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Abstract: In this paper, we present a method of G2 Hermite interpolation of convolution curves of
regular plane curves and ellipses. We show that our approximant is also a C1 Hermite interpolation of
the convolution curve. This method yields a polynomial curve if the trajectory curve is a polynomial
curve. Our approximation method is applied to two previous numerical examples. The results of
our method are compared with those of previous methods, and the merits and demerits are analyzed.
Compared with previous methods, the merits of our method are that the approximant is G2 and C1

Hermite interpolation, and the degree of the approximant or the required number of segments of the
approximant within error tolerances is small.
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1. Introduction

Minkowski sum has been used in various important geometric computations, for example,
for collision detection between objects [1, 2] and computing collision-free paths in robot motion
planning [3–5]. The convolution curves of two plane curves are related to the Minkowski sum
boundaries in the plane. The Minkowski sum boundaries of two plane objects is a subset of the
convolution curves of the boundaries of the objects [1, 6, 7].

Convolution curves and surfaces have been studied extensively in the literature. The results
for classical offsets on convolutions of algebraic curves have been generalized, and a closed
formula expressing the convolution degree by means of the algebraic degree and genus of the
curve, has been derived [6]. Additionally, the class of rational hypersurfaces which have the same
convolution properties as hyperspheres has been identified, and their geometric and algebraic properties
have been investigated [7]. The Hausdorff distance between two regular plane curves has been
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shown to be invariant under convolution with the same regular curve provided the curves have no
cusp [8]. Convolution curves at endpoints are characterized with respect to the tangent and bending
directions [9].

In general, the convolution curves of two polynomial or rational curves are neither polynomial
nor rational curves. Thus, it is necessary to approximate the convolution curves of two polynomial
or rational curves by polynomial or rational curves. The convolution curve of a quadratic curve
and other polynomial curves is rational, and using this property, one of the two polynomial curves
is approximated by a quadratic curve, and so their convolution curve can be approximated by the
rational curve [1]. This property can be applied to offset approximation [10,11]. If two curves have the
parallel derivative, then their convolution curve is obtained easily by their simple addition [12]. Using
this property, the convolution of two curves is approximated by cubic curves after the two curves
are approximated by two cubic curves with the parallel derivatives [12]. The linear normal surfaces
have rational offsets [13, 14]. The convolution surface of a linear normal surface and other rational
surfaces is rational [15, 16], and the same property holds for the curve case. Using this property, the
approximation of convolution curves of ellipses and general polynomial curves can be presented based
on the ellipse approximation by linear normal curves [17].

In this paper, we present an approximation method for the convolution curve of an ellipse and a
regular trajectory curve. We obtain the sufficient condition for the existence of at least a G0 approximant
of the convolution curve using our method. In addition, we characterize the necessary and sufficient
condition for the G0 approximant to be a G2 approximation of the convolution curve. Moreover, we
show that the G2 Hermite interpolation is also a C1 interpolation of the convolution curve. In our
method, if the trajectory curve is the polynomial curve, then so is our approximant. We apply our
method to previous examples in the literature. We implement our method and previous methods, and
compare and analyze their results.

The remainder of this paper is organized as follows: In Section 2, the known properties of the
convolution of two compatible parametric curves are introduced. In Section 3, our approximation
method for the convolution curves of trajectory curves and ellipses is presented. We apply our method
to existing examples in Section 4 and summarize our work in Section 5.

2. Preliminaries

In this section, we present the preliminaries and notions related to convolution curves of regular
plane curves [1, 8, 10]. Let xi : [ai, bi] → R2, i = 1, 2, be two regular plane curves. They are said to be
compatible [1,9], if there exists a reparametrization s = s(t) satisfying x′1(t) ∥ x′2(s(t)). The convolution
curve x1 ∗ x2 for two compatible curves x1, x2 is defined by

(x1 ∗ x2)(t) = x1(t) + x2(s(t)).

The reparameterized curve x2(s(t)) is denoted by x̃2(t), i.e., x̃2(t) = x2(s(t)). Let κx(t) be the (signed)
curvature of the plane curve x at the point x(t). The curvature of x1 ∗ x̃2 is

κx1∗x̃2 = sign(κx1)
κx1κx̃2

|κx1 ± κx̃2 |
= sign(κx1)

∣∣∣∣∣∣ κx1κx2

|κx1 | ± |κx2 |

∣∣∣∣∣∣ , (2.1)

where we choose the + sign when x1 and x̃2 are parallel and the − sign when they are anti-parallel [18].
Note that if either κx1 or κx̃2 is zero, then κx1∗x̃2 is also zero. In general, the sign of the curvature of x1 is
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the same as that of x̃2. Note that
κx̃2(t)x̃

′
2(t) = ±κx1(t)x

′
1(t), (2.2)

where, likewise, the + sign holds when x1 and x̃2 are parallel, and the − sign holds when they are
anti-parallel.

The Hausdorff distance is invariant under convolution, i.e., for a regular plane curve x,

dH(x1 ∗ x, x2 ∗ x) = dH(x1, x2), (2.3)

if these curves are regular [8].

3. G2 Hermite interpolation of convolution curve of trajectory curve and ellipse

In this section, we present an approximation method for G2 and C1 Hermite interpolation of
convolution curves of regular plane curves and ellipses.

Let x : [0, 1] → R2 be a regular parametric plane curve. Let e : R → R2 be an ellipse centered at
the origin whose long and short radii are a and b. The region generated by moving the ellipse along the
trajectory curve x is the Minkowski sum of x and e, and its boundary can be obtained by the convolution
curve of x and e. The ellipse e has two sided curve segments which are compatible to x, i.e., there are
reparametrizations s+ and s− such that

x′(t) ∥ e′(s+(t)) ∥ e′(s−(t)), ±x′(t) × e(s±(t)) < 0.

Let two curves e+, e− : [0, 1] → R2 be defined by the reparameterization e±(t) = e(s±(t)). Two
convolution curves of x and e are obtained by

x ∗ e+(t) = x(t) + e+(t), x ∗ e−(t) = x(t) + e−(t).

In general, e± cannot be expressed by rational curves even if x is a polynomial curve. Thus,
approximations for e± are needed. Let ea

± : [0, 1] → R2 be our approximants for e±, respectively.
Our approximants are proposed as in (3.1), so that ea

±
′(t) and x′(t) are parallel for t ∈ [0, 1], and then

their convolution can be directly obtained by their simple addition, i.e.,

x ∗ ea
+(t) = x(t) + ea

+(t), x ∗ ea
−(t) = x(t) + ea

−(t).

This idea was originally presented in [12], and later used in [19, 20]. We propose the approximants

ea
±(t) =

∫ t

0
x′(u)α(u)du + e±(0), (3.1)

where α : [0, 1]→ R is a cubic polynomial defined by

α(t) =
3∑

i=0

αiB3
i (t),

and Bn
i (t) =

(
n
i

)
ti(1 − t)n−i, 0 ≤ i ≤ n, are the Bernstein polynomials of degree n. Note that since e− is

equal to −e+, we can obtain ea
− by −ea

+. If ea
+ is a G2 interpolation of e+, then ea

− is also a G2 interpolation
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of e−. Thus, from now on we describe the approximation method only for ea
+, since ea

− can be obtained
directly by −ea

+. In this paper, the coefficients α0, α1, α2, α3 in (3.1) are determined such that ea
+ is a

G2 Hermite interpolation of e+. Accordingly, we show that the approximation x ∗ ea
± is a G2 Hermite

interpolation of the offset curve x ∗ e±, respectively.
Since ea

+(0) = e+(0) in (3.1), the curve ea
+ is a G0 Hermite interpolation of e+ if ea

+(1) = e+(1) holds.
The equation ea

+(1) = e+(1) is equivalent to

2∑
i=1

∫ 1

0
x′(t)B3

i (t)dtαi = (e+(1) − e+(0)) −
1∑

i=0

∫ 1

0
x′(t)B3

3i(t)dtα3i. (3.2)

This is a linear equation with respect to α1 and α2, i.e., (3.2) can be represented by

v1α1 + v2α2 = v,

where

vi =

∫ 1

0
x′(t)B3

i (t)dt, i = 1, 2, (3.3)

and v denotes the right side of (3.2). The linear equation in (3.2) for α1 and α2 has a unique solution,

α1 =
v × v2

v1 × v2
, α2 =

v1 × v
v1 × v2

, (3.4)

if x is convex and its Gauss map has a length less than π, where (x1, y1) × (x2, y2) = x1y2 − x2y1.
From now on we assume that the regular parametric curve x satisfies the sufficient condition for the

existence of the solution of (3.2) uniquely: x is convex and its Gauss map has a length less than π. If
not, we can make x satisfy the sufficient condition by subdividing x at inflection points and repetitive
bisections. Thus the curvature of x is of constant sign in the domain interior. The approximation curve
ea
+ with α1, α2 satisfying (3.4) is a G0 Hermite interpolation of e+. Now, we find the two coefficients
α0, α3 such that ea

+ is a G2 Hermite interpolation of e+.

Proposition 3.1. The two curves ea
+ and e+ have the same curvature at both endpoints if and only if

|α3i| = κx(i)/κe+(i), i = 0, 1.

Proof. It follows from (3.1) that

ea
+
′(i) = α3ix′(i), ea

+
′′(i) = α3ix′′(i) + 3∆α2ix′(i), (3.5)

for i = 0, 1, where ∆αi = αi+1 − αi. Thus, we have

ea
+
′(i) × ea

+
′′(i) = α2

3ix
′(i) × x′′(i), (3.6)

i = 0, 1, and

κea
+
(i) =

ea
+
′(i) × ea

+
′′(i)

||ea
+
′(i)||3

=
x′(i) × x′′(i)
|α3i| ||x′(i)||3

=
κx(i)
|α3i|
.

Hence, κea
+
(i) = κe+(i), i = 0, 1, if and only if κx(i) = κe+(i)|α3i|, and the assertion follows. □
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By the proposition above, we have two choices of α3i = κx(i)/κe+(i) or −κx(i)/κe+(i), i = 0, 1. Note
that, in general, the sign of κx coincides with that of κe+ . From (2.2) it follows that

e′+(i) = ±
κx(i)
κe+(i)

x′(i), (3.7)

where the + sign holds if x is turning left and the − sign holds if x is turning right. If x is turning left,
then it is parallel to e+. We choose

α3i =
κx(i)
κe+(i)

, i = 0, 1, (3.8)

so that
ea
+
′(i) = α3ix′(i) =

κx(i)
κe+(i)

x′(i) = e′+(i), (3.9)

by (3.7). Reversely, if x is turning right, then it is antiparallel to e+. We choose

α3i = −
κx(i)
κe+(i)

, i = 0, 1, (3.10)

so that
ea
+
′(i) = α3ix′(i) = −

κx(i)
κe+(i)

x′(i) = e′+(i), (3.11)

by (3.7). With the choice of α3i in (3.8) and (3.10), i = 0, 1, we show that the curve x ∗ ea
+ is a G2 and

C1 Hermite interpolation of the offset curve x ∗ e+ as follows.

Proposition 3.2. The approximant x ∗ ea
+ is a G2 and C1 Hermite interpolation of x ∗ e+.

Proof. Since ea
+ is at least a G0 interpolation of e+, we have ea

+(i) = e+(i), i = 0, 1, and so, we obtain
(x ∗ ea

+)(i) = (x ∗ e+)(i). It follows from (3.9) and (3.11) that

ea
+
′(i) = e′+(i), i = 0, 1, (3.12)

and that
(x ∗ ea

+)
′(i) = (x ∗ e+)′(i), i = 0, 1, (3.13)

which implies that x ∗ ea
+ is a C1 Hermite interpolation of x ∗ e+.

It is sufficient to show that κx∗ea
+
(i) = κx∗e+(i) for i = 0, 1. In the case of κx(i) , 0, by Proposition 3.1,

(3.8) and (3.10), we have κea
+
(i) = κe+(i). It follows from (2.1) that

κx∗ea
+
(i) = κx∗e+(i).

In the case of κx(i) = 0, even if κea
+
(i) , κe+(i), we have

κx∗ea
+
(i) = 0 = κx∗e+(i),

by (2.1), since the curvature of the convolution curve is zero if at least one of the two curves is of
curvature zero. Hence, the curvature of x∗ea

+ is equal to that of x∗e+ at both end points, and thus x∗ea
+

is the G2 Hermite interpolation of x ∗ e+. □
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The approximant ea
− can be obtained by ea

− = −ea
+, and it is a G2 and C1 Hermite interpolation of e−

for the same reason as in Proposition 3.2.
If e is represented by

e(s) = Rθ(a cos s, b sin s)T ,

where Rθ is the rotation operator by the angle θ counterclockwise, then it is interesting that

α3i =
κx(i)
κe(s+(i))

, i = 0, 1, (3.14)

whether x is turning left or right, since κe(s+(i)) = κe+(i) as x is turning left, and κe(s+(i)) = −κe+(i) as x
is turning right.

If x is a regular polynomial curve, then our method yields a polynomial approximant of the
convolution curve of x and e, which is a main merit of our method. Let x : [0, 1] → R2 be the
parametric polynomial curve of degree n expressed in Bernstein-Bézier form as

x(t) =
n∑

j=0

b jBn
j(t),

where b j, j = 0, 1, . . . , n, are the control points of x. It follows from (3.1) that ea
+ is a polynomial curve

of degree n + 3, and so is x ∗ ea
+. Equation (3.2) and the definition of v yield

vi =
3n

n + 3

n−1∑
j=0

(
n−1

j

)
(

n+2
i+ j

)∆b j, i = 1, 2,

v = e+(1) − e+(0) −
n

n + 3

n−1∑
j=0

 α0(
n+2

j

) + α3(
n+2
3+ j

)
(
n − 1

j

)
∆b j.

Thus, the coefficients α1 and α2 are obtained in the form of control points b j of x by (3.4), and so are
α0 and α3 by (3.14).

4. Approximation method and numerical examples

In this section, we describe our approximation method and apply it to numerical examples in the
literature.

Our approximation method yields a curvature continuous polynomial spline curve of degree n + 3
approximating the convolution curve of the trajectory and ellipse when the trajectory is a polynomial
curve of degree n. Our approximation method consists of a preprocess and a main process. In the
preprocess, the trajectory curve x is subdivided properly, and in the main subprocess, each convolution
curve for the subdivided segment is approximated.

In the preprocess, the trajectory curve x should be subdivided so that each subdivided segment
becomes convex and the length of its Gauss map becomes less than π. If the Gauss map has a length
larger than π, x is subdivided into m pieces, where m is the smallest number such that the Gauss map
of the subdivided piece is of length less than π. Then the cubic polynomial α exists uniquely by (3.4),
(3.8), and (3.10). The Hausdorff distance between two curves, x ∗ e± and x ∗ ea

± is measured by

dH(x ∗ e±, x ∗ ea
±) = dH(e±, ea

±), (4.1)
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from (2.3), if these curves are regular. Thus, x is subdivided at the point where x ∗ e± has a cusp. Note
that x ∗ e+ and x ∗ e− can have cusps at different points in general. Thus, even for the same trajectory
curve x, the subdivision points for approximating x ∗ e+ and x ∗ e− can be different. In the preprocess,
x is first subdivided at the inflection points and the points where x ∗ e+ or x ∗ e− has cusps, and then x is
subdivided into a number of segments as small as possible if its Gauss map has a length larger than π.

In the main process, each convolution curve x ∗ e± of the subdivided segment and corresponding
ellipse segment is approximated by the approximant x ∗ ea

± using the divide-and-conquer method. If
the error is larger than the given tolerance, then the segment is subdivided into two segments, and then
they are approximated separately. This process is repeated until the error is less than the tolerance.

We consider two numerical examples which were presented in previous works [17, 21]. The first
example is the convolution approximation of a cubic spline and an ellipse [17]. The trajectory curve
is a cubic spline composed of five cubic Bézier curves and is C2 continuous except for one cusp, as
shown in Figure 1. The ellipse is parameterized by e(s) = Rπ/6(cos s, 0.3 sin s)T . The cubic spline is
subdivided into five Bézier curves, and none of them has an inflection point. In order to use (4.1), we
find the cusp of x ∗ e±. Since the cubic spline x is turning right, the convolution curve x ∗ e− does not
have a cusp, and x ∗ e+ has four cusps, where x is subdivided for approximating x ∗ e+, as shown in
Figure 1. The lengths of the Gauss map of the former four Bézier curves are less than π, but that of the
last Bézier curve is larger than π, and so a subdivision is needed for approximating x ∗ e−. Thus, in the
preprocess, x is subdivided into nine and six segments for approximating x∗e+ and x∗e−, respectively.
Our method yields the spline approximant of degree six, since the trajectory curve is a cubic spline.
For TOL = 10−1, the minimal numbers of segments of hexic polynomial curves approximating the
convolution curves x ∗ e+ and x ∗ e− with the error less than TOL are nine and seven, respectively,
as shown in Figure 1. We can see that the minimum numbers of segments of hexic approximants
approximating x ∗ e+ are larger than those approximating x ∗ e−, since x ∗ e+ has a higher number
of cusps than x ∗ e−. For each tolerance, the minimum number of segments of hexic approximants
with the error less than the tolerance can be obtained as in Table 1. We implement the approximation
method presented in [17] and add the results from the method in Table 1. With respect to the minimum
number of segments of approximants, the method in [17] requires smaller numbers of segments than
our method. However, our method yields a polynomial approximant, and its degree is six, whereas the
method in [17] obtains a rational approximant whose degree is eleven.
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(a) (b)
Figure 1. (a) Hexic G2 polynomial curves x ∗ ea

+ (red color) and x ∗ ea
− (magenta)

approximating the convolution curves x ∗ e+ and x ∗ e−, respectively, of the cubic spline
x (green) and an ellipse. They are constructed by 13 and 11 segments, respectively, and their
errors are less than 10−2; (b) Trimmed curves of x ∗ ea

+ and x ∗ ea
− and three closures, which

are hexic polynomial curves approximating the half ellipses or a smaller part of the ellipse.

Table 1. Minimum number of segments of approximation curves using the method in [17]
and our method, respectively, needed for approximating the convolution curves in Figure 1,
with errors less than TOL.

TOL [17] Our method
10−1 9 9
10−2 11 13
10−3 14 17
10−4 18 24
10−5 27 35

TOL [17] Our method
10−1 6 7
10−2 11 11
10−3 12 18
10−4 18 24
10−5 25 33

(a) Right boundary x ∗ e+. (b) Left boundary x ∗ e−.

The second example is the approximation of the convolution curve of a nonic Bézier curve and
an ellipse [21, 22]. Our method yields the curvature continuous polynomial curve of degree twelve
approximating the convolution curve. The nonic Bézier curve x has one inflection point, and its
convolution curves x ∗ e+ and x ∗ e− have two and four cusps, respectively, as shown in Figure 2.
The trajectory curve is subdivided at the inflection point and at the point where the convolution curve
has cusp, and is also subdivided so that its Gauss map is of length less than π in the preprocess. Thus, x
is subdivided into six and seven segments for approximating x ∗ e+ and x ∗ e−, respectively. In the main
process each subdivided segment is approximated and subdivided repeatedly until the error is less than
the given tolerance. For each tolerance, the minimum number of segments of approximants with the
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error less than the tolerance is listed in Table 2. We implement the approximation method presented
in [12] and obtain the results using the method. The minimum numbers of segments achieved by our
method are much smaller than those obtained by the method in [12], as shown in Table 2. Moreover,
our method yields G2 Hermite interpolation, whereas the method in [12] obtains only G1 Hermite
interpolation. However, the degree of the approximation curve obtained by the method in [12] is three,
which is smaller than that achieved by our method. The approximant is of degree twelve, since x in
this example is of degree nine.

(a) (b)
Figure 2. (a) G2 polynomial curves x ∗ ea

+ (red color) and x ∗ ea
− (magenta) of degree twelve

approximating the convolution curves x ∗ e+ and x ∗ e−, respectively, of a nonic Bézier curve
x (green) and an ellipse. They are constructed by 13 and 11 segments, respectively, and their
errors are less than 10−2; (b) Trimmed curves of x ∗ ea

+ and x ∗ ea
− and two closures, which are

polynomial curves of degree twelve approximating the half ellipses.

Table 2. Minimum number of segments of approximation curves using the method in [12]
and our method, respectively, needed for approximating the convolution curves in Figure 2,
with errors less than TOL.

TOL [12] Our method
10−1 13 9
10−2 24 15
10−3 42 25
10−4 77 31
10−5 141 49

TOL [12] Our method
10−1 14 10
10−2 25 15
10−3 43 24
10−4 79 34
10−5 143 47

(a) Right boundary x ∗ e+. (b) Left boundary x ∗ e−.

As shown in Figure 1, the approximant x∗ ea
+ has two self-loops, and x∗ ea

− has one self-intersection

AIMS Mathematics Volume 9, Issue 12, 34606–34617.
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point. The trimmed curve can be obtained by removing the self-loops and the redundant segments
near the self-intersection point. In order to complete the construction of the font, three closures are
needed. The closures are half ellipses or a smaller part of the ellipse, which are approximated by
hexic polynomial curves. Applying the approximation method of circular arcs by hexic polynomial
curves [23], we obtained the approximants with an error less than 2.683 × 10−7, as shown in Figure
1(b). As shown in Figure 2, x+ea

+ and x+ea
− have one and two self-loops, respectively. The construction

of the font can be completed by trimming the loops and adding two closures. The closures are half
ellipses and are approximated by polynomial curves of degree twelve. After the half ellipses are
approximated by Bézier curves of degree eleven using the half ellipse approximation method [24, 25],
the approximant can be expressed in Bézier form of degree twelve by the degree elevation [26]. The
error for approximating the half ellipse is 5.963 × 10−6, as shown in Figure 2(b).

5. Conclusions

In this paper, we presented the convolution approximation method for regular plane parametric
curves and ellipses. Our method yields the G2 and C1 Hermite interpolation of the convolution curve,
and yields a polynomial approximant for the convolution curve whenever the trajectory curve is a
polynomial curve. We compared the numerical results of our method with those of previous methods,
and analyzed the merits of our method. Compared with previous methods, the merits of our method
are that the approximant is a G2 and C1 Hermite interpolation, and the degree of the approximant or
the required number of segments of the approximant within error tolerances is small.
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