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Abstract: In this paper, we proposed and studied a Leslie-Gower prey-predator system which
considered various ecological factors, such as the Allee effect and harvesting effect in prey populations
and the hunting cooperation in predator populations. The positivity and boundedness of the system’s
solutions were determined. The conditions for the uniformly persistence of the system and the
extinction of populations have been established. We studied the existence and type of singularities,
including primary singularities and higher-order singularities. Using topological equivalent and the
blow-up method, we proved that the origin was the attractor, and a defined basin of attraction was
given. As the parameters change, the system may experience two saddle-node bifurcations and a Hopf
bifurcation. The direction and stability of Hopf bifurcation solutions were established. Numerical
simulations were given to validate the primary theoretical findings. In this paper, we found that there
existed critical thresholds for Allee threshold, prey harvesting, and hunting cooperation, beyond which
both predator and prey populations faced the risk of extinction.
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1. Introduction

The establishment and analysis of differential equation models have proven to be an effective
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approach for understanding and predicting the dynamics of biological populations. The prey-predator
relationship is one of basic relationships of species interactions in ecology, so a significant number of
ordinary differential prey-predator models have been studied in recent years; refer to [1–4]. A key area
of interest is the Leslie-Gower prey-predator model [5], which can be expressed in the following form:

dx
dt
= x(1 − x) − βxy,

dy
dt
= µy

(
1 −

y
x

)
,

(1.1)

where x and y denote the densities of prey and predator, respectively, and the parameters β, µ are
positive constants. Korobeinikov [6] has proved that the unique positive singularity of (1.1) is globally
asymptotically stable by constructing Lyapunov function.

The prey in system (1.1) grows at a logistic pattern, which posits that population growth will
accelerate when density is low. However, in the real natural environment, due to factors such as mate
limitation, homologous reproduction, cooperative defense, and environmental conditioning, it was
recognized that the prey species may have a growth rate of Allee effect in recent years;see
references [7–11]. Mathematically, the Allee effect is often expressed as the following growth model:

dx
dt
= x(1 − x)

( x
b
− 1

)
, (1.2)

where x is the population size and b is the Allee threshold. The Allee effect is usually divided into two
types: strong Allee effect when 0 < b < 1 and weak Allee effect when b ≤ 0. The dynamic properties
of strong and weak Allee effects are fundamentally distinct. In the case of strong Allee effect, if the
population size falls below the Allee threshold b, the population will become extinct. The weak Allee
effect shares similar dynamic properties with the logistic growth model, that is, the population tends to
the maximum environmental carrying capacity as t → ∞. Therefore, in order to avoid the extinction of
populations, people are more interested in studying population models with strong Allee effects, and
there have been many research achievements in recent years.

Considering the influence of strong Allee effect on prey in (1.1), Ni and Wang [7] established and
discussed the following prey-predator system with strong Allee efect on prey

dx
dt
= x(1 − x)(x/b − 1) − βxy,

dy
dt
= µy

(
1 −

y
x

)
,

(1.3)

where 0 < b < 1 is the Allee threshold. They investigated the dynamical properties of solutions and the
unstable and stable manifolds of the positive singularity when the system (1.3) has only one positive
singularity. Min and Wang [8] discussed Hopf bifurcation of (1.3) in great detail and used the center
manifold and normal form theory to determine the direction of the Hopf bifurcation and the stability
of the branched periodic solutions.

The functional response plays a crucial role in prey-predator models, as it describes the interaction
between the prey and predator populations in nature. Functional responses are often divided into
prey-dependent type, such as Holling type functional response and prey-predator-dependent, like
ratio-dependent functional response and Bddington-DeAngelis functional response. The interference
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and cooperation between conspecific predators is a common phenomenon. For example, bats prevent
other bats from feeding by emitting special interference sounds, while wild dogs cooperate to attack
prey to increase their chances of success in hunting. Therefore, prey-predator-dependent functional
responses are more consistent with the real situation in nature than prey-dependent functional
responses. However, as far as we know, most of prey-predator-dependent functional responses assume
that predators are mutually interfering with each other, such as the ratio-dependent functional
response and Bddington-DeAngelis functional response. On the contrary, the cooperative hunting
relationships between predators are rarely considered. In 2017, considering the cooperative hunting
behavior observed among predators, Alves and Hilker [12] developed the following
prey-predator-dependent type functional response

Q(x, y) = (λ + ay)x,

where λ is the attack rate of the predator, and a describes the intensity of hunting cooperation among
predators. In recent years, some scholars have begun to investigate the impact of cooperative hunting on
predator-prey models; see references [13–17]. Ye and Wu [13] incorporated the factor of cooperative
hunting in system (1.3) and studied its dynamic properties.

As people’s demand for natural resources increases, the issue of how to meet this demand without
disrupting the balance of ecosystems has become an increasingly important topic. Therefore,
introducing a harvesting term into prey-predator models has significant practical significance. In fact,
harvesting of biological populations has been widely practiced in industries such as forestry, fishing,
and wildlife resource management. The introduction of harvesting will make the dynamics of
ecosystems more complex and diverse, so the impact of harvesting on ecosystems and the role of
harvesting in resource management have both been studied by more and more scholars in depth. A
common harvesting mechanism is constant-yield harvesting, where the harvesting rate is independent
of the number of species being harvested. This type of harvesting has recently attracted the attention
of scholars; see references [18–22]. However, it is evident that there are some drawbacks to constant
yield harvesting from both a biological and economic perspective. For example, if the population
being harvested is very small and below the harvest constant, constant-yield harvesting can easily lead
to the extinction of the biological population. On the other hand, May et al. proposed the concept of
proportional harvesting, also known as constant-effort harvesting in their paper [23], in which the
harvesting rate is proportional to both the number of the harvested species and the human effort
invested. Clearly, from an ecological perspective, the constant-effort harvesting is more realistic than
constant-yield harvesting.

According to our investigation, there is no research on prey-predator models currently that considers
strong Allee effects and harvesting effects in prey and cooperative hunting effects in predators. We are
very interested in the dynamics of such models, therefore, this article mainly discusses the following
system: 

dx
dt
= x(1 − x)

( x
b
− 1

)
− (1 + ay)xy − hx,

dy
dt
= µy

(
1 −

y
x

)
,

(1.4)

where x and y represent the densities of prey and predator, respectively; paremeters a, µ, h are positive
constants, 0 < b < 1; b represents the threshold of strong Allee effect on the prey, and h represents
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the harvestable yield of the prey and human effort. Obviously, the system (1.4) is defined on the set
Ω = {(x, y)|x > 0, y ≥ 0} and not defined along the axis x = 0, especially at the point (0,0).

From a mathematical research perspective, the analysis of system (1.4) presents considerable
challenges. On the one hand, unlike the classical prey-predator systems, (0, 0) is not an equilibrium
of (1.4), and the system is not even defined at the axis x = 0. Specifically, when 0 < x < b and y > 0,

x(1 − x)(x/b − 1) − (1 + ay)xy − hx < 0,

which means that x may tend to zero and the term y/x may be unbounded. Such a bad structure will
bring a lot of difficulties in the analysis. On the other hand, the interaction of three ecological factors,
namely, Allee effect, harvesting effect, and hunting cooperation, makes theoretical analysis more
complex. This paper aims to explain how the three ecological factors mentioned above collectively
influence the dynamic properties of species.

The layout of this paper is as follows. In Section 2, the positivity and boundedness of solutions
are obtained. Specifically, we give the uniform persistence of the system under some conditions. In
Section 3, we discuss the existence of nonnegative singularity of (1.4). In Section 4, we analyze the
type of all singularities including primary singularities and higher-order singularities. In Section 5,
the origin is proved to be an attractor and the basin of attraction is given. In Section 6, we discuss
saddle node bifurcation and Hopf bifurcation that occur in system (1.4). In Section 7, we illustrate the
conclusions of our theoretical analysis through some numerical simulations.

2. Basic properties of the system (1.4)

It is evident that the system (1.4) with nonnegative initial values (x0, y0) has a unique solution
(x(t), y(t)) in [0,+∞) by the existence and uniqueness theorem and extension theorem of solutions for
ordinary differential equations [24]. In this section, we will give some other basic properties about
the system (1.4), such as the positivity and boundedness of solutions, the uniform persistence of the
system (1.4), etc.

Proposition 2.1. If x0 > 0 and y0 > 0, then any solution (x(t), y(t)) of (1.4) is positive and bounded for
t ≥ 0.

Proof. It is obvious that x = 0 is an invariant set from the first equation of (1.4). According to the
theorem of existence and uniqueness of solutions [24], solutions starting from x0 > 0 will not intersect
with the solusion x = 0. Therefore, if x0 > 0, then x(t) > 0 for all t ≥ 0. Similarly, one can also know
that if y0 > 0, then y(t) > 0 for all t ≥ 0. Accordingly, every solution of (1.4) with the initial values
x0 > 0 and y0 > 0 is positive.

On the other hand, since x(t) satisfies
dx
dt
≤ x(1 − x)

( x
b
− 1

)
,

x(0) = x0 > 0,
(2.1)

it follows from the comparison principle that x(t) ≤ max{1, x0} for t ≥ 0. Denote A = max{1, x0}. From
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the second equation of (1.4), we have 
dy
dt
≤ µy

(
1 −

y
A

)
,

y(0) = y0 > 0.

Once again, based on the principle of comparison, it follows that y(t) ≤ max{A, y0} for t ≥ 0. Therefore,
every solution of (1.4) with the initial values x0 > 0 and y0 > 0 is bounded. □

Remark 2.1. The proof of proposition 2.1 suggests that the setΩ is an invariant set for the system (1.4).

Proposition 2.2. If 0 < x0 ≤ b and (x0, y0) , (b, 0), then lim
t→∞

(u(t), v(t)) = (0, 0).

Proof. If 0 < x0 < b and y0 ≥ 0, then it follows (2.1) that x(t) converges to 0 as t → ∞. Thus, for any
ε > 0, there exists T > 0 such that x(t) < ε for t ≥ T . From the second equation of (1.4), we have

dy
dt

< µy
(
1 −

y
ε

)
, t > T. (2.2)

As a result, lim sup
t→∞

y(t) ≤ ε. The arbitrariness of ε leads to lim
t→∞

y(t) = 0.

If x0 = b and y0 > 0, from the first equation of (1.4),

dx
dt

∣∣∣∣
t=0
= −(1 + ay0)x0y0 − hx0 < 0.

According to the proof of proposition 2.1, we know that if y0 > 0, then y(t) > 0 for all t ≥ 0. To sum
up, the solution (x(t), y(t)) of (1.4) satisfies x(t0) < b and y(t0) > 0 at some small time t0 > 0. Then,
utilizing results of 0 < x0 < b and y0 ≥ 0, we have

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0.

In conclusion, the proof is finished. □

Remark 2.2. Proposition 2.2 indicates that when the prey density is too low, the prey will perish and the
predator also becomes extinct. This phenomenon contradicts the traditional perspective of population
dynamics. In fact, this is caused by the Allee effect. From a biological perspective, congregating is
conducive to the reproduction and survival of the population. Each species has its own optimal density,
and too dense or too sparse will have a restraining effect on the population.

Definition 2.1. [25] If there are two positive numbers ω1 and ω2, such that any positive solution of
the system (1.4) with nonnegative initial values (x0, y0) satisfies the following inequalities

min{lim inf
t→∞

x(t), lim inf
t→∞

y(t)} ≥ ω1,max{lim sup
t→∞

x(t), lim sup
t→∞

y(t)} ≤ ω2,

then the system (1.4) is said to be uniformly persistent.

Theorem 2.1. If (1 − b)2/(4b) > 1 + a + h and x0 ≥ x∗0, then the system (1.4) is uniformly persistent,

where x∗0 =
1 + b −

√
(1 + b)2 − 4b(2 + a + h)

2a
.
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Proof. Because (1 − b)2/(4b) > 1 + a + h, there exists ε > 0 such that (1 − b)2/(4b) > 1 + a + h +
ε(1 + 2a + aε). Let (x(t), y(t)) be the unique solution of (1.4) with nonnegative initial values (x0, y0).
From (2.1), we easily get lim sup

t→∞
x(t) ≤ 1. Then, for the above ε, there is T > 0 such that x(t) < 1 + ε

for all t ≥ T . Replace ε with 1 + ε in (2.2). Similarly to the proof of Proposition 2.2, since ε here can
be arbitrary, we have lim sup

t→∞
y(t) ≤ 1. Consequently,

max{lim sup
t→∞

x(t), lim sup
t→∞

y(t)} ≤ 1.

In view of the second equation of (1.4), when t is sufficiently large, we have

dx
dt
≥ x(1 − x)

( x
b
− 1

)
− [1 + a(1 + ε)](1 + ε)x − hx

= −
x
b
{x2 − (1 + b)x + b[2 + a + h + ε(2a + 1 + aε)]}

≜ −
x
b
Φ(x)

It is clear that Φ(x) = 0 has two positive roots when (1 − b)2/(4b) > 1 + a + h, which can be denoted
as x̂ and x̃, where

x̂ =
1 + b −

√
(1 + b)2 − 4b[2 + a + h + ε(2a + 1 + aε)]

2a
,

x̃ =
1 + b +

√
(1 + b)2 − 4b[2 + a + h + ε(2a + 1 + aε)]

2a
.

Furthermore, we have

dx
dt
≥ −

x
b

(x − x̂)(x − x̃),

which implies that lim inf
t→∞

x(t) ≥ x̂ when x0 > x∗0.

Similarly, according to the second equation of (1.4), when t is sufficiently large, we have

dy
dt
≥ µy(1 −

y
x̂

)

Obviously, lim inf
t→∞

y(t) ≥ x̂. Hence, min{lim inf
t→∞

x(t), lim inf
t→∞

y(t)} ≥ x̂. In summary, it can be concluded
that system (1.4) is uniformly persistent. □

Remark 2.3. Theorem 2.1 indicates that prey and predators will always coexist when the quantity of
prey is sufficient and the human capture intensity of prey is moderate. From a biological perspective,
when the quantity of prey is sufficient and the capture amount is not large, the prey can satisfy the
capture of both predator and humans so that the prey and the predator can always coexist.
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3. The existences of singularities

If (x∗, y∗) is the nonnegative singularities of (1.4), then (x∗, y∗) satisfies the following equations:
(1 − x)

( x
b
− 1

)
− (1 + ay)y − h = 0,

µy
(
1 −

y
x

)
= 0.

(3.1)

From the second equation of (3.1), we know that y∗ = 0 or y∗ = x∗. Obviously, the singularities
obtained when y∗ = 0 are the boundary singularities, and the singularities obtained when y∗ = x∗ are
the positive singularities. Next, we will discuss the two cases of y∗ = 0 and y∗ = x, respectively.

For the case of y∗ = 0, x∗ is the positive root of equation

x2 − (1 + b)x + b(1 + h) = 0. (3.2)

Letting ∆1 = (1 + b)2 − 4b(1 + h) and h1 = (1 − b)2/(4b), we have the following results:

• If h > h1, then Eq (3.2) has no roots.
• If h = h1, then Eq (3.2) has unique positive root x1, and x1 = (1 + b)/2.
• If h < h1, then Eq (3.2) has two positive roots x2 and x3, where

x2 =
1
2

[1 + b −
√

(1 + b)2 − 4b(1 + h)] and x3 =
1
2

[1 + b +
√

(1 + b)2 − 4b(1 + h)].

For the case of y∗ = x∗, x∗ is the positive root of equation

(1 + ab)x2 − x + b(1 + h) = 0. (3.3)

Denote ∆2 = 1− 4b(1+ ab)(1+ h), h2 = [1− 4b(1+ ab)]/[4b(1+ ab)], and a∗ = (1− 4b)/(4b2). It easy
to obtain h2 < h1 by direct calculation. Then, the situation about the roots of (3.3) is as follows:

• When 1/4 ≤ b < 1 or a ≥ a∗, ∆2 < 0, which means that the Eq (3.3) has no roots.
• When 0 < b < 1/4 and a < a∗, the value of ∆2 is also related to the parameter h.

(1) If h > h2, then ∆2 < 0, so the Eq (3.3) has no roots;
(2) If h = h2, then ∆2 = 0, so the Eq (3.3) has unique positive roots x4 with x4 = 1/[2(1 + ab)];
(3) If h < h2, then ∆2 > 0, so the Eq (3.3) has two positive roots x5 and x6, where

x5 =
1 −
√

1 − 4b(1 + ab)(1 + h)
2(1 + ab)

and x6 =
1 +
√

1 − 4b(1 + ab)(1 + h)
2(1 + ab)

.

Base on the above discussion, we obtain the following theorem about the existence of nonnegative
singularities.

Theorem 3.1. Assume a, h, µ > 0, and 0 < b < 1. Denote h1 = (1 − b)2/(4b), h2 = [1 − 4b(1 +
ab)]/[4b(1 + ab)], and a∗ = (1 − 4b)/(4b2). Then, the following conclusions about the existence of
singularities for the system (1.4) are valid.

(1) If h > h1, then the system (1.4) has no singularity;
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(2) If h = h1, then the system (1.4) has unique boundary singularities denoted by E1(x1, 0);
(3) If h < h1, then the system (1.4) has two boundary singularities denoted by E2(x2, 0) and E3(x3, 0),

respectively;
(4) When 1/4 ≤ b < 1 or a ≥ a∗, the system (1.4) has no positive singularity;
(5) When 0 < b < 1/4 and a < a∗. If h > h2, then the system (1.4) has no positive singularity; if

h = h2, then the system (1.4) has a unique positive singularity denoted by E4(x4, x4); if h < h2, then
the system (1.4) has two positive singularities denoted by E5(x5, x5) and E6(x6, x6), respectively;

where x1, x2, x3, x4, x5, x6 are defined as in above discussions.

From Theorem (3.1), harvesting behavior, hunting cooperation, and Allee effect collectively affect
the number of singularities and the system (1.4) has at most four singularities, which imply the
system (1.4) is likely to exhibit rich dynamic properties.

4. The types of singularities

Denote x = (x, y) and

G(x) =

 f (x, y)

g(x, y)

 =

x(1 − x)

( x
b
− 1

)
− (1 + ay)xy − hx

µy
(
1 −

y
x

)
 .

For the simplicity of the notations, we denote

A(xi) = −
2
b

x2
i +

(
1 +

1
b

)
xi, i = 1, 2, 3, 4, 5, 6. (4.1)

The direct analysis reveals what the sign of A(xi) is when i = 1, 2, 3, i.e.,

A(x1) = 0, A(x2) > 0 and A(x3) < 0.

Because xi(i = 1, 2, 3) satisfy Eq (3.2), the Jacobian matrix of (1.4) at the boundary singularities
Ei(xi, 0) is

JEi ≜ Gx((xi, 0)) =
A(xi) −xi

0 µ

 , i = 1, 2, 3. (4.2)

Furthermore, the determinant and trace of the Jacobian matrix JEi are, respectively,

det(JEi) = µA(xi) and tr(JEi) = A(xi) + µ, i = 1, 2, 3. (4.3)

Similarly, since xi(i = 4, 5, 6) satisfy the Eq (3.3), the Jacobian matrix of (1.4) at the positive
singularities Ei(xi, xi) is

JEi ≜ Gx((xi, xi)) =

A(xi) −xi − 2ax2
i

µ −µ

 , i = 4, 5, 6. (4.4)
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Accordingly, the determinant and trace of the Jacobian matrix JEi are, respectively,

det(JEi) =
µ

b
xi[2(1 + ab)xi − 1] and tr(JEi) = A(xi) − µ, i = 4, 5, 6. (4.5)

Based on (4.3) and (4.5), it is easy to know that Ei(i = 2, 3, 5, 6) are primary singularities and
Ei(i = 1, 4) are higher-order singularities. For the primary singularities, the traditional linearization
method is used to determine their types. For higher-order singularities, we will apply the method of
Theorem 1 and Theorem 3 of Chapter 2 in reference [26] to give their types.

4.1. Primary singularities and their types

Theorem 4.1. Let a, h, µ > 0, and 0 < b < 1. If h < h1, the boundary singularities E2(x2, 0) and
E3(x3, 0) are an unstable node and a saddle, respectively. Moreover, E2(x2, 0) is a degenerate node
when µ = A(x2), where x2, x3, h1, and A(x2) are defined as in Theorem 3.1 and (4.1).

Proof. (1) From (4.3) with i = 2 and A(x2) > 0, we get the determinant and trace of JE2 , i.e.,

det(JE2) = µA(x2) > 0; tr(JE2) = A(x2) + µ > 0.

Then, further calculation generates

[tr(JE2)]
2 − 4det(JE2) = [µ − A(x2)]2 ≥ 0. (4.6)

It follows that the linearized matrix JE2 may have a double positive real eigenvalue or two different
positive real eigenvalues, respectively, when µ = A(x2) and µ , A(x2). Thus, E2 is an unstable node.
Especially, when µ = A(x2), JE2 is an upper triangular matrix that cannot be diagonalized, so the eigen-
space corresponding to its double eigenvalue is one-dimensional, which implies E2 is a degenerate
node.

(2) Based on (4.3) and A(x3) < 0, it is obvious that

det(JE3) = µA(x3) < 0,

so E3 is a saddle point. □

To analyze the stability of E6, we will make the following preparations. According to Theorem 3.1,
the following analysis is based on the conditions 0 < b < 1/4, 0 < a < a∗, and 0 < h < h2. We care
about the sign of A(x6). Let

µ̃ = 1 + b − 2x6 = 1 + b −
1 +
√

1 − 4b(1 + ab)(1 + h)
1 + ab

.

It is evident that µ̃ and A(x6) have the same sign. Direct observation shows that µ̃ is strictly increasing
on h. Moreover,

lim
h→0

µ̃ = 1 + b −
1 +
√

1 − 4b(1 + ab)
1 + ab

and

lim
h→h2

µ̃ =
b(1 + a + ab)

1 + ab
> 0.
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To determine the sign of the limit of µ̃ as h→ 0, let

ã =
1

4b2

[
1 −

(1 − 3b)2

(1 + b)2 − 4b
]
.

Direct calculation shows that ã < a∗ and the sign of ã is related to the key value b =
√

5−2. Specifically,
if
√

5 − 2 ≤ b < 1/4, then ã ≤ 0. Now, a > ã, which implies µ̃ > 0, i.e., A(x6) > 0. If 0 < b <
√

5 − 2,
then ã > 0. Furthermore, if a ≥ ã, then µ̃ ≥ 0, i.e., A(x6) ≥ 0; if 0 < a < ã, then lim

h→0
µ̃ < 0, and then

there exists h̃ such that µ̃ = 0. Therefore, when 0 < b <
√

5 − 2, 0 < a < ã, if 0 < h < h̃(h = h̃,h̃ < h <
h2,respectively), then µ̃ < 0(= 0,> 0,respectively), i.e., A(x6) < 0(= 0,> 0,respectively).

For the convenience of description, based on the above analysis, the following conditions are
summarized:

(a1) 0 < b <
√

5 − 2, a ≥ ã, and 0 < h < h2;
(a2) 0 < b <

√
5 − 2, 0 < a < ã, and 0 < h < h̃;

(a3) 0 < b <
√

5 − 2, 0 < a < ã, and h = h̃;
(a4) 0 < b <

√
5 − 2, 0 < a < ã, and h̃ < h < h2;

(a5)
√

5 − 2 ≤ b < 1/4, 0 < a < a∗, and 0 < h < h2.

According to the above analysis, the following lemma can be obtained.

Lemma 4.1. Let 0 < b < 1/4, 0 < a < a∗, 0 < h < h2, ã, and h̃ be defined in the above analysis, where
x6, a∗, and h2 are defined in Theorem 3.1. Then,

(1) If one of the three conditions (a1), (a4), and (a5) holds, then A(x6) > 0;
(2) If the condition (a2) holds, then A(x6) < 0;
(3) If the condition (a3) holds, then A(x6) = 0.

Theorem 4.2. Suppose 0 < b < 1/4, 0 < a < a∗, 0 < h < h2, and µ > 0. Let a∗, h2, A(x6), ã, and h̃ be
defined as in Lemma 4.1. Then, the following conclusions are true.

(1) The positive singularity E5(x5, x5) always is a saddle point.
(2) When one of the three conditions (a1), (a4), and (a5) holds.

(2.1) If µ < A(x6), the positive singularity E6(x6, x6) is an unstable node or focus;
(2.2) If µ > A(x6), E6(x6, x6) is a stable node or focus;
(2.3) If µ = A(x6), E6(x6, x6) is a center or fine focus.

(3) Either the condition (a2) or the condition (a3) holds, and E6(x6, x6) is a stable node or focus.

Proof. Acoording to (4.5) with i = 5, it is clear that det(JE5) < 0, which implies that E5 a saddle point.
On the other hand, we can also know that det(JE6) > 0 and tr(JE6) = A(x6) − µ. Therefore, when
µ < A(x6), i.e., tr(JE6) > 0, E6 is an unstable node or focus; when µ > A(x6), i.e., tr(JE6) < 0, E6 is a
stable node or focus; when µ = A(x6), i.e., tr(JE6) = 0, E6 is a center or fine focus. Combined with the
conclusion of Lemma 4.1, this theorem is proved. □

4.2. Higher-order singularities and their types

Theorem 4.3. Let a, h, µ > 0, 0 < b < 1, and h1 be defined as in Theorem 3.1. When h = h1, the
system (1.4) has a unique singularity E1(x1, 0), which is a repelling saddle-node.
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Proof. From (4.2) and (4.3) with i = 1, the eigenvalues of JE1 are 0 and µ > 0, which means that E1

is a higher-order singularity of (1.4). To study the type of E1, we first transform E1 to (0, 0) by letting
(X,Y) = (x − (1 + b)/2, y). Then, the system (1.4) becomes

dX
dt
= −

1 + b
2

Y −
1 + b

2b
X2 − XY −

a(1 + b)
2

Y2 + P1(X,Y),

dY
dt
= µY −

2µ
1 + b

Y2 + Q1(X,Y),
(4.7)

where P1(X,Y) and Q1(X,Y) are C∞ functions of at least third order in terms of (X,Y). Continuing
with the transformation (u, v) = (X + (1 + b)/(2µ)Y,Y), the system (4.7) becomes

du
dt
= −

1 + b
2b

u2 +

[
(1 + b)2

2bµ
− 1

]
uv −

[
(1 + b)3

8bµ2 +
a(1 + b)

2
+ 1 −

1 + b
2µ

]
v2 + P2(u, v),

dv
dt
= µv −

2µ
1 + b

v2 + Q2(u, v),

where P2(u, v) and Q2(u, v) are C∞ functions of at least third order in terms of (u, v). Introduce a new
time variable τ by τ = µt, and we get

du
dτ
= −

1 + b
2bµ

u2 +

[
(1 + b)2

2bµ2 −
1
µ

]
uv −

[
(1 + b)3

8bµ3 +
α(1 + b)

2µ
+

1
µ
−

(1 + b)
2µ2

]
v2 + P3(u, v),

dv
dτ
= v −

2
1 + b

v2 + Q3(u, v),

where P3(u, v) and Q3(u, v) are C∞ functions of at least third order in terms of (u, v).
Since the coefficient of u2 is −(1 + b)/(2bµ) < 0, by Theorem 1 of Chapter 2 in reference [26], the

boundary singularity E1 is a repelling saddle-node. □

Lemma 4.2. [26] The system
dx
dt
= y + a20x2 + a11xy + a03y2 + o(|x, y|2),

dy
dt
= b20x2 + b11xy + b02y2 + o(|x, y|2),

(4.8)

is equivalent to the system 
dx
dt
= y,

dy
dt
= b20x2 + (b11 + 2a20)xy + o(|x, y|2),

(4.9)

after some non-singular transformations in the neighborhood of (0, 0).

Theorem 4.4. Let a, h, µ > 0, and 0 < b < 1. If h = h2, the system (1.4) has a unique positive
singularity E4(x4, x4). Moreover,

(1) if µ < A(x4), E4 is a repelling saddle-node ;
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(2) if µ > A(x4), E4 is an attracting saddle-node;
(3) if µ = A(x4) and a2b3+(3a2+2a)b2+(4a2+2a+1)b−a−1 , 0, then E4 is a cusp of co-dimension 2;

where h2 and x4 are defined as in Theorem 3.1 and A(x4) are defined in (4.1).

Proof. According to (4.4) and (4.5) with i = 4, both eigenvalues of JE4 are λ1 = 0 and λ2 = A(x4) − µ.
First, transform E4(x4, x4) to (0, 0) by making (X,Y) = (x− x4, y− x4). Then, the system (1.4) becomes

dX
dt
= a10X + a01Y + a20X2 + a11XY + a02Y2 + P̃1(X,Y),

dY
dt
= b10X + b01Y + b20X2 + b11XY + b02Y2 + Q̃1(X,Y),

(4.10)

where
a10 = (−

3
b
+ a)x2

4 + (1 +
2
b

)x4 − h2 − 1, a01 = −x4 − 2ax2
4, a20 = −

3
b

x4 + 1 +
1
b
,

a11 = −1 − 2ax4, a02 = −ax4, b10 = µ, b01 = −µ, b11 =
2µ
x4
, b20 = −

µ

x4
, b02 = −

µ

x4
,

and P̃1(X,Y), Q̃1(X,Y) are C∞ functions of at least third order in terms of (X,Y).
(1) When µ , A(x4), JE4 has only one zero eigenvalue, and we still apply Theorem 7.1 of Chapter 2

in reference [26] to study the type of E4. Make the following transformation:

(X,Y) = (a01u + a10v,−a10u + b10v) and τ = (A(x4) − µ)t.

Then, system (4.10) becomes (still denoting τ as t)
du
dt
= c20u2 + c11uv + c02y2 + P̃2(u, v),

dv
dt
= v + d20u2 + d11uv + d02v2 + Q̃2(u, v),

where

c20 =
q1

q0
, c11 =

q2

q0
, c02 =

q3

q0
, d20 =

q4

q0
, d11 =

q5

q0
, d02 =

q6

q0
,

q0 = 2a10a01b10 + a01b10b01 + a3
10,

q1 = a2
10a02b10 + a2

10a01b11 + a2
01a20b10 − a10a2

01b20 − a10a01a11b10 − a3
10b02,

q2 = 2a2
10b10b02 − a2

10a11b10 − 2a2
10a01b20 + a01a11b2

10 − 2a10a02b2
10

+2a10a01a20b10 − a10a01b10b11 + a3
10b11,

q3 = a2
10a20b10 − a2

10b10b11 + a10a11b2
10 − a10b2

10b02 + b3
10a02 − a3

10b20,

q4 = a10a2
01a20 + a3

10a02 − a2
10a01a11 + a3

01b20 − a10a2
01b11 + a2

10a01b02,

q5 = 2a2
10a01a20 + a10a01a11b10 − a3

10a11 − 2a2
10a02b10 + 2a10a2

01b20

+a2
01b10b11 − a2

10a01b11 − 2a10a01b10b02,

q6 = a3
10a20 + a2

10a11b10 + a10b2
10a02 + a2

10a01b20 + a10a01b10b11 + b2
10a01b02,

and P̃2(u, v), Q̃2(u, v) are C∞ functions of at least third order in terms of (u, v).
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Next,we will determine the sign of c20. Rewrite q0 as follows:

q0(µ) = −a01µ
2 + 2a10a01µ + a3

10

and denote its root discriminant as ∆q = 4a2
10a2

01 + 4a01a3
10. Direct calculations indicate that ∆q < 0;

thus, it can be determined that q0 < 0. By calculation, we can know that the sum of the fourth and fifth
terms of polynomial q1 is 0. Further calculations yield

q1 =
aµx2

4

2(1 + ab)3

[
(ab + 1)2 − a(2ab + a + 2) − (2ab + a + 2)2

]
< 0.

Therefore, it shows that c20 < 0. Combining the time variable τ, it follows Theorem 1 of Chapter 2
in reference [26] that E4 is an attracting saddle-node if µ > A(x4), and a repelling saddle-node if
µ < A(x4).

(2) When µ = A(x4), both eigenvalues are zero. Let (X,Y) = (a01u,−a10u + v), then system (4.10)
becomes 

du
dt
= v + e20u2 + e11uv + e02v2 + P2(u, v),

dv
dt
= f20u2 + f11uv + f02v2 + Q2(u, v),

(4.11)

where

e20 =
l1

a01
, e11 =

l2

a01
, e02 =

a02

a01
, f20 =

l3

a01
, f11 =

l4

a01
, f02 =

l5

a01
,

l1 = a2
01a20 − a10a01a11 + a2

10a02, l2 = a01a11 − 2a10a02,

l3 = a3
01b20 − a10a2

01b11 + a2
10a01b02 + a10a2

01a20 − a01a2
10a11 + a3

10a02,

l4 = a2
10b11 − 2a10a01b02 + a10a01a11 − 2a2

10a02, l5 = a01b02 + a10a02,

and P̄2(u, v), Q̄2(u, v) are C∞ functions of at least third order in terms of (u, v).
By using Lemma 4.2, it can be obtained that system (4.11) is equivalent to

du
dt
= v,

dv
dt
= f20u2 + ( f11 + 2e20)uv + Q3(u, v),

in the small neighborhood of (0, 0), where Q3(u, v) is a C∞ function of at least third order in terms of
(u, v). After complex calculations, we have

f20 =
x2

4

(1 + ab)3

[
(ab + 2a + 1) f (a, b) − (ab + a + 1)a2

]
≥

x2
4(ab + a + 1)

(1 + ab)3 [ f (a, b) − a2] > 0,

where

f (a, b) =
(ab + a + 1)(1 + 2ab)

2b
+

a(ab + 2a + 1)2

2(ab + a + 1)
,
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and

f11 + 2e20 = −
x4(ab + a + 1)[a2b3 + (3a2 + 2a)b2 + (4a2 + 2a + 1)b − a − 1]

b(ab + 1)3(1 + 2ax4)
.

Hence, if µ = A(x4) and a2b3 + (3a2 + 2a)b2 + (4a2 + 2a + 1)b − a − 1 , 0, then E4 is a cusp
of co-dimension 2 by the Theorem 3 of Chapter 2 in reference [26]. In addition, if µ = A(x4) and
a2b3 + (3a2 + 2a)b2 + (4a2 + 2a + 1)b − a − 1 = 0, then E4 is a cusp of co-dimension at least 3. □

5. Dynamical properties of (1.4) near the origin

Although the system (1.4) is not defined at (0, 0), proposition 2.2 implies that the system may exhibit
interesting dynamic behavior at (0, 0). In order to facilitate the study of the dynamic properties of (1.4)
at (0, 0), we will use the idea of topological equivalence proposed in [27] to obtain a system that is
topologically equivalent to system (1.4) and is defined at (0, 0).

Lemma 5.1. The system (1.4) is topologically equivalent to system
dx
dτ
= [(1 − x)

( x
b
− 1

)
− (1 + ay)y − h]x2,

dy
dτ
= µy(x − y),

(5.1)

which is a continuous extension of the system (1.4) and is defined at Ω̃ = {(x, y) ∈ R2|x ≥ 0, y ≥ 0}.

Proof. By means of the time rescaling given by t = xτ and using the chain rule we have

dx
dt
=

dx
dτ

dτ
dt
=

1
x

dx
dτ
,

dy
dt
=

dy
dτ

dτ
dt
=

1
x

dy
dτ
.

In view of (1.4), the system (5.1) can be obtained. In fact, we have constructed the function ψ :
Ω̃ × R −→ Ω × R satifying

ψ(x, y, τ) = (x, y, xτ) = (x, y, t).

Simple calculations can yield

det(Dψ(x, y, τ)) = det


1 0 0
0 1 0
τ 0 x

 = x > 0.

Hence, ψ is a diffeomorphism and preserves the orientation of time. It follows that system (5.1) is
topologically equivalent to system (1.4). Furthermore, we note that system (5.1) is a fourth order
polynomial differential equations system, which guarantees that it can be extended continuously to
x = 0. □

Notice that the Jacobian matrix of system (5.1) at (0, 0) is a null matrix. Thus, we will discuss the
stability of (5.1) near orgin by the blow-up method in the following.
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Theorem 5.1. The origin (0, 0) is an attractor in system (1.4).

Proof. According to the Lemma 5.1, we can obtain the dynamical properties of the system (1.4) at (0, 0)
by studying the trajectory structure of (5.1) near the origin (0,0). It was clear that the system (5.1) has
an invariant line x = 0 and dy/dτ|x=0 = −µy2 < 0. Taking the transformation

ϕ : (x, y) 7→ (u, uv),

the system (5.1) becomes
du
dτ
= u2

[
(1 − u)

(u
b
− 1

)
− (1 + αuv)uv − h

]
,

dv
dτ
= v

[
µ(1 − v) − (1 − u)

(u
b
− 1

)
+ (1 + αuv)uv + h

]
.

(5.2)

When x , 0, making a time transformation udt = dτ, the system (5.2) becomes
du
dt
= u

[
(1 − u)

(u
b
− 1

)
− (1 + αuv)uv − h

]
,

dv
dt
= v

[
µ(1 − v) − (1 − u)

(u
b
− 1

)
+ (1 + αuv)uv + h

]
.

(5.3)

Systems (5.1) and (5.3) are topologically equivalent, which means their trajectories are the same. The
system (5.3) has two boundary singularities (0, 0) and (0, 1 + (1 + h)/µ). By direct calculation, the
Jacobian matrices of (5.1) at (0, 0) and (0, 1 + (1 + h)/µ) are, respectively,−(h + 1) 0

0 h + 1 + µ

 and


−(h + 1) 0

v2 − (1 +
1
b

)v −(h + 1 + µ)

 .
Hence, (0, 0) is a saddle point and (0, 1+ (1+h)/µ) a stable node (see Figure 1(a)). After a blow-down,
the orgin (0, 0) of (5.1) is an attractor (see Figure 1(b)). In view of Lemma (5.1), the orgin (0, 0) is an
attractor in the system (1.4).

(a) (b)

Figure 1. (a) (0, 0) is a saddle and (0, 1 + (1 + h)/µ) is a stable node. (b) The origin in (5.1)
is an attractor.

□
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Theorem 5.2. Assume 0 < b < 1/4, 0 < a < a∗, 0 < h < h2, and µ > 0. If x0 < min{y0, x5}, then
lim
t→∞

(x(t), y(t)) = (0, 0), where a∗, h2, and x5 are defined as in Theorem 3.1.

Proof. Let A = {(x, y) | 0 < x < y, x < x5} and (x(t), y(t)) be the unique solution of (1.4) with
(x0, y0) ∈ A . Set w(t) = y(t) − x(t), and

W(w, t) = µ(w + x)
(
1 −

w + x
x

)
− x(1 − x)

( x
b
− 1

)
+ x[1 + a(w + x)](w + x) + hx.

Then, w satisfies

dw
dt
= W(w, t), t > 0; w(0) = y0 − x0.

Due to x < x5, we have

W(0, t) =
x
b

[(1 + ab)x2 − x + b(1 + h)] > 0.

It follows from the first equation of (1.4) and x < y that

dx
dt

< x
[
(1 − x)

( x
b
− 1

)
− (1 + ax)x − h

]
= −

x
b

[(1 + ab)x2 − x + b(1 + h)].

Therefore,

d(x − x5)
dt

|x=x5=
dx
dt
|x=x5< −

x5

b
[(1 + ab)x2

5 − x5 + b(1 + h)] = 0.

In summary, it can be seen that A is an invariant region.
If (x0, y0) ∈ A , then

dx
dt
= x

[
(1 − x)

( x
b
− 1

)
− (1 + ay)xy − h

]
≤ x

[
(1 − x)

( x
b
− 1

)
− (1 + ax)x − h

]
≤ Kx,

where K = (1 − x0) (x0/b − 1) − (1 + ax0)x0 − h < 0. Thus, lim
t→∞

x(t) = 0. Similarly to the proof of
Proposition 2.2, lim

t→∞
y(t) = 0. □

Similarly to the proof of Theorem 5.2, we can also get the following result.

Theorem 5.3. Assume 0 < b < 1/4, 0 < a < a∗, h = h2, and µ > 0. If x0 < min{y0, x4}, then
lim
t→∞

(x(t), y(t)) = (0, 0), where a∗, h2, and x4 are defined as in Theorem 3.1.

6. Bifurcation

Section 4 shows that both E1 and E4 are higher-order singularities and E6 may be non-hyperbolic,
which indicates that system (1.4) may undergo saddle-node bifurcations at E1 and E4 and Hopf
bifurcation at E6. In this section, we will discuss saddle-node bifurcation and Hopf bifurcation that
occur in system (1.4).
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6.1. Saddle-node bifurcation

In view of Theorem 3.1, the number of singularities of (1.4) will vary as parameter h changes around
at h = h1 and h = h2. In this subsection, based on Sotomayor’s theorem in [28], we will prove that
system (1.4) exhibits saddle-node bifurcation at E1 and E4.

Theorem 6.1. Assume a, h, µ > 0, 0 < b < 1, and h1, h2 are defined as in Theorem 3.1.

(1) As the parameter h passes through the threshold value h1, the system (1.4) will experience a saddle-
node bifurcation at E1.

(2) If 0 < b <
1
4

, 0 < a < a∗, and µ , A(x4), then the system (1.4) experiences a saddle-node bifurcation
at E4 as the parameter h passes through the threshold value h2.

Proof. (1) Reviewing (4.2) with i = 1, we get

JE1 =

−2
b

x2
1 + (1 +

1
b

)x1 −x1

0 µ

 =
0 −1 + b

2
0 µ

 .
Clearly, the two eigenvalues of JE1 are 0 and µ. Let ξ and η be two eigenvectors respectively
corresponding to eigenvalue 0 for the matrices JE1 and JT

E1
. After simple calculations, we get

ξ =

ξ1

ξ2

 = 10


and

η =

η1

η2

 =
 1
1 + b

2µ

 .
Let

G(x; h) =

 f (x, y)

g(x, y)

 = x(1 − x)( x
b − 1) − (1 + ay)xy − hx

µy(1 − y
x )

 .
It is easy to obtain that

ηTGh(E1; h1) =
(
1

1 + b
2µ

) −x1

0

 = −1 + b
2
, 0.

Furthermore,

D2G(E1, h1)(ξ, ξ) =


∂2 f
∂x2 ξ

2
1 + 2

∂2 f
∂x∂y

ξ1ξ2 +
∂2 f
∂y2 ξ

2
2

∂2g
∂x2 ξ

2
1 + 2

∂2g
∂x∂y

ξ1ξ2 +
∂2g
∂y2 ξ

2
2


(E1,k1)

=

−
1
b
− 1

0

 .
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Clearly,

ηT D2G(E1, h1)(ξ, ξ) =
(
1

1 + b
2µ

) −
1
b
− 1

0

 = −1
b
− 1 , 0.

Therefore, it follows from Sotomayor’s theorem that the system (1.4) undergoes a saddle-node
bifurcation at E1 as the parameter h passes through the threshold value h1.

(2) Similar to the proof of (1), it follows from (4.4) and (4.5) that

JE4 =

−2
b

x2
4 + (1 +

1
b

)x4 −x4 − 2αx2
4

µ −µ


=

ab + a + 1
2(ab + 1)2 −

ab + a + 1
2(ab + 1)2

µ −µ

 ,
det(JE4) = 0, and tr(JE4) = A(x4) − µ. When µ , A(x4), JE4 has a simple eigenvalue 0. Let V and W be
two eigenvectors respectively corresponding to eigenvalue 0 for the matrices JE4 and JT

E4
. By simple

calculation, we get

V =
v1

v2

 = (
11

)
and

W =
w1

w2

 =
 1

−
ab + a + 1
2µ(ab + 1)2

 .
Moreover,

D2G(E4, h2)(V,V) =


∂2 f
∂x2 v2

1 + 2
∂2 f
∂x∂y

v1v2 +
∂2 f
∂y2 v2

2

∂2g
∂x2 v2

1 + 2
∂2g
∂x∂y

v1v2 +
∂2g
∂y2 v2

2


(E4,h2)

=

(
5 − ab

b(ab + 1)
0
)
,

Gh(E4, h2) =

−x4

0

 = − 1
2(ab + 1)

.

Therefore, it is easy to see that V and W satisfy the transversality conditions

WTGh(E4, h2) =
(
1 −

ab + a + 1
2µ(ab + 1)2

) −x4

0

 = − 1
2(ab + 1)

, 0,

WT [D2G(E4, h2)(V,V)] =
(
1 −

ab + a + 1
2µ(ab + 1)2

)  5 − ab
b(ab + 1)

0

 = −1 − b
b(ab + 1))

, 0.

Hence, in view of Sotomayor’s theorem, the system (1.4) experiences a saddle-node bifurcation at
E4 as the parameter h passes through the threshold value h2. □
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6.2. Hopf bifurcation

As stated in Theorem 4.2, the stability of E6(x6, x6) will change as the parameter µ changes.
Specially, if µ = A(x6), then E6(x6, x6) is a center or fine focus under some conditions. In this
subsection, we will analyze the Hopf bifurcation occurring at E6 in system (1.4) by choosing µ as the
bifurcation parameter.

Based on Theorem 4.2 and Lemma 4.1, when 0 < b < 1/4, 0 < a < a∗, and 0 < h < h2, if any one
of the three conditions (a1), (a4), and (a5) in Subsection 4.1 holds, then A(x6) > 0. Recalling

det(JE6) =
µ

b
x6[2(1 + ab)x6 − 1] and tr(JE6) = A(x6) − µ

in (4.5), we let λ = α(µ) ± iω(µ) be the roots of λ2 − λtr(JE6) + det(JE6) = 0, where α(µ) = tr(JE6)/2
and ω(µ) =

√
det(JE6) − α2(µ). Moreover, the Jacobian matrix JE6 has a pair of imaginary eigenvalues

λ when µ = A(x6) and α′(µ)|µ=A(x6) = −1/2 , 0. By the poincaré-Andronov-Hopf Bifurcation theorem
in [29], the system (1.4) undergoes a Hopf Bifurcation at E6 when µ = A(x6).

Next, we will employ the methods in the literature [30, 31] to discuss the more detailed nature of
hopf bifurcation generated in system (1.4), and we will directly adopt the notation of symbols utilized
in [30, 31].

First, we translate E6(x6, x6) to the origin by using the transformation x̃ = x− x6 and ỹ = y− x6. For
convenience, we still denote x̃ and ỹ with x and y, respectively. Then, the system (1.4) becomes

dx
dt
= f̃ (x, y, µ),

dy
dt
= g̃(x, y, µ),

(6.1)

which is equivalent to the system
dx
dt
dy
dt

 = JE6

x

y

 +
 f̃ (x, y, µ) +

2
b

x2
6x −

(
1 +

1
b

)
x6x + (x6 + 2ax2

6)y

g̃(x, y, µ) − µx + µy,

 , (6.2)

where 
f̃ (x, y, µ)= (x+x6)(1−x−x6)

( x+x6

b
−1

)
−[1+a(y+x6)](x+x6)(y+x6)−h(x+x6),

g̃(x, y, µ) = µ(y + x6)
(
1 −

y + x6

x + x6

)
.

Set matrix

B =
 1 0

N M

 ,
where

M =
ω(µ)

x6(1 + 2ax6)
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and

N =
−

2
b

x2
6 +

(
1 +

1
b

)
x6 − α(µ)

x6(1 + 2ax6)
.

Apparently,

B−1 =

 1 0

−
N
M

1
M

 .
By the transformation (

x
y

)
= B

(
u
v

)
,

then system (6.2) becomes 
du
dt
dv
dt

 =
 α(µ) −ω(µ)
ω(µ) α(µ)

  u
v

 +  F1(u, v, µ)
F2(u, v, µ)

 ,
where  F1(u, v, µ)

F2(u, v, µ)

 = B−1

 f̃ (u,Nu + Mv, µ)
g̃(u,Nu + Mv, µ)

 −  α(µ) −ω(µ)
ω(µ) α(µ)

  u
v

 .
In order to determine the stability of the periodic solution, we need to calculate the sign of the
coefficient a(A(x6)), which is given by

a(A(x6)) =
1
16

[F1
uuu + F1

uvv + F2
uuv + F2

vvv]

+
1

16ω(µ0)
[F1

uv(F
1
uu + F1

vv) − F2
uv(F

2
uu + F2

vv) − F1
uuF2

uu + F1
vvF2

vv]

where

F1
uuu(0, 0, A(x6)) = −2N2(2a + 1) −

6
b
, F1

vvv(0, 0, A(x6)) = 2aN2x6,

F2
uuv(0, 0, A(x6)) = 4aN2 −

2A(x6)N
x6

(2 −
1
x6

), F2
vvv(0, 0, A(x6)) = 0,

F1
uv(0, 0, A(x6)) = M(aNx6 + ax6 + 1), F1

vv(0, 0, A(x6)) = −2aM2x6,

F1
uu(0, 0, A(x6)) = −(a + 1)N2x6 − 4Nx6 − 2N −

2
b

(3x6 − b − 1)

F2
uu(0, 0, A(x6)) =

N
M

((a + 1)N2x6 + 4Nx6 + 2N +
1
b

(6x6 − 2b − 2)) − 2A(x6)
N − 1

x6
,

F2
uv(0, 0, A(x6)) = −(aN2x6 + aNx6 + N) −

2A(x6)(N − 1)
x6

,

F2
vv(0, 0, A(x6)) = 2aMNx6 −

2A(x6)M
x6

.
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Summarizing the above analysis, we obtain the main result of this section:

Theorem 6.2. Let 0 < b < 1/4, 0 < a < a∗, 0 < h < h2, and µ > 0. Suppose that one of the three
conditions (a1), (a4), and (a5) in Subsection 4.1 is true. Then, the system (1.4) will experience a Hopf
bifurcation at E6 as µ passes through A(x6). Moreover,

(1) if a(A(x6)) < 0, then the system (1.4) undergoes a supercritical Hopf bifurcation and a stable limit
cycle appears around E6;

(2) if a(A(x6)) > 0, then the system (1.4) undergoes a subcritical Hopf bifurcation and an unstable
limit cycle appears around E6.

7. Simulation

In this section, we will utilize the Matlab software (version 2021b) for conducting numerical
simulations to support our theoretical analysis results. In the system (1.4), we take b = 0.2, a = 0.3,
h = 0.1, and µ = 1 to vary Proposition 2.2. From Figure 2(a), we find that both species will go extinct
when the initial value of prey is less than b. In fact, this phenomenon is known as the Allee effect.
With b = 0.1, a = 0.9, h = 0.1, and µ = 1, we can obtain x∗0 = 5/9 in Theorem 2.1 by direct
calculation. In Figure 2(b), we can see that the prey and predator will coexist when the density of the
prey is greater than x∗0.

The boundary singularities E2(x2, 0) is always an unstable node and E3(x3, 0) is always a saddle in
Figure 3(a). Especially, when µ = A(x2), E2(x2, 0) is a degenerate node in Figure 3(b). In Theorem 4.2,
the singularity E5 is always a saddle (see Figure 4(a)). The situation of the singularity E6(x6, x6) is
complicated. Let b = 0.2, a = 1, h = 0.03, then the parameters satisfy condition (a4) in Theorem 4.2
and A(x6) = 0.6416. When µ = 0.2 < A(x6), E6(x6, x6) is an unstable focus (see Figure 4(b)); when
µ = 0.6 < A(x6), E6(x6, x6) is an unstable node (see Figure 5(a)); when µ = 0.7 > A(x6), E6(x6, x6)
is a focus (see Figure 5(b)); when µ = 10 > A(x6), E6(x6, x6) is a stable node (see Figure 6(a)); when
µ = A(x6), E6(x6, x6) is a focus (see Figure 6(b)).

When h = h1, the system (1.4) has a unique higher-order singularity E1(x1, 0). It always a repelling
saddle-node (see Figure 7(a)). When h = h2, the system (1.4) has a unique higher-order singularity
E4(x4, x4). If µ = 0.25 < A(x4), E4 is a repelling saddle-node (see Figure 7(b)); if µ = 0.5 > A(x4), E4

is an attracting saddle-node (see Figure 8(a)); if µ = A(x4) = 17/64, E4 is a cusp of co-dimension 2
(see Figure 8(b)).

The origin (0, 0) is an attractor in the system (1.4). When two distinct positive singularities coexist
simultaneously, if the initial population of the prey is lower than that of the predator and x5, both
species will ultimately perish (see Figure 9(a)). Similarly, when there is only one positive singularity,
if the initial value of the prey is less than that of the predator and x4, then both species will perish
(Figure 9(b)). The simulation results above are consistent with the conclusions of Theorems 5.1–5.3.

When the parameters b = 0.2, a = 1, and µ = 1 are set, the system (1.4) experiences two saddle
point bifurcations at h = h1 and h = h2, respectively; see Figure 10(a). With parameters b = 0.1, a = 5,
h = 0.5, and µ = 0.97, the system (1.4) undergos a Hopf bifurcation, where a stale limit cycle emerges
surrounding E6(x6, x6).
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Figure 2. (a) Allee effect; (b) The persistence of the system (1.4).
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Figure 3. The types of singularities E2 and E3 in Theorem 4.1. (a) b = 0.5, a = 1, h = 0.1
and µ = 0.3; (b) When µ = 0.4358 = A(x2) and other parameters are the same as (a), E2 is is
a degenerate node.
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Figure 4. (a) E5 always is a saddle (b) When µ = 0.2 < A(x6), E6(x6, x6) is an unstable focus.
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Figure 5. (a) When µ = 0.6 < A(x6), E6(x6, x6) is an unstable node. (b) when µ = 0.7 >

A(x6), E6(x6, x6) is a stable focus.
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Figure 6. (a) When µ = 10 > A(x6), E6(x6, x6) is a stable node. (b) when µ = A(x6),
E6(x6, x6) is a focus.
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Figure 7. (a) When b = 0.25, a = 1, h = h1 = 0.5624, and µ = 1, E1 is a repelling saddle-
node. (b) When µ = 0.25 < A(x4), E4 is a repelling saddle-node.
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Figure 8. (a) When µ = 0.5 > A(x4), E4 is an attracting saddle-node (b) µ = A(x4) = 17/64,
E4 is a cusp of co-dimension 2.
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Figure 9. Taking b = 0.1, a = 1, µ = 1, the origin is an attractor (a) h = 1 < h2 = 1.2727 (b)
h = h2.
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Figure 10. (a) Two saddle-node bifurcations; (b) Hopf bifurcation.
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8. Conclusions

In this paper, we consider several ecological factors, including the Allee effect, the impact of
harvesting on prey populations, and cooperative hunting behaviors among predators, within the
framework of a Leslie-Gower prey-predator model. The consideration of various ecological factors
makes the model (1.4) closer to the real world, while also making the theoretical results more
instructive. These biological phenomena are well presented in the new system and bring rich dynamic
properties. We have conducted a fairly comprehensive qualitative analysis and bifurcation study for
the system (1.4). It is worth noting that we have studied the types of higher-order singularities and
found that there may be two saddle-nodes and a cusp of co-dimension 2. The system (1.4) is not
defined at (0, 0). By using topological equivalent and the blow-up method, we prove that the origin is
attractor, and a defined basin of attraction was given. We investigated the stability of limit cycles
where Hopf bifurcation occurs by calculating the first Lyapunov coefficient.

There are four parameters in system (1.4), and as these parameters vary, the system demonstrates
distinct dynamic properties. Next, we will discuss the significance of the theoretical results obtained
in this article from the perspective of these four parameters and their ecological meanings.

The Allee effect parameter b is presented in the new model. When the prey density is too low, the
prey will perish and the predator also becomes extinct (see Figure 2(a)). This phenomenon contradicts
the traditional perspective of population dynamics. From a biological perspective, congregating is
conducive to the reproduction and survival of the population. For example, a box of bees can generate
and maintain considerable heat, which enables all members to survive in low-temperature conditions.
Conversely, if they are isolated, they risk freezing to death. Therefore, each species has its own optimal
density, and too dense or too sparse will have a restraining effect on the population. This is also evident
from the mathematical model (1.2) of the Allee effect, where the population density will only increase
when the prey density is between b and 1. In fact, for some low-density populations, such as tigers,
b cannot be too large. If b is significantly high, it becomes improbable for the population density to
surpass this threshold, which could ultimately result in the extinction of the population. Theorem 3.1
demonstrates that if the value of b exceeds 1/4, the population is destined to decline.

The harvesting parameter h affects the number of singularities (Theorem 3.1). When h > h1, the
system has no any singularity; when h > h2, it has no positive singularity. It reveals that excessive
human production activities can lead to ecological imbalances and species extinction. In addition,
when h = h1 or h2, the system has undergone saddle-node bifurcation (Theorem 6.1). This means that
the ecosystem is likely to experience collapse when the capture rate of the prey population reaches h1

and h2.
Cooperative hunting a also has a significant impact on singularities of the system (Theorem 3.1).

When a > a∗, it has no positive singularity. This explains why certain invasive species can proliferate
rapidly. Since native species are unfamiliar with invasive species, it enhances the efficiency of
cooperative hunting by invasive species, leading to the extinction of local species.

The intrinsic growth rate µ of predator determines the stability of the singularity E6 (Theorem 4.2).
The positive singularity E6 is stable(unstable) when µ > A(x6)(µ < A(x6)), and the system (1.4) will
undergo a Hopf bifurcation when µ = A(x6) (see Figure 10(b)). Based on the above theoretical results,
we can conclude that the intrinsic growth rate of predators should not be too low. If the population
of predators decreases, it may have an indirect impact on the prey population, thereby disrupting the
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balance of the entire ecosystem.
In order to present the key values of these parameters and their possible ecological significance in

the real world, we have organized them in Table 1.

Table 1. The main critical values of the parameters.

Parameters Critical values Biological implications

b
1
4

In a real natural environment, for some low-
density populations, such as tigers, lions, and
whales, b cannot be too large. If b is
high, it becomes improbable for the population
density to surpass this threshold, which could
ultimately result in the extinction of the
population.

h h1, h2

The excessive human production activities can
lead to ecological imbalances and species
extinction. In addition, when the capture rate
of the prey population reaches h1 and h2, the
ecosystem is likely to collapse.

a a∗

Excessive cooperation among predators can
have negative impacts on prey populations and
predator populations, ultimately leading to the
extinction of both populations.

µ A(x6)

The intrinsic growth rate of predators should
not be too low. If the population of predators
decreases, it may have an indirect impact on the
prey population, thereby disrupting the balance
of the entire ecosystem.
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