
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(12): 34447–34465.
DOI: 10.3934/math.20241641
Received: 08 October 2024
Revised: 27 November 2024
Accepted: 04 December 2024
Published: 06 December 2024

Research article

An explicit numerical method for the conservative Allen–Cahn equation on
a cubic surface

Youngjin Hwang1, Jyoti2, Soobin Kwak1, Hyundong Kim3,4 and Junseok Kim1,*

1 Department of Mathematics, Korea University, Seoul, 02841, Republic of Korea

2 The Institute of Basic Science, Korea University, Seoul, 02841, Republic of Korea

3 Department of Mathematics and Physics, Gangneung-Wonju National University, Gangneung
25457, Republic of Korea

4 Institute for Smart Infrastructure, Gangneung-Wonju National University, Gangneung 25457,
Republic of Korea

* Correspondence: Email: cfdkim@korea.ac.kr.

Abstract: We introduced a fully explicit finite difference method (FDM) designed for numerically
solving the conservative Allen–Cahn equation (CAC) on a cubic surface. In this context, the cubic
surface refers to the combined areas of the six square faces that enclose the volume of a cube. The
proposed numerical solution approach is structured into two sequential steps. First, the Allen–Cahn
(AC) equation was solved by applying the fully explicit FDM, which is computationally efficient.
Following this, the conservation term is resolved using the updated solution from the AC equation to
ensure consistency with the underlying conservation principles. To evaluate the effectiveness of the
proposed scheme, computational tests are performed to verify that the resulting numerical solution of
the CAC equation successfully conserves the discrete mass. Additionally, the solution is examined for
its ability to exhibit the property of constrained motion by mass conserving mean curvature, a critical
characteristic of the CAC equation. These two properties are fundamental to the integrity and accuracy
of the CAC equation.

Keywords: finite difference scheme; cubic domain; Lagrange multiplier; explicit scheme;
conservative AC equation
Mathematics Subject Classification:80M20, 39A14, 65M06

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241641

34448

1. Introduction

The classic Allen–Cahn (AC) equation [1] is a prototypical example of gradient flow associated
with a functional:

E(u) =
∫
Ω

(
F(u(x, t))
ϵ2

+
|∇u(x, t)|2

2

)
dx,

where Ω ⊂ Rd, u(x, t) is an order parameter at spatial point x and time t, ϵ represents the interface
width parameter, and F(u) = 0.25(u2 − 1)2. Thus, the AC equation can be derived through a variational
approach as ∂u/∂t = −δE/δu, which can be expressed as follows.

∂u(x, t)
∂t

= −
F′(u(x, t))
ϵ2

+ ∆u(x, t). (1.1)

The AC equation is a fundamental phase-field model in a wide range of applications such as
materials science [2–4], physics [5], classification [6, 7], and image processing [8, 9]. Its versatility
lies in its ability to describe complex phenomena such as the evolution of phase transitions, where
distinct phases within a material change over time, and the dynamics of interfaces that separate these
phases. These characteristics make the AC equation an essential tool in understanding interface motion
and phase separation in various scientific and engineering contexts [10–13]. The equation captures
critical aspects of interface dynamics, particularly the behavior of systems as they evolve toward a
minimal energy state, driven by forces such as curvature. This makes it a key model for studying
processes where the morphology of interfaces plays a central role. The conventional AC equation
is not conservative but preserves the maximum principle. Recently, several studies have focused on
the maximum-principle-preserving characteristic of the AC equation. Zhang et al. [14] developed
and analyzed the maximum principle preserving method for solving the AC equation. Sun et al. [15]
presented a class of up to temporally eighth-order maximum principle preserving method for the AC
equation. Choi et al. [16] researched stability analysis and maximum principle property of the fully
explicit finite difference scheme for the high-order AC equation. Kim et al. [17] presented a hybrid
numerical method on nonuniform grids for solving the AC equation.

However, in the situations where mass conservation is critical, a conservative variant of the AC
equation is used, which ensures that the total quantity of the evolving order parameter remains constant
over time [18]. To make the AC equation conservative in nature, several different Lagrange multipliers
have been proposed to satisfy the mass conservation law for the AC equation. For example, Rubinstein
and Sternberg [19] introduced a nonlocal space-independent Lagrange multiplier into the AC equation.
Brassel and Bretin [20] proposed a local-nonlocal space-time dependent Lagrange multiplier for mass
conservation of the AC equation. The two conservative forms of the AC equation have received
significant attention, and the conservative AC (CAC) equation satisfies mass conservation while
effectively modeling the dynamics of interfaces. Furthermore, compared to the fourth-order Cahn–
Hilliard equation, the CAC equation is a second-order partial differential equation (PDE), which makes
it simpler to solve [21]. These advantages have motivated a wide range of theoretical and numerical
studies on the CAC equation [22–24]. Xia et al. [25] proposed temporally second-order unconditionally
stable direct schemes for the AC and CAC equations on surfaces. They found that the proposed method
is unconditionally energy-stable. Sun and Zhang [26] developed a meshless radial basis function

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34449

approximation method for the CAC equation on surfaces based on an operator splitting scheme. The
developed numerical method satisfies the mass conservation law of the CAC equation. The authors
demonstrated the accuracy and mass conservation law of the developed method through various
numerical experiments on different smooth and compact surfaces. Liu et al. [27] presented multi-
physical structure-preserving method for the CAC equation. Yang and Kim [28] developed a numerical
method for the conservative Allen–Cahn–Navier–Stokes model on arbitrarily curved surfaces in three-
dimensional (3D) space. Previously, the authors proposed a numerical solution for the Cahn–Hilliard–
Navier–Stokes system on arbitrarily curved surfaces in 3D space [29]. However, simulating mass-
conserving binary flow on such surfaces can be solved more efficiently and straightforwardly using
the CAC equation instead of the Cahn–Hilliard equation [30]. This is because the Cahn–Hilliard
equation is a fourth-order PDE, whereas the conservative Allen–Cahn equation is second-order, which
results in reduced computational cost and complexity. Figure 1 shows the solution obtained using the
numerical method developed by Yang and Kim [28] for the conservative Allen–Cahn–Navier–Stokes
model. The our proposed method focuses on efficiently and rapidly computing the CAC equation in
two-dimensionality (2D) on the surface of a cuboid that approximates a spherical surface in 3D.

Figure 1. The snapshots of the computational solutions. Reprinted from [28] with permission
from Elsevier.

The analysis of the numerical methods based on the finite difference method for the CAC equation
is highly challenging. Consequently, various numerical methods have either replaced the analysis with
numerical verification of properties such as the maximum principle, energy stability, and convergence
or modified the CAC equation to facilitate analysis. Choi and Kim [31] presented a novel CAC equation
with a new Lagrange multiplier that ensures strict preservation of the maximum principle and an
unconditionally stable numerical method, which was validated through computational experiments.

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34450

Moreover, solving this equation on complex geometries, such as curved surfaces, presents challenges
due to the need to accurately capture surface geometry while ensuring numerical stability and
conservation properties. Kim et al. [32] developed the unconditionally stable hybrid scheme for the
CAC equation with a space-time dependent Lagrange multiplier. The authors validated the numerical
methods through various numerical experiments, such as practical unconditional stability tests.

In this paper, we focus on a simple and effective finite difference method (FDM) for solving the CAC
equation on cubic surfaces. In other words, the key aspect is to consider the unique characteristics of
cubic surfaces. The proposed method is simple to implement and can serve as a foundation for various
methods such as implicit and scalar auxiliary variable approaches. The cubic surfaces, which are
characterized by their sharp edges and non-smooth features, pose additional difficulties for numerical
approximation methods [33]. Traditional schemes may struggle with maintaining mass conservation
and interface accuracy in such settings, making the development of specialized algorithms critical.
Therefore, the development of finite difference schemes designed for the CAC equation on surfaces
such as cubic geometries is an area of growing interest.

The structure of this paper is as follows. Section 2 presents the governing CAC equation. Section
3 presents the proposed computational scheme. Section 4 presents numerical tests. In Section 6,
conclusions are presented.

2. Governing equation

We consider the following CAC equation [20]:

∂u(x, t)
∂t

= −
F′(u(x, t))
ϵ2

+ ∆u(x, t) + β(t)
√

F(u(x, t)), x ∈ Ω, t > 0, (2.1)

where Ω is a bounded domain in Rd (d = 1, 2, 3), u(x, t) is conserved order parameter, and β(t) is given
by

β(t) =

∫
Ω

F′(u(x, t))dx

ϵ2
∫
Ω

√
F(u(x, t))dx

.

We define the unit cubic surface domain Ω̂ in 3D space as follows to solve the problem on the unit
cubic surface.

Ω̂ = {(x, y, z)|(x, y, 0), (x, 0, z), (1, y, z), (x, 1, z), (0, y, z), (x, y, 1), 0 ≤ x, y, z ≤ 1}. (2.2)

Then, the cubic surface domain Ω̂ is decomposed into sub-domains Ω̂k, k = 1, 2, . . . , 6.

Ω̂1 = {(x, y, z) | 0 < x, y < 1, z = 0}, Ω̂2 = {(x, y, z) | 0 < x, z < 1, y = 0},
Ω̂3 = {(x, y, z) | 0 < y, z < 1, x = 1}, Ω̂4 = {(x, y, z) | 0 < x, z < 1, y = 1},
Ω̂5 = {(x, y, z) | 0 < y, z < 1, x = 0}, Ω̂6 = {(x, y, z) | 0 < x, y < 1, z = 1},

Ω̂ = ∪6
k=1Ω̂k,

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34451

where Ω̂k denotes the closure of the set Ω̂k for k = 1, . . . , 6. To define the unfolded cubic surface
domain, we define the sub-domains in 2D space as follows.

Ω1 = {(x,−y) | (x, y, 0) ∈ Ω̂1}, Ω2 = {(x, z + 1) | (x, 0, z) ∈ Ω̂2},

Ω3 = {(y + 1, z + 1) | (1, y, z) ∈ Ω̂3}, Ω4 = {(3 − x, z + 1) | (x, 1, z) ∈ Ω̂4},

Ω5 = {(4 − y, z + 1) | (0, y, z) ∈ Ω̂5}, Ω6 = {(x, y + 2) | (x, y, 1) ∈ Ω̂6}.

Thus, the unfolded cubic surface domain is defined by Ω = ∪6
k=1Ωk. Figure 2 displays the schematic

illustration of the folded and unfolded cubic surface domains. We can observe that the proposed
numerical scheme can be easily extended to surfaces of arbitrarily sized cuboids. Unless stated
otherwise, we consider the unit cubic surface.

(a)
(b)

Figure 2. Schematic illustrations of (a) the folded and (b) unfolded cubic surface domains.

We consider the folded cubic surface in 3D space and apply proper boundary conditions to each sub-
domain Ωk for k = 1, 2, . . . , 6. For example, we focus a sub-domain Ω4, and the boundary conditions
are shown Figure 3(a).

Similarly, we apply the boundary condition for the other sub-domainΩk, k = 1, 2, 3, 5, 6 considering
the folded cubic surface domain. To prove the mass conservation law of the CAC equation on a cubic
surface, we define the total mass, denoted byM(u), as

M(u) =
∫
Ω

u(x, t) + 1
2

dx, (2.3)

which can be written as ∫
Ω

u(x, t)dx = 2M(u) −
∫
Ω

1dx. (2.4)

Therefore, it is equivalent to state that
∫
Ω

u(x, t)dx is constant, which implies that M(u) is constant.
Taking the time derivative of Eq (2.3), we have

dM
dt

=
1
2

∫
Ω

∂u(x, t)
∂t

dx =
1
2

∫
Ω

[
−

F′(u(x, t))
ϵ2

+ ∆u(x, t) + β(t)
√

F(u(x, t))
]

dx

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34452

=
1
2

∫
Ω

∆u(x, t)dx. (2.5)

Considering that the unfolded domain Ω consists of a combination of six sub-domains Ωk, k =
1, 2, . . . , 6, we obtain the following equation:

∫
Ω

∆u(x, t)dx =
6∑

k=1

∫
Ωk

∆u(x, t)dx.

By using the equation above and Green’s theorem, we can rewrite Eq (2.5) as follows.

1
2

∫
Ω

∆u(x, t)dx =
1
2

6∑
k=1

∫
Ωk

∆u(x, t)dx =
1
2

6∑
k=1

∫
∂Ωk

∇u(x, t) · nds, (2.6)

where ∂Ωk, k = 1, 2, . . . , 6 are curves oriented in the positive direction. We calculate Eq (2.6) by
breaking up ∂Ωk for k = 1, 2, . . . , 6 as the union of the four curves ∂Ωk,1, ∂Ωk,2, ∂Ωk,3, and ∂Ωk,4, as
shown for Ω4 in Figure 3(b).

1
2

6∑
k=1

∫
∂Ωk

∇u(x, t) · nds =
1
2

6∑
k=1

4∑
c=1

∫
∂Ωk,c

∇u(x, t) · nds.

For each ∂Ωk,c, k = 1, . . . , 6, c = 1, 2, . . . , 4, there exist line integrals with opposite directions that
cancel each other out. Therefore, we have

dM
dt
=

1
2

6∑
k=1

4∑
c=1

∫
∂Ωk,c

∇u(x, t) · nds = 0,

which shows that the mass conservation law of the CAC equation on the unfolded cubic surface is
satisfied.

(a) (b)
Figure 3. Schematic illustrations of boundary conditions for sub-domain Ω4.

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34453

3. Numerical method

Now, we describe the numerical method of the CAC equation on the cubic surface. Let the number
of grid N for a one sub-domain be a positive integer. Then, we define the set of indexes for the sub-
domain Ωk, k = 1, 2, . . . , 6 and Ω.

Id
1 = {(i, j) | i = 1, 2, . . . ,N, j = 1, 2 . . . ,N},

Id
2 = {(i, j) | i = 1, 2 . . . ,N, j = N + 1,N + 2, . . . , 2N},

Id
3 = {(i, j) | i = N + 1,N + 2, . . . , 2N, j = N + 1,N + 2, . . . , 2N},

Id
4 = {(i, j) | i = 2N + 1, 2N + 2, . . . , 3N, j = N + 1,N + 2, . . . , 2N},

Id
5 = {(i, j) | i = 3N + 1, 3N + 2, . . . , 4N, j = N + 1,N + 2, . . . , 2N},

Id
6 = {(i, j) | i = 1, 2, . . . ,N, j = 2N + 1, 2N + 2, . . . , 3N},

Id = ∪6
k=1Id

k .

The discretization domains for the sub-domains Ωk, k = 1, · · · , 6 in 2D space are defined by Ωd
k =

{(xi = (i − 0.5)h, y j = (j − 0.5)h) | (i, j) ∈ Ik}, where h = 1/N is a space step size. We discretize
unfolded cubic surface domain Ω as Ωd = ∪6

k=1Ω
d
k , see Figure 4(a).

Next, we consider the boundary conditions for the domain Ωd. For clarity, we focus only on one
sub-domain Ωd

4, within the unfolded cubic surface domain Ωd. The boundary conditions at x = 2
and x = 3 for Ωd

4 are appropriately defined by the sub-domains Ωd
3 and Ωd

5 of the discrete unfolded
cubic surface domain Ωd. However, the boundary conditions at y = 1 and y = 2 for Ωd

4 are defined
by rotating Ωd

1 and Ωd
6 counterclockwise and clockwise by 180 degrees, respectively, and then placing

them below and above Ωd
4 respectively. These boundary conditions are schematically shown in Figure

4(b). Thus, considering the folded cubic surface, we apply boundary conditions for each subdomain
Ωd

k , k = 1, 2, . . . , 6 of the discrete unfolded cubic surface domain. For m = 1, . . . ,N,

On Ωd
1, u0,m = u3N+m,N+1, um,0 = u3N+1−m,N+1, uN+1,m = u2N+1−m,N+1,

On Ωd
2, u0,N+m = u4N,N+m,

On Ωd
3, , un

N+i,N = un
N,N+1−m, un

N+m,2N+1 = un
N,2N+m,

On Ωd
4, u2N+m,N = uN+1−m,1, u2N+m,2N+1 = uN+1−m,3N ,

On Ωd
5, u3N+m,N = u1,m, u3N+m,2N+1 = u1,3N+1−m, u4N+1,N+m = u1,N+m,

On Ωd
6, u0,2N+m = u4N+1−m,2N , um,3N+1 = u3N+1−m,2N , uN+1,2N+m = uN+m,2N .

The discrete total mass is defined by

Mh(un) =
∑

(i, j)∈Id

un
i j + 1

2
h2.

The proposed algorithm consists of two steps. First, we compute

u∗i j − un
i j

∆t
= −

F′(un
i j)

ϵ2
+

un
i+1, j + un

i−1, j + un
i, j+1 + un

i, j−1 − 4un
i j

h2

=
un

i j − (un
i j)

3

ϵ2
+

un
i+1, j + un

i−1, j + un
i, j+1 + un

i, j−1 − 4un
i j

h2 .

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34454

Thus, we have

u∗i j = un
i j + ∆t

(un
i j − (un

i j)
3

ϵ2
+

un
i+1, j + un

i−1, j + un
i, j+1 + un

i, j−1 − 4un
i j

h2

)
. (3.1)

Next, we compute the conservation term using the solution of Eq (3.1) to solve the CAC equation.

un+1
i j = u∗i j + ∆tβ∗

√
F(u∗i j), (3.2)

where

β∗ =

∑
(i, j)∈Id (u0

i j − u∗i j)

∆t
∑

(i, j)∈Id

√
F(u∗i j)

.

0 1 2 3 4

1

2

3

(a)
0 1 2 3 4

1

2

3

(b)
Figure 4. Schematic of numerical discrete domain Ωd and boundary conditions for the Ωd

4.

Theorem 1. The proposed method satisfies the discrete mass conservation law of the CAC equation.

Proof. For any nonnegative integer n, we can rewrite Eq (3.2) by the definition of β∗ as

un+1
i j = u∗i j +

∑
(i, j)∈Id (u0

i j − u∗i j)∑
(i, j)∈Id

√
F(u∗i j)

√
F(u∗i j).

Thus, we obtain the following equation:

∑
(i, j)∈Id

un+1
i j =

∑
(i, j)∈Id

u∗i j +

∑
(i, j)∈Id (u0

i j − u∗i j)∑
(i, j)∈Id

√
F(u∗i j)

√
F(u∗i j)

=

∑
(i, j)∈Id

u∗i j +

∑
(i, j)∈Id (u0

i j − u∗i j)∑
(i, j)∈Id

√
F(u∗i j)

∑
(i, j)∈Id

√
F(u∗i j) =

∑
(i, j)∈Id

u0
i j.

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34455

Hence, the proposed scheme satisfies the mass conservation law of the CAC equation by the above
equation.

Mh(un+1) =
∑

(i, j)∈Id

un+1
i j + 1

2
h2 =

h2

2

∑
(i, j)∈Id

un+1
i j + 3N2h2

=
h2

2

∑
(i, j)∈Id

u0
i j + 3N2h2 =Mh(u0).

□

4. Numerical experiments

Now, we perform the numerical simulation for the CAC equation using the proposed method. We
define the three-dimensional domain Ω̂ as the cubic surface with a side length L = 5 and then Ωd is
defined as the corresponding discrete unfolded cubic surface domain. The normalized discrete total
mass is defined byMh(un)/L2. The interface layer parameter with the spatial step size is defined as

ϵm =
mh

2
√

2 tanh−1(0.9)
,

which means there are m grid points in the interface layer. First, we consider the following initial
condition on Ωd.

u(xi, y j, 0) = −0.8 + 0.1rand(xi, y j),

where rand(xi, y j) is random value from −1 to 1 at the point (xi, y j). The parameters used are N = 128,
ϵ = ϵ8, ∆t = 0.5ϵ2h2/(2ϵ2 + h2), and T = 100.788. We define the maximum and minimum values of
the computational solutions at n∆t as

Max(un) = max
(i, j)∈Id

un
i j, Min(un) = min

(i, j)∈Id
un

i j,

respectively. Figure 5 displays the temporal evolution of the computational solution for the CAC
equation. The computational results from the numerical simulation show a distinct process of
domain coarsening, where larger domains grow progressively larger while smaller domains shrink and
eventually disappear. This phenomenon reflects the tendency of the system to minimize its interfacial
energy, which leads to the dominance of larger regions and the elimination of smaller ones over time.

We observed that the computational solution calculated using the proposed algorithm satisfies the
discrete mass conservation. Furthermore, we maintain the properties of the CAC equation when the
interface of numerical solutions of the CAC equation solved by the proposed scheme crosses the
boundary between different Ωd

k .

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34456

(a) t = 0.168 (b) t = 1.008 (c) t = 100.788

0 20 40 60 80 100

-1

-0.5

0

0.5

1

(d)
Figure 5. (a)–(c) Numerical solution for the CAC equation at times t = 0.168, 1.008, and
100.788. (d) Temporal evolution of the maximum and minimum values, and the normalized
discrete total mass of the computational solutions.

Next, the following initial condition is considered to observe the effect of the unit folded cubic
surface domain.

u(xi, y j, 0) =

1 if

√
(xi − 2.5)2 + (y j − 12.5)2 < 0.3,

1 if 9.25 < y j < 9.75,
−1 otherwise.

The parameters used are N = 128, ϵ = ϵ8, ∆t = 0.5ϵ2h2/(2ϵ2 + h2), and T = 7.727. Figure 6 shows the
computational solutions for the CAC equation at time t = 0, 1.176, 4.368, and 7.727.

(a) Initial (b) t = 1.176 (c) t = 4.368 (d) t = 7.727
Figure 6. Snapshots of the numerical solution for the CAC equation are shown at times t = 0,
1.176, 4.368, and 7.727.

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34457

We can observe that the interface layer of computational solutions at Ωk for k = 2, 3, 4, 5 tends to
approach the boundary withΩ6 by the CAC equation, while the characteristics of folded cubic surfaces
result in the interface layer crossing the boundary and forming a circle according to the geometric
properties of the CAC equation. We use the following initial condition, similar to the above, except
with some different phase positions.

u(xi, y j, 0) =

1 if

√
(xi − 2.5)2 + (y j − 12.5)2 < 0.3,

1 if 8.75 < y j < 9.25,
−1 otherwise.

The parameters used are N = 128, ϵ = ϵ8, ∆t = 0.5ϵ2h2/(2ϵ2 + h2), and T = 1.680. Figure 7 shows
the numerical solutions for the CAC equation on the folded cubic surface using the proposed scheme.

(a) Initial (b) t = 0.336 (c) t = 1.008 (d) t = 1.680
Figure 7. Snapshots of the numerical solution for the CAC equation are shown at times
t = 0, 0.336, 1.008, and 1.680.

We observe that the computational solution quickly becomes equilibrium in Ωk for k = 2, 3, 4, 5
since the interface layer does not cross the boundary of Ω6, unlike the results in Figure 6.

Next, the two initial conditions on Ωd are given by

u(xi, y j, 0) =

1 if 2.5 − w < xi < 2.5 + w, 2.5 − w < y j < 2.5 + w, (xi, y j) ∈ Ωd
1,

1 if 2.5 − w < xi < 2.5 + w, 7.5 − w < y j < 7.5 + w, (xi, y j) ∈ Ωd
2,

1 if 7.5 − w < xi < 7.5 + w, 7.5 − w < y j < 7.5 + w, (xi, y j) ∈ Ωd
3,

1 if 12.5 − w < xi < 12.5 + w, 7.5 − w < y j < 7.5 + w, (xi, y j) ∈ Ωd
4,

1 if 17.5 − w < xi < 17.5 + w, 7.5 − w < y j < 7.5 + w, (xi, y j) ∈ Ωd
5,

1 if 2.5 − w < xi < 2.5 + w, 12.5 − w < y j < 12.5 + w, (xi, y j) ∈ Ωd
6,

−1 otherwise,

where w = 0.4 or w = 0.5. We used parameters N = 128, ϵ = ϵ8, ∆t = 0.5ϵ2h2/(2ϵ2 + h2), T = 1.680.
The top and bottom rows in Figure 8 show the temporal evolution of the numerical solutions of the
CAC equation with w = 0.4 and w = 0.5, respectively, at times t = 0, 0.504, 0.840, and 1.680.

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34458

(a) Initial (b) t = 0.504 (c) t = 0.840 (d) t = 1.680
Figure 8. Snapshot of the numerical solutions of the CAC equation with w = 0.4, 0.5 from
top to bottom.

We investigate the property of motion by mass conserving mean curvature flow on a cubic surface.
The initial condition is defined as follows:

u(x, y, 0) =

1, if 12 < y < 13,
1, if 2 < (x mod 5) < 3, y > 8,
−1, otherwise,

where x mod 5 represents the remainder when x is divided by 5. The parameters used are N = 100,
ϵ = ϵ8, ∆t = 0.5ϵ2h2/(2ϵ2 + h2), and T = 1.927. Figure 9 shows the temporal evolution of u. In Fig.
9(a), the phase of u presents like a cross-shaped structure with sharp interfaces. As time progresses,
the interface gradually smooths out due to mass conserving mean curvature flow. As shown in Figure
9(d), the interface eventually evolves into a stable, circular shape near the top of the domain.

(a) t = 0 (b) t = 0.275 (c) t = 1.101 (d) t = 1.927
Figure 9. Numerical solutions of u for motion by mean curvature flow at (a) t = 0, (b)
t = 0.275, (c) t = 1.101, and (d) t = 1.927.

5. Discussion

In this section, we discuss the application of an implicit scheme for the CAC equation on cubic
surfaces, along with its potential benefits and limitations of the implicit scheme, and compare

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34459

the implicit scheme with the proposed explicit numerical method through numerical experiments.
Generally, the implicit scheme provides higher stability than the explicit scheme. This means that,
compared to the time step size limitation of the explicit scheme, the implicit scheme can use relatively
larger time step sizes without causing the numerical solution to blow up, thus maintaining stability
[34,35]. However, since the implicit scheme requires solving a nonlinear system at each time step, the
computations can become more complex and time-consuming depending on the given discretization
grid [36]. To compare the proposed method with the implicit scheme, a nonlinear convex splitting
method is applied to the CAC equation [37].

u∗i j − un
i j

∆t
=

un
i j − (u∗i j)

3

ϵ2
+

u∗i+1, j + u∗i−1, j + u∗i, j+1 + u∗i, j−1 − 4u∗i j

h2 , (5.1)

un+1
i j = u∗i j + ∆tβ∗

√
F(u∗i j). (5.2)

Let u∗,si j and u∗,s+1
i j be the approximations of u∗i j before and after a Gauss–Seidel iteration, respectively.

We linearize the nonlinear term (u∗i j)
3 in the Gauss–Seidel iteration method as

(u∗,s+1
i j)3 = 3(u∗,si j)2u∗,s+1

i j − 2(u∗,si j)3.

Thus, Eq. (5.1) can be rewritten in Gauss–Seidel form as follows.

u∗,s+1
i j =

(1
∆t
+

1
ϵ2

)
un

i j +
2
ϵ2

(u∗,si j)3 +
u∗,si+1, j + u∗,s+1

i−1, j + u∗,si, j+1 + u∗,s+1
i, j−1

h2

 /D, (5.3)

where

D =
1
∆t
+

3(u∗,si j)2

ϵ2
+

4
h2 .

The discrete l2-norm is defined as ∥un∥2 =
√∑

(i, j)∈Id (un
i j)2/(6N2). We calculate Eq. (5.3) repeatedly

until the l2-norm of the consecutive error ∥u∗,s+1
i j − u∗,si j ∥2 is less than a given tolerance tol = 10−6. For

numerical simulation, the initial condition on Ωd is given by

u(xi, y j, 0) =

1, if 6.5 < y j < 8.5, xi < 7,
1, if 6.5 < y j < 8.5, xi > 18,
−1, otherwise.

The parameters used are N = 128, ϵ = ϵ8, and the final time T = 12.5. The implicit convex splitting
scheme allows for the use of larger time step sizes. Therefore, we use ∆t = 0.00025 for the proposed
method, while the implicit method uses a time step size that is 8 times larger, ∆t = 0.002. Figure 10
shows the zero-contour of the computational solutions of the CAC equation using the proposed and
implicit convex splitting methods. The solid line shows the computational solution from the proposed
scheme, while the dashed line displays that from the implicit scheme.

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34460

(a) Initial (b) t = 2 (c) t = 4 (d) t = 12.5
Figure 10. The zero-level contour of the numerical solution using the proposed and implicit
schemes at times t = 0, 2, 4, and 12.5. The solid line represents the numerical solution using
the proposed method and the dashed line represents the numerical solution using the implicit
method.

We observed that the numerical solution using the implicit scheme is less affected by the motion
by mass conserving mean curvature compared to the numerical solution using the proposed method.
Table 1 lists the central processing unit (CPU) time for obtaining a numerical solution for time t = 12.5
of the CAC equation using the explicit and implicit convex splitting methods.

Table 1. CPU times for different numerical scheme.

Method Proposed Implicit
CPU time(s) 177.6461 384.0172

We observed that although the time step size used in the implicit method was 8 times larger than
that used in the proposed method, the CPU time for the implicit method was more than 2 times as long.

6. Conclusions

In this work, we introduced a fully numerical method for solving the CAC equation on a cubic
surface. The method is structured in two steps: first, solving the AC equation using an efficient explicit
finite difference approach, followed by incorporating a conservation term to ensure consistency with
the conservation principles of the CAC equation. Numerical experiments confirm that the proposed
scheme effectively conserves discrete mass, a critical requirement for the accurate solution of the CAC
equation. Furthermore, the solution showed constrained motion by mass conserving mean curvature,
another essential property of the CAC equation, which validates the robustness and accuracy of the
proposed method. These findings demonstrate that the scheme is both reliable and computationally
efficient for solving the CAC equation on complex geometries such as cubic surfaces. In future
work, we will consider unconditionally stable and high-order accurate numerical methods for the CAC
equation on cubic surfaces and perform an analysis of the stability, convergence, and consistency, etc.,
of the numerical methods.

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34461

Author contributions

Youngjin Hwang: Conceptualization, Methodology, Software, Visualization, Formal analysis,
Validation, Investigation, Writing-original draft; Jyoti: Validation, Investigation, Funding acquisition,
Writing-original draft; Soobin Kwak: Visualization, Validation, Investigation, Writing-original draft;
Hyundong Kim: Validation, Investigation, Funding acquisition, Writing-original draft; Junseok Kim:
Conceptualization, Methodology, Project administration, Supervision, Funding acquisition, Writing-
original draft;

Acknowledgments

The corresponding author (J.S. Kim) was supported by the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIT) (No. 2022R1A2C1003844). Jyoti was
supported by Brain Pool program funded by the Ministry of Science and ICT through the National
Research Foundation of Korea (2022H1D3A2A02081237). Hyundong Kim was supported by Basic
Science Research Program through the National Research Foundation of Korea(NRF) funded by the
Ministry of Education (2021R1A6A1A03044326). The authors extend their thanks to the reviewers
for the valuable and constructive input they provided during the revision of the article.

Conflict of interest

Professor Hyundong Kim is the Guest Editor for AIMS Mathematics and was not involved in the
editorial review or the decision to publish this article. All authors declare that there are no competing
interests.

Appendix

The following code is the main program with a random initial condition, which is also available
from the corresponding author’s webpage:

https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/

1 c lear ; fs = 23; ax is f s = 19; lw = 1.5 ; ms = 8;
2 N = 128; NN = 100; cN = l inspace (-1 ,1 ,NN+1) ; falpha = 0.6 ; Nx = 4*N; Ny = 3*N; rand (' seed ' ,0830)
3 xL = 0; xR = 20; yL = 0; yR = Ny/Nx*xR; h = (xR-xL) /Nx; h2 = hˆ2 ; NNN = 100;
4 x = l inspace (xL-0.5*h ,xR+0.5*h ,Nx+2) ; y = l inspace (yL-0.5*h ,yR+0.5*h ,Ny+2) ;
5 m = 8; eps = m*h /(2* sqr t (2)*atanh (0 .9)) ; dt = 0.5*epsˆ2*hˆ2 /(2* epsˆ2+hˆ2) ; Nt = 300000; T = dt*Nt
6 phi = -0.8+0.1*(1 -2* rand (Nx+2,Ny+2)) ; phi0 = phi ;
7
8 f igure (1) ; c l f ; hold on ; box on ; se t (gcf , ' pos i t ion ' ,[100 500 500 350])
9 xxx = l inspace (xL/4+0.5*h ,xR/4 -0.5*h ,N) ; yyy = l inspace (xL/4+0.5*h ,xR/4 -0.5*h ,N) ;

10 [xx , yy] = meshgrid (xxx , yyy) ; t = hgtransform ;
11 [C, hh] = contourf (xx , yy , phi (2 :N+1,N+1: -1:2) ' ,cN, ' facealpha ' , falpha , ' LineStyle ' , ' none ') ;
12 hh . ZLocation = xL/4+0.5*h ;
13 [C, hh] = contourf (xx , yy , phi (2 :N+1,2*N+2:3*N+1) ' ,cN, ' facealpha ' , falpha , ' LineStyle ' , ' none ') ;
14 hh . ZLocation = xR/4 -0.5*h ;
15 [C, hh] = contourf (xx , yy , phi (2 :N+1,N+2:2*N+1) ' ,cN, ' facealpha ' , falpha , ' Parent ' , t , ' LineStyle ' , ' none ') ;
16 hh . ZLocation = -0.5*h ; ry angle = 1/2* pi ;
17 Ry = makehgtform(' xro ta te ' , ry angle) ; t . Matrix = Ry; t2 = hgtransform ;
18 [C, hh] = contourf (xx , yy , phi (N+2:2*N+1,N+2:2*N+1) ,cN, ' facealpha ' , falpha , ' Parent ' , t2 , ' LineStyle ' , ' none ') ;

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/

34462

19 hh . ZLocation = -0.5*h ; ry angle = -1/2* pi ; Ry = makehgtform(' yro ta te ' , ry angle) ;
20 t2 . Matrix = Ry; hh . ZLocation = -xR/4+0.5*h ; t3 = hgtransform ;
21 [C, hh] = contourf (xx , yy , phi (3*N+1: -1:2*N+2,N+2:2*N+1) ' ,cN, ' facealpha ' , falpha , ' Parent ' , t3 , ' LineStyle ' , ' none ') ;
22 hh . ZLocation = -0.5*h ; ry angle = 1/2* pi ; Ry = makehgtform(' xro ta te ' , ry angle) ;
23 t3 . Matrix = Ry; hh . ZLocation = -xR/4+0.5*h ; t4 = hgtransform ;
24 [C, hh] = contourf (xx , yy , phi (4*N+1: -1:3*N+2,N+2:2*N+1) ,cN, ' facealpha ' , falpha , ' Parent ' , t4 , ' LineStyle ' , ' none ') ;
25 hh . ZLocation = -0.5*h ; ry angle = -1/2* pi ; Ry = makehgtform(' yro ta te ' , ry angle) ;
26 t4 . Matrix = Ry; hh . ZLocation = -0.5*h ;
27 se t (gca , 'CLim ' ,[-1 1] , ' fon ts ize ' , ax i s f s) ; axis ([xL/4 xR/4 xL/4 xR/4 xL/4 xR /4])
28 plot3 ([xL/4 xL /4] , [xL/4 xL /4] , [xL/4 xR/4] , ' k - ' , [xL/4 xL /4] , [xL/4 xR /4] , [xL/4 xL /4] , ' k - ' . . .
29 , [xL/4 xR /4] , [xL/4 xL /4] , [xL/4 xL /4] , ' k - ' , ' l inewidth ' , lw)
30 plot3 ([xR/4 xR /4] , [xR/4 xR /4] , [xL/4 xR/4] , ' k - ' , [xR/4 xR /4] , [xL/4 xR /4] , [xR/4 xR/4] , ' k - ' . . .
31 , [xL/4 xR /4] , [xR/4 xR /4] , [xR/4 xR/4] , ' k - ' , ' l inewidth ' , lw)
32 plot3 ([xL/4 xL /4] , [xR/4 xR /4] , [xL/4 xR/4] , ' k - ' , [xL/4 xL /4] , [xL/4 xR /4] , [xR/4 xR/4] , ' k - ' . . .
33 , [xL/4 xR /4] , [xL/4 xL /4] , [xR/4 xR/4] , ' k - ' , ' l inewidth ' , lw)
34 plot3 ([xR/4 xR /4] , [xL/4 xL /4] , [xL/4 xR/4] , ' k - ' , [xR/4 xR /4] , [xL/4 xR /4] , [xL/4 xL /4] , ' k - ' . . .
35 , [xL/4 xR /4] , [xR/4 xR /4] , [xL/4 xL /4] , ' k - ' , ' l inewidth ' , lw)
36 xt icks ([xL/4 xR /4]) ; y t icks ([xL/4 xR /4]) ; z t icks ([xL/4 xR /4]) ; view([-35 20]) ; axis image ;
37 axis ([xL/4 xR/4 xL/4 xR/4 xL/4 xR /4]) ; colormap j e t ; a = colorbar ; a . Posi t ion = [0.88 0.12 0.0275 0 .8] ;
38 t ex t (' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' x ' , ' FontSize ' , f s+2, ' Posi t ion ' , [3.16 -1.77 0.26])
39 t ex t (' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' y ' , ' FontSize ' , fs , ' Posi t ion ' , [-1.96 2.19 0.54])
40 t ex t (' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' z ' , ' FontSize ' , f s+2, ' Posi t ion ' , [-1.58 3.89 4.96]) ; drawnow;
41
42 for i t = 1:Nt
43 phi (1 ,2 :N+1) = phi (3*N+2:4*N+1,N+2) ; phi (2 :N+1,1) = phi (3*N+1: -1:2*N+2,N+2) ;
44 phi (N+2 ,2:N+1) = phi (2*N+1: -1:N+2,N+2) ; phi (1 ,N+2:2*N+1) = phi (4*N+1,N+2:2*N+1) ;
45 phi (1 ,2*N+2:3*N+1) = phi (4*N+1: -1:3*N+2,2*N+1) ; phi (2 :N+1,3*N+2) = phi (3*N+1: -1:2*N+2,2*N+1) ;
46 phi (N+2,2*N+2:3*N+1) = phi (N+2:2*N+1,2*N+1) ; ophi1 = phi ;
47 phi (N+2:2*N+1,N+1) = phi (N+1,N+1: -1:2) ; phi (N+2:2*N+1,2*N+2) = phi (N+1,2*N+2:3*N+1) ;
48 phi (2*N+2:3*N+1,N+1) = phi (N+1: -1:2 ,2) ; phi (2*N+2:3*N+1,2*N+2) = phi (N+1: -1:2 ,3*N+1) ;
49 phi (3*N+2:4*N+1,N+1) = phi (2 ,2 :N+1) ; phi (3*N+2:4*N+1,2*N+2) = phi (2 ,3*N+1: -1:2*N+2) ;
50 phi (4*N+2,N+2:2*N+1) = phi (2 ,N+2:2*N+1) ; ophi = phi ;
51 phi (2 :N+1 ,2:Ny+1) = ophi1 (2 :N+1 ,2:Ny+1) . . .
52 +dt *((ophi1 (2 :N+1 ,2:Ny+1) -ophi1 (2 :N+1 ,2:Ny+1) . ˆ 3) / eps ˆ2 . . .
53 +(ophi1 (1 :N, 2 :Ny+1)+ophi1 (3 :N+2 ,2:Ny+1)+ophi1 (2 :N+1 ,1:Ny)+ophi1 (2 :N+1 ,3:Ny+2) . . .
54 -4*ophi1 (2 :N+1 ,2:Ny+1)) /hˆ2) ;
55 phi (N+2:Nx+1,N+2:2*N+1) = ophi (N+2:Nx+1,N+2:2*N+1) . . .
56 +dt *((ophi (N+2:Nx+1,N+2:2*N+1) -ophi (N+2:Nx+1,N+2:2*N+1) . ˆ 3) / eps ˆ2 . . .
57 +(ophi (N+1:Nx,N+2:2*N+1)+ophi (N+3:Nx+2,N+2:2*N+1) . . .
58 +ophi (N+2:Nx+1,N+1:2*N)+ophi (N+2:Nx+1,N+3:2*N+2) -4*ophi (N+2:Nx+1,N+2:2*N+1)) /hˆ2) ;
59 beta = (sum(phi0 (2 :N+1 ,2:Ny+1) - phi (2 :N+1 ,2:Ny+1) , ' a l l ')+sum(phi0 (N+2:Nx+1,N+2:2*N+1) . . .
60 - phi (N+2:Nx+1,N+2:2*N+1) , ' a l l ')) / (sum(0.5* abs (phi (2 :N+1 ,2:Ny+1) . ˆ2 -1) , ' a l l ') . . .
61 +sum(0.5* abs (phi (N+2:Nx+1,N+2:2*N+1) . ˆ2 -1) , ' a l l ')) ;
62 phi (2 :N+1 ,2:Ny+1) = phi (2 :N+1 ,2:Ny+1)+beta *0.5*abs (phi (2 :N+1 ,2:Ny+1) . ˆ2 -1) ;
63 phi (N+2:Nx+1,N+2:2*N+1) = phi (N+2:Nx+1,N+2:2*N+1)+beta *0.5*abs (phi (N+2:Nx+1,N+2:2*N+1) . ˆ2 -1) ;
64
65 i f mod(i t ,NNN) == 0
66 f igure (2) ; c l f ; hold on ; box on ; se t (gcf , ' pos i t ion ' ,[100 500 500 350])
67 xxx = l inspace (xL/4+0.5*h ,xR/4 -0.5*h ,N) ; yyy = l inspace (xL/4+0.5*h ,xR/4 -0.5*h ,N) ;
68 [xx , yy] = meshgrid (xxx , yyy) ; t = hgtransform ;
69 [C, hh] = contourf (xx , yy , phi (2 :N+1,N+1: -1:2) ' ,cN, ' facealpha ' , falpha , ' LineStyle ' , ' none ') ;
70 hh . ZLocation = xL/4+0.5*h ;
71 [C, hh] = contourf (xx , yy , phi (2 :N+1,2*N+2:3*N+1) ' ,cN, ' facealpha ' , falpha , ' LineStyle ' , ' none ') ;
72 hh . ZLocation = xR/4 -0.5*h ;
73 [C, hh] = contourf (xx , yy , phi (2 :N+1,N+2:2*N+1) ' ,cN, ' facealpha ' , falpha , ' Parent ' , t , ' LineStyle ' , ' none ') ;
74 hh . ZLocation = -0.5*h ; ry angle = 1/2* pi ;
75 Ry = makehgtform(' xro ta te ' , ry angle) ; t . Matrix = Ry; t2 = hgtransform ;
76 [C, hh] = contourf (xx , yy , phi (N+2:2*N+1,N+2:2*N+1) ,cN, ' facealpha ' , falpha , ' Parent ' , t2 , ' LineStyle ' , ' none ') ;
77 hh . ZLocation = -0.5*h ; ry angle = -1/2* pi ; Ry = makehgtform(' yro ta te ' , ry angle) ;
78 t2 . Matrix = Ry; hh . ZLocation = -xR/4+0.5*h ; t3 = hgtransform ;
79 [C, hh] = contourf (xx , yy , phi (3*N+1: -1:2*N+2,N+2:2*N+1) ' ,cN, ' facealpha ' , falpha , ' Parent ' , t3 , ' LineStyle ' , ' none ') ;
80 hh . ZLocation = -0.5*h ; ry angle = 1/2* pi ; Ry = makehgtform(' xro ta te ' , ry angle) ;
81 t3 . Matrix = Ry; hh . ZLocation = -xR/4+0.5*h ; t4 = hgtransform ;
82 [C, hh] = contourf (xx , yy , phi (4*N+1: -1:3*N+2,N+2:2*N+1) ,cN, ' facealpha ' , falpha , ' Parent ' , t4 , ' LineStyle ' , ' none ') ;
83 hh . ZLocation = -0.5*h ; ry angle = -1/2* pi ; Ry = makehgtform(' yro ta te ' , ry angle) ;
84 t4 . Matrix = Ry; hh . ZLocation = -0.5*h ;
85 se t (gca , 'CLim ' ,[-1 1] , ' fon ts ize ' , ax i s f s) ; axis ([xL/4 xR/4 xL/4 xR/4 xL/4 xR /4])
86 plot3 ([xL/4 xL /4] , [xL/4 xL /4] , [xL/4 xR/4] , ' k - ' , [xL/4 xL /4] , [xL/4 xR /4] , [xL/4 xL /4] , ' k - ' . . .
87 , [xL/4 xR /4] , [xL/4 xL /4] , [xL/4 xL /4] , ' k - ' , ' l inewidth ' , lw)
88 plot3 ([xR/4 xR /4] , [xR/4 xR /4] , [xL/4 xR/4] , ' k - ' , [xR/4 xR /4] , [xL/4 xR /4] , [xR/4 xR/4] , ' k - ' . . .
89 , [xL/4 xR /4] , [xR/4 xR /4] , [xR/4 xR/4] , ' k - ' , ' l inewidth ' , lw)

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

34463

90 plot3 ([xL/4 xL /4] , [xR/4 xR /4] , [xL/4 xR/4] , ' k - ' , [xL/4 xL /4] , [xL/4 xR /4] , [xR/4 xR/4] , ' k - ' . . .
91 , [xL/4 xR /4] , [xL/4 xL /4] , [xR/4 xR/4] , ' k - ' , ' l inewidth ' , lw)
92 plot3 ([xR/4 xR /4] , [xL/4 xL /4] , [xL/4 xR/4] , ' k - ' , [xR/4 xR /4] , [xL/4 xR /4] , [xL/4 xL /4] , ' k - ' . . .
93 , [xL/4 xR /4] , [xR/4 xR /4] , [xL/4 xL /4] , ' k - ' , ' l inewidth ' , lw)
94 xt icks ([xL/4 xR /4]) ; y t icks ([xL/4 xR /4]) ; z t icks ([xL/4 xR /4]) ; view([-35 20]) ; axis image ;
95 axis ([xL/4 xR/4 xL/4 xR/4 xL/4 xR /4]) ; colormap j e t ; a = colorbar ; a . Posi t ion = [0.88 0.12 0.0275 0 .8] ;
96 t ex t (' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' x ' , ' FontSize ' , f s+2, ' Posi t ion ' , [3.16 -1.77 0.26])
97 t ex t (' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' y ' , ' FontSize ' , fs , ' Posi t ion ' , [-1.96 2.19 0.54])
98 t ex t (' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' z ' , ' FontSize ' , f s+2, ' Posi t ion ' , [-1.58 3.89 4.96]) ; drawnow
99 end

100 end

References

1. S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to
antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-
6160(79)90196-2

2. S. Zhai, Z. Weng, Y. Mo, X. Feng, Energy dissipation and maximum bound principle preserving
scheme for solving a nonlocal ternary Allen–Cahn model, Comput. Math. Appl., 155 (2024), 150–
164. https://doi.org/10.1016/j.camwa.2023.06.018

3. M. Emamjomeh, M. Nabati, A. Dinmohammadi, Numerical study of two operator splitting
localized radial basis function method for Allen–Cahn problem, Eng. Anal. Bound. Elem., 163
(2024), 126–137. https://doi.org/10.1016/j.enganabound.2023.07.014

4. L. Q. Chen, Phase-field models for microstructure evolution, Ann. Rev. Mater. Res., 32 (2002),
113–140. https://doi.org/10.1146/annurev.matsci.32.112001.132041

5. M. Fatima, R. P. Agarwal, M. Abbas, P. O. Mohammed, M. Shafiq, N. Chorfi, Extension of Cubic
B-Spline for Solving the Time-Fractional Allen–Cahn Equation in the Context of Mathematical
Physics, Computation, 12 (2024), 51. https://doi.org/10.3390/computation12030051

6. Z. Lu, J. Wang, A novel and efficient multi-scale feature extraction method for EEG classification,
AIMS Math., 9 (2024), 16605–16622. https://doi.org/10.3934/math.2024848

7. S. Kim, J. Kim, Automatic Binary Data Classification Using a Modified Allen–
Cahn Equation, Int. J. Pattern Recognit. Artif. Intell., 35 (2021), 2150013.
https://doi.org/10.1142/S021800142150013X

8. D. Lee, S. Lee, Image segmentation based on modified fractional Allen–Cahn equation, Math.
Probl. Eng., 2019 (2019), 3980181. https://doi.org/10.1155/2019/8059716

9. M. Beneš, V. Chalupeck’y, K. Mikula, Geometrical image segmentation by the Allen–Cahn
equation, Appl. Numer. Math., 51 (2004), 187–205. https://doi.org/10.1016/j.apnum.2004.04.006

10. D. Lee, Gradient-descent-like scheme for the Allen–Cahn equation, AIP Adv., 13 (2023), 085010.
https://doi.org/10.1063/5.0154657

11. D. Lee, Computing the area-minimizing surface by the Allen–Cahn equation with the fixed
boundary, AIMS Math., 8 (2023), 23352–23371. https://doi.org/10.3934/math.20231184

12. J. Yang, Y. Li, C. Lee, Y. Choi, J. Kim, Fast evolution numerical method for the Allen–Cahn
equation, J. King Saud Univ. Sci., 35 (2023), 102430. https://doi.org/10.1016/j.jksus.2022.102430

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

https://dx.doi.org/https://doi.org/10.1016/0001-6160(79)90196-2
https://dx.doi.org/https://doi.org/10.1016/0001-6160(79)90196-2
https://dx.doi.org/https://doi.org/10.1016/j.camwa.2023.06.018
https://dx.doi.org/https://doi.org/10.1016/j.enganabound.2023.07.014
https://dx.doi.org/https://doi.org/10.1146/annurev.matsci.32.112001.132041
https://dx.doi.org/https://doi.org/10.3390/computation12030051
https://dx.doi.org/https://doi.org/10.3934/math.2024848
https://dx.doi.org/https://doi.org/10.1142/S021800142150013X
https://dx.doi.org/https://doi.org/10.1155/2019/8059716
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2004.04.006
https://dx.doi.org/https://doi.org/10.1063/5.0154657
https://dx.doi.org/https://doi.org/10.3934/math.20231184
https://dx.doi.org/https://doi.org/10.1016/j.jksus.2022.102430

34464

13. B. Xia, R. Yu, X. Song, X. Zhang, J. Kim, An efficient data assimilation algorithm
using the Allen–Cahn equation, Eng. Anal. Bound. Elem., 155 (2023), 511–517.
https://doi.org/10.1016/j.enganabound.2023.07.005

14. H. Zhang, X. Qian, S. Song, Third-order accurate, large time-stepping and maximum-principle-
preserving schemes for the Allen–Cahn equation, Numer. Algorithms, 95 (2024), 1213–1250.
https://doi.org/10.1007/s11075-023-01482-w

15. J. Sun, H. Zhang, X. Qian, S. Song, Up to eighth-order maximum-principle-preserving
methods for the Allen–Cahn equation, Numer. Algorithms, 92 (2023), 1041–1062.
https://doi.org/10.1007/s11075-022-01324-w

16. J. Choi, S. Ham, S. Kwak, Y. Hwang, J. Kim, Stability analysis of an explicit numerical scheme
for the Allen–Cahn equation with high-order polynomial potentials, AIMS Math., 9 (2024), 19332–
19344. https://doi.org/10.3934/math.2024803

17. H. Kim, G. Lee, S. Kang, S. Ham, Y. Hwang, J. Kim, Hybrid numerical method for
the Allen–Cahn equation on nonuniform grids, Comput. Math. Appl., 158 (2024), 167–178.
https://doi.org/10.1016/j.camwa.2023.07.010

18. X. Chen, X. Qian, S. Song, Fourth-order structure-preserving method for the conservative Allen–
Cahn equation, Adv. Appl. Math. Mech., 15 (2023), 159–181. https://doi.org/10.4208/aamm.OA-
2021-0303

19. J. Rubinstein, P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl.
Math., 48 (1992), 249–264. https://doi.org/10.1093/imamat/48.3.249

20. M. Brassel, E. Bretin, A modified phase field approximation for mean curvature flow
with conservation of the volume, Math. Meth. Appl. Sci., 10 (2011), 1157–1180.
https://doi.org/10.1002/mma.1348

21. J. Yang, J. Kim, Efficient and structure-preserving time-dependent auxiliary variable method
for a conservative Allen–Cahn type surfactant system, Eng. Comput., 38 (2022), 5231–5250.
https://doi.org/10.1007/s00366-021-01583-5

22. L. Bronsard, B. Stoth, Volume-preserving mean curvature flow as a limit of a
nonlocal Ginzburg–Landau equation, SIAM J. Math. Anal., 28 (1997), 769–807.
https://doi.org/10.1137/S0036141096298974

23. X. Yang, J. J. Feng, C. Liu, J. Shen, Numerical simulations of jet pinching-off and drop formation
using an energetic variational phase-field method, J. Comput. Phys., 218 (2006), 417–428.
https://doi.org/10.1016/j.jcp.2006.02.010

24. Z. Zhang, H. Tang, An adaptive phase field method for the mixture of two incompressible fluids,
Comput. Fluids, 36 (2007), 1307–1318. https://doi.org/10.1016/j.compfluid.2006.10.001

25. B. Xia, Y. Li, Z. Li, Second-order unconditionally stable direct methods for Allen–
Cahn and conservative Allen–Cahn equations on surfaces, Mathematics, 8 (2020), 1486.
https://doi.org/10.3390/math8091486

26. Z. Sun, S. Zhang, A radial basis function approximation method for conservative
Allen–Cahn equations on surfaces, Appl. Math. Lett., 143 (2023), 108634.
https://doi.org/10.1016/j.aml.2023.108634

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

https://dx.doi.org/https://doi.org/10.1016/j.enganabound.2023.07.005
https://dx.doi.org/https://doi.org/10.1007/s11075-023-01482-w
https://dx.doi.org/https://doi.org/10.1007/s11075-022-01324-w
https://dx.doi.org/https://doi.org/10.3934/math.2024803
https://dx.doi.org/https://doi.org/10.1016/j.camwa.2023.07.010
https://dx.doi.org/https://doi.org/10.4208/aamm.OA-2021-0303
https://dx.doi.org/https://doi.org/10.4208/aamm.OA-2021-0303
https://dx.doi.org/https://doi.org/10.1093/imamat/48.3.249
https://dx.doi.org/https://doi.org/10.1002/mma.1348
https://dx.doi.org/https://doi.org/10.1007/s00366-021-01583-5
https://dx.doi.org/https://doi.org/10.1137/S0036141096298974
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2006.02.010
https://dx.doi.org/https://doi.org/10.1016/j.compfluid.2006.10.001
https://dx.doi.org/https://doi.org/10.3390/math8091486
https://dx.doi.org/https://doi.org/10.1016/j.aml.2023.108634

34465

27. X. Liu, Q. Hong, H. L. Liao, Y. Gong, A multi-physical structure-preserving method and its
analysis for the conservative Allen–Cahn equation with nonlocal constraint, Numer. Algorithms,
97 (2024), 1–21. https://doi.org/10.1007/s11075-023-01502-9

28. J. Yang, J. Kim, Numerical study of incompressible binary fluids on 3D curved surfaces based
on the conservative Allen–Cahn–Navier–Stokes model, Comput. Fluids, 228 (2021), 105094.
https://doi.org/10.1016/j.compfluid.2021.105094

29. J. Yang, J. Kim, A phase-field model and its efficient numerical method for two-phase flows on
arbitrarily curved surfaces in 3D space, Comput. Meth. Appl. Mech. Eng., 372 (2020), 113382.
https://doi.org/10.1016/j.cma.2020.113382

30. C. Lee, S. Kim, S. Kwak, Y. Hwang, S. Ham, S. Kang, J. Kim, Semi-automatic fingerprint image
restoration algorithm using a partial differential equation, AIMS Math., 8 (2023), 27528–27541.
https://doi: 10.3934/math.20231408

31. Y. Choi, J. Kim, Maximum principle preserving and unconditionally stable scheme for
a conservative Allen–Cahn equation, Eng. Anal. Bound. Elem., 150 (2023), 111–119.
https://doi.org/10.1016/j.enganabound.2023.05.005

32. J. Kim, S. Lee, Y. Choi, A conservative Allen–Cahn equation with a
space–time dependent Lagrange multiplier, Int. J. Eng. Sci., 84 (2014), 11–17.
https://doi.org/10.1016/j.ijengsci.2014.06.004

33. Y. Hwang, J. Yang, G. Lee, S. Ham, S. Kang, S. Kwak, et al., Fast and efficient numerical method
for solving the Allen–Cahn equation on the cubic surface, Math. Comput. Simul., 215 (2024), 338–
356. https://doi.org/10.1016/j.matcom.2023.07.024

34. Y. Wang, X. Xiao, X. Feng, Numerical simulation for the conserved Allen–Cahn phase field model
of two-phase incompressible flows by an efficient dimension splitting method, Commun. Nonlinear
Sci. Numer. Simul., 131 (2024), 107874. https://doi.org/10.1016/j.cnsns.2024.107874

35. X. Yang, Efficient, second-order in time, and energy stable scheme for a new hydrodynamically
coupled three components volume-conserved Allen–Cahn phase-field model, Math. Models Meth.
Appl. Sci., 31 (2021), 753–787. https://doi.org/10.1142/S0218202521500184

36. W. Cai, J. Ren, X. Gu, Y. Wang, Parallel and energy conservative/dissipative schemes for
sine–Gordon and Allen–Cahn equations, Comput. Meth. Appl. Mech. Eng., 425 (2024), 116938.
https://doi.org/10.1016/j.cma.2024.116938

37. J. Kim, D. Jeong, S. D. Yang, Y. Choi, A finite difference method for a conservative
Allen–Cahn equation on non-flat surfaces, J. Comput. Phys., 334 (2017), 170–181.
https://doi.org/10.1016/j.jcp.2016.12.060

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 12, 34447–34465.

https://dx.doi.org/https://doi.org/10.1007/s11075-023-01502-9
https://dx.doi.org/https://doi.org/10.1016/j.compfluid.2021.105094
https://dx.doi.org/https://doi.org/10.1016/j.cma.2020.113382
https://dx.doi.org/https://doi: 10.3934/math.20231408
https://dx.doi.org/https://doi.org/10.1016/j.enganabound.2023.05.005
https://dx.doi.org/https://doi.org/10.1016/j.ijengsci.2014.06.004
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2023.07.024
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2024.107874
https://dx.doi.org/https://doi.org/10.1142/S0218202521500184
https://dx.doi.org/https://doi.org/10.1016/j.cma.2024.116938
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2016.12.060
https://creativecommons.org/licenses/by/4.0

	Introduction
	Governing equation
	Numerical method
	Numerical experiments
	Discussion
	Conclusions

