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Abstract: Here, we provide a new method to solve the time-fractional diffusion equation (TFDE)
following the spectral tau approach. Our proposed numerical solution is expressed in terms of a
double Lucas expansion. The discretization of the technique is based on several formulas about Lucas
polynomials, such as those for explicit integer and fractional derivatives, products, and certain definite
integrals of these polynomials. These formulas aid in transforming the TFDE and its conditions into a
matrix system that can be treated through a suitable numerical procedure. We conduct a study on the
convergence analysis of the double Lucas expansion. In addition, we provide a few examples to ensure
that the proposed numerical approach is applicable and efficient.
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1. Introduction

Both integrals and fractional derivatives are non-local operators because they include integration,
which is non-local. Because of this property, these operators help describe certain physical phenomena,
such as hereditary features, asymptotic scaling, and long-term memory effects. Fractional calculus
attracted many mathematicians, who worked hard to develop the subject further and devised distinctive
methods of defining fractional-order integrals and derivatives. Many researchers are starting to pay
more attention to the idea of fractional calculus because of all the places it might be useful, including
fluid dynamics, electrochemistry of corrosion, biology, optics, signal processing, fluid dynamics,
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regular variation in thermodynamics, aerodynamics, and many more [1–3]. Researchers conduct
extensive research using various numerical algorithms for fractional differential equations (FDEs).
For example, in [4], the Adomian decomposition method was used. In [5], a collocation algorithm was
used for a specific type of Korteweg–De Vries equation (KdV) equation. In [6], the authors applied
a physics-informed neural network-based scheme for treating some FDEs. The authors of [7] used a
collocation scheme and certain unified Chebyshev polynomials to solve the fractional heat equations.
In [8], a matrix algorithm was applied to solve certain FDEs. A Haar wavelets method was followed to
solve some pantograph FDEs in [9]. An approach based on an inverse Laplace transform was followed
in [10] to handle some FDEs. The authors of [11] used meshless analysis and the generalized finite
difference method to treat the fractional diffusion-wave equation. The same authors performed another
study in [12].

Lucas polynomials and their generalized sequences are important in many fields, such as number
theory, statistics, and computer science; see, for example, [13]. In numerical analysis, the roles of
Lucas polynomials and their generalized polynomials have increased. They are utilized in solving
differential equations (DEs) of all types. For example, the authors of [14] treated the time-fractional
Burgers equation using a finite difference approach. In [15], a numerical scheme was proposed to
treat the advection-diffusion equations using mixed Fibonacci Lucas polynomials. In [16], a spectral
method was utilized to solve an electro-hydrodynamics flow model. In [17], the authors employed
Lucas polynomials to solve certain multi-dimensional equations. The authors of [18] treated Cauchy
integral equations based on Lucas polynomials. In [19], the authors used modified Lucas polynomials
to treat some FDEs. Other multi-dimensional problems were treated via Lucas polynomials in [20].
High-order boundary value problems were handled using Lucas polynomials in [21].

To explain out-of-the-ordinary diffusion behaviors seen in a wide range of biological, financial, and
physical systems, the TFDE adds a fractional time derivative to the classical diffusion equation. The
traditional diffusion equation fails to effectively explain these behaviors because of nonlocal dynamics
and memory effects. The TFDE plays a crucial role in capturing these complicated processes by
providing a more precise and all-encompassing modeling framework. Types of TFDE were the focus
of numerous contributions. The authors of [22] proposed a numerical procedure using splines to solve
a class of TFDE. The authors of [23] used the Petrov-Galerkin method for treating the TFDE. In
[24], the authors applied a linearized numerical scheme for a class of nonlinear TFDE. In [25], the
authors utilized an implicit difference scheme for the TFDE. In [26], another difference scheme for the
generalized TFDE was followed. The authors of [27] used an exponential-sum algorithm for variable-
order TFDE.

For numerical analysis and scientific computing, spectral methods provide a collection of
approaches for solving DEs. Their distinguishing feature is the ability to describe the solution
throughout the entire domain of the problem using global basis functions, unlike approaches like
finite difference and finite element. These techniques can provide great precision with limited degrees
of freedom, particularly useful for problems with smooth solutions; see [28–30]. They exhibit high
convergence for the approximate solution. These advantages make their application a target for many
authors seeking solutions for various DEs. We assume that the solution of a given differential equation
is a combination of some basis functions, which could be orthogonal or non-orthogonal polynomials.
We extensively employ the various versions of spectral methods to solve different types of DEs.
Various papers have utilized the Galerkin method to solve some DEs, see [31–33]. The tau method
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is more popular than the Galerkin method. The main reason for this is that there are no restrictions in
choosing the trial and test functions if the tau method is utilized, unlike in the Galerkin method; see,
for example, [34, 35]. Various contributions extensively use the typical collocation method because
it can treat all types of DEs. For example, the authors of [36] followed a meshless superconvergent
stabilized collocation method to treat some linear and nonlinear elliptic problems. The collocation
method can also be applied to treat FDEs [37–39]. In addition, matrix methods together with the
collocation method were used in [40, 41]. For some other applications regarding the spectral methods
and their applications, one can refer to [42–44].

This article aims to analyze a new Lucas tau algorithm for handling the TFDE method. To tackle
this method, we need formulas concerning the Lucas polynomials, such as their product and specific,
definite integral formulas.

The structure of the rest of the paper is as follows: Section 2 presents some fundamentals and useful
preliminaries. A tau approach to solving the TFDE is presented in Section 3. The error bound is given
in Section 4. Four illustrative examples are provided in Section 5. Finally, Section 6 reports a few
conclusions.

2. Essentials and useful relations

This section introduces some basic definitions and fundamental formulas. The definition of
Caputo’s fractional derivative is given. An account of Lucas polynomials is given. Certain formulas of
Lucas polynomials that will be beneficial are also presented.

2.1. Caputo’s fractional derivative

Definition 2.1. Caputo’s fractional derivative is defined as [3]

Dζ
zY(z) =

1
Γ(r − ζ)

∫ z

0
(z − t)r−ζ−1Y (r)(t) dt, ζ > 0, z > 0, (2.1)

r − 1 < ζ ≤ r, r ∈ Z+.

We also have

Dζ
zC = 0, (C is a constant), (2.2)

Dζ
z zk =

0, if k ∈ Z≥0 and k < ⌈ζ⌉,
k!

Γ(k+1−ζ) zk−ζ , if k ∈ Z≥0 and k ≥ ⌈ζ⌉,
(2.3)

where ⌈ζ⌉ is the ceiling function.

2.2. An overview and some formulas of Lucas polynomials

This recursive formula is utilized to generate Lucas polynomials [23]:

Li(θ) = θ Li−1(θ) + Li−2(θ), L0(θ) = 2, L1(θ) = θ, i ≥ 2, (2.4)

and they can be expressed as

Li(θ) = i
⌊ i

2 ⌋∑
r=0

(
i−r
r

)
i − r

θi−2r, i ≥ 1, (2.5)
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that can be alternatively written as

Li(θ) =
i∑

k=0

Bk,i θ
k, i ≥ 1, (2.6)

where

Bk,i =

2 i δi+k

( i+k
2

i−k
2

)
i + k

, (2.7)

and

δr =

1, if r is even,
0, if r is odd.

(2.8)

In addition, Li(θ) can be expressed as

Li(θ) =

(
θ +
√
θ2 + 4

)i
+

(
θ −
√
θ2 + 4

)i

2i , i ≥ 0. (2.9)

In the following, we give some important formulas of Lucas polynomials that will be useful in deriving
our proposed algorithm.

Theorem 2.1. [45] Consider i, q ∈ Z+ with i ≥ q. In terms of Lucas polynomials, we can write

dqLi(θ)
dθ

= i

⌊ i−q
2

⌋∑
m=0

ci−2m−q(−1)m

(
m + q − 1

m

)
(i − m − q + 1)q−1 Li−q−2m(θ), (2.10)

where

cr =

 1
2 , r = 0,
1, r ≥ 1.

Theorem 2.2. [46] Consider r and i to be two non-negative integers. The following linearization
formula holds:

Li(θ)Lr(θ) = (−1)iLr−i(θ) + Li+r(θ). (2.11)

Lemma 2.1. [47] For r ∈ Z,
∫ 1

0
Lr(θ) dθ is given explicitly by the following formula:

∫ 1

0
Lr(θ) dθ = Mr, (2.12)
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where

Mr =



2, if r = 0,
1
2 , if r = 1,
−1

2 , if r = −1,

2F1

 −1
2 −

r
2 ,−

r
2

1 − r

∣∣∣∣∣∣∣∣∣−4


1+r , if r is even, and r ≥ 0,

−4r+(−1+r)2F1

 −1
2 −

r
2 ,−

r
2

1 − r

∣∣∣∣∣∣∣∣∣−4


−1+r2 , if r is odd, and r > 2,

(−1)r
2F1

 −1
2 +

r
2 ,

r
2

1 + r

∣∣∣∣∣∣∣∣∣−4


1−r , if r is even, and r < 0,

(−1)r

4r−(1+r) 2F1

 −1
2 +

r
2 ,

r
2

1 + r

∣∣∣∣∣∣∣∣∣−4


r2−1 , if r is odd, and r < 0.

(2.13)

Remark 2.1. It is worth mentioning here that many generalizations are established for the standard
Lucas polynomials. Among these generalizations, the generalized Lucas polynomials are generated by
the following recursive formula:

ψa,b
i (θ) = a θ ψa,b

i−1(θ) + bψa,b
i−2(θ), ψa,b

0 (θ) = 2, ψa,b
1 (θ) = a θ, i ≥ 2. (2.14)

It is clear that Li(θ) = ψ1,1
i (θ).

3. Tau approach for the TFDE

We confine this section to analyzing a numerical algorithm for solving the TFDE in one dimension.
We also account for another extended algorithm that treats a two-dimensional model effectively. We
apply the spectral tau approach to obtain the desired approximate solutions in one and two dimensions.

3.1. tau approximate solution for one-dimensional TFDE

Consider the following TFDE [22, 23]:

Dζ
t ξ(θ, t) − β ξθθ(θ, t) = f (θ, t), 0 < ζ ≤ 1, (3.1)

governed by the following conditions:

ξ(θ, 0) = g(θ), 0 < θ < 1, (3.2)
ξ(0, t) = h1(t), ξ(1, t) = h2(t), 0 < t < τ, (3.3)

where β is a positive constant, g(θ), h1(t), and h2(t) are given continuous functions, and f (θ, t) is the
source term.
Now, define

PN = span{Li(θ) L j(t) : 1 ≤ i, j ≤ N + 1},
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and thus, we can assume that any function ξN (θ, t) ∈ PN may be expressed as

ξN (θ, t) =
N+1∑
i=1

N+1∑
j=1

ci j Li(θ) L j(t) = L(θ) C L(t)T , (3.4)

where L(θ) = [L1(θ), L2(θ), . . . , LN+1(θ)], L(t)T = [L1(t), L2(t), . . . , LN+1(t)]T , and C = (ci j)1≤i, j≤N+1

is the matrix of unknowns of dimension (N + 1)2.
The residual Res(θ, t) of Eq (3.1) has the following form:

Res(θ, t) = Dζ
t ξ
N (θ, t) − β ξNθθ(θ, t) − f (θ, t). (3.5)

As a result of applying tau method, we get

(Res(θ, t) , Lr(θ) Ls(t)) = 0, 1 ≤ r ≤ N − 1, 1 ≤ s ≤ N . (3.6)

Now, consider the following matrices:

F = ( fr,s)(N−1)×N , frs = ( f (θ, t) , Lr(θ) Ls(t)), (3.7)
A = (ai,r)(N+1)×(N−1), ai,r = (Li(θ) , Lr(θ)), (3.8)

H = (hir)(N+1)×(N−1), hir =

(
d2 Li(θ)

d θ2 , Lr(θ)
)
, (3.9)

K = (k j,s)(N+1)×N , k j,s =
(
Dζ

t L j(t) , Ls(t)
)
, (3.10)

where

(g1(θ), g2(θ)) =
∫ 1

0
g1(θ) g2(θ) dθ,

(g1(t), g2(t)) =
∫ τ

0
g1(t) g2(t) dt,

(g1(θ, t), g2(θ, t)) =
∫ τ

0

∫ 1

0
g1(θ, t) g2(θ, t) dθ dt.

(3.11)

Therefore, Eq. (3.6) can be rewritten as
N+1∑
i=1

N+1∑
j=1

ci j ai,r k j,s − β

N+1∑
i=1

N+1∑
j=1

ci j hi,r a j,s = fr,s, 1 ≤ r ≤ N − 1, 1 ≤ s ≤ N , (3.12)

or in the following matrix form:
A

T CK − βHT CA = F. (3.13)

In addition, the conditions in (3.2) and (3.3) lead to the following equations:
N+1∑
i=1

N+1∑
j=1

ci j ai,r L j(0) = (g(θ) , Lr(θ)), 1 ≤ r ≤ N + 1,

N+1∑
i=1

N+1∑
j=1

ci j a j,s Li(0) = (h1(t) , Ls(t)), 1 ≤ s ≤ N ,

N+1∑
i=1

N+1∑
j=1

ci j a j,s Li(1) = (h2(t) , Ls(t)), 1 ≤ s ≤ N .

(3.14)
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Now, a suitable approach may be used to solve the resulting algebraic system of equations of order
(N + 1)2, which includes Eqs (3.13) and (3.14).

Theorem 3.1. The elements ai,r, hi,r, and k j,s that appear in the system (3.12) can be expressed in the
following closed forms:

ai,r =

∫ 1

0
Li(θ)Lr(θ) dθ = Mr+i + (−1)iMr−i, (3.15)

hi,r =

∫ 1

0

d2Li(θ)
dθ2 Lr(θ) dθ = i

⌊ i−2
2 ⌋∑

n=0

ci−2n−2(−1)n(n + 1)(i − n − 1)

× (Mi−2−2n+r + (−1)r Mi−2−2n−r) , (3.16)

k j,s =

∫ 1

0
Dζ

t L j(t)Ls(t) dt =
j∑

k=1

s∑
n=0

k! Bk, j Bn,s

Γ(k − ζ + 1)(−ζ + k + n + 1)
, (3.17)

where Br, j and Mr are given by (2.7) and (2.12), respectively.

Proof. To find the elements ai,r, we make use of (2.11) to write

air =

∫ 1

0

(
(−1)iLr−i(θ) + Lr+i(θ)

)
dθ. (3.18)

The last formula together with the integral in (2.12) leads to (3.15).
Now, to find the elements hi,r, we make use of formula (2.10), after putting q = 2, to get∫ 1

0

d2Li(θ)
dθ

Lr(θ) dθ =
∫ 1

0

i
⌊ i−2

2 ⌋∑
n=0

ci−2n−2 (−1)n (n + 1) (i − n − 1) Li−2−2n(θ)

 Lr(θ) dθ, (3.19)

which, after applying the product formula (2.11), may be transformed into

hi,r =i
⌊ i−2

2 ⌋∑
n=0

ci−2n−2 (−1)n (n + 1) (i − n − 1)×

(Mi−2−2n+r + (−1)r Mi−2−2n−r) .

This shows formula (3.16). To obtain k j,s, we use formula (2.1) to get

k j,s =

∫ 1

0
Dζ

t L j(t) Ls(t) dt

=

j∑
k=1

s∑
n=0

Bk, j Bn,s k!
Γ(k − ζ + 1)

∫ 1

0
tk−ζ+n dt,

(3.20)

which immediately gives the following result:

k j,s =

j∑
k=1

s∑
n=0

k! Bk, j Bn,s

Γ(k − ζ + 1) (−ζ + k + n + 1)
.

This shows formula (3.17), and thus the proof of Theorem 3.1 is now complete. □

Remark 3.1. In Algorithm 1, we outline the methodology for addressing the TFDE with our spectral
tau approach.
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Algorithm 1 Coding algorithm for the proposed technique
Input ζ, K, g(θ), h1(t), h2(t), and f (θ, t).
Step 1. Assume an approximate solution ξN (θ, t) as in (3.4).
Step 2. Apply the tau method to obtain the system in (3.13) and (3.14).
Step 3. Use Theorem 3.1 to get the elements of ai,r, hi,r, and k j,s.
Step 4. Use the NSolve command to solve the system in (3.13) and (3.14) to get ci j.
Output ξN (θ, t).

3.2. An extension of our algorithm

Our algorithm can be extended to solve 2D models. Similar steps can be followed to obtain
the proposed numerical solution. As an extension to our one-dimensional model, we can solve the
following two-dimensional TFDE:

Dζ
t ξ(θ, y, t) − β1 ξθθ(θ, y, t) − β2 ξyy(θ, y, t) = G(θ, y, t), (3.21)

governed by the following conditions:

ξ(θ, y, 0) = ξ1(θ, y), 0 < θ, y ≤ 1, (3.22)

and

ξ(0, y, t) = ξ2(y, t), ξ(1, y, t) = ξ3(y, t), 0 < y ≤ 1, 0 < t < τ,

ξ(θ, 0, t) = ξ4(θ, t), ξ(θ, 1, t) = ξ5(θ, t), 0 < θ ≤ 1, 0 < t < τ,
(3.23)

where β1 > 0, β2 > 0, and G(θ, y, t) is the source term.
In this case, we may assume the approximate solution of the form

ξN (θ, y, t) =
N+1∑
i=1

N+1∑
j=1

N+1∑
k=1

ci jk Li(θ) L j(y) Lk(t).

We follow similar steps to those followed in Section 3.1 to get a linear system of algebraic equations of
dimension (N +1)3 in the unknown expansion coefficients ci jk, which can be solved using the Gaussian
elimination procedure.

4. Error bound

This section discusses the error analysis of the proposed double Lucas expansion.

Theorem 4.1. [48] Let u(θ) be a function defined on [0, 1], such that |u(i)(0)| ≤ f i for i ≥ 0, where

f > 0, and let it have the expansion u(θ) =
∞∑

i=0

ûi ψ
a,b
i (θ), where ψa,b

i (θ) denotes the generalized Lucas

polynomials generated by (2.14). Then, we have

• |ûi| ≤
|a|−i f i cosh(2 |a|−1 |b|

1
2 f )

i!
.
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• The series converges absolutely.

Corollary 4.1. Let u(θ) be a function defined on [0, 1], with |u(i)(0)| ≤ f i, i ≥ 0, and f > 0, and let it

have the expansion u(θ) =
∞∑

i=0

ûi Li(θ). Then, we have

• |ûi| ≤
f i cosh(2 f )

i!
.

• The series converges absolutely.

Proof. It is a special case of Theorem 4.1 only by setting a = b = 1. □

Theorem 4.2. Consider a function ξ(θ, t) = ξ1(θ) ξ2(t) defined on [0, 1] × [0, 1], where |ξ(i)
k (0)| ≤ ϕi

k for

k = 1, 2, i ≥ 0, and ϕk > 0. Assume that ξ(θ, t) has the expansion ξ(θ, t) =
∞∑

i=0

∞∑
j=0

ci j Li(θ) L j(t). Then,

we have

• |ci j| ≤
ϕi

1 ϕ
j
2 cosh(2 ϕ1) cosh(2 ϕ2)

i! j!
.

•
∞∑

i=0

∞∑
j=0

ci j Li(θ) L j(t) converges absolutely.

Proof. Based on Lemma 1 of [48], and setting a = b = 1, the following relation can be obtained:

ξ1(θ) =
∞∑

i=0

∞∑
k=0

(−1)k δi ξ
(i+2 k)
1 (0)

k! (i + k)!
Li(θ). (4.1)

According to the assumption ξ(θ, t) = ξ1(θ) ξ2(t), we have

ξ(θ, t) =
∞∑

i=0

∞∑
j=0

∞∑
k=0

∞∑
s=0

(−1)k+s δi δ j ξ
i+2 k
1 (0) ξ j+2 s

2 (0)
k! s! (i + k)! ( j + s)!

Li(θ) L j(t). (4.2)

Now, the expansion coefficients ci j can be written as

ci j =

∞∑
k=0

∞∑
s=0

(−1)k+s δi δ j ξ
i+2 k
1 (0) ξ j+2 s

2 (0)
k! s! (i + k)! ( j + s)!

. (4.3)

Taking into consideration that |ξ(i)
k (0)| ≤ ϕi

k, it is possible to rewrite the final equation in the following
form:

|ci j| ≤

∞∑
k=0

ϕi+2 k
1

k! (i + k)!
×

∞∑
s=0

ϕ
j+2 s
2

s! ( j + s)!
. (4.4)

Now, based on Corollary 4.1 and after using similar steps as in [49], we get the following estimation:

|ci j| ≤
ϕi

1 ϕ
j
2 cosh(2 ϕ1) cosh(2 ϕ2)

i! j!
.

This finalizes the proof. □
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Theorem 4.3. Assuming that ξ(θ, t) meets the conditions of Theorem 4.2, we have

|ξ(θ, t) − ξN (θ, t)| ≤
λ

[
(
√

3 ϕ1)N+1 + (
√

3 ϕ2)N+1
]

(N + 1)!
, (4.5)

where λ = cosh (2ϕ1) cosh (2ϕ2) e
√

3 (ϕ1+ϕ2).

Proof. From the definitions of ξ(θ, t) and ξN (θ, t), we can write

|ξ(θ, t) − ξN (θ, t)| =

∣∣∣∣∣∣∣
∞∑

i=0

∞∑
j=0

ci j Li(θ) L j(t) −
N+1∑
i=1

N+1∑
j=1

ci j Li(θ) L j(t)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
N+1∑
i=1

∞∑
j=N+2

ci j Li(θ) L j(t)

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
∞∑

i=N+2

∞∑
j=1

ci j Li(θ) L j(t)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∞∑
j=0

c0 j L0(θ) L j(t)

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
∞∑

i=1

ci0 Li(θ) L0(t)

∣∣∣∣∣∣∣ .
(4.6)

Theorem 4.2 along with the inequality |Li(θ)| ≤ 2 (3)
i
2 yields [49]

|ξ(θ, t) − ξN (θ, t)| ≤ 4 cosh (2ϕ1) cosh (2ϕ2)

×

N+1∑
i=1

(
√

3 ϕ1)i

i!

∞∑
j=N+2

(
√

3 ϕ2) j

j!
+

∞∑
i=N+2

(
√

3 ϕ1)i

i!

∞∑
j=1

(
√

3 ϕ2) j

j!
+

∞∑
j=0

(
√

3 ϕ2) j

j!
+

∞∑
i=1

(
√

3 ϕ1)i

i!


≤ 4 cosh (2ϕ1) cosh (2ϕ2)

×

N+1∑
i=1

(
√

3 ϕ1)i

i!

∞∑
j=N+2

(
√

3 ϕ2) j

j!
+

∞∑
i=N+2

(
√

3 ϕ1)i

i!

∞∑
j=1

(
√

3 ϕ2) j

j!

+

∞∑
i=N+2

(
√

3 ϕ2)i

i!

∞∑
j=0

(
√

3 ϕ2) j

j!
+

∞∑
i=1

(
√

3 ϕ1)i

i!

∞∑
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(
√

3 ϕ2) j
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 .

(4.7)

Using the following inequalities:

N+1∑
i=1

(
√

3 ϕ1)i

i!
= −1 +

e
√

3 ϕ1 Γ(N + 2, ϕ1)
(N + 1)!

< e
√

3 ϕ1 ,

∞∑
j=N+2

(
√

3 ϕ2) j

j!
= e

√
3 ϕ1

1 − Γ(N + 2,
√

3 ϕ2)
(N + 1)!

 < e
√

3 ϕ2 (
√

3 ϕ2)N+2

(N + 1)!
,

∞∑
i=N+2

(
√

3 ϕ1)i

i!
= e

√
3 ϕ1

1 − Γ(N + 2,
√

3 ϕ1)
(N + 1)!

 < e
√

3 ϕ1 (
√

3 ϕ1)N+2

(N + 1)!
,

∞∑
j=1

(
√

3 ϕ2) j

j!
= −1 + e

√
3 ϕ1 < e

√
3 ϕ1 ,

∞∑
j=0

(
√

3 ϕ2) j

j!
= e

√
3 ϕ1 ,

(4.8)
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we get the following estimation:

|ξ(θ, t) − ξN (θ, t)| ≤
λ

[
(
√

3 ϕ1)N+1 + (
√

3 ϕ2)N+1
]

(N + 1)!
, (4.9)

where λ = 8 cosh (2ϕ1) cosh (2ϕ2) e
√

3 (ϕ1+ϕ2), Γ(.) and Γ(., .) denote, respectively, gamma and upper
incomplete gamma functions [50]. This completes the proof. □

5. Some numerical tests

To show the usefulness and effectiveness of our suggested numerical algorithms described in
Sections 3.1 and 3.2, we offer four test problems here.

Example 5.1. Consider the following equation:

Dζ
t ξ(θ, t) − ξθθ(θ, t) = f (θ, t), 0 < ζ ≤ 1, (5.1)

controlled by

ξ(θ, 0) = 0, 0 < θ < 1,
ξ(0, t) = ξ(1, t) = 0, 0 < t < 1,

(5.2)

with the exact solution ξ(θ, t) = t2 sin(π θ).

Table 1 displays the absolute errors (AEs) at ζ = 0.5 and N = 7. Also, Table 2 presents the AE at
ζ = 0.7 and N = 6. Figure 1 shows the AEs (left) and the numerical solution (right) at ζ = 0.9 and
N = 6. Finally, Table 3 presents the maximum absolute error (MAE) atN = 6 and various values of ζ
when 0 < t < 1.

Table 1. The AEs of Example 5.1 (ζ = 0.5, N = 7).

θ t = 1
10 t = 4

10 t = 8
10

0.1 1.5646 × 10−6 1.2713 × 10−5 5.0240 × 10−5

0.2 3.0120 × 10−6 4.2200 × 10−6 1.7060 × 10−5

0.3 5.4282 × 10−6 2.0123 × 10−5 7.9654 × 10−5

0.4 6.6875 × 10−6 2.7045 × 10−5 1.0672 × 10−5

0.5 6.1593 × 10−6 7.0292 × 10−6 2.6161 × 10−5

0.6 5.1758 × 10−6 1.8614 × 10−6 7.6500 × 10−5

0.7 5.5230 × 10−6 2.1705 × 10−5 8.8191 × 10−5

0.8 7.3537 × 10−6 3.4306 × 10−8 1.5175 × 10−7

0.9 8.5392 × 10−7 1.2490 × 10−6 5.2775 × 10−5
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Table 2. The AEs of Example 5.1 (ζ = 0.7, N = 6).

θ t = 3
10 t = 6

10 t = 9
10

0.1 9.4838 × 10−6 3.3169 × 10−5 8.0517 × 10−5

0.2 5.1520 × 10−6 1.1391 × 10−6 3.7064 × 10−5

0.3 1.0661 × 10−5 5.5192 × 10−5 1.0579 × 10−5

0.4 1.5736 × 10−5 7.7288 × 10−5 1.4897 × 10−5

0.5 2.6243 × 10−6 2.5008 × 10−5 2.7776 × 10−5

0.6 1.4857 × 10−5 4.6215 × 10−5 1.3155 × 10−5

0.7 1.7015 × 10−5 5.7268 × 10−5 1.5129 × 10−5

0.8 1.4300 × 10−6 1.9167 × 10−6 1.0640 × 10−5

0.9 8.5156 × 10−6 3.8106 × 10−5 7.8419 × 10−5

0

0.00005

0.00010

0.00015

0.00020

0

0.2

0.4

0.6

0.8

1.0

Figure 1. The AEs (left) and the numerical solution (right) for Example 5.1 (ζ = 0.9, N = 6).

Table 3. The MAEs of Example 5.1 at N = 6 and different values of ζ when 0 < t < 1.

θ ζ = 0.1 ζ = 0.6 ζ = 0.8

0.1 3.6721 × 10−6 3.4345 × 10−5 3.0277 × 10−6

0.2 1.3840 × 10−5 1.6076 × 10−5 1.9753 × 10−5

0.3 1.8318 × 10−5 1.7565 × 10−5 1.6503 × 10−5

0.4 3.4566 × 10−5 3.6419 × 10−5 3.9254 × 10−5

0.5 4.8302 × 10−5 4.7205 × 10−5 5.0927 × 10−5

0.6 7.7501 × 10−5 7.7268 × 10−5 7.6865 × 10−5

0.7 1.0071 × 10−5 1.0355 × 10−5 1.0843 × 10−4

0.8 1.2146 × 10−5 1.2238 × 10−6 1.2584 × 10−4

0.9 1.5667 × 10−5 1.5172 × 10−5 1.5297 × 10−4

Remark 5.1. We can demonstrate that the theoretical results of the error bound given in Section 4
agree with the numerical results presented in Section 5. As an example, if we set ϕ1 = ϕ2 = 0.5 in Eq.
(4.5) of Theorem 4.3, then we can see from the results of Tables 1–3 that the values of the MAEs do not
exceed those from the theoretical bound given in Table 4.
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Table 4. Theoretical error of Example 5.1.

N N = 6 N = 7

Error in 4.5 10−4 10−5

Example 5.2. [22] Consider the following equation:

Dζ
t ξ(θ, t) − ξθθ(θ, t) = f (θ, t), 0 < ζ ≤ 1, (5.3)

controlled by

ξ(θ, 0) = 0, 0 < θ < 1,
ξ(0, t) = ξ(1, t) = 0, 0 < t < 1,

(5.4)

with the exact solution ξ(θ, t) = sin(π t) sin(π θ).
In Table 5, we compare the MAE of our method and the method in [22] at various values of ζ. Also,
Figure 2 shows the AEs (left) and the numerical solution (right) at ζ = 0.2 and N = 6. Finally, Table
6 presents the AEs (left) and the numerical solution (right) at ζ = 0.6 and N = 6.

Table 5. Comparison of the MAEs for Example 5.2.

ζ Method in [22] (M = 32 and ∆x = 0.001) Our method (N = 6)

0.5 1.10 × 10−3 2.73506 × 10−4

0.7 3.21 × 10−3 3.04668 × 10−4

Table 6. The absolute error of Example 5.2 at ζ = 0.6, N = 6.

θ t = 2
10 t = 5

10 t = 9
10

0.1 8.2979 × 10−5 8.4645 × 10−5 1.0131 × 10−5

0.2 7.3977 × 10−5 1.6564 × 10−5 2.6708 × 10−5

0.3 1.1797 × 10−5 1.7440 × 10−5 1.0040 × 10−5

0.4 3.1963 × 10−5 2.3901 × 10−5 1.3058 × 10−5

0.5 5.9211 × 10−5 9.3774 × 10−5 8.8532 × 10−5

0.6 1.6995 × 10−5 1.0700 × 10−5 2.1170 × 10−5

0.7 1.7218 × 10−5 1.4253 × 10−5 1.4246 × 10−6

0.8 5.2457 × 10−5 1.6448 × 10−5 3.3389 × 10−5

0.9 3.3454 × 10−5 1.1176 × 10−4 4.8945 × 10−5
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Figure 2. The AEs (left) and the numerical solution (right) for Example 5.2 at ζ = 0.2 and
N = 6.

Example 5.3. [51] Consider the following equation:

Dζ
t ξ(θ, t) − ξθθ(θ, t) = f (θ, t), 0 < ζ ≤ 1, (5.5)

controlled by

ξ(θ, 0) = eθ, 0 < θ < 1,
ξ(0, t) = t2 + t + 1, ξ(1, t) = (t2 + t + 1) e, 0 < t < 1,

(5.6)

with the exact solution ξ(θ, t) =
(
t2 + t + 1

)
eθ.

In Table 7, we compare the MAE between our method and the method in [51] at different values of
ζ. Also, Figure 3 shows the AEs (left) and the numerical solution (right) at ζ = 0.4 and N = 6. Table
8 presents the MAEs at N = 6 and different values of ζ when 0 < t < 1. Finally, Figure 4 shows the
AEs when θ = t at ζ = 0.25, and different values of N .

Table 7. Comparison of the MAEs for Example 5.3.

ζ Method in [51] (N = 64) Our method (N = 6)

0.25 1.2889 × 10−5 5.14071 × 10−6

0.5 1.1727 × 10−5 4.73248 × 10−6

0.75 1.1645 × 10−5 7.98892 × 10−6
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Figure 3. The AEs (left) and the numerical solution (right) for Example 5.3 at ζ = 0.4 and
N = 6.

Table 8. The MAEs of Example 5.3 at N = 6 and different values of ζ when 0 < t < 1.

θ ζ = 0.3 ζ = 0.6 ζ = 0.9

0.1 4.1589 × 10−6 3.9766 × 10−6 3.4231 × 10−6

0.2 9.2989 × 10−6 1.0198 × 10−6 1.8535 × 10−5

0.3 4.8188 × 10−6 4.2917 × 10−6 4.5357 × 10−6

0.4 1.0242 × 10−5 1.2212 × 10−5 1.9936 × 10−5

0.5 4.3276 × 10−6 6.7577 × 10−6 1.7851 × 10−5

0.6 1.0885 × 10−5 1.1041 × 10−5 1.0999 × 10−5

0.7 9.0879 × 10−6 1.1921 × 10−5 2.3006 × 10−5

0.8 8.5030 × 10−6 7.1524 × 10−6 1.2442 × 10−5

0.9 7.6069 × 10−6 1.1040 × 10−5 2.0807 × 10−5
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Figure 4. The AEs for Example 5.3 at ζ = 0.25.

Example 5.4. Consider the following equation:

Dζ
t ξ(θ, y, t) − ξθθ(θ, y, t) − ξyy(θ, y, t) = G(θ, y, t), (5.7)
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governed by

ξ(θ, y, 0) = 0, 0 < θ, y ≤ 1, (5.8)

and

ξ(0, y, t) = t2 ey, ξ(1, y, t) = t2 ey+1, 0 < y ≤ 1, 0 < t < 1,
ξ(θ, 0, t) = t2 eθ, ξ(θ, 1, t) = t2 eθ+1, 0 < θ ≤ 1, 0 < t < 1,

(5.9)

where

G(θ, y, t) = 2 eθ+y

(
t2−α

Γ(3 − α)
− t2

)
, (5.10)

and the exact solution of this problem is ξ(θ, y, t) = t2 eθ+y.

Figure 5 shows the AEs when ζ = 0.3 and N = 4 at different values of y. Table 9 presents the AEs at
N = 4 and different values of t when ζ = 0.9.

Figure 5. The AEs for Example 5.4 at ζ = 0.3.
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Table 9. The AEs of Example 5.4 at N = 4 and different values of t.

θ = y t = 0.1 t = 0.3 t = 0.5 t = 0.7

0.1 6.5976 × 10−5 2.4075 × 10−4 5.1857 × 10−4 4.3326 × 10−4

0.2 1.0708 × 10−4 1.9143 × 10−4 1.2010 × 10−3 2.0530 × 10−3

0.3 1.5103 × 10−4 1.4615 × 10−4 2.0659 × 10−3 4.2141 × 10−3

0.4 1.9788 × 10−4 6.6388 × 10−5 3.2067 × 10−3 7.0446 × 10−3

0.5 2.4968 × 10−4 9.1615 × 10−5 4.7098 × 10−3 1.0617 × 10−2

0.6 3.0354 × 10−4 3.0591 × 10−4 4.2893 × 10−3 1.4472 × 10−2

0.7 3.5543 × 10−4 5.0045 × 10−4 7.9993 × 10−3 1.7623 × 10−2

0.8 4.0366 × 10−4 5.6085 × 10−4 8.8725 × 10−3 1.8615 × 10−2

0.9 4.3481 × 10−4 2.3525 × 10−4 8.0376 × 10−3 1.4990 × 10−2

6. Conclusions

In this article, we offered two numerical algorithms for treating the TFDE in one and two
dimensions. The tau method was used to propose the desired numerical solutions. The suggested
numerical solution was an expansion of the double basis of the Lucas polynomials. Some specific
formulas of the Lucas polynomials were the backbone for transforming the TFDE with their conditions
into a solvable system of equations. We believe that the method may be useful in treating other DEs.
The accuracy of the double expansion of Lucas polynomials was tested from a theoretical point of
view. In addition, some examples were presented to test the algorithm from a numerical point of
view. As an expected future work, we aim to employ this paper’s developed theoretical results together
with suitable spectral methods to treat some other problems. All codes were written and debugged by
Mathematica 11 on HP Z420 Workstation, Processor: Intel(R) Xeon(R) CPU E5-1620 v2 - 3.70GHz,
16 GB Ram DDR3, and 512 GB storage.
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