors and convergence orders at 7 = 1 with N, = N, = 20.

a=0.3 a=0.5 =09
T Error Order 71 Error Order 71 Error Order
1/10 9.3238e-05 * 1/10 2.3796e-04 * 1/10 1.1903e-03 *

120 2.9882e-05 1.6416 1/20 8.6493e-05 1.4601 1/20 5.6183e-04 1.0831
1/40  9.4754e-06 1.6570 1/40 3.1118e-05 1.4748 1/40 2.6352e-04 1.0922
1/80 2.9837e-06 1.6671 1/80 1.1129e-05 1.4834 1/80 1.2326e-04 1.0962

10°

—&—a=0.3
a=0.5
a=0.9

Error

10 F

108k

10710
5
Ploynomial degree N

Figure 2. The numerical errors of the smooth solution with the polynomial degree N, =
N, = 20.

Example 2. To test the effectiveness of the fast difference/spectral collocation scheme (4.13), we
consider problem (1.1) with exact solution u(x,y,t) = (3 — (2 + 2t + t*)e™") sin(rrx) sin(2ry), and the
source term and initial values are calculated by the exact solution.

The numerical results of schemes (3.4) and (4.13) are listed in Tables 2 and 3. In these tables, we
compared the errors, convergence orders, and CPU times of the two schemes in Tables 2 and 3 for
a = 0.5 and @ = 0.7, respectively. In the implementation of fast difference/spectral collocation, we
take £ = le — 9, and it can be seen that the time convergence order of fast solver is O(r>~®), which
is consistent with our theoretical results. In this example, the CPU(s) are measured, and the total
times of numerical errors for the time steps 7 vary in [1/40,1/80,1/160, 1/320, 1/640,1/1280]. We
also observe that the fast L1 scheme/spectral collocation has lower complexity and achieves the same
accuracy as the L1 scheme ones.
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Table 2. The comparison of maximum errors and convergence orders at 7 = 1 for the fast
scheme and the direct scheme with N, = N, = 20, a=0.5.

Direct scheme (3.4) Fast scheme (4.13)
T Error Order 7 Error Order
1/40 6.7179¢-06 * 1/40 6.5977e-06 *

1/80 2.3550e-06 1.5123 1/80 2.3258e-06 1.5042
1/160  8.2788e-07 1.5082 1/160  8.2074e-07 1.5027
1/320  2.9156e-07 1.5056 1/320  2.8981e-07 1.5018
1/640 1.0281e-07 1.5038 1/640 1.0237e-07 1.5013
1/1280 3.6276e-08 1.5029 1/1280 3.6269e-08 1.5010
CPU(s) 657.5 CPU(s) 42.6

Table 3. The comparison of maximum errors and convergence orders at 7 = 1 for the fast
scheme and the direct scheme with N, = N, = 20, =0.7.

Direct scheme (3.4) Fast scheme (4.13)
T Error Orderl 7 Error Orderl
1/40 1.9589¢e-05 * 1/40 1.9405e-05 *

1/80 7.8911e-06 1.3117 1/80 7.8473e-06 1.3061
1/160  3.1894e-06 1.3069 1/160  3.1789%e-06 1.3036
1/320 1.2916e-06 1.3041 1/320 1.2891e-06 1.3021
1/640  5.2369e-07 1.3023 1/640  5.2313e-07 1.3011
1/1280  2.1246e-07 1.3015 1/1280 2.1237e-07 1.3005
CPU(s) 659.0 CPU(s) 61.7

6. Conclusions

In this paper, the two-dimensional fractional diffusion equation with generalized memory kernel is
analyzed and approximated in time and space. We used the spectral collocation method in the spatial
direction, and the L1 formula and the fast L1 formula are used in time to approximate the fractional
derivative. Finally, we obtained estimates of the temporal and spatial errors of the present schemes,
the time and space error estimates are O(7>~* + O(N'™™). By comparing the L1 scheme with the fast
L1 scheme, we found that the fast L1 scheme can significantly reduce storage costs and computational
costs. There were also many improvements in this article, such as the use of graded grids instead
of uniform grids (e.g., Stynes et al. [11]) for time grids when the initial singularity of solution is
considered. Our future work will focus on this issue with the help of the existing techniques developed
in references [10,27, 28].
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Appendix A: Proof of Lemma 5

(1) According to the definitions of pif’j and ¢y, we obtain

ka _ -1 ka _ -1
P = (Cjm1 =€) 5Py = Cm1Cp s
B 1 1

0 = T —bt)2 -b 1 N
Aipag + (Ao —Aby e 7/2 4+ (1 —e7b) (5= - 3)

C

By simple calculation, and using Lemma 1, we have
Cji-1—Cj = /lj_l/zaj_l — /lj+1/2aj + (/lj—l - /lj)bj—l - (/l] - /lj+1)bj > 0.
(2) After calculating term by term, we obtain

k
ka _  ka k,a k,a k,a
Zpk_j —po +p1 +p2 +"'+pk—l

=1

= Cal[(co —c)+(cr—c)+(ca—c3)+...+ Ck—l]

=cylco = 1.
(3) Using Lemma 1 once again, we have

P = iy’
A1k + (Ao — A)bi
Aippao + (Ao — A1)bo

T"F(2 - a’)/lk_l/z 1
I'(1 — o) Aipag + (Ao — A1)bg
. A-ip( —a@) 1 S 2(1 = )12
ke Lo + (o — Abo ke
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(4) Since (1) provides thatp > 0, thenp =(co—cr)ey' =1- <l

(5) Note that
co = dippao + (Ao — A1)bo
1 1 1 1
:_ib"']__%b‘r—__ s
¢ [ Sy 2)] (2 a 2)
= e7ilr [1 - e_%bTZ] +Z,
where Z = 5= — 1,0 < Z < 1. We may rewrite ¢, as follows

Co = e 2bT [1 - e_%bTZ] +7Z:=g(1,2).

By checking the partial derivatives of g with respect to variable Z, we obtain 6%;2) =1-¢? >0,

which means g(T Z) is monotone increasing function with respect to variable Z, thus we get ¢y <
2b7 [1 Je b’] + 1, and ¢y > e2%". Furthermore, we define 3(t) = ¢~ 2%7 [1 - %e‘%’”] + 1 and take
the derivative of g(T), we obtain

1
+ Zbe_bT

8§(T) _ _lbe—%br [1 _ le—%br

or 2 2
1 1 |
= Zbe_bT — —be 2" 4

= be_%b‘r [le—;lﬂ — 1

Zbe” -bt

A

> > 0.

1
8(t.2) =

Hence, g(7) < 1,0 < ¢y = g(r,Z) < g(r) < 1, it provides that ¢, 1 = > 1. Finally we get

1< <er’m

Appendix B: Proof of Lemma 6

(1) From Lemma 5, for j = 1,2, ...k, we have p:, > 0, thus & = 30, > 0. By using p"; =

J j-l=ka _ _j
2o 0P, — o/, we further have

J

—k(l Z ]lka_

=1

_ J J-2 =k.a j 3k, —kay _ _j
= Qo'+ + Pi—3 T+ ""Tpk St o
4 Jj-2 =k.a Jj-3 ka ko —k,a
=0’ +07p L+ 0P +0'pkj+l+pkj>0
: 1 3k k.o —k,a
(2) According to Lemma 5, we have p < i Moreover, note that p,° < p,“, we have
1 1 3k
- < 7= < s,
"6“’ p’a’“ 2(1-a)Ag-1/2
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e 3k
(3) Note that P < S, We may check that

k
Zpiaj:pk A+o+a+0 .+ N+l +o+o’ +00 .+ )
=1

+. +P§(’(1+0'+0'2)+P ‘U+o)+py" —(@+07 + 0. +0%

= [(pk 1+pk 2+pk3 +plfﬂ+pl(§’a)_0-(1_0-k)
- O'(pk 10' Ly pk“ A p’f’“O' + p/(‘)’“)]

—1- ag _ka _ 20’(1 - a’)/lk_l/z
l-0'% — 3(1 — o)k”
(4) In view of I{,]:’_“jl < 21%, we obtain |Z]’:’“| = | Z{:o O'j_lg]:’_f;l < 21% Z{:o ol < 4r%.

(5) From Lemma 5, we have o = zpk 1 <3
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