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methods, emphasizing their accuracy and reliability. The study reveals that the ULE distribution,
paired with tools like randomized quantile and Cox-Snell residuals, provides robust assessments of
goodness of fit, making it well-suited for real-world applications. Key findings demonstrate that the
unit logistic-exponential distribution captures diverse data patterns effectively and improves reliability
assessment in practical contexts. When applied to two real-world datasets—one from the medical field
and the other from the economic sector—the ULE distribution consistently outperforms existing unit
interval models, showcasing lower error rates and enhanced flexibility in tail behavior. These results
underline the distribution’s potential impact in areas requiring precise proportions modeling, ultimately
supporting better decision-making and predictive analyses.
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1. Introduction

Unit distributions can be obtained using various transformations of well-known continuous
distributions, including the negative exponential function transformation. Unit distributions give
more flexibility to the original distribution along the unit interval without adding new parameters.
Several unit distributions have been used to model data for percentages in many areas such as biology,
mortality, recovery rates, economics, health, and reliability analysis, among others. New distributions
have been proposed on the unit interval, such as the unit generalized half normal by Korkmaz [1], unit
inverse Gaussian by Ghitany et al. [2], unit Gamma distribution by Consul and Jain [3], unit Weibull
distribution by Mazucheli et al. [4], unit Gompertz distribution by Mazucheli et al. [5], unit Omega
distribution by Abd El-Monsef et al. [6], unit Burr-XII distribution by Korkmaz and Chesneau [7],
the unit-half normal distribution by Bakouch et al. [8], and unit exponential Pareto distribution by Haj
Ahmad et al. [9]. The unit-exponentiated half-logistic distribution, and the bounded power Lomax
were introduced by Hassan et al. ( [10] and [11], respectively). Fayomi et al. [12] and [13] studied the
unit-exponentiated Lomax distribution and the unit–power Burr X distribution.

The exponential distribution is widely utilized for modeling real-life data, primarily due to its
memoryless feature and analytical simplicity. However, its utility is somewhat constrained because of
its constant hazard rate and decreasing density function. To address these limitations and enhance its
flexibility, numerous researchers have developed various modifications of the exponential distribution;
for example, Hassan et al. [14] introduced a new four-parameter extended exponential distribution.
Recent extensions include the exponentiated exponential [15], beta exponential [16], transmuted
generalized exponential [17], Kumaraswamy transmuted-G family of distributions by [18]. A new
three-parameter extension of the exponential distribution was introduced by [19]; also, [20] studied
a new method for generating distributions with an application to the exponential distribution. Alpha
power exponential distribution was discussed by [21], and extended exponential distribution and its
applications were discussed by [22]. The Marshall-Olkin alpha power family of distributions was
studied by [23], the new three-parameter exponential distribution by [24], and finally, Topp-leone
exponential distribution was studied by [25].

Lan and Leemis created a new generalized exponential distribution [26]. It was called the logistic-
exponential (LE) distribution with explicit-form density and distribution functions. LE is a distribution
with two parameters that possess constant, increasing, decreasing, bathtub, and upside-down bathtub
failure rate shapes. The only disadvantage of this distribution is that it does not yield explicit-form
expressions for the moments, so it must be computed numerically using software like Mathematica, R,
or Matlab.

For the LE distribution, the cumulative distribution function (cd f ) is given by

F(x) = 1 − (1 + (eβx − 1)θ)−1, x > 0, (1.1)

with scale parameter β > 0 and shape parameter θ > 0. The probability density function (pdf) is given
by

f (x) =
θβeβx(eβx − 1)θ−1

(1 + (eβx − 1)θ)2 , x > 0. (1.2)

This paper focuses on a unique special case of the LE distribution, known as the unit-logistic-
exponential distribution, confined to the unit interval. The ULE distribution is particularly valuable
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for its capability to model long-tailed characteristics observed in many real-world datasets. Beyond its
utility in capturing long-tailed behavior, the ULE distribution also plays a crucial role in uncovering
patterns and trends within the data. By examining the distribution’s shape, one can derive insights into
the underlying factors influencing the data, which can guide resource allocation decisions or improve
the accuracy of future predictions.

Traditional regression methods typically assess differences in outcome variables between
populations by focusing on the mean (such as in ordinary least squares regression) or by evaluating
a population’s average effect (as seen in logistic regression models), after accounting for other
explanatory variables. Quantile regression, however, offers the flexibility to examine how the slopes
of the regression line vary across different quantiles of the data distribution. For instance, while the
median line might remain stable, the 90th quantile prediction line may show a significant upward trend,
whereas the 10th quantile prediction line could indicate a notable downward trend.

The primary objective of the research is to explore the new ULE distribution, examine its statistical
characteristics, and demonstrate its effectiveness by implementing it in two real-world data examples.
The motivations for studying the ULE distribution are as follows: (i) it is a unique model because
it is defined on the unit interval [0, 1] instead of the positive real numbers; (ii) it exhibits significant
flexibility in tail behavior, making it useful in risk assessment with relatively better outcomes; and (iii)
the strength of this new distribution lies in its ability to model and fit various real-world data with lower
error rates compared to other competing models.

This new model demonstrates its effectiveness in fitting the recovery rate for the CD34+ cells, which
is a crucial indicator of the sufficiency of peripheral blood stem cells. A more recent purging technique
involves the positive selection of CD34+ cells. By focusing on positive CD34+ cell selection, the
variability in antigen expression on tumor cells becomes irrelevant, allowing this method to be applied
for purging across almost all tumor types, assuming that the tumor cells do not express the CD34+

antigen. The most advanced method currently available for the positive selection of CD34+ cells,
enabling their clinical isolation with extremely high purity, is magnetic-activated cell sorting (MACS).

Beyond its applications in modeling the recovery rates, it has a high impact on modeling failure
times of components in economic and engineering contexts. Cost-effectiveness analysis (CEA) offers
a systematic framework for regulators to compare the quantified benefits of legislative or regulatory
decisions against their associated costs. When applied correctly, CEA compels policymakers and
regulators to rigorously quantify the health or environmental benefits of potential government actions
aimed at reducing risks. It also provides clear metrics for decision-makers, facilitating comparisons
among different strategies for addressing the same issue, such as mitigating risks to human health,
public safety, or the environment.

The ULE model, while promising and flexible, has some limitations that should be acknowledged as
follows: (a) The estimation of parameters in the ULE model, particularly using methods like Bayesian
approaches and maximum product spacings, can be computationally intensive. It requires unlimited
computational resources and expertise in advanced numerical methods. (b) Although the ULE model
was derived from the LE distribution, finding certain statistical properties, such as moments, often
requires numerical solutions, such as the quasi-Newton and Markov chain Monte Carlo techniques,
that can increase the computational burden and may introduce numerical stability issues in certain
scenarios. (c) The ULE model is specifically designed for data within the unit interval (0, 1), limiting
its applicability to datasets that can be naturally transformed or confined to this range.
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The remainder of this work is arranged as follows: In Section 2, the ULE distribution is presented
and its properties are discussed. In Section 3, the maximum likelihood, Bayes, maximum product
spacings, least squares estimate of θ and β, and the Fisher information matrix are formulated. In
Section 4, simulation studies are introduced. In Section 5, a quantile regression model based on ULE
distribution is obtained. In Section 6, the two datasets are studied. Finally, the concluding remarks are
provided in Section 7.

2. Unit logistic exponential distribution

Suppose X to be a continuous random variable with LE distribution having two parameters θ and
β , then the cdf of the random variable Y = e−X can be represented by

FULE(y) = (1 + (y−β − 1)θ)−1, 0 < y < 1, β, θ > 0. (2.1)

The pdf for the ULE distribution is defined by

fULE(y) =
θβy−(β+1)(y−β − 1)θ−1

(1 + (y−β − 1)θ)2 , 0 < y < 1. (2.2)

The hazard rate function (HRF) of ULE distribution is as follows

hULE(y) =
θβy−(β+1)

(y−β − 1)(1 + (y−β − 1)θ)
. (2.3)

More statistical properties and related functions of the ULE distribution are presented in the following
subsections.

2.1. Shape of density function and hazard rate function

The first derivative of the pdf of ULE distribution is

∂ fULE(x)
∂x

=
βθ

(
x−β − 1

)θ
Ψ1(x)

x2 (xβ − 1)2
(
(x−β − 1)θ + 1

)3 ,

where Ψ1(x) = −βθ + (βθ − 1)
(
x−β − 1

)θ
+ (β + 1)xβ

((
x−β − 1

)θ
+ 1

)
− 1.

The above equations require a numerical evaluation to obtain the local maximum, minimum, and
inflection points.

Figure 1 illustrates various possible pdf shapes for specific values of the parameters θ and β. The
pdf can exhibit different forms, such as decreasing (D), increasing (I), unimodal, bathtub-shaped, or
increasing-decreasing-increasing, depending on the chosen parameter values. This shape versatility
makes the ULE distribution well-suited for analyzing data within the unit interval. Additionally, the
left panel of Figure 2 provides a visual representation of the cdf of the ULE distribution, as defined in
Eq (2.1).
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Figure 1. Plots of the ULE distribution for pdf for various parameters’ values.

Figure 2. Plots of ULE distribution for cdf and HRF.

For the hazard rate function of ULE distribution, we have

lim
y→1−

hULE(y) = ∞

and
lim
y→0+

hULE(y) = 0 for β > 1; βθ > 1.

The first derivative for hULE(y) is given by

∂ hULE(y)
∂y

=
βθΨ2(y)

y2 (yβ − 1)2
(
(y−β − 1)θ + 1

)2 ,

AIMS Mathematics Volume 9, Issue 12, 34504–34536.



34509

where Ψ2(y) = (βθ − 1)
(
y−β − 1

)θ
+ (β + 1)yβ

((
y−β − 1

)θ
+ 1

)
− 1. Clearly, the sign of ∂ hULE(y)

∂y depends
on the sign of Ψ(y). The HRF (2.3) is increasing for β > 1 and βθ > 1. Additionally, the right panel of
Figure 2 shows that for different values of the parameters β and θ, the HRF for ULE can accommodate
bathtub and IDI shapes.

2.2. Quantile function and moments

The τth quantile of the ULE distribution has a simple closed form and will be utilized later to define
a new quantile regression model based on ULE distribution. The quantile regression model for ULE
distribution is given by

Q(τ) =

[
1 + (

1
τ
− 1)

1
θ

] −1
β

. (2.4)

A random variate can be generated via the inverse transformation method by

Y =

[
1 + (

1
U
− 1)

1
θ

] −1
β

, where U ∼ Uni f orm(0, 1).

To analyze the effect of the parameters β and θ on the skewness and kurtosis of the ULE distribution,
we check the trend of the Galton skewness (sk) and the Moors kurtosis (ku), as described in the
following expressions:

sk =
Q

(
3
4

)
+ Q

(
1
4

)
− 2Q

(
2
4

)
Q

(
3
4

)
− Q

(
1
4

) ,

and

ku =
Q

(
3
8

)
− Q

(
1
8

)
+ Q

(
7
8

)
− Q

(
5
8

)
Q

(
3
4

)
− Q

(
1
4

) ,

where Q(.) is the quantile function (2.4). Plots for both measures as functions of β and θ are given
in Figure 3. It is observed that the skewness decreases with an increase of β. For β = 1, the ULE
distribution tends to be symmetric, and for 0 < β < 1, it is positively skewed and decreases toward
0 as θ increases. Conversely, for β > 1, the ULE distribution has negative skewness, which increases
toward 0 as θ increases. Additionally, the kurtosis increases with θ, while it initially decreases and then
increases as β increases.

skewness kurtosis

Figure 3. Plots for skewness and kurtosis of the ULE distribution.
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As stated by [26], the moment for the logistic exponential distribution exists but cannot be expressed
in closed form. Also, the ULE distribution does not have a closed-form expression for its moment and
must be computed numerically via

µ′r = E(yr) =

∫ 1

0
yr fULE(y)dy,

where µ′r denotes the rth moment for ULE distribution.

2.3. Order statistics

When simulating different lifetime systems with some component structures, order statistics, also
called ordered random variables, must be considered. Here, along with their typical distributional
properties, the order statistics of the ULE distribution are presented. Let y1, y2, ..., yn denote a random
sample of size n from the ULE having cdf F(y) and pdf f (y). Then, the order statistics are denoted by,
Y(1) ≤ Y(2) ≤ ... ≤ Y(n), Y(1) = min(Y1,Y2, ...,Yn), and Y(n) = max(Y1,Y2, ...,Yn). The kth order statistic’s
probability density function is given by

fY(r)(y) =
1

β(r, n − r + 1)
f (y)[F(y)]r−1[1 − F(y)]n−r

=
1

β(r, n − r + 1)

n−r∑
j=0

(−1) j

(
n − r

j

)
f (y)[F(y)] j+r−1

=
θβ

β(r, n − r + 1)

n−r∑
j=0

(−1) j

(
n − r

j

)
y−(β+1)(y−β − 1)θ−1(1 + (y−β − 1)θ)− j−r−1,

where y ∈ (0, 1).
In particular, the pdf of Y1, can be expressed as

fY(1)(y) =
θβ

β(1, n)

n−1∑
j=0

(−1) j

(
n − 1

j

)
y−(β+1)(y−β − 1)θ−1(1 + (y−β − 1)θ)− j−2.

Also, the pdf of Yn, can be expressed as

fY(n)(y) =
θβ

β(n, 1)
y−(β+1)(y−β − 1)θ−1(1 + (y−β − 1)θ)−n−1.

2.4. Stochastic ordering

Let Y1 and Y2 be two random variables with pdfs f1(y) and f2(y), respectively. Let us assume that Y1

is stochastically less than Y2 in terms of the likelihood ratio order (Y1 ≤lr Y2) if the ratio f2(y)/ f1(y) is
non-decreasing concerning y.

The ULE distribution has a stochastic ordering as illustrated in the next preposition.
Preposition 2.1. Let Y1 and Y2 be two random variables, such that Y1 ∼ ULE(θ1, β) and Y2 ∼

ULE(θ2, β). If θ1 ≥ θ2, then Y1 ≤lr Y2.

Proof. The proof is straightforward by taking the first derivative of f2(u; θ2, β)/ f1(y; θ1, β). �

Likelihood ratio order implies a hazard rate order (Y1 ≤hr Y2), which in turn implies the usual
stochastic order (Y1 ≤st Y2); for further details on stochastic orders, see [27].
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3. Methods of estimation

In this research, four estimation methods—namely maximum likelihood estimation, Bayesian
estimation, maximum product spacings, and the least squares estimate—are employed to ensure robust
and comprehensive parameter estimation. Each method offers unique statistical properties and benefits,
contributing to a whole evaluation of the model’s performance. The maximum likelihood estimation
is a widely used method known for its asymptotic efficiency and consistency, producing parameter
estimates that maximize the likelihood of observing the given data. This makes it particularly useful
when seeking estimates with desirable large-sample properties. Bayesian estimation, on the other
hand, incorporates prior information along with the observed data, providing a flexible framework
for parameter inference and enabling the calculation of credible intervals that offer a probabilistic
interpretation of parameter uncertainty. The maximum product spacings method is used as an
alternative to the maximum likelihood method, particularly effective when dealing with datasets that
include extreme or non-uniformly distributed observations. It often provides more stable estimates in
cases where traditional likelihood methods may face convergence issues. The least squares estimation
method is selected for its simplicity and its ability to minimize the sum of squared differences between
observed and predicted values, making it valuable for reducing overall estimation error.

3.1. Maximum likelihood estimation

The maximum likelihood (ML) estimation method is the most well-known classical inference in
statistics. The ML estimates are obtained based on maximizing the log-likelihood function of the ULE
distribution. Variance-covariance matrix of the unknown population parameters is utilized to construct
the asymptotic confidence intervals for θ and β. Numerical methods are used to determine the required
estimators, specifically adopting the well-known quasi-Newton method.

Suppose y1, y2, ..., yn represent a random sample of size n with ULE distribution. The likelihood
function for ULE distribution is given as

L(θ, β) =

n∏
i=

θβy−(β+1)
i (y−βi − 1)θ−1

(1 + (y−β − 1)θ)2 = θnβn
n∏

i=1

y−(β+1)
i (y−βi − 1)θ−1

[
1 + (y−βi − 1)θ

]−2
, (3.1)

and log-likelihood function of the random sample as

lnL(θ, β) = nln(θ) + nln(β)− (β+ 1)
n∑

i=1

ln(yi) + (θ− 1)
n∑

i=1

ln(y−βi − 1)− 2
n∑

i=1

ln
[
1 + (y−βi − 1)θ

]
. (3.2)

Taking the partial derivatives of Eq (3.2) with respect to β and θ, the ML estimates (β̂ and θ̂) are
obtained by solving the following nonlinear systems of equations, as follows:

∂

∂β
ln L(θ, β) =

n
β
−

n∑
i=1

lnyi − (θ − 1)
n∑

i=1

y−βi ln(yi)

(y−βi − 1)
+ 2

n∑
i=1

θ(y−βi − 1)θ−1y−βi ln(yi)[
1 + (y−βi − 1)θ

] (3.3)

and
∂

∂θ
ln L(θ, β) =

n
θ

+

n∑
i=1

ln(y−βi − 1) − 2
n∑

i=1

(y−βi − 1)θln(y−βi − 1)[
1 + (y−βi − 1)θ

] . (3.4)
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The log-likelihood equations defined in Eqs (3.3) and (3.4) do not provide a closed-form solution.
Since obtaining a solution is challenging, it is often more practical to employ nonlinear optimization
techniques, such as the quasi-Newton algorithm, to numerically maximize the log-likelihood function.
Additionally, explicit confidence intervals for these parameters cannot be directly constructed,
necessitating the use of approximate methods to determine the confidence intervals for θ and β. To
achieve this, we first calculate the second-order partial derivatives, which are essential for deriving the
Fisher information matrix.

So, the Fisher information matrix is given by

I−1 =


−∂2

∂θ2 lnL(θ, β) −∂2

∂θ∂β
lnL(θ, β)

−∂2

∂β∂θ
lnL(θ, β) −∂2

∂β2 lnL(θ, β)


−1

=


var(θ̂) cov(θ̂, β̂)

cov(β̂, θ̂) var(β̂)


−1

, (3.5)

where
∂2

∂θ2 ln(L(θ, β)) =
−n
α2 − 2

n∑
i=1

(ln(y−βi − 1))2(y−βi − 1)[
1 + (y−βi − 1)θ

]2 ,

∂2

∂θ∂β
ln(L(θ, β)) =

∂2

∂λ∂θ
ln(L)

= −

n∑
i=1

y−βi ln(yi)

(y−βi − 1)
− 2

n∑
i=1

(y−βi )2ln(yi)
(y−βi − 1)θ

[
1 + (y−βi − 1) + θln(y−βi − 1))θ

]
(y−βi − 1)(1 + (y−βi − 1)θ)2

,

and

∂2

∂β2 ln(L(θ, β)) =
−n
β2 + β(θ − 1)

n∑
i=1

ln(yi)

 y−β−1
i

y−βi − 1
+

y−2β−1
i

(y−βi − 1)2


+ 2

n∑
i=1

θ(ln(yi))2
(y−βi − 1)θ

[
y−βi (1 + (y−βi − 1)θ) − θ

]
(y−βi − 1)(1 + (y−βi − 1)θ)2

.

The (1 − ζ)100% confidence interval for the parameters β and θ can be presented as

(θ̂L, θ̂U) = θ̂ ± z1− ζ2

√
var(θ̂) and (β̂L, β̂U) = β̂ ± z1− ζ2

√
var(β̂),

where θ̂ and β̂ are the maximum likelihood estimators of θ and β, z1− ζ2
is the percent of the standard

normal distribution, and var(θ̂), var(β̂) are the asymptotic variances of ML computed utilizing the
inverse for the information matrix.

3.2. Bayes estimation

This section addresses the challenge of deriving Bayes estimators (BE) for the shape and scale
parameters of the ULE distribution. Depending on the information known about the parameter, one
can choose between using informative or non- informative priors. However, when sample information
about the parameters is available, it is preferable to utilize an informative prior. The Gamma prior is
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preferred in many Bayesian analyses because it is mathematically convenient, conceptually attractive,
and computationally friendly. Its flexibility and conjugacy properties make it a powerful tool for
representing prior knowledge and updating beliefs in light of new data; see Zellner et al. [28]. The
following Gamma prior distributions are applied when θ and β are independent parameters.

π1(θ) ∝ θa1−1exp(−b1θ), θ > 0

and
π2(β) ∝ βa2−1exp(−b2β), β > 0,

where ai and bi, i = 1, 2 are supposed to be known hyper-parameters and selected to reflect the prior
distribution of the unknown parameters. Thus, we propose to use piecewise independent Gamma priors
for both the shape and scale parameters for the ULE distribution because the Gamma distribution is
very flexible; see Dey et al. [29] and Kundu and Howlader [30]. The joint prior distribution for θ and
β is

π(θ, β) = θa1−1βa2−1exp(−b1θ − b2β). (3.6)

The posterior distribution is derived from the likelihood function Eq (3.1) and the prior distribution
Eq (3.6). The joint posterior distribution of θ and β is denoted as

π∗(θ, β | y) = θa1−1βa2−1exp(−b1θ − b2β)
n∏

i=0

y−(β+1)
i (y−βi )θ−1

[
1 + (y−βi − 1)θ

]−2
.

The conditional posterior densities of θ and β is presented as

π∗1(θ | β, y) = θa1−1exp(−b1θ)
n∏

i=0

(y−βi )θ−1
[
1 + (y−βi − 1)θ

]−2
(3.7)

and

π∗2(β | θ, y) = βa2−1exp(−b2β)
n∏

i=0

y−(β+1)
i (y−βi )θ−1

[
1 + (y−βi − 1)θ

]−2
. (3.8)

The Metropolis-Hastings sampler is necessary for implementing the MCMC technique because the
conditional posteriors of θ and β in the previous equations do not conform to any standard distribution.
Tierney [31] introduced the Metropolis-Hastings (M-H) algorithm within Gibbs sampling to generate
posterior samples, and the process is outlined as follows:

1) Suggest initial values to be (θ(0), β(0)).
2) Let j = 1.
3) Using the M-H algorithm, create θ( j) and β( j) by using M-H algorithm below using Eqs (3.7)

and (3.8) with the normal distribution N(θ j−1, var(θ)) and N(β j−1, var(β)) and the inverse Fisher
information matrix is used to calculate var(θ) and var(β).

(a) We set a N(θ j−1, var(θ)) and N(β j−1, var(β)) as a proposal distribution for θ∗ and β∗

respectively.
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(b) The acceptance rule is defined by the probabilities ρθ and ρβ, which compare the proposed
samples against the current samples. We use the acceptance probability:

ρθ = min
[
1,

π∗1(θ∗ | β j−1, x)
π∗1(α j−1 | β j−1, x)

]
,

ρβ = min
[
1,
π∗2(β∗ | α j, , x)
π∗2(β j−1 | α j, x)

]
.

(c) Set u1 and u2 from a uniform (0, 1) distribution.
(d) If u1 < ρθ, the request is approved, so make a decision θ j = θ∗ or else specify θ j = θ j−1.
(e) If u2 < ρβ, the request is approved, so make a decision β j = β∗ or else specify β j = β j−1.

4) Calculating θ( j) and β( j).
5) Set j = j + 1.
6) Steps from 3 to 5 must be repeated N times.
7) To find the credible intervals (CRIs) for α and β for ψ j

k, j = 1, 2, ..,N, k = 1, .., 4 and (ψ1, ψ2) =

(θ, β) as ψ1
k < ψ

2
k < ... < ψ

N
k then the (1 − γ)100% CRIs of ψk is

(ψk(
γ

2
(N − M)), ψk((1 −

γ

2
)(N − M))).

For practical application, we employ a burn-in period to allow the Markov chain to stabilize.
Additionally, thinning reduces autocorrelation in the sampled chains, ensuring that the final posterior
estimates represent independent samples. Specifically, after an initial burn-in of M samples, we retain
every k − th sample to construct the posterior distribution, as indicated by ψ( j)

k , j = M + 1, ...,N, for
sufficiently large N.

The variances of the proposal distributions, var(θ) and var(β), are adjusted based on pilot runs
to reach an acceptance rate that optimizes the performance of the M-H algorithm. Typically, an
acceptance rate between 20% and 30% is targeted to balance convergence speed and sampling
efficiency [32, 33].

In Bayesian analysis, there are four basic elements: the data, the model, the prior, and the loss
function. A good Bayesian estimator must minimize the loss function. So, in practical studies, using
loss functions in Bayesian inference is important for several reasons, namely: (a) it helps in making
decisions that are optimal under uncertainty, and (b) it quantifies the consequences of making incorrect
inferences or decisions. By trying to minimize the error itself and the expected cost of errors, which
is often more relevant in practice, (c) it can lead to more robust statistical methods. Several authors
discussed many loss functions in Bayesian inference, while the squared error loss function was widely
used.

The squared error loss (SEL) function is used to get the approximate Bayes estimates of θ̂ and β̂,
being defined as L

(
φ̂ − φ

)
=

(
φ̂ − φ

)2
. The SEL function is symmetric, meaning that it gives equal

weights to both over and under-estimation. In real life, we encounter many situations where over-
estimation may be more serious than under-estimation, or vice versa. The Bayesian estimation under
the SEL is given as:

θ̂BS =
1

N − M

N∑
j=M+1

θ( j),

and
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β̂BS =
1

N − M

N∑
j=M+1

β( j).

3.3. Maximum product spacings

Cheng and Amin [34] and Ranneby [35], introduced the maximum product of spacings (MPS)
estimation approach as an alternative ML estimation. They examined the properties of MPS estimators
and demonstrated that in certain situations where ML estimators fail to provide consistent and
asymptotically efficient estimates, MPS succeeds. These situations include instances where the
likelihood function is unbounded from above, heavy-tailed distributions with unspecified scale and
location parameters [36] and mixture distributions. Consequently, the MPS method overcomes the
limitations of the ML method while preserving nearly all of its desirable properties in large sample
sizes [37]. Assume the parameter vector υ = (θ, β), then the MPS function is presented as

MPS (υ) =
1

n + 1

n+1∑
i=1

log[F(y(i), θ, β) − F(y(i−1), θ, β)].

By maximizing MPS (υ) concerning υ, one can obtain MPS estimates. The following non-linear
equations’ simultaneous solutions are also provided for them:

∂MPS (υ)
∂θ

=
1

n + 1

n+1∑
i=1

[
F(yi, θ, β)

′;θ − F(yi−1, θ, β)
′;θ

F(y(i)θ, β) − F(y(i−1)θ, β)

]
= 0

and
∂MPS (υ)

∂β
=

1
n + 1

n+1∑
i=1

[
F(yi, θ, β)

′;β − F(yi−1, θ, β)
′;β

F(y(i), θ, β) − F(y(i−1)θ, β)

]
= 0,

where
F(yi, θ, β)

′;θ = −(y−βi − 1)θln(y−βi − 1)(1 + (y−βi − 1)θ)−2 (3.9)

and
F(yi, θ, β)

′;β = y−βi ln(yi)(y
−β
i − 1)θ−1(1 + (y−βi − 1)θ)−2. (3.10)

The asymptotic confidence intervals for the parameters β and θ, derived from the MPS
estimation, rely on the established asymptotic equivalence between the ML and the MPS method,
as noted by [34, 38, 39]. Thus, the 100(1 − ζ)% confidence interval for the parameters using MPS is
formulated as follows:

θ̂MPS ± z1− ζ2

√
var(θ̂MPS ) and β̂MPS ± z1− ζ2

√
var(β̂MPS ),

where θ̂MPS and β̂MPS are the MPS estimates of θ and β, z1− ζ2
is the percent of the standard normal

distribution, and var(θ̂MPS ), var(β̂MPS ) are the asymptotic variances computed utilizing the inverse of
the observed information matrix (3.5).
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3.4. Least squares estimation

Least-squares methods produce the estimated parameters with the highest probability (maximum
likelihood) of being true if several critical conditions are guaranteed. Least-squares parameter
estimation is a basic procedure for evaluating the confidence intervals for the unknown model’s
parameters. It discusses the practical ways of applying least-squares techniques to experimental data.

The least square estimates (LSE) for θ̂LS E and β̂LS E of θ and β, respectively, are observed by
minimizing the function:

LS E(υ) =

n∑
i=1

(F(yi, θ, β) − E[F(yi, θ, β)])2,

with respect to υ, where E[F(yi, θ, β)] = i
(n+1) for i = 1, 2, ..., n.. Then, θ̂LS E and β̂LS E are solutions of

the following equations:

∂LS E(υ)
∂θ

= 2
n∑

i=1

F(yi, θ, β)
′;θ

(
F(yi, θ, β) −

i
(n + 1)

)
= 0

and
∂LS E(υ)

∂β
= 2

n∑
i=1

F(yi, θ, β)
′;β

(
F(yi, θ, β) −

i
(n + 1)

)
= 0,

where F(yi, θ, β)
′;θ and F(yi, θ, β)

′;β as mentioned in Eqs (3.9) and (3.10).
The bootstrap percentile method (PCI) is commonly used to construct confidence intervals. The

following procedure describes the steps to construct PCI:

i) Calculate (LSE) β̂LS E and θ̂LS E for the ULE distribution.
ii) Generate a bootstrap sample by using the estimates (β̂LS E, θ̂LS E), and then obtain the bootstrap

estimate, denoted as (β̂b, θ̂b), based on the bootstrap sample.
iii) Repeat step (ii) B times to obtain the estimates (β̂b1, θ̂b1), (β̂b2, θ̂b2), . . . (β̂bB, θ̂bB).
iv) Construct the 100(1−ζ)% bootstrap confidence intervals for the parameters β and θ by using the ζ

2
and 1− ζ

2 quantiles of the empirical distribution of the bootstrap estimates for β and θ, respectively.

4. Simulation

The simulation study provides a comprehensive assessment of the estimation methods for estimating
the parameters θ and β. By generating synthetic datasets with known parameter values, one can evaluate
how well these estimation methods converge to the true values as the dataset size increases. Measures
such as mean squared errors (MSEs) and average biases (ABs) are used to assess the convergence and
accuracy of the point estimators. The performance of 95% confidence intervals is measured based on
average widths (AW) and coverage probabilities (CP).

To generate observations, we used the ULE distribution and applied the inverse transformation
method with various values of the parameters (θ, β) = (1, 3), (0.45, 0.5), (3, 0.4), (0.25, 1),
and (1.9, 0.8). These cases represent various trends of the pdf (2.2) for the ULE distribution. The
simulation is redone 1000 times, with varying sample sizes of n =50, 100, and 150. For each simulation
iteration, we generate 1000 bootstrap samples and accumulate 10000 observations for the Markov
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chain Monte Carlo (MCMC) algorithm. We used the first 1000 observations as burn-in to minimize
initial distribution effects. Additionally, in the thinning process, every fifth observation is selected to
reduce dependence and enhance the robustness of the analysis. The simulation results are presented in
Tables 1–5. Mathematica scripts were used for all simulation results.

The findings from these tables regarding accuracy and biased-ness are summarized as follows:

• The MSE for all estimation methods decreases as the sample size increases from 50 to 150,
indicating improved accuracy with larger sample sizes.
• The ABs generally reduce with larger sample sizes, suggesting that estimators become less biased.

For comparison of estimators from Tables 1–5, the following points are indicated:

• ML estimates show relatively low MSEs and consistent CPs, making it a reliable choice across
sample sizes.
• MPSE has competitive MSEs and ABs, but its CPs for θ can be slightly lower, especially at

smaller n.
• Bayesian estimation provides good MSEs and high CPs, often outperforming other methods in

maintaining high coverage.
• The average width of the confidence intervals decreases as the sample size increases for all

estimation techniques indicating more precise estimates with larger datasets. Also, it is observed
that the approximate confidence interval (ACI) for MPS has smaller interval widths than the other
estimation approaches.
• The coverage probabilities are close to the nominal level, showing that the confidence intervals

produced by these methods effectively contain the true parameter values. It is observed that LSE
is showing coverage probabilities higher than the nominal level.

Overall, Bayesian estimation offers strong performance with high CPs and reasonable AWs. ML
estimation consistently performs well, with solid MSEs, ABs, and CPs, making it a dependable choice.
While small-sample scenarios are not the primary focus of this study, we acknowledge their practical
importance. Bootstrap or Bayesian approaches will be more appropriate for small-sample analyses
rather than the asymptotic confidence intervals.
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Table 1. Simulation results for β = 1, θ = 3.

n Est.
ML MPSE Bayesian LSE

β θ β θ β θ β θ

MSEs 0.0037 0.148 0.0037 0.142 0.00349327 0.076 0.0037 0.127

50 ABs 0.0019 0.073 0.0024 -0.130 0.006 0.056 -0.002 -0.105

AWs 0.228 1.441 0.239 1.352 0.229 1.28257 0.248 1.517

CPs 0.936 0.942 0.945 0.88 0.947 0.973 0.96 0.93

MSEs 0.0017 0.067 0.0016 0.071 0.0017 0.054 0.0019 0.063

100 ABs 0.00027 -0.0023 -0.0014 -0.103 0.0019 0.0077 0.007 -0.027

AWs 0.1629 0.995 0.166 0.964 0.163 0.943 0.170 1.115

CPs 0.95 0.942 0.955 0.893 0.953 0.953 0.925 0.965

MSEs 0.0011 0.043 0.001 0.049 0.0012 0.035 0.001 0.048

150 ABs 0.0047 0.016 0.004 -0.090 0.008 -0.011 0.0001 0.003

AWs 0.133 0.817 0.136 0.790 0.133 0.775481 0.135 0.925

CPs 0.958 0.952 0.968 0.905 0.973 0.967 0.935 0.965

Table 2. Simulation output for β = 0.45, θ = 0.5.

n Est.
ML MPSE Bayesian LSE

β θ β θ β θ β θ

MSEs 0.0108 0.005 0.011 0.005 0.027 0.0124 0.026 0.007

50 ABs 0.0217 0.009 0.020 -0.021 0.069 0.017 0.020 0.0006

AWs 0.425 0.306 0.404 0.268 0.654 0.419 0.589 0.330

CPs 0.976 0.956 0.973 0.918 0.973 0.973 0.91 0.93

MSEs 0.0055 0.003 0.005 0.003 0.0134 0.007 0.011 0.004

100 ABs 0.009 -0.0004 0.004 -0.018 0.032 0.011 0.011 -0.003

AWs 0.286 0.206 0.278 0.194 0.424 0.289 0.391 0.235

CPs 0.942 0.946 0.94 0.896 0.953 0.947 0.93 0.95

MSEs 0.0034 0.0017 0.003 0.002 0.005 0.0019 0.0057 0.0022

150 ABs 0.0121 -0.0003 0.002 -0.013 0.018 0.0005 0.013 -0.005

AWs 0.231 0.166 0.226 0.160 0.236 0.168 0.317 0.191

CPs 0.968 0.958 0.963 0.93 0.887 0.933 0.96 0.93
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Table 3. Simulation output for β = 3, θ = 0.4.

n Est.
ML MPSE Bayesian LSE

β θ β θ β θ β θ

MSEs 0.521 0.004 0.523 0.003 0.103 0.003 2.276 0.005

50 ABs 0.163 0.007 0.161 -0.018 0.035 0.012 0.242 -0.0009

AWs 3.009 0.254 2.831 0.220 1.960 0.218 4.488 0.286

CPs 0.976 0.954 0.973 0.905 1. 0.953 0.92 0.92

MSEs 0.2443 0.002 0.264 0.002 0.138 0.0017 0.669 0.003

100 ABs 0.067 -0.0009 0.032 -0.014 0.023 0.007 0.097 -0.002

AWs 2.006 0.170 1.934 0.159 1.588 0.158 2.981 0.202

CPs 0.968 0.948 0.935 0.905 0.973 0.967 0.93 0.95

MSEs 0.178 0.001 0.154 0.001 0.094 0.001 0.309 0.002

150 ABs 0.082 0.00017 0.017 -0.010 0.019 0.003 -0.005 0.005

AWs 1.616 0.137 1.577 0.132 1.379 0.131 2.297 0.166

CPs 0.95 0.946 0.965 0.925 0.967 0.94 0.95 0.95

Table 4. Simulation output for β = 0.25, θ = 1.

n Est.
ML MPSE Bayesian LSE

β θ β θ β θ β θ

MSEs 0.0017 0.020 0.002 0.018 0.001 0.0133 0.002 0.021

50 ABs 0.006 0.024 0.007 -0.045 0.006 0.011 0.003 -0.009

AWs 0.158 0.527 0.161 0.484 0.162 0.518 0.178 0.551

CPs 0.956 0.944 0.958 0.903 0.973 0.96 0.91 0.93

MSEs 0.0008 0.009 0.0007 0.010 0.0010 0.008 0.001 0.011

100 ABs 0.002 0.0004 -0.00004 -0.036 0.008 0.0001 0.002 -0.012

AWs 0.110 0.362 0.110 0.347 0.113 0.360 0.123 0.395

CPs 0.958 0.936 0.96 0.898 0.933 0.953 0.93 0.95

MSEs 0.0006 0.006 0.0005 0.006 0.0005 0.007 0.0007 0.007

150 ABs 0.0045 0.003 0.0002 -0.026 0.0043 0.0011 0.0004 -0.013

AWs 0.0899 0.295 0.090 0.287 0.090 0.295 0.098 0.319

CPs 0.95 0.956 0.955 0.925 0.953 0.92 0.92 0.92
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Table 5. Simulation results for β = 1.9, θ = 0.8.

n Est.
ML MPSE Bayesian LSE

β θ β θ β θ β θ

MSEs 0.128 0.012 0.130 0.011 0.063 0.011 0.210 0.015

50 ABs 0.054 0.018 0.061 -0.036 0.020 0.021 0.037 -0.005

AWs 1.397 0.438 1.411 0.400 1.226 0.420 1.672 0.461

CPs 0.948 0.952 0.973 0.898 0.973 0.973 0.91 0.93

MSEs 0.0609 0.006 0.059 0.007 0.051 0.006 0.098 0.008

100 ABs 0.022 -0.0007 0.005 -0.028 0.036 0.004 0.022 -0.008

AWs 0.972 0.301 0.968 0.288 0.924 0.297 1.144 0.329

CPs 0.952 0.938 0.948 0.91 0.947 0.953 0.93 0.96

MSEs 0.040 0.004 0.039 0.004 0.036 0.004 0.049 0.005

150 ABs 0.0408 0.0007 0.003 -0.0201 0.050 0.004 0.033 -0.007

AWs 0.795 0.245 0.785 0.238 0.771 0.242 0.929 0.271

CPs 0.964 0.958 0.958 0.928 0.96 0.953 0.96 0.93

5. Quantile regression model for ULE distribution

This section proposes a new quantile regression model based on ULE distribution for component
response variables, offering a preference for commonly used beta, Kumaraswamy, and unit-Weibull
regression models. When incorporating covariate information into regression analysis of a probability
distribution, it is common to connect the mean response to the covariates. In contrast to modeling
the mean of the response, quantile regression models were pioneered by [40] to model the conditional
quantiles of the response variable as a function of the covariates without any distributional assumptions
on the error term, and these models are also considered robust regressions.

Since the mean of the ULE distribution does not have a tractable closed-form expression, quantile
regression models are a solid substitute. The quantile function of the ULE distribution has a simple
treatable form, allowing its cdf and pdf to be expressed using a re-parametrization established on the

quantile function in Eq (2.4). Let µ = Q(τ, θ, β) and the parameter β = −
log

[
( 1
τ−1)1/θ

+1
]

log(µ) . Then, the cdf
and pdf of the re-parametrized ULE distribution are given by

G(y, µ, θ) =

1 +

y log
(
( 1
τ −1)1/θ

+1
)

log(µ) − 1


θ
−1

(5.1)

and
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g(y, µ, θ) =θ[log(1/µ)]−1 log
(
(1/τ − 1)1/θ + 1

)
y

log(( 1
τ −1)1/θ+1)
log(µ) −1

×

[
y

log(( 1
τ −1)1/θ+1)
log(µ) − 1

]θ−1

y log

(
( 1
τ −1)1/θ

+1
)

log(µ) − 1


θ

+ 1


−2

,

(5.2)

where 0 < y < 1, 0 < µ < 1 and 0 < τ < 1.
Given independent random variables Xi; i = 1, . . . , n from the re-parameterized ULE distribution

with pdf in Eq (5.2), it is feasible to establish the ULE quantile regression. This regression assumes
the functional relation of the median of Yi

g(µi) = δT xi,

where xi = (1, x1i, x2i, . . . , xki) represents the covariates vector; also, δ = (δ0, δ1, . . . , δk)T is the
coefficients vector in the regression model. Various selections for the link function g(.) can be treated;
however, in this context, we only consider the logit link function:

g(µi) = log
(

µi

1 − µi

)
.

Thus we have

µi =
eδ

T xi

1 + eδT xi
, i = 1, . . . , n. (5.3)

When τ = 0.5, it becomes obvious that the conditional median response is obtained.

5.1. Maximum likelihood estimation

Referring to Eqs (5.2) and (5.3), the log-likelihood function of the ULE quantile regression model
is given by

`(Ω) =n log(θ) −
n∑

i=1

log(log(1/µi))

+ n log
(
log

(
(1/τ − 1)1/θ + 1

))
+

n∑
i=1

log(yi)

 log
(
( 1
τ
− 1)1/θ + 1

)
log(µi)

− 1


+ (θ − 1)

n∑
i=1

log
[
y

log(( 1
τ −1)1/θ+1)
log(µ) − 1

]
− 2

n∑
i=1

log


y log

(
( 1
τ −1)1/θ

+1
)

log(µ) − 1


θ

+ 1

 ,
where Ω = (θ, δT )T is the vector of the unknown parameters. The ML Ω̂ = (θ̂, δ̂T )T can be
obtained by directly maximizing the log-likelihood function `(Ω) using mathematical packages such
as Mathematica or R.

In the classical approach, the confidence intervals for the parameters were constructed based on
asymptotic normality, i.e., Ω̂ can be approximated by a (k + 1)−variate normal distribution with zero
means and covariance matrix I−1(Ω̂), where I(Ω) is the observed information matrix defined by

I(Ω) = −

[
∂2`(Ω)
∂Ω∂ΩT

]
.
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The asymptotic (1 − α)100% confidence interval for the vector parameter Ω j; j = 1, . . . , k + 1 is
Ω̂ j ± z α

2
se(Ω̂ j), where z α

2
represents the upper α

2 percentile with a standard normal distribution and
se(Ω̂ j) is the square root of the jth diagonal entry of the Fisher matrix I−1(Ω̂).

5.2. Model sufficiency

Residual analysis plays a vital role in testing the goodness of fit for a regression model. For this
purpose, two types of residuals are employed: randomized quantile residual (RQR) [41] and Cox-Snell
residual (CSR) [42]. The RQRs are computed as follows:

r̂i = Φ−1[G(yi, µi, θ)],

where G(yi, µi, θ) denotes the cdf of the ULE quantile regression model in Eq (5.1), and Φ−1[.]
represents the inverse cdf of the standard normal distribution. The adequacy of the fitted model is
indicated by the RQRs (r̂i) following a standard normal distribution.

On the other side, the Cox-Snell residuals are written as:

êi = − log[Ḡ(yi, µi, θ)],

where Ḡ(yi, µi, θ) = 1 − G(xi, µi, θ) represents the survival function of the ULE quantile model of
regression. The Cox-Snell residuals (êi) are expected to follow an exponential distribution with a scale
parameter of 1.

In summary, both the randomized quantile residual and Cox-Snell residual are valuable tools to
evaluate the goodness of fit for the ULE quantile regression model and can provide insights into the
appropriateness of the model for a given dataset.

5.3. Simulation

This subsection outlines a simulation study to assess the effectiveness of maximum likelihood
estimators (MLEs) and their corresponding asymptotic confidence intervals (CIs) for the parameters
in the ULE quantile regression model. The evaluation metrics include mean squared error (MSE) and
average bias to assess the point estimates of the parameters, while coverage probability (CPs) along
with average width (AWs) to assess the efficiency of the constructed 95% CIs. Two distinct scenarios
are considered within the simulation design:

(a) The case of one covariate: the simulation study is performed as

logit(µi) = δ0 + δ1yi1, i = 1, . . . , n.

In this case, we consider (δ0, δ1) = (−2, 2).
(b) The case of two covariates: the simulation study is performed as

logit(µi) = δ0 + δ1yi1 + δ2yi2, i = 1, . . . , n.

In this case, we consider (δ0, δ1, δ2) = (2,−2, 2).
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In both cases, the true value for the parameter θ is 0.5 and the quantile values are τ =

0.1, 0.25, 0.5, 0.75, and 0.9. The covariate xi1 is generated from Bernoulli distribution with
parameter 0.5 while the covariate xi2 is generated from the standard normal distribution for n =50,100
and 150. For each scenario, the simulation is repeated 1000 times.

The simulation results are given in Tables 6 and 7. The results in these tables confirm desirable
properties for the maximum likelihood estimates for the parameters of the ULE quantile regression.
From Tables 6 and 7, we observe that the MSE, ABs, and AWs decrease with increasing sample size.
These metrics are consistently attaining their lowest values for the parameter θ. The MSEs and ABs
attain their highest values when τ = 0.9, particularly for small sample sizes. The coverage probabilities
remain close to the nominal 95% confidence level.

Table 6. Results of the simulation for θ = 0.5, δ0 = 2, δ1 = −2, δ2 = 2.

τ n
θ δ0 δ1 δ2

MSEs ABs AWs CPs MSEs ABs AWs CPs MSEs ABs AWs CPs MSEs ABs AWs CPs

0.1 50 0.007 0.016 0.3030.943 0.097 0.033 1.2020.943 0.251 0.080 1.960 0.951 0.051 0.023 0.871 0.96

100 0.003 0.006 0.2070.966 0.053 0.012 0.8350.946 0.102 0.012 1.252 0.937 0.038 0.010 0.7250.946

150 0.002 -0.0020.1670.946 0.035 0.024 0.7050.931 0.072 0.004 1.009 0.926 0.024 0.011 0.5930.963

0.25 50 0.008 0.018 0.3040.908 0.092 0.063 1.2020.944 0.281 -0.033 1.986 0.9520.0553 0.016 0.8820.944

100 0.003 0.004 0.2060.944 0.053 0.023 0.8330.9240.0998 0.016 1.243 0.964 0.038 0.010 0.7100.944

150 0.002 -0.0020.1670.932 0.033 0.006 0.7030.948 0.061 0.003 1.013 0.952 0.024 0.008 0.6040.944

0.5 50 0.008 0.015 0.3000.912 0.121 0.047 1.3810.948 0.293 -0.031 2.006 0.956 0.058 0.023 0.8970.936

100 0.003 0.004 0.205 0.94 0.065 0.023 0.9420.936 0.099 0.016 1.246 0.968 0.039 0.011 0.7160.936

150 0.002 -0.0020.1660.928 0.042 0.016 0.7890.944 0.062 0.005 1.015 0.952 0.024 0.007 0.6090.948

0.75 50 0.006 0.016 0.2730.928 0.437 -0.0262.3670.932 0.269 -0.0172.06860.968 0.081 0.077 0.9910.932

100 0.002 0.007 0.192 0.96 0.163 0.005 1.6140.976 0.120 -0.037 1.285 0.952 0.047 0.050 0.7940.952

150 0.002 -0.0010.1530.932 0.126 0.041 1.3100.924 0.060 -0.018 1.033 0.984 0.032 0.026 0.648 0.94

0.9 50 0.006 0.048 0.2560.952 0.810 -0.4203.3390.968 0.260 0.014 2.213 0.964 0.097 0.060 1.1810.952

100 0.004 0.041 0.1870.852 0.586 -0.4032.3270.876 0.156 0.002 1.396 0.94 0.082 0.040 0.958 0.94

150 0.003 0.036 0.1480.876 0.329 -0.3131.8360.892 0.079 -0.017 1.104 0.96 0.047 -0.0240.7590.932
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Table 7. Results of the simulation for θ = 0.5, δ0 = 2, δ1 = −2.

τ n
θ δ0 δ1

MSEs ABs AWs CPs MSEs ABs AWs CPs MSEs ABs AWs CPs

0.1 50 0.007 0.011 0.296 0.916 0.338 -0.025 2.504 0.968 0.480 0.078 2.831 0.968

100 0.003 0.005 0.206 0.956 0.158 0.013 1.592 0.948 0.199 0.020 1.895 0.972

150 0.002 -0.002 0.167 0.948 0.103 0.0003 1.336 0.956 0.150 -0.002 1.569 0.948

0.25 50 0.007 0.012 0.297 0.908 0.349 -0.046 2.520 0.976 0.518 0.099 2.846 0.968

100 0.003 0.005 0.206 0.952 0.188 -0.007 1.602 0.912 0.230 0.045 1.905 0.956

150 0.002 -0.001 0.167 0.920 0.118 -0.020 1.344 0.972 0.163 0.030 1.574 0.948

0.5 50 0.007 0.016 0.299 0.929 0.425 -0.030 2.806 0.954 0.440 0.039 2.889 0.974

100 0.003 0.004 0.206 0.954 0.217 -0.016 1.837 0.940 0.240 0.017 1.954 0.960

150 0.002 -0.002 0.167 0.951 0.153 0.010 1.519 0.943 0.170 0.027 1.596 0.949

0.75 50 0.007 0.012 0.298 0.936 2.089 -0.254 5.308 0.944 0.974 0.242 3.753 0.940

100 0.003 0.005 0.206 0.952 0.650 -0.064 3.424 0.956 0.346 0.061 2.360 0.936

150 0.002 -0.003 0.166 0.936 0.561 0.012 2.785 0.928 0.237 0.031 1.899 0.936

0.9 50 0.007 0.021 0.309 0.928 4.413 0.488 3.186 0.898 1.563 -0.764 1.728 0.902

100 0.003 0.008 0.214 0.980 1.707 0.817 2.539 0.902 0.986 -0.893 1.068 0.880

150 0.002 0.007 0.173 0.960 1.518 0.873 1.606 0.926 0.989 -0.925 0.630 0.928

6. Applications

This section explores the advantages of the practical use of ULE distribution and its regression
model compared to other models commonly used for modeling data within unit intervals. The unit
models used in this comparison are the Beta, Kumaraswamy, Topp-Leon, unit-Burr XII, and unit half-
logistic geometric (UHLG) distributions.

To assess and compare the fitted distributions, we employ various goodness-of-fit measures. These
include the Kolmogorov-Smirnov distance (KS) with corresponding p-value, Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), Anderson-Darling statistic (A?), and Cramer-
von Mises statistic (W?).

Additionally, two graphical methods are used to assess the goodness of fit for the regression models:
i) The quantile-quantile (QQ) plot, which compares randomized quantile residuals against normal

quantiles with a simulated enclosure, as proposed by Atkinson [43].
ii) The probability-probability (PP) plot compares the empirical probabilities of Cox-Snell residuals

with those from the standard exponential distribution.
The model is considered the best fit for the data if its values are closest to the diagonal bar in both

plots. Mathematica scripts were used for all numerical calculations and to generate the figures.
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6.1. Recovery rate applications

The recovery rate of CD34+ cells is a crucial factor in assessing the sufficiency of peripheral
blood stem cell (PBSC) collection for bone marrow transplantation. This procedure facilitates rapid
hematologic recovery following myeloablative therapy for various malignant hematological diseases.

This study analyzed data from 239 patients who underwent autologous PBSC transplantation,
focusing on CD34+ cell recovery rates as documented in [44]. Additionally, we incorporated relevant
covariates that could potentially influence CD34+ cell viability recovery:

• Gender (y1): 0 denotes female and 1 denotes male;
• Chemotherapy (y2): 0 for a single-day chemotherapy regimen and 1 for a three-day regimen;
• Age (y3): Adjusted patient’s age, calculated as the current age minus 40.

A univariate modeling approach was employed to assess the suitability of the ULE distribution
for modeling CD34+ cell recovery rates. The ML estimates of the ULE distribution’s parameters
and various goodness-of-fit statistics were calculated and are presented in Table 8. The results from
this table strongly suggest that the ULE distribution provides the best fit for the given dataset and it
generally outperforms other models across multiple criteria (AIC, BIC, -Loglik, W?, A?), indicating
that it best fits the CD34+ cell recovery data. The Unit-Omega and Unit-BurrXII models perform
well but do not surpass the ULE model according to AIC, BIC, or -Loglik. To further visualize this
relationship, Figure 4 was generated. This figure includes histogram plots of the data, overlaid with
the estimated densities of the ULE distribution, as well as the Kaplan-Meier curve and the estimated
survival curves.

Table 8. MLEs (std. errors) and discriminant criteria for recovery rate of CD34+ cells data.

Model
Estimates (Standard Errors)

K-S (p-value) AIC BIC -Loglik W? A?

β θ

ULE 3.2454 1.77959 0.0500323 -383.997 -377.044 -193.998 0.0675539 0.48204

(0.142222) (0.100898) (0.587827)

Beta 2.28593 8.66714 0.0650045 -379.734 -372.782 -191.867 0.14045 0.87598

(0.458761) (0.332228) (0.264737)

Kumaraswamy 2.43553 6.69423 0.0722763 -377.528 -370.575 -190.764 0.191987 1.14739

(0.458761) (0.332228) (0.16457)

Unit-Omega 3.6080 7.7337 0.05331 -383.955 -377.002 -193.977 0.0820 0.5276

(0.3322) (0.4588) (0.5055)

Unit- BurrXII 1.73211 10.076 0.0522282 -383.005 -376.052 -193.503 0.0888576 0.582411

(0.458761) (0.332228) (0.532105)
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(a) (b)

Figure 4. (a) Histogram and estimated densities. (b) Estimating the probability of CD34+

cell recovery over time using Kaplan-Meier survival analysis.

To derive Bayesian estimates and credible intervals, we run the MCMC algorithm 55,000 times,
discarding the first 5,000 iterations as burn-in and selecting every 5th value for thinning. The burn-
in period is determined based on pilot runs of the Metropolis-Hastings algorithm. Specifically, we
monitor the convergence behavior of the chains for the parameters θ and β, examining trace plots to
identify when the Markov chain stabilizes around the posterior distribution Figure 5 shows a smooth
histogram of the marginal posterior density, a trace plot where each chain remains within a similar
region without distinct trends, and results from the first 100 lags of the autocorrelation function (ACF).
These observations reflect the efficient convergence of the MCMC chain.

Percentile bootstrap confidence intervals were computed from 1,000 bootstrap samples of the
parameters. Table 9 displays the maximum likelihood estimates (MLE), bootstrap standard errors
(BSE), and the associated 95% confidence intervals. It is evident that the MLE, BSE, Mean Posterior
Standard Errors (MPSE), and LSE for the parameter θ are closely aligned, with confidence intervals
that are nearly of the same length.

Table 9. Point estimates and confidence intervals for the ULE parameters related to the
recovery rate of CD34+ cells data.

Parameter
MLE MPSE BSE LSE

MLE ACIML MPSE ACIMPS BSE CrI LSE BCI
θ 1.77959 (1.5818,1.9774) 1.8044 (1.6114,2.0062) 1.7469 (1.5527,1.9412) 1.8551 (1.6090,2.0701)
β 3.2454 (2.9667,3.5241) 3.2254 (2.9628,3.5129) 3.2453 (2.9631,3.5275) 3.1989 (2.9563,3.4995)

AIMS Mathematics Volume 9, Issue 12, 34504–34536.



34527

Figure 5. Histogram for the marginal posterior density, trace plot, and the first 100 lags of
autocorrelation values of MCMC results for recovery rate data.

A multivariate regression model is now employed to examine the effects of gender, chemotherapy,
and age on the recovery rate. The proposed regression model is:

logit(µi) = δ0 + δ1yi1 + δ2yi2 + δ3yi3; i = 1, . . . , 239.

Table 10 presents the fitting results for beta, Kumaraswamy, and ULE regression models. Table 10
shows MLE for α, and δi, i = 0, 1, 2, 3, along with their respective standard errors (SE) and p-values.
Additionally, each regression model is accompanied by AIC and BIC statistics.

According to Table 10, there is a statistically significant positive effect of the type of chemotherapy
and age on the recovery rate of CD34+ cells, whereas the gender parameter does not significantly affect
the recovery rate in any of the regression models.

Additionally, among the beta and Kumaraswamy regression models, the ULE regression model
offers the best fit to the data, as indicated by its lower AIC and BIC values. This finding is further
explored in Figure 6, which displays the P-P plot of Cox-Snell residuals and Q-Q plots of the
randomized quantile residuals with a simulated envelope for all the fitted regression models.

Table 10. The outcomes of the fitted regression models using discriminant criteria for the
recovery rate of CD34+ cells data.

Parameters
Beta Kumaraswamy ULE

Estimate SE p-value Estimate SE p-value Estimate SE p-value
δ0 0.9990 0.1291 < 0.0000 1.1997 0.1397 < 0.0000 1.04811 0.135555 < 0.0000
δ1 0.0659 0.0939 0.483 0.0418 0.0955 0.6619 0.100013 0.07255 0.169365
δ2 0.2116 0.1038 0.0425 0.1833 0.1150 0.1123 0.21845 0.104438 .037553
δ3 0.0142 0.0054 0.0088 0.0107 0.0059 0.0692 0.01709 0.00547946 0.002043
α 11.3447 1.0181 < 0.0000 6.7274 0.4543 < 0.0000 1.82216 0.10317 < 0.0000

AIC -381.79 -375.66 -388.659
BIC -364.41 -358.28 -371.276
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Figure 6. P-P plots of Cox-Snell residuals (shown in the left side) and Q-Q plots of
randomized quantile residuals (shown in the right side) for the recovery rate data.

6.2. Data on the cost-effectiveness of risk management

The dataset in question is presented by Schmit and Roth [45], which includes 73 responses from a
survey distributed to 374 risk managers of major North American corporations. Schmit and Roth [45]
sought to assess the cost-effectiveness of different management strategies in reducing a company’s
risk of property losses and accidents, taking into account specific company characteristics like size
and industry. The response variable, y (Firmcost), represents the firm-specific ratio of premiums plus

AIMS Mathematics Volume 9, Issue 12, 34504–34536.



34529

uninsured losses relative to total assets. The covariates associated with this response variable are as
follows:

• Suppose (y1): the firm-specific ratio of the total per-occurrence retention levels, as assessed by
the corporate risk manager.
• Cap (y2): 1 if the firm utilizes a captive insurance, and zero if it does not.
• Sizelog (y3): the logarithm of the firm’s total asset value.
• Indcost (y4): the industry average of premiums and uninsured losses relative to total assets, as

reported in the 1985 cost of risk survey (a risk measurement).
• Central (y5): the role of the local manager in determining local retention levels, as evaluated by

the corporate risk manager.
• Sizelog (y6): the significance of analytical tools in risk management decision-making, as assessed

by the corporate risk manager.

Initially, univariate modeling is applied to the response variable, risk management cost-effectiveness
data, to evaluate the performance of the ULE distribution. Table 11 presents the ML estimates for the
parameters along with the goodness-of-fit statistics. The findings in Table 11 indicate that the ULE
model provides the best overall fit to the risk management cost-effectiveness data, as evidenced by its
favorable AIC, BIC, -Loglik, and goodness-of-fit test results (K-S, Cramér-von Mises, and Anderson-
Darling). The unit-Omega model performs reasonably well but does not surpass the ULE model across
the proposed criteria. This conclusion is further illustrated in Figure 7, which displays histogram plots
of the data with the estimated densities, as well as the Kaplan-Meier curve with the estimated survival
curves.

Table 11. MLEs (std. errors) and discriminant criteria for risk management cost-
effectiveness data.

Model
Estimates (Standard Errors)

K-S (p-value) AIC BIC -LoglikCramér-von MisesAnderson-Darling
β θ

ULE 0.257 2.582 0.068 -170.611 -166.03 -87.306 0.096 0.874

(0.142) (0.101) (0.893)

Beta 3.798 0.613 0.181 -148.235-143.654-76.118 0.697 3.961

(0.459) (0.332) (0.017)

Kumaraswamy 3.441 0.665 0.154 -153.308-148.727-78.654 0.502 3.097

(0.459) (0.332) (0.064)

Unit Omega 5.377 0.787 0.128 -163.383-158.802-83.691 0.336 2.153

(0.928) (0.073) (0.180)

Unit-BurrXII 0.348 2.841 0.338 -89.013 -84.432 -46.507 2.662 12.874

(0.0625) (0.421) (0.0)
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(a) (b)

Figure 7. (a) Histogram and estimated densities. (b) Kaplan-Meier and estimated survival
functions for risk management cell data.

To compute the Bootstrap errors (BE) and confidence intervals (CI), we ran the MCMC
algorithm 55,000 times, discarding the initial 5,000 iterations as burn-in and selecting every 5th value
for thinning. As mentioned in the previous section, the pilot runs of the Metropolis-Hastings algorithm
determine the burn-in period through monitoring convergence trace, as shown in Figure 8. This figure
illustrates a smooth and well-behaved histogram of the marginal posterior density, a trace plot showing
that each chain consistently explores the same region without evident trends, and the results from
the first 100 lags of the autocorrelation function (ACF). These findings illustrate fast convergence
performance for the MCMC chain. Percentile bootstrap confidence intervals were obtained from 1,000
bootstrap samples of the parameters. Table 12 presents the ML estimates, bootstrap standard errors
(BSE), and the corresponding 95% confidence intervals. It is noted that the MLE, BSE, mean posterior
standard errors (MPSE), and LSE of parameter θ are similar, with their confidence intervals nearly the
same length. The regression model for µi is presented as

logit(µi) = δ0 + δ1yi1 + δ2yi2 + δ3yi3 + δ4yi4 + δ5yi5 + δ6yi6; i = 1, . . . , 73.

Table 12. Point estimates and interval estimates of ULE parameters for risk management
cost-effectiveness data.

Parameter
MLE MPSE BSE LSE

MLE ACIML MPSE ACIMPS BSE CrI LSE BCI
θ 2.5823 (2.3845,2.7800) 2.4194 (1.9312,2.9077) 2.5500 (2.0647,3.0615) 3.0267 (2.4038,3.6891)
β 0.2572 (-0.0215,0.5359 0.2579 (0.2290,0.2868) 0.2581 (0.2314,0.2873) 0.2536 (0.2303,0.279)
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Figure 8. Histogram for the marginal posterior density, trace plot, and the first 100 lags of
autocorrelation values of MCMC results for risk management data.

Table 13 presents the fitting results for beta, Kumaraswamy, and ULE regression models. It shows
ML estimates for α, and δi, i = 0, 1, 2, 3, 4, 5, 6, along with their respective standard errors (SE) and
p-values. Additionally, each regression model is accompanied by AIC and BIC statistics.

Based on Table 13, we can notice that there is a statistically significant positive impact of the type
of chemotherapy and age on the risk management cost-effectiveness data, while the parameter gender
has no statistically significant impact on the response variable recovery rate at the usual level for all
regression models.

Table 13. Maximum likelihood estimates for the parameters of the fitted regression models,
along with AIC and BIC values, for the risk management cost-effectiveness data.

Parameters
Beta Kumaraswamy ULE

Estimate SE p-value Estimate SE p-value Estimate SE p-value

δ0 1.888 1.172 0.112 2.539 1.550 0.106 3.823 1.463 0.011
δ1 -0.001 0.014 0.932 -0.036 0.018 0 .043 -0.014 0.012 0.232
δ2 0.178 0.232 0.445 0.596 0.390 0.131 0.142 0.250 0.573
δ3 -0.512 0.123 < 0.000 -0.798 0.161 < 0.000 -0.872 0.149 < 0.000
δ4 1.236 0.459 0.009 5.257 1.436 0.0005 1.799 0.444 0.0001
δ5 -0.012 0.088 0.890 -0.028 0.120 0.817 -0.070 0.101 0.493
δ6 -0.004 0.021 0.855 -0.027 0.032 0.396 0.006 0.024 0.808
α 6.331 1.123 < 0.000 0.978 0.106 < 0.000 3.503 0.357 < 0.000

AIC -159.446 -181.653 -200.186
BIC -141.122 -163.33 -181.863
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Furthermore, compared to the beta and Kumaraswamy regression models, the ULE regression
model provides the most optimal fit to the data as it has the least AIC and BIC. Figure 9 provides
a deeper analysis of this result, displaying the P-P plot of Cox-Snell residuals and the Q-Q plots of
randomized quantile residuals, complete with a simulated envelope, for all the regression models fitted.
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Figure 9. P-P plots of Cox-Snell residuals (shown on the left side) and Q-Q plots of
randomized quantile residuals (shown on the right side) for the risk management cost-
effectiveness data.

AIMS Mathematics Volume 9, Issue 12, 34504–34536.



34533

7. Conclusions

This paper introduced a versatile two-parameter unit distribution called the ULE distribution,
designed for modeling datasets confined to the interval (0, 1). We derived and analyzed the survival
function and hazard rate function of the ULE distribution, presenting their behavior through graphical
representations. We investigated various methods for parameter estimation of the ULE distribution,
including maximum likelihood estimation, maximum product spacing, least squares, and Bayesian
estimation. An extensive simulation study reveals that Bayesian estimation demonstrates robust
performance, characterized by high CPs and acceptable AWs. ML estimate consistently shows strong
results with reliable MSEs, ABs, and CPs, making it a trustworthy option. LSE and MPSE may
exhibit greater variability with smaller sample sizes, but their performance improves and remains
satisfactory as n increases. Additionally, we proposed a novel quantile regression model based on
the ULE distribution for unit response variables, providing an alternative to the commonly used
beta, Kumaraswamy, and Unit-Weibull regression models. It was found that the randomized quantile
residual and Cox-Snell residual are useful tools for assessing the goodness of fit of the ULE quantile
regression model, offering valuable insights into the model’s suitability for a specific dataset. Our
empirical analysis focused on datasets related to the recovery rate of CD34+ cells and the cost-
effectiveness of risk management. The numerical analysis with the help of goodness of fit tests
emphasizes the suitability of the ULE distribution to model these data. One of the limitations of
this model is the time and cost constraints, as we consider a complete data set, units may take a long
time to fail, or it can be expensive to perform a complete sample experiment, especially in medical
and biological fields. Censoring schemes can be employed to adjust this limitation. Hence, our plan
for future work is to implement censored samples instead of complete ones. Another limitation is that
even though the ULE distribution is proposed as effective for fitting real-world data, its performance
might vary depending on the nature and characteristics of the datasets. It may not always outperform
existing models in all scenarios, especially if the data do not exhibit the specific long-tailed behavior
for which the ULE distribution is suited. The ULE distribution is defined on the unit interval (0, 1).
This limitation implies that it may not be suitable for datasets that extend beyond this interval or where
transformations to fit this range introduce bias or distortions.
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