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1. Introduction

The classic Allen–Cahn (AC) equation [1] is a prototypical example of gradient flow associated
with a functional:

E(u) =
∫
Ω

(
F(u(x, t))
ϵ2

+
|∇u(x, t)|2

2

)
dx,

where Ω ⊂ Rd, u(x, t) is an order parameter at spatial point x and time t, ϵ represents the interface
width parameter, and F(u) = 0.25(u2 − 1)2. Thus, the AC equation can be derived through a variational
approach as ∂u/∂t = −δE/δu, which can be expressed as follows.

∂u(x, t)
∂t

= −
F′(u(x, t))
ϵ2

+ ∆u(x, t). (1.1)

The AC equation is a fundamental phase-field model in a wide range of applications such as
materials science [2–4], physics [5], classification [6, 7], and image processing [8, 9]. Its versatility
lies in its ability to describe complex phenomena such as the evolution of phase transitions, where
distinct phases within a material change over time, and the dynamics of interfaces that separate these
phases. These characteristics make the AC equation an essential tool in understanding interface motion
and phase separation in various scientific and engineering contexts [10–13]. The equation captures
critical aspects of interface dynamics, particularly the behavior of systems as they evolve toward a
minimal energy state, driven by forces such as curvature. This makes it a key model for studying
processes where the morphology of interfaces plays a central role. The conventional AC equation
is not conservative but preserves the maximum principle. Recently, several studies have focused on
the maximum-principle-preserving characteristic of the AC equation. Zhang et al. [14] developed
and analyzed the maximum principle preserving method for solving the AC equation. Sun et al. [15]
presented a class of up to temporally eighth-order maximum principle preserving method for the AC
equation. Choi et al. [16] researched stability analysis and maximum principle property of the fully
explicit finite difference scheme for the high-order AC equation. Kim et al. [17] presented a hybrid
numerical method on nonuniform grids for solving the AC equation.

However, in the situations where mass conservation is critical, a conservative variant of the AC
equation is used, which ensures that the total quantity of the evolving order parameter remains constant
over time [18]. To make the AC equation conservative in nature, several different Lagrange multipliers
have been proposed to satisfy the mass conservation law for the AC equation. For example, Rubinstein
and Sternberg [19] introduced a nonlocal space-independent Lagrange multiplier into the AC equation.
Brassel and Bretin [20] proposed a local-nonlocal space-time dependent Lagrange multiplier for mass
conservation of the AC equation. The two conservative forms of the AC equation have received
significant attention, and the conservative AC (CAC) equation satisfies mass conservation while
effectively modeling the dynamics of interfaces. Furthermore, compared to the fourth-order Cahn–
Hilliard equation, the CAC equation is a second-order partial differential equation (PDE), which makes
it simpler to solve [21]. These advantages have motivated a wide range of theoretical and numerical
studies on the CAC equation [22–24]. Xia et al. [25] proposed temporally second-order unconditionally
stable direct schemes for the AC and CAC equations on surfaces. They found that the proposed method
is unconditionally energy-stable. Sun and Zhang [26] developed a meshless radial basis function
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approximation method for the CAC equation on surfaces based on an operator splitting scheme. The
developed numerical method satisfies the mass conservation law of the CAC equation. The authors
demonstrated the accuracy and mass conservation law of the developed method through various
numerical experiments on different smooth and compact surfaces. Liu et al. [27] presented multi-
physical structure-preserving method for the CAC equation. Yang and Kim [28] developed a numerical
method for the conservative Allen–Cahn–Navier–Stokes model on arbitrarily curved surfaces in three-
dimensional (3D) space. Previously, the authors proposed a numerical solution for the Cahn–Hilliard–
Navier–Stokes system on arbitrarily curved surfaces in 3D space [29]. However, simulating mass-
conserving binary flow on such surfaces can be solved more efficiently and straightforwardly using
the CAC equation instead of the Cahn–Hilliard equation [30]. This is because the Cahn–Hilliard
equation is a fourth-order PDE, whereas the conservative Allen–Cahn equation is second-order, which
results in reduced computational cost and complexity. Figure 1 shows the solution obtained using the
numerical method developed by Yang and Kim [28] for the conservative Allen–Cahn–Navier–Stokes
model. The our proposed method focuses on efficiently and rapidly computing the CAC equation in
two-dimensionality (2D) on the surface of a cuboid that approximates a spherical surface in 3D.

Figure 1. The snapshots of the computational solutions. Reprinted from [28] with permission
from Elsevier.

The analysis of the numerical methods based on the finite difference method for the CAC equation
is highly challenging. Consequently, various numerical methods have either replaced the analysis with
numerical verification of properties such as the maximum principle, energy stability, and convergence
or modified the CAC equation to facilitate analysis. Choi and Kim [31] presented a novel CAC equation
with a new Lagrange multiplier that ensures strict preservation of the maximum principle and an
unconditionally stable numerical method, which was validated through computational experiments.
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Moreover, solving this equation on complex geometries, such as curved surfaces, presents challenges
due to the need to accurately capture surface geometry while ensuring numerical stability and
conservation properties. Kim et al. [32] developed the unconditionally stable hybrid scheme for the
CAC equation with a space-time dependent Lagrange multiplier. The authors validated the numerical
methods through various numerical experiments, such as practical unconditional stability tests.

In this paper, we focus on a simple and effective finite difference method (FDM) for solving the CAC
equation on cubic surfaces. In other words, the key aspect is to consider the unique characteristics of
cubic surfaces. The proposed method is simple to implement and can serve as a foundation for various
methods such as implicit and scalar auxiliary variable approaches. The cubic surfaces, which are
characterized by their sharp edges and non-smooth features, pose additional difficulties for numerical
approximation methods [33]. Traditional schemes may struggle with maintaining mass conservation
and interface accuracy in such settings, making the development of specialized algorithms critical.
Therefore, the development of finite difference schemes designed for the CAC equation on surfaces
such as cubic geometries is an area of growing interest.

The structure of this paper is as follows. Section 2 presents the governing CAC equation. Section
3 presents the proposed computational scheme. Section 4 presents numerical tests. In Section 6,
conclusions are presented.

2. Governing equation

We consider the following CAC equation [20]:

∂u(x, t)
∂t

= −
F′(u(x, t))
ϵ2

+ ∆u(x, t) + β(t)
√

F(u(x, t)), x ∈ Ω, t > 0, (2.1)

where Ω is a bounded domain in Rd (d = 1, 2, 3), u(x, t) is conserved order parameter, and β(t) is given
by

β(t) =

∫
Ω

F′(u(x, t))dx

ϵ2
∫
Ω

√
F(u(x, t))dx

.

We define the unit cubic surface domain Ω̂ in 3D space as follows to solve the problem on the unit
cubic surface.

Ω̂ = {(x, y, z)|(x, y, 0), (x, 0, z), (1, y, z), (x, 1, z), (0, y, z), (x, y, 1), 0 ≤ x, y, z ≤ 1}. (2.2)

Then, the cubic surface domain Ω̂ is decomposed into sub-domains Ω̂k, k = 1, 2, . . . , 6.

Ω̂1 = {(x, y, z) | 0 < x, y < 1, z = 0}, Ω̂2 = {(x, y, z) | 0 < x, z < 1, y = 0},
Ω̂3 = {(x, y, z) | 0 < y, z < 1, x = 1}, Ω̂4 = {(x, y, z) | 0 < x, z < 1, y = 1},
Ω̂5 = {(x, y, z) | 0 < y, z < 1, x = 0}, Ω̂6 = {(x, y, z) | 0 < x, y < 1, z = 1},

Ω̂ = ∪6
k=1Ω̂k,
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where Ω̂k denotes the closure of the set Ω̂k for k = 1, . . . , 6. To define the unfolded cubic surface
domain, we define the sub-domains in 2D space as follows.

Ω1 = {(x,−y) | (x, y, 0) ∈ Ω̂1}, Ω2 = {(x, z + 1) | (x, 0, z) ∈ Ω̂2},

Ω3 = {(y + 1, z + 1) | (1, y, z) ∈ Ω̂3}, Ω4 = {(3 − x, z + 1) | (x, 1, z) ∈ Ω̂4},

Ω5 = {(4 − y, z + 1) | (0, y, z) ∈ Ω̂5}, Ω6 = {(x, y + 2) | (x, y, 1) ∈ Ω̂6}.

Thus, the unfolded cubic surface domain is defined by Ω = ∪6
k=1Ωk. Figure 2 displays the schematic

illustration of the folded and unfolded cubic surface domains. We can observe that the proposed
numerical scheme can be easily extended to surfaces of arbitrarily sized cuboids. Unless stated
otherwise, we consider the unit cubic surface.

(a)
(b)

Figure 2. Schematic illustrations of (a) the folded and (b) unfolded cubic surface domains.

We consider the folded cubic surface in 3D space and apply proper boundary conditions to each sub-
domain Ωk for k = 1, 2, . . . , 6. For example, we focus a sub-domain Ω4, and the boundary conditions
are shown Figure 3(a).

Similarly, we apply the boundary condition for the other sub-domainΩk, k = 1, 2, 3, 5, 6 considering
the folded cubic surface domain. To prove the mass conservation law of the CAC equation on a cubic
surface, we define the total mass, denoted byM(u), as

M(u) =
∫
Ω

u(x, t) + 1
2

dx, (2.3)

which can be written as ∫
Ω

u(x, t)dx = 2M(u) −
∫
Ω

1dx. (2.4)

Therefore, it is equivalent to state that
∫
Ω

u(x, t)dx is constant, which implies that M(u) is constant.
Taking the time derivative of Eq (2.3), we have

dM
dt

=
1
2

∫
Ω

∂u(x, t)
∂t

dx =
1
2

∫
Ω

[
−

F′(u(x, t))
ϵ2

+ ∆u(x, t) + β(t)
√

F(u(x, t))
]

dx
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=
1
2

∫
Ω

∆u(x, t)dx. (2.5)

Considering that the unfolded domain Ω consists of a combination of six sub-domains Ωk, k =
1, 2, . . . , 6, we obtain the following equation:

∫
Ω

∆u(x, t)dx =
6∑

k=1

∫
Ωk

∆u(x, t)dx.

By using the equation above and Green’s theorem, we can rewrite Eq (2.5) as follows.

1
2

∫
Ω

∆u(x, t)dx =
1
2

6∑
k=1

∫
Ωk

∆u(x, t)dx =
1
2

6∑
k=1

∫
∂Ωk

∇u(x, t) · nds, (2.6)

where ∂Ωk, k = 1, 2, . . . , 6 are curves oriented in the positive direction. We calculate Eq (2.6) by
breaking up ∂Ωk for k = 1, 2, . . . , 6 as the union of the four curves ∂Ωk,1, ∂Ωk,2, ∂Ωk,3, and ∂Ωk,4, as
shown for Ω4 in Figure 3(b).

1
2

6∑
k=1

∫
∂Ωk

∇u(x, t) · nds =
1
2

6∑
k=1

4∑
c=1

∫
∂Ωk,c

∇u(x, t) · nds.

For each ∂Ωk,c, k = 1, . . . , 6, c = 1, 2, . . . , 4, there exist line integrals with opposite directions that
cancel each other out. Therefore, we have

dM
dt
=

1
2

6∑
k=1

4∑
c=1

∫
∂Ωk,c

∇u(x, t) · nds = 0,

which shows that the mass conservation law of the CAC equation on the unfolded cubic surface is
satisfied.

(a) (b)
Figure 3. Schematic illustrations of boundary conditions for sub-domain Ω4.
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3. Numerical method

Now, we describe the numerical method of the CAC equation on the cubic surface. Let the number
of grid N for a one sub-domain be a positive integer. Then, we define the set of indexes for the sub-
domain Ωk, k = 1, 2, . . . , 6 and Ω.

Id
1 = {(i, j) | i = 1, 2, . . . ,N, j = 1, 2 . . . ,N},

Id
2 = {(i, j) | i = 1, 2 . . . ,N, j = N + 1,N + 2, . . . , 2N},

Id
3 = {(i, j) | i = N + 1,N + 2, . . . , 2N, j = N + 1,N + 2, . . . , 2N},

Id
4 = {(i, j) | i = 2N + 1, 2N + 2, . . . , 3N, j = N + 1,N + 2, . . . , 2N},

Id
5 = {(i, j) | i = 3N + 1, 3N + 2, . . . , 4N, j = N + 1,N + 2, . . . , 2N},

Id
6 = {(i, j) | i = 1, 2, . . . ,N, j = 2N + 1, 2N + 2, . . . , 3N},

Id = ∪6
k=1Id

k .

The discretization domains for the sub-domains Ωk, k = 1, · · · , 6 in 2D space are defined by Ωd
k =

{(xi = (i − 0.5)h, y j = ( j − 0.5)h) | (i, j) ∈ Ik}, where h = 1/N is a space step size. We discretize
unfolded cubic surface domain Ω as Ωd = ∪6

k=1Ω
d
k , see Figure 4(a).

Next, we consider the boundary conditions for the domain Ωd. For clarity, we focus only on one
sub-domain Ωd

4, within the unfolded cubic surface domain Ωd. The boundary conditions at x = 2
and x = 3 for Ωd

4 are appropriately defined by the sub-domains Ωd
3 and Ωd

5 of the discrete unfolded
cubic surface domain Ωd. However, the boundary conditions at y = 1 and y = 2 for Ωd

4 are defined
by rotating Ωd

1 and Ωd
6 counterclockwise and clockwise by 180 degrees, respectively, and then placing

them below and above Ωd
4 respectively. These boundary conditions are schematically shown in Figure

4(b). Thus, considering the folded cubic surface, we apply boundary conditions for each subdomain
Ωd

k , k = 1, 2, . . . , 6 of the discrete unfolded cubic surface domain. For m = 1, . . . ,N,

On Ωd
1, u0,m = u3N+m,N+1, um,0 = u3N+1−m,N+1, uN+1,m = u2N+1−m,N+1,

On Ωd
2, u0,N+m = u4N,N+m,

On Ωd
3, , un

N+i,N = un
N,N+1−m, un

N+m,2N+1 = un
N,2N+m,

On Ωd
4, u2N+m,N = uN+1−m,1, u2N+m,2N+1 = uN+1−m,3N ,

On Ωd
5, u3N+m,N = u1,m, u3N+m,2N+1 = u1,3N+1−m, u4N+1,N+m = u1,N+m,

On Ωd
6, u0,2N+m = u4N+1−m,2N , um,3N+1 = u3N+1−m,2N , uN+1,2N+m = uN+m,2N .

The discrete total mass is defined by

Mh(un) =
∑

(i, j)∈Id

un
i j + 1

2
h2.

The proposed algorithm consists of two steps. First, we compute

u∗i j − un
i j

∆t
= −

F′(un
i j)

ϵ2
+

un
i+1, j + un

i−1, j + un
i, j+1 + un

i, j−1 − 4un
i j

h2

=
un

i j − (un
i j)

3

ϵ2
+

un
i+1, j + un

i−1, j + un
i, j+1 + un

i, j−1 − 4un
i j

h2 .
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Thus, we have

u∗i j = un
i j + ∆t

(un
i j − (un

i j)
3

ϵ2
+

un
i+1, j + un

i−1, j + un
i, j+1 + un

i, j−1 − 4un
i j

h2

)
. (3.1)

Next, we compute the conservation term using the solution of Eq (3.1) to solve the CAC equation.

un+1
i j = u∗i j + ∆tβ∗

√
F(u∗i j), (3.2)

where

β∗ =

∑
(i, j)∈Id (u0

i j − u∗i j)

∆t
∑

(i, j)∈Id

√
F(u∗i j)

.

0 1 2 3 4

1

2

3

(a)
0 1 2 3 4

1

2

3

(b)
Figure 4. Schematic of numerical discrete domain Ωd and boundary conditions for the Ωd

4.

Theorem 1. The proposed method satisfies the discrete mass conservation law of the CAC equation.

Proof. For any nonnegative integer n, we can rewrite Eq (3.2) by the definition of β∗ as

un+1
i j = u∗i j +

∑
(i, j)∈Id (u0

i j − u∗i j)∑
(i, j)∈Id

√
F(u∗i j)

√
F(u∗i j).

Thus, we obtain the following equation:

∑
(i, j)∈Id

un+1
i j =

∑
(i, j)∈Id

u∗i j +

∑
(i, j)∈Id (u0

i j − u∗i j)∑
(i, j)∈Id

√
F(u∗i j)

√
F(u∗i j)


=

∑
(i, j)∈Id

u∗i j +

∑
(i, j)∈Id (u0

i j − u∗i j)∑
(i, j)∈Id

√
F(u∗i j)

∑
(i, j)∈Id

√
F(u∗i j) =

∑
(i, j)∈Id

u0
i j.
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Hence, the proposed scheme satisfies the mass conservation law of the CAC equation by the above
equation.

Mh(un+1) =
∑

(i, j)∈Id

un+1
i j + 1

2
h2 =

h2

2

∑
(i, j)∈Id

un+1
i j + 3N2h2

=
h2

2

∑
(i, j)∈Id

u0
i j + 3N2h2 =Mh(u0).

□

4. Numerical experiments

Now, we perform the numerical simulation for the CAC equation using the proposed method. We
define the three-dimensional domain Ω̂ as the cubic surface with a side length L = 5 and then Ωd is
defined as the corresponding discrete unfolded cubic surface domain. The normalized discrete total
mass is defined byMh(un)/L2. The interface layer parameter with the spatial step size is defined as

ϵm =
mh

2
√

2 tanh−1(0.9)
,

which means there are m grid points in the interface layer. First, we consider the following initial
condition on Ωd.

u(xi, y j, 0) = −0.8 + 0.1rand(xi, y j),

where rand(xi, y j) is random value from −1 to 1 at the point (xi, y j). The parameters used are N = 128,
ϵ = ϵ8, ∆t = 0.5ϵ2h2/(2ϵ2 + h2), and T = 100.788. We define the maximum and minimum values of
the computational solutions at n∆t as

Max(un) = max
(i, j)∈Id

un
i j, Min(un) = min

(i, j)∈Id
un

i j,

respectively. Figure 5 displays the temporal evolution of the computational solution for the CAC
equation. The computational results from the numerical simulation show a distinct process of
domain coarsening, where larger domains grow progressively larger while smaller domains shrink and
eventually disappear. This phenomenon reflects the tendency of the system to minimize its interfacial
energy, which leads to the dominance of larger regions and the elimination of smaller ones over time.

We observed that the computational solution calculated using the proposed algorithm satisfies the
discrete mass conservation. Furthermore, we maintain the properties of the CAC equation when the
interface of numerical solutions of the CAC equation solved by the proposed scheme crosses the
boundary between different Ωd

k .
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(a) t = 0.168 (b) t = 1.008 (c) t = 100.788

0 20 40 60 80 100

-1

-0.5

0

0.5

1

(d)
Figure 5. (a)–(c) Numerical solution for the CAC equation at times t = 0.168, 1.008, and
100.788. (d) Temporal evolution of the maximum and minimum values, and the normalized
discrete total mass of the computational solutions.

Next, the following initial condition is considered to observe the effect of the unit folded cubic
surface domain.

u(xi, y j, 0) =


1 if

√
(xi − 2.5)2 + (y j − 12.5)2 < 0.3,

1 if 9.25 < y j < 9.75,
−1 otherwise.

The parameters used are N = 128, ϵ = ϵ8, ∆t = 0.5ϵ2h2/(2ϵ2 + h2), and T = 7.727. Figure 6 shows the
computational solutions for the CAC equation at time t = 0, 1.176, 4.368, and 7.727.

(a) Initial (b) t = 1.176 (c) t = 4.368 (d) t = 7.727
Figure 6. Snapshots of the numerical solution for the CAC equation are shown at times t = 0,
1.176, 4.368, and 7.727.
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We can observe that the interface layer of computational solutions at Ωk for k = 2, 3, 4, 5 tends to
approach the boundary withΩ6 by the CAC equation, while the characteristics of folded cubic surfaces
result in the interface layer crossing the boundary and forming a circle according to the geometric
properties of the CAC equation. We use the following initial condition, similar to the above, except
with some different phase positions.

u(xi, y j, 0) =


1 if

√
(xi − 2.5)2 + (y j − 12.5)2 < 0.3,

1 if 8.75 < y j < 9.25,
−1 otherwise.

The parameters used are N = 128, ϵ = ϵ8, ∆t = 0.5ϵ2h2/(2ϵ2 + h2), and T = 1.680. Figure 7 shows
the numerical solutions for the CAC equation on the folded cubic surface using the proposed scheme.

(a) Initial (b) t = 0.336 (c) t = 1.008 (d) t = 1.680
Figure 7. Snapshots of the numerical solution for the CAC equation are shown at times
t = 0, 0.336, 1.008, and 1.680.

We observe that the computational solution quickly becomes equilibrium in Ωk for k = 2, 3, 4, 5
since the interface layer does not cross the boundary of Ω6, unlike the results in Figure 6.

Next, the two initial conditions on Ωd are given by

u(xi, y j, 0) =



1 if 2.5 − w < xi < 2.5 + w, 2.5 − w < y j < 2.5 + w, (xi, y j) ∈ Ωd
1,

1 if 2.5 − w < xi < 2.5 + w, 7.5 − w < y j < 7.5 + w, (xi, y j) ∈ Ωd
2,

1 if 7.5 − w < xi < 7.5 + w, 7.5 − w < y j < 7.5 + w, (xi, y j) ∈ Ωd
3,

1 if 12.5 − w < xi < 12.5 + w, 7.5 − w < y j < 7.5 + w, (xi, y j) ∈ Ωd
4,

1 if 17.5 − w < xi < 17.5 + w, 7.5 − w < y j < 7.5 + w, (xi, y j) ∈ Ωd
5,

1 if 2.5 − w < xi < 2.5 + w, 12.5 − w < y j < 12.5 + w, (xi, y j) ∈ Ωd
6,

−1 otherwise,

where w = 0.4 or w = 0.5. We used parameters N = 128, ϵ = ϵ8, ∆t = 0.5ϵ2h2/(2ϵ2 + h2), T = 1.680.
The top and bottom rows in Figure 8 show the temporal evolution of the numerical solutions of the
CAC equation with w = 0.4 and w = 0.5, respectively, at times t = 0, 0.504, 0.840, and 1.680.
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(a) Initial (b) t = 0.504 (c) t = 0.840 (d) t = 1.680
Figure 8. Snapshot of the numerical solutions of the CAC equation with w = 0.4, 0.5 from
top to bottom.

We investigate the property of motion by mass conserving mean curvature flow on a cubic surface.
The initial condition is defined as follows:

u(x, y, 0) =


1, if 12 < y < 13,
1, if 2 < (x mod 5) < 3, y > 8,
−1, otherwise,

where x mod 5 represents the remainder when x is divided by 5. The parameters used are N = 100,
ϵ = ϵ8, ∆t = 0.5ϵ2h2/(2ϵ2 + h2), and T = 1.927. Figure 9 shows the temporal evolution of u. In Fig.
9(a), the phase of u presents like a cross-shaped structure with sharp interfaces. As time progresses,
the interface gradually smooths out due to mass conserving mean curvature flow. As shown in Figure
9(d), the interface eventually evolves into a stable, circular shape near the top of the domain.

(a) t = 0 (b) t = 0.275 (c) t = 1.101 (d) t = 1.927
Figure 9. Numerical solutions of u for motion by mean curvature flow at (a) t = 0, (b)
t = 0.275, (c) t = 1.101, and (d) t = 1.927.

5. Discussion

In this section, we discuss the application of an implicit scheme for the CAC equation on cubic
surfaces, along with its potential benefits and limitations of the implicit scheme, and compare
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the implicit scheme with the proposed explicit numerical method through numerical experiments.
Generally, the implicit scheme provides higher stability than the explicit scheme. This means that,
compared to the time step size limitation of the explicit scheme, the implicit scheme can use relatively
larger time step sizes without causing the numerical solution to blow up, thus maintaining stability
[34,35]. However, since the implicit scheme requires solving a nonlinear system at each time step, the
computations can become more complex and time-consuming depending on the given discretization
grid [36]. To compare the proposed method with the implicit scheme, a nonlinear convex splitting
method is applied to the CAC equation [37].

u∗i j − un
i j

∆t
=

un
i j − (u∗i j)

3

ϵ2
+

u∗i+1, j + u∗i−1, j + u∗i, j+1 + u∗i, j−1 − 4u∗i j

h2 , (5.1)

un+1
i j = u∗i j + ∆tβ∗

√
F(u∗i j). (5.2)

Let u∗,si j and u∗,s+1
i j be the approximations of u∗i j before and after a Gauss–Seidel iteration, respectively.

We linearize the nonlinear term (u∗i j)
3 in the Gauss–Seidel iteration method as

(u∗,s+1
i j )3 = 3(u∗,si j )2u∗,s+1

i j − 2(u∗,si j )3.

Thus, Eq. (5.1) can be rewritten in Gauss–Seidel form as follows.

u∗,s+1
i j =

( 1
∆t
+

1
ϵ2

)
un

i j +
2
ϵ2

(u∗,si j )3 +
u∗,si+1, j + u∗,s+1

i−1, j + u∗,si, j+1 + u∗,s+1
i, j−1

h2

 /D, (5.3)

where

D =
1
∆t
+

3(u∗,si j )2

ϵ2
+

4
h2 .

The discrete l2-norm is defined as ∥un∥2 =
√∑

(i, j)∈Id (un
i j)2/(6N2). We calculate Eq. (5.3) repeatedly

until the l2-norm of the consecutive error ∥u∗,s+1
i j − u∗,si j ∥2 is less than a given tolerance tol = 10−6. For

numerical simulation, the initial condition on Ωd is given by

u(xi, y j, 0) =


1, if 6.5 < y j < 8.5, xi < 7,
1, if 6.5 < y j < 8.5, xi > 18,
−1, otherwise.

The parameters used are N = 128, ϵ = ϵ8, and the final time T = 12.5. The implicit convex splitting
scheme allows for the use of larger time step sizes. Therefore, we use ∆t = 0.00025 for the proposed
method, while the implicit method uses a time step size that is 8 times larger, ∆t = 0.002. Figure 10
shows the zero-contour of the computational solutions of the CAC equation using the proposed and
implicit convex splitting methods. The solid line shows the computational solution from the proposed
scheme, while the dashed line displays that from the implicit scheme.
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(a) Initial (b) t = 2 (c) t = 4 (d) t = 12.5
Figure 10. The zero-level contour of the numerical solution using the proposed and implicit
schemes at times t = 0, 2, 4, and 12.5. The solid line represents the numerical solution using
the proposed method and the dashed line represents the numerical solution using the implicit
method.

We observed that the numerical solution using the implicit scheme is less affected by the motion
by mass conserving mean curvature compared to the numerical solution using the proposed method.
Table 1 lists the central processing unit (CPU) time for obtaining a numerical solution for time t = 12.5
of the CAC equation using the explicit and implicit convex splitting methods.

Table 1. CPU times for different numerical scheme.

Method Proposed Implicit
CPU time(s) 177.6461 384.0172

We observed that although the time step size used in the implicit method was 8 times larger than
that used in the proposed method, the CPU time for the implicit method was more than 2 times as long.

6. Conclusions

In this work, we introduced a fully numerical method for solving the CAC equation on a cubic
surface. The method is structured in two steps: first, solving the AC equation using an efficient explicit
finite difference approach, followed by incorporating a conservation term to ensure consistency with
the conservation principles of the CAC equation. Numerical experiments confirm that the proposed
scheme effectively conserves discrete mass, a critical requirement for the accurate solution of the CAC
equation. Furthermore, the solution showed constrained motion by mass conserving mean curvature,
another essential property of the CAC equation, which validates the robustness and accuracy of the
proposed method. These findings demonstrate that the scheme is both reliable and computationally
efficient for solving the CAC equation on complex geometries such as cubic surfaces. In future
work, we will consider unconditionally stable and high-order accurate numerical methods for the CAC
equation on cubic surfaces and perform an analysis of the stability, convergence, and consistency, etc.,
of the numerical methods.
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Appendix

The following code is the main program with a random initial condition, which is also available
from the corresponding author’s webpage:

https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/

1 c lear ; fs = 23; ax is f s = 19; lw = 1.5 ; ms = 8;
2 N = 128; NN = 100; cN = l inspace ( -1 ,1 ,NN+1) ; falpha = 0.6 ; Nx = 4*N; Ny = 3*N; rand ( ' seed ' ,0830)
3 xL = 0; xR = 20; yL = 0; yR = Ny/Nx*xR; h = (xR-xL) /Nx; h2 = hˆ2 ; NNN = 100;
4 x = l inspace (xL-0.5*h ,xR+0.5*h ,Nx+2) ; y = l inspace (yL-0.5*h ,yR+0.5*h ,Ny+2) ;
5 m = 8; eps = m*h /(2* sqr t (2)*atanh (0 .9 ) ) ; dt = 0.5*epsˆ2*hˆ2 /(2* epsˆ2+hˆ2) ; Nt = 300000; T = dt*Nt
6 phi = -0.8+0.1*(1 -2* rand (Nx+2,Ny+2) ) ; phi0 = phi ;
7
8 f igure (1) ; c l f ; hold on ; box on ; se t ( gcf , ' pos i t ion ' ,[100 500 500 350])
9 xxx = l inspace (xL/4+0.5*h ,xR/4 -0.5*h ,N) ; yyy = l inspace (xL/4+0.5*h ,xR/4 -0.5*h ,N) ;

10 [xx , yy] = meshgrid (xxx , yyy) ; t = hgtransform ;
11 [C, hh] = contourf (xx , yy , phi (2 :N+1,N+1: -1:2) ' ,cN, ' facealpha ' , falpha , ' LineStyle ' , ' none ' ) ;
12 hh . ZLocation = xL/4+0.5*h ;
13 [C, hh] = contourf (xx , yy , phi (2 :N+1,2*N+2:3*N+1) ' ,cN, ' facealpha ' , falpha , ' LineStyle ' , ' none ' ) ;
14 hh . ZLocation = xR/4 -0.5*h ;
15 [C, hh] = contourf (xx , yy , phi (2 :N+1,N+2:2*N+1) ' ,cN, ' facealpha ' , falpha , ' Parent ' , t , ' LineStyle ' , ' none ' ) ;
16 hh . ZLocation = -0.5*h ; ry angle = 1/2* pi ;
17 Ry = makehgtform( ' xro ta te ' , ry angle ) ; t . Matrix = Ry; t2 = hgtransform ;
18 [C, hh] = contourf (xx , yy , phi (N+2:2*N+1,N+2:2*N+1) ,cN, ' facealpha ' , falpha , ' Parent ' , t2 , ' LineStyle ' , ' none ' ) ;
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19 hh . ZLocation = -0.5*h ; ry angle = -1/2* pi ; Ry = makehgtform( ' yro ta te ' , ry angle ) ;
20 t2 . Matrix = Ry; hh . ZLocation = -xR/4+0.5*h ; t3 = hgtransform ;
21 [C, hh] = contourf (xx , yy , phi (3*N+1: -1:2*N+2,N+2:2*N+1) ' ,cN, ' facealpha ' , falpha , ' Parent ' , t3 , ' LineStyle ' , ' none ' ) ;
22 hh . ZLocation = -0.5*h ; ry angle = 1/2* pi ; Ry = makehgtform( ' xro ta te ' , ry angle ) ;
23 t3 . Matrix = Ry; hh . ZLocation = -xR/4+0.5*h ; t4 = hgtransform ;
24 [C, hh] = contourf (xx , yy , phi (4*N+1: -1:3*N+2,N+2:2*N+1) ,cN, ' facealpha ' , falpha , ' Parent ' , t4 , ' LineStyle ' , ' none ' ) ;
25 hh . ZLocation = -0.5*h ; ry angle = -1/2* pi ; Ry = makehgtform( ' yro ta te ' , ry angle ) ;
26 t4 . Matrix = Ry; hh . ZLocation = -0.5*h ;
27 se t ( gca , 'CLim ' ,[ -1 1] , ' fon ts ize ' , ax i s f s ) ; axis ( [xL/4 xR/4 xL/4 xR/4 xL/4 xR /4 ] )
28 plot3 ( [xL/4 xL /4 ] , [xL/4 xL /4 ] , [xL/4 xR/4] , ' k - ' , [xL/4 xL /4 ] , [xL/4 xR /4 ] , [xL/4 xL /4] , ' k - ' . . .
29 , [xL/4 xR /4 ] , [xL/4 xL /4 ] , [xL/4 xL /4] , ' k - ' , ' l inewidth ' , lw)
30 plot3 ( [xR/4 xR /4 ] , [xR/4 xR /4 ] , [xL/4 xR/4] , ' k - ' , [xR/4 xR /4 ] , [xL/4 xR /4 ] , [xR/4 xR/4] , ' k - ' . . .
31 , [xL/4 xR /4 ] , [xR/4 xR /4 ] , [xR/4 xR/4] , ' k - ' , ' l inewidth ' , lw)
32 plot3 ( [xL/4 xL /4 ] , [xR/4 xR /4 ] , [xL/4 xR/4] , ' k - ' , [xL/4 xL /4 ] , [xL/4 xR /4 ] , [xR/4 xR/4] , ' k - ' . . .
33 , [xL/4 xR /4 ] , [xL/4 xL /4 ] , [xR/4 xR/4] , ' k - ' , ' l inewidth ' , lw)
34 plot3 ( [xR/4 xR /4 ] , [xL/4 xL /4 ] , [xL/4 xR/4] , ' k - ' , [xR/4 xR /4 ] , [xL/4 xR /4 ] , [xL/4 xL /4] , ' k - ' . . .
35 , [xL/4 xR /4 ] , [xR/4 xR /4 ] , [xL/4 xL /4] , ' k - ' , ' l inewidth ' , lw)
36 xt icks ( [xL/4 xR /4 ] ) ; y t icks ( [xL/4 xR /4 ] ) ; z t icks ( [xL/4 xR /4 ] ) ; view([ -35 20]) ; axis image ;
37 axis ( [xL/4 xR/4 xL/4 xR/4 xL/4 xR /4 ] ) ; colormap j e t ; a = colorbar ; a . Posi t ion = [0.88 0.12 0.0275 0 .8 ] ;
38 t ex t ( ' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' $x$ ' , ' FontSize ' , f s+2, ' Posi t ion ' , [3.16 -1.77 0.26])
39 t ex t ( ' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' $y$ ' , ' FontSize ' , fs , ' Posi t ion ' , [ -1.96 2.19 0.54])
40 t ex t ( ' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' $z$ ' , ' FontSize ' , f s+2, ' Posi t ion ' , [ -1.58 3.89 4.96]) ; drawnow;
41
42 for i t = 1:Nt
43 phi (1 ,2 :N+1) = phi (3*N+2:4*N+1,N+2) ; phi (2 :N+1,1) = phi (3*N+1: -1:2*N+2,N+2) ;
44 phi (N+2 ,2:N+1) = phi (2*N+1: -1:N+2,N+2) ; phi (1 ,N+2:2*N+1) = phi (4*N+1,N+2:2*N+1) ;
45 phi (1 ,2*N+2:3*N+1) = phi (4*N+1: -1:3*N+2,2*N+1) ; phi (2 :N+1,3*N+2) = phi (3*N+1: -1:2*N+2,2*N+1) ;
46 phi (N+2,2*N+2:3*N+1) = phi (N+2:2*N+1,2*N+1) ; ophi1 = phi ;
47 phi (N+2:2*N+1,N+1) = phi (N+1,N+1: -1:2) ; phi (N+2:2*N+1,2*N+2) = phi (N+1,2*N+2:3*N+1) ;
48 phi (2*N+2:3*N+1,N+1) = phi (N+1: -1:2 ,2) ; phi (2*N+2:3*N+1,2*N+2) = phi (N+1: -1:2 ,3*N+1) ;
49 phi (3*N+2:4*N+1,N+1) = phi (2 ,2 :N+1) ; phi (3*N+2:4*N+1,2*N+2) = phi (2 ,3*N+1: -1:2*N+2) ;
50 phi (4*N+2,N+2:2*N+1) = phi (2 ,N+2:2*N+1) ; ophi = phi ;
51 phi (2 :N+1 ,2:Ny+1) = ophi1 (2 :N+1 ,2:Ny+1) . . .
52 +dt *(( ophi1 (2 :N+1 ,2:Ny+1) -ophi1 (2 :N+1 ,2:Ny+1) . ˆ 3 ) / eps ˆ2 . . .
53 +(ophi1 (1 :N, 2 :Ny+1)+ophi1 (3 :N+2 ,2:Ny+1)+ophi1 (2 :N+1 ,1:Ny)+ophi1 (2 :N+1 ,3:Ny+2) . . .
54 -4*ophi1 (2 :N+1 ,2:Ny+1) ) /hˆ2) ;
55 phi (N+2:Nx+1,N+2:2*N+1) = ophi (N+2:Nx+1,N+2:2*N+1) . . .
56 +dt *(( ophi (N+2:Nx+1,N+2:2*N+1) -ophi (N+2:Nx+1,N+2:2*N+1) . ˆ 3 ) / eps ˆ2 . . .
57 +(ophi (N+1:Nx,N+2:2*N+1)+ophi (N+3:Nx+2,N+2:2*N+1) . . .
58 +ophi (N+2:Nx+1,N+1:2*N)+ophi (N+2:Nx+1,N+3:2*N+2) -4*ophi (N+2:Nx+1,N+2:2*N+1) ) /hˆ2) ;
59 beta = (sum( phi0 (2 :N+1 ,2:Ny+1) - phi (2 :N+1 ,2:Ny+1) , ' a l l ' )+sum( phi0 (N+2:Nx+1,N+2:2*N+1) . . .
60 - phi (N+2:Nx+1,N+2:2*N+1) , ' a l l ' ) ) / ( sum(0.5* abs ( phi (2 :N+1 ,2:Ny+1) . ˆ2 -1) , ' a l l ' ) . . .
61 +sum(0.5* abs ( phi (N+2:Nx+1,N+2:2*N+1) . ˆ2 -1) , ' a l l ' ) ) ;
62 phi (2 :N+1 ,2:Ny+1) = phi (2 :N+1 ,2:Ny+1)+beta *0.5*abs ( phi (2 :N+1 ,2:Ny+1) . ˆ2 -1) ;
63 phi (N+2:Nx+1,N+2:2*N+1) = phi (N+2:Nx+1,N+2:2*N+1)+beta *0.5*abs ( phi (N+2:Nx+1,N+2:2*N+1) . ˆ2 -1) ;
64
65 i f mod( i t ,NNN) == 0
66 f igure (2) ; c l f ; hold on ; box on ; se t ( gcf , ' pos i t ion ' ,[100 500 500 350])
67 xxx = l inspace (xL/4+0.5*h ,xR/4 -0.5*h ,N) ; yyy = l inspace (xL/4+0.5*h ,xR/4 -0.5*h ,N) ;
68 [xx , yy] = meshgrid (xxx , yyy) ; t = hgtransform ;
69 [C, hh] = contourf (xx , yy , phi (2 :N+1,N+1: -1:2) ' ,cN, ' facealpha ' , falpha , ' LineStyle ' , ' none ' ) ;
70 hh . ZLocation = xL/4+0.5*h ;
71 [C, hh] = contourf (xx , yy , phi (2 :N+1,2*N+2:3*N+1) ' ,cN, ' facealpha ' , falpha , ' LineStyle ' , ' none ' ) ;
72 hh . ZLocation = xR/4 -0.5*h ;
73 [C, hh] = contourf (xx , yy , phi (2 :N+1,N+2:2*N+1) ' ,cN, ' facealpha ' , falpha , ' Parent ' , t , ' LineStyle ' , ' none ' ) ;
74 hh . ZLocation = -0.5*h ; ry angle = 1/2* pi ;
75 Ry = makehgtform( ' xro ta te ' , ry angle ) ; t . Matrix = Ry; t2 = hgtransform ;
76 [C, hh] = contourf (xx , yy , phi (N+2:2*N+1,N+2:2*N+1) ,cN, ' facealpha ' , falpha , ' Parent ' , t2 , ' LineStyle ' , ' none ' ) ;
77 hh . ZLocation = -0.5*h ; ry angle = -1/2* pi ; Ry = makehgtform( ' yro ta te ' , ry angle ) ;
78 t2 . Matrix = Ry; hh . ZLocation = -xR/4+0.5*h ; t3 = hgtransform ;
79 [C, hh] = contourf (xx , yy , phi (3*N+1: -1:2*N+2,N+2:2*N+1) ' ,cN, ' facealpha ' , falpha , ' Parent ' , t3 , ' LineStyle ' , ' none ' ) ;
80 hh . ZLocation = -0.5*h ; ry angle = 1/2* pi ; Ry = makehgtform( ' xro ta te ' , ry angle ) ;
81 t3 . Matrix = Ry; hh . ZLocation = -xR/4+0.5*h ; t4 = hgtransform ;
82 [C, hh] = contourf (xx , yy , phi (4*N+1: -1:3*N+2,N+2:2*N+1) ,cN, ' facealpha ' , falpha , ' Parent ' , t4 , ' LineStyle ' , ' none ' ) ;
83 hh . ZLocation = -0.5*h ; ry angle = -1/2* pi ; Ry = makehgtform( ' yro ta te ' , ry angle ) ;
84 t4 . Matrix = Ry; hh . ZLocation = -0.5*h ;
85 se t ( gca , 'CLim ' ,[ -1 1] , ' fon ts ize ' , ax i s f s ) ; axis ( [xL/4 xR/4 xL/4 xR/4 xL/4 xR /4 ] )
86 plot3 ( [xL/4 xL /4 ] , [xL/4 xL /4 ] , [xL/4 xR/4] , ' k - ' , [xL/4 xL /4 ] , [xL/4 xR /4 ] , [xL/4 xL /4] , ' k - ' . . .
87 , [xL/4 xR /4 ] , [xL/4 xL /4 ] , [xL/4 xL /4] , ' k - ' , ' l inewidth ' , lw)
88 plot3 ( [xR/4 xR /4 ] , [xR/4 xR /4 ] , [xL/4 xR/4] , ' k - ' , [xR/4 xR /4 ] , [xL/4 xR /4 ] , [xR/4 xR/4] , ' k - ' . . .
89 , [xL/4 xR /4 ] , [xR/4 xR /4 ] , [xR/4 xR/4] , ' k - ' , ' l inewidth ' , lw)

AIMS Mathematics Volume 9, Issue 12, 34447–34465.



34463

90 plot3 ( [xL/4 xL /4 ] , [xR/4 xR /4 ] , [xL/4 xR/4] , ' k - ' , [xL/4 xL /4 ] , [xL/4 xR /4 ] , [xR/4 xR/4] , ' k - ' . . .
91 , [xL/4 xR /4 ] , [xL/4 xL /4 ] , [xR/4 xR/4] , ' k - ' , ' l inewidth ' , lw)
92 plot3 ( [xR/4 xR /4 ] , [xL/4 xL /4 ] , [xL/4 xR/4] , ' k - ' , [xR/4 xR /4 ] , [xL/4 xR /4 ] , [xL/4 xL /4] , ' k - ' . . .
93 , [xL/4 xR /4 ] , [xR/4 xR /4 ] , [xL/4 xL /4] , ' k - ' , ' l inewidth ' , lw)
94 xt icks ( [xL/4 xR /4 ] ) ; y t icks ( [xL/4 xR /4 ] ) ; z t icks ( [xL/4 xR /4 ] ) ; view([ -35 20]) ; axis image ;
95 axis ( [xL/4 xR/4 xL/4 xR/4 xL/4 xR /4 ] ) ; colormap j e t ; a = colorbar ; a . Posi t ion = [0.88 0.12 0.0275 0 .8 ] ;
96 t ex t ( ' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' $x$ ' , ' FontSize ' , f s+2, ' Posi t ion ' , [3.16 -1.77 0.26])
97 t ex t ( ' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' $y$ ' , ' FontSize ' , fs , ' Posi t ion ' , [ -1.96 2.19 0.54])
98 t ex t ( ' i n t e r p r e t e r ' , ' l a tex ' , ' s t r i ng ' , ' $z$ ' , ' FontSize ' , f s+2, ' Posi t ion ' , [ -1.58 3.89 4.96]) ; drawnow
99 end

100 end
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