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1. Introduction

The theory of sub-manifolds of finite type has led to significant insights and results in differential
geometry, helping to identify and characterize sub-manifolds with special geometric properties.

In [1], Chen mentioned the concept of Euclidean immersions of finite type concerning the first
fundamental form I of a surface ℵ. According to Chen’s theory, a surface ℵ is said to be of finite type
if its coordinate functions can be expressed as a finite sum of eigenfunctions of the Beltrami operator
∆I .

For instance, Chen [2] posed the problem of classifying finite type sub-manifolds in 3-dimensional
Euclidean space E3. This initiated a comprehensive study of the spectral properties of the Laplacian on
these sub-manifolds, leading to the classification of minimal surfaces, spheres, and circular cylinders
as specific examples of finite-type sub-manifolds.

If we consider the surface ℵ in E3, its position vector

X = X(v1, v2)

can be written as:

X =
n∑

i=1

Fi(v1, v2)ei,
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where Fi(v1, v2) are eigenfunctions of the Beltrami operator ∆I , and ei are constant vectors in E3.
For a surface to be of finite II-type, its shape operator (related to the second fundamental form) must

also have a similar decomposition into a finite sum of eigenfunctions of the Beltrami operator.
To understand the implications of a surface ℵ being of finite type l, we start by considering the

relevant equation involving the second fundamental form, ∆II , which is the Laplacian operator applied
to the components of the second fundamental form.

When ℵ is of finite type l, there exists a monic polynomial

F(x) , 0,

such that
F(∆II)(X − c) = 0.

Here, X represents the position vector of a point on the surface, and c is a constant vector.
Suppose the polynomial

F(x) = xl + γ1xl−1 + ... + γl−1x + γl.

Then the coefficients γi are determined by the specific relationship between the eigenfunctions of ∆II ,

and the position vector components. These coefficients γi are related to the eigenvalues µi of ∆II acting
on the coordinate functions of X. In detail, γi are typically given in terms of symmetric polynomials
of these eigenvalues. Specifically, they can be expressed as follows:

γ1 = −(µ1 + µ2 + ... + µl),
γ2 = (µ1µ2 + µ1µ3 + ... + µ1µl + µ2µ3 + ... + µ2µl + ... + µl−1µl),
γ3 = −(µ1µ2µ3 + ... + µl−2µl−1µl),

. . .

γl = (−1)lµ1µ2...µl.

Therefore the position vector X satisfies the following equation (see [3]):

(∆II)lX + σ1(∆J)l−1X + ... + σl(X − c) = 0. (1.1)

Finite-type immersions involve studying sub-manifolds whose coordinate functions are finite sums
of eigenfunctions of the Laplace-Beltrami operator. This notion provides a way to classify
sub-manifolds based on the spectral properties of the Laplacian acting on the coordinate functions.

These classifications help in understanding the geometric and topological properties of
sub-manifolds. For instance, the result that spheres are the only quadric surfaces of finite II-type in
E3 provides a clear distinction between spheres and other quadric surfaces like ellipsoids,
hyperboloids, and paraboloids, based on their curvature properties.

A recent study in [4] authors investigated the Hasimoto surfaces according to their finite Chen type,
while in [5, 6] interesting researches were done by studying the class of translation surfaces according
to it’s finite Chen III-type once in E3, and on the other hand in Sol3.

Takahashi in [7] mentioned that a surface M2 whose position vector X satisfies

∆I X = µX
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is either a minimal with µ = 0 or M2 lies in an ordinary sphere S 2 with a fixed nonzero eigenvalue.
Garay in his article [8] made a generalization of Takahashi’s condition. In his study, he considered

surfaces in E3 satisfying
∆I Xi = µiXi, i = 1, 2, 3,

where (X1, X2, X3) are the coordinate functions of the position vector X and µi, are different
eigenvalues. Garay’s work expands on the problem of identifying surfaces in E3 that satisfy this
eigenvalue condition. The coordinate functions of these surfaces are expressed as eigenfunctions of
the Laplace-Beltrami operator associated with distinct eigenvalues, contributing to the understanding
of surfaces of finite type in a more general context.

Another related general problem was presented in [9], which investigated surfaces in E3 satisfying

∆I X = KX + L, (1.2)

where K is a 3×3 matrix; L is a 3×1 matrix. It was proven that minimal surfaces, spheres, and circular
cylinders are the only surfaces in E3 satisfying Eq (1.2). Surfaces meeting this criterion are said to be
of coordinate finite type.

As an application, the alignment of molecules in relation to quadric surfaces has meaningful
applications in understanding molecular orientations, interactions, and behaviors under external
influences. Quadric surfaces, such as ellipsoids, hyperboloids, and paraboloids, serve as mathematical
representations of properties like potential energy distributions, molecular shapes, and field effects.
The shapes of molecules can often be described using quadric surfaces such as ellipsoids which is
common for anisotropic molecules like liquid crystal rods or elongated organic molecules, or spheres
which represent isotropic molecules such as noble gases or symmetric compounds like CH4. These
quadric shapes help model how molecules orient or align in space (see [10, 11]).

We consider a (connected) surface ℵ in a Euclidean 3-space E3 referred to any system of coordinates
v1, v2, whose Gaussian curvature never vanishes. Let Bst be the components of the second fundamental
form

II = Bstdvsdvt

of ℵ. For any two sufficiently differentiable functions φ(v1, v2) and ψ(v1, v2) on ℵ, the first Beltrami
operator with respect to the second fundamental form of ℵ is given by

∇II (ψ, φ) := Bstψ/sφ/t,

where

ψ/s :=
∂ψ

∂vs ,

and
(
Bst) denotes the inverse tensor of (Bst).

The second Beltrami operator regarding the second fundamental form of ℵ is defined by [12]

∆IIφ := −
1
√

B
(
√

BBstφ/s)/t,

where
B := Det(Bst).
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In [13], authors proved that, for the position vector

X = X(v1, v2)

of ℵ, the relation is

∆IIX =
1

2K
∇IIIK − 2G,

where G is the Gauss map, K the Gauss curvature, and H the mean curvature of ℵ.
The main result in this study presents the following as detailed below.

Theorem 1. Among all quadric surfaces in E3, the only one that satisfies the finite II-type condition is
the sphere.

This result highlights a unique geometric property of spheres compared to other quadric surfaces
such as ellipsoids, hyperboloids, and paraboloids.

2. Quadric surfaces

Let ℵ be a Cr quadric surface in E3 defined on a region U ⊂ R2. Then, ℵ is one of the following
three kinds [14, 15]:

1stKind : ℵ is a ruled surface.
2ndKind : ℵ is of the form

z2 = γ + α X2 + βY2, α, β, γ ∈ R, α β , 0, γ > 0.

3rdKind : ℵ is of the form

z =
α

2
X2 +

β

2
Y2, α, β ∈ R, α, β > 0.

The class of ruled surfaces has been studied in [16], so we will complete our study by investigating
the second and third kinds of surfaces mentioned above in terms of their finite Chen type.

2.1. Quadrics of the second kind

A parametrization of a part of a quadric of this kind is [15]

x(υ, ν) =
(
υ, ν,

√
αυ2 + β ν2 + γ

)
, α υ2 + β ν2 + γ > 0. (2.1)

For simplicity, we use
αυ2 + β ν2 + γ := ω.

The metrics I, II of ℵ, are respectively,

I =
(α2υ2

ω
+ 1

)
dυ2 +

2α βυν
ω

dυ dν +
(β2v2

ω
+ 1

)
dν2,

II =
1

ω
√

T

(
α(γ + βν2)dυ2 − 2α βυνdυ dν + β(γ + αυ2)dν2),
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where

T = γ + β(β + 1)ν2 + α(α + 1)υ2.

The Laplacian △II of ℵ can be expressed as follows:

△II = −

√
T
γ

[
γ + αυ2

α

∂2

∂υ2 + 2υν
∂2

∂υ∂ν
+
γ + βν2

β

∂2

∂ν2 + 2υ
∂

∂υ
+ 2ν

∂

∂ν

]
. (2.2)

For a function φ(υ) ∈ C∞(U), on account of Eq (2.2), we get

△IIφ = −

√
T
γ

[
γ + αυ2

α

∂2φ

∂υ2 + 2υ
∂φ

∂υ

]
. (2.3)

On use of Eq (2.2), it can be easily proved:

Lemma 1. The relation

△II
(
αr(α + 1)rυm

T n

)
= −

αr+2(α + 1)r+2[m(m + 1) + 4n(n − m) − 2n]υm+4

γT n+ 3
2

+
1

γT n+ 3
2

F(υ, ν)

holds true, where F(υ, ν) is a polynomial of degree at most m + 4, and when ν = 0, deg(F(υ, 0)) is at
most m + 2 .

We denote by (x1, x2, x3) the components of x(υ, ν). On account of Eq (2.3), we have

△II x1 = △
IIυ = −

2υ
√

T
γ

. (2.4)

Applying Eq (2.2) for the relation (2.4), we find

(△II)2x1 = (△II)2υ =
2
γ2T

[
6α2(α + 1)2υ5 + f2(υ, ν)

]
, (2.5)

where

f2(υ, ν) =αγ(α + 1)(γ(β + 1) + 2α + 11)υ3 + αβ(α + 1)(β + 1)(γ + 12)υ3ν2

+ β2(β + 1)2(γ + 6)υν4 + βγ(β + 1)(βγ + 2γ + 3α + 11)υν2

+ γ2(γ(β + 1) + 3α + 5)υ.

Note that f2(υ, ν) is a polynomial of degree at most 5, and if we put ν = 0, then f2(υ, 0) is a
polynomial in υ of degree at most 3.

From Lemma 1, we get

(△II)3υ = −
2

γ3T
5
2

[
72α4(α + 1)4υ9 + f3(υ, ν)

]
, (2.6)

where f3(υ, ν) is a polynomial of degree at most 9, with

deg( f3(υ, 0)) ≤ 7.

We will also prove:
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Lemma 2. The relation(
△II

)l
υ = (−1)l

 l∏
i=1

i(i + 1)

 (α2l−2 (α + 1)2l−2 υ4l−3 + Pl(υ, ν)

γlT
3
2 l−2

)
,

holds true, where
deg(Pl(υ, 0)) ≤ 4l − 5.

Proof. The proof goes by induction on l.
Base case: For l = 1, the formula comes true from Eq (2.4) applied to φ = υ.
Inductive step: Assume that the lemma is true for l − 1. So,

(
△II

)l−1
υ = (−1)l−1

 l−1∏
i=1

i (i + 1)

 (α2l−4 (α + 1)2l−4 υ4l−7 + Pl−1(υ, ν)

γl−1T
3
2 l− 7

2

)
.

Proof for l. Taking into account ν = 0, relation (2.3), and Lemma 1, we obtain(
△II

)l
υ = △II

( (
△II

)l−1
υ
)

= (−1)l−1

 l−1∏
i=1

i (i + 1)

 ( 1
γl−1

) (
△II

(
α2l−4 (α + 1)2l−4 υ4l−7

T
3
2 l− 7

2

))
+ △II

(
Pl−1(υ, ν)

γl−1T
3
2 l− 7

2

)

=
(−1)l−1

γl−1

 l−1∏
i=1

i (i + 1)

 (− l(l + 1)α2l−4+2 (α + 1)2l−4+2 υ4l−7+4 + Pl(υ, ν)

γT
3
2 l− 7

2+
3
2

)

=
(−1)l

γl

l(l + 1)
l−1∏
i=1

i (i + 1)

 (α2l−2 (α + 1)2l−2 υ4l−3 + Pl(υ, ν)

T
3
2 l−2

)

= (−1)l

 l∏
i=1

i(i + 1)

 (α2l−2 (α + 1)2l−2 υ4l−3 + Pl(υ, ν)

γlT
3
2 l−2

)
.

This completes the proof. □

For the second component x2, we have

△II x2 = △
IIν = −

2ν
√

T
γ

. (2.7)

Also
(△II)2x2 = (△II)2ν =

2
γ2T

[
6β2(β + 1)2ν5 + g2(υ, ν)

]
, (2.8)

and

g2(υ, ν) =βγ(β + 1)(γ(α + 1) + 2β + 11)ν3 + αβ(α + 1)(β + 1)(γ + 12)υ2ν3

+ α2(α + 1)2(γ + 6)νυ4 + αγ(α + 1)(αγ + 2γ + 3β + 11)υ2ν

+ γ2(γ(α + 1) + 3β + 5)ν.

Similarly, g2(υ, ν) is a polynomial of degree at most 5, and if we put υ = 0, then g2(0, ν) is a
polynomial in ν of degree at most 3.
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Lemma 3. The relation

△II
(
βr(β + 1)rνm

T n

)
= −

βr+2(β + 1)r+2[m(m + 1) + 4n(n − m) − 2n]νm+4

γT n+ 3
2

+
1

γT n+ 3
2

G(υ, ν),

holds true, where G(υ, ν) is a polynomial of degree at most m + 4, and when υ = 0, then deg(G(0, ν))
is at most m + 2.

So, using the above lemma, one can find that

(△II)3ν = −
2

γ3T
5
2

[
72β4(β + 1)4ν9 + g3(υ, ν)

]
, (2.9)

where g3(υ, ν) is a polynomial of degree at most 9, with

deg(g3(0, ν)) ≤ 7.

By induction, one can also obtain:

Lemma 4. The relation

(
△II

)l
ν = (−1)l

 l∏
i=1

i(i + 1)

 (β2l−2 (β + 1)2l−2 ν4l−3 + Ql(υ, ν)

γlT
3
2 l−2

)
,

is valid, and
deg(Ql(0, ν)) ≤ 4l − 5.

Let now ℵ be of finite II-type l. Then, there exist real numbers ci, i = 1, . . . , l such that(
△II

)l+1
x + c1

(
△II

)l
x + . . . + cl△

II x = 0. (2.10)

Applying Eq (2.10) to the coordinate functions x1 = υ and x2 = ν of the position vector (2.1) of ℵ,
we obtain (

△II
)l+1

υ + c1

(
△II

)l
υ + · · · + cl△

IIυ = 0, (2.11)(
△II

)l+1
ν + c1

(
△II

)l
ν + · · · + cl△

IIν = 0. (2.12)

From Lemma 2, relations (2.4)–(2.6), and (2.11), it follows that

(−1)l+1

 l+1∏
i=1

i(i + 1)

 (α2l (α + 1)2l υ4l+1 + Pl+1(υ, ν)

γl+1T
3
2 l− 1

2

)

+ c1 (−1)l

 l∏
i=1

i(i + 1)

 (α2l−2 (α + 1)2l−2 υ4l−3 + Pl(υ, ν)

γlT
3
2 l−2

)
+ · · ·

+ cl−1
2
γ2T

(
6α2(α + 1)2υ5 + P2(υ, ν)

)
+ cl

2υ
√

T
γ
= 0,
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which can be written as

(−1)l+1

 l+1∏
i=1

i(i + 1)

 (α2l (α + 1)2l υ4l+1

γl+1

)
+ Pl+1(υ, ν)

+c1 (−1)l

 l∏
i=1

i(i + 1)

 α2l−2 (α + 1)2l−2 υ4l−3T
3
2 Pl(υ, ν)

γl

 + · · ·
+cl−1

12α2(α + 1)2υ5T
3
2 (l−1)

γ2 + cl−1T
3
2 (l−1)P2(υ, ν) + cl

2υT
3
2 l

γ
= 0. (2.13)

Inserting ν = 0 in (2.13), we obtain a nontrivial polynomial in υ with constant coefficients.
Therefore, the above equation can be rewritten as

(−1)l+1

 l+1∏
i=1

i(i + 1)

 (α2l (α + 1)2l υ4l+1

γl+1

)
+ P(υ, ν) = 0, (2.14)

with
deg(P(υ, ν)) ≤ 4l.

Since α , 0, the relation (2.14) implies that α must be equal −1.
Following the same procedure for the second component x2, by using relations (2.7)–(2.9), (2.12),

and Lemma 4, we get

(−1)l+1

 l+1∏
i=1

i(i + 1)

 (β2l (β + 1)2l ν4l+1

γl+1

)
+ Q(υ, ν) = 0, (2.15)

where Q(υ, ν) is a polynomial of degree at most 4l. Putting υ = 0, then Eq (2.15) is a nontrivial
polynomial in ν with constant coefficients. However β , 0, so from (2.15) β equals −1. Therefore, ℵ
is a sphere.

Let
α = β = −1.

Then,
T = γ.

Thus, relation (2.2) reduces to

△II = −
1
√
γ

[
(υ2 − γ)

∂2

∂υ2 + 2υν
∂2

∂υ∂ν
+ (ν2 − γ)

∂2

∂ν2 + 2υ
∂

∂υ
+ 2ν

∂

∂ν

]
.

So, relations (2.4) and (2.7) become

△IIυ = −
2
√
γ
υ.

△IIν = −
2
√
γ
ν.
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For the third coordinate
x3 =

√
ω =

√
γ − υ2 − ν2,

after simple calculation, we conclude

△II √ω = −
2
√
γ

√
ω.

Thus, we find that

△II x = −
2
√
γ

x.

That is, spheres are the only quadric surfaces of the kind (2) of finite II-Chen type.

2.2. Quadrics of the third kind

A parametrization of a part of a quadric of this kind is

x(υ, ν) =
(
υ, ν,

α

2
υ2 +

β

2
ν2

)
. (2.16)

The matrix of the components of the first fundamental form of ℵ is the following:

(gi j) =
[

1 + α2υ2 αβυν

αβυν 1 + β2ν2

]
.

Denote
g : = Det

(
gi j

)
= 1 + (αυ)2 + (β ν)2

The matrix of the components of the second fundamental form II is given as follows:

(bi j) =

 α
√
g

0
0 β

√
g

 .
Thus, △II of ℵ becomes

△II = −
√
g
(1
α

∂2

∂υ2 +
1
β

∂2

∂ν2

)
. (2.17)

By applying the operator △II to the components

x1 = υ and x2 = ν,

we get
△II x1 = △

II x2 = 0.

For the third coordinate
x3 =

α

2
υ2 +

β

2
ν2,

we find
△II

(
α

2
υ2 +

β

2
ν2

)
= −2

√
g. (2.18)
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Applying Eq (2.17) for the relation (2.18), we find

(△II)2x3 =
2(α + β)
g

+
2αβ
g

f1(υ, ν), (2.19)

where
f1(υ, ν) = αυ2 + βν2,

with
deg( f1) = 2.

On one hand, using (2.17), one can find:

Lemma 5. For n > 0, we find

△II(g−n) = 2n(α + β)g−n− 1
2 − 4n(n + 1)g−n− 3

2 (α3υ2 + β3ν2), (2.20)

and, on the other hand, we have:

Lemma 6.

△II
(
αrυt + βrνt

gn

)
= −

( t(t − 1)(αr−1υt−2 + βr−1νt−2)

gn−
1
2

)
+

(2n(2t + 1)(αr+1υt + βr+1νt) + 2nαβ(αr−1υt + βr−1νt)

gn+
1
2

)
−

(4n(n + 1)(αr+3υt+2 + βr+3νt+2)

gn+
3
2

)
−

(
4n(n + 1)α3β3υ2ν2(αr−3υt−2 + βr−3νt−2)

gn+
3
2

)
. (2.21)

From Lemma 6, we obtain that

△II

(
αrυt + βrνt

gn

)
= −

(
1

gn+
3
2

)
G(υ, ν), (2.22)

where deg(G(υ, ν)) is at most t + 2.
Taking into account (2.20), and (2.22), we get

(△II)3x3 =
4(α + β)2

g
3
2

+
1

g
5
2

G2(υ, ν), (2.23)

where G2(υ, ν) is a polynomial in υ, ν of degree at most 4. Similarly, we get

(△II)4x3 =
12(α + β)3

g2
+

1
g3

G3(υ, ν), (2.24)

where G3(υ, ν) is a polynomial in υ, ν of degree at most 6. In general, we have

AIMS Mathematics Volume 9, Issue 12, 34435–34446.



34445

Lemma 7. The relation (
△II

)l
x3 =

2(l − 1)!(α + β)l−1

g
1
2 l

+
1

g1+
1
2 l

Gl−1(u, v),

holds true for l > 2, with
deg(Gl−1(u, v)) ≤ 2l − 2.

On account of relation (1.1) applied to the component x3, we have(
△II

)l+1
x3 + c1

(
△II

)l
x3 + · · · + cl△

II x3 = 0.

From (2.18), (2.19), (2.23), (2.24), and Lemma 7, we get

2(l)!(α + β)l

g
1
2 (l+1)

+
1

g
3
2+

1
2 l

Gl(u, v) +
2c1(l − 1)!(α + β)l−1

g
1
2 l

+
c1

g1+
1
2 l

Gl−1(u, v) + · · · + 2cl
√
g = 0

or

2(l)!(α + β)l + 2c1(l − 1)!(α + β)l−1
g

1
2 + 2c2(l − 2)!(α + β)l−2

g
3
2 + · · · + 2clg

1+ 1
2 l +

1
g

G(u, v) = 0, (2.25)

where
deg(G(u, v)) ≤ 2l.

Relation (2.25) must hold true for all (υ, ν). This is clearly impossible since the first term of (2.25),
which is the constant term of (2.25), must equal 0, something that cannot be satisfied since α, β > 0.

3. Conclusions

This research article was divided into three sections, where after the introduction, the needed
definitions and relations regarding this interesting field of study were given. Then, a formula for the
Laplace operator corresponding to the second fundamental form II was proved once for the position
vector and another for the Gauss map of a surface. Finally, we classify the quadric surfaces of finite
Chen type regarding the second fundamental form. An interesting study can be drawn if this type of
study can be applied to other classes of surfaces that have not been investigated yet, such as spiral
surfaces, or tubular surfaces.
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