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Abstract: The delta-Birnbaum-Saunders distribution is considered a relatively new distribution that 
combines the Birnbaum-Saunders distribution with data that include zero values. Furthermore, the 
coefficient of variation is important because it provides a standardized measure of relative variability 
that can be calculated from the ratio of the standard deviation to the mean. Consequently, this study 
focuses on constructing confidence intervals for the coefficient of variation of the delta-Birnbaum-
Saunders distribution. We have proposed three methods for constructing confidence intervals: the 
generalized confidence interval based on the variance-stabilized transformation, the generalized 
confidence interval based on the Wilson score method, and the normal approximation compared with 
the bootstrap confidence interval. The performance of all these methods was compared using coverage 
probabilities and expected lengths through Monte Carlo simulations using the R statistical software, 
and various parameters were comprehensively specified. The study results revealed that the 
generalized confidence interval based on the variance stabilized transformation and the generalized 
confidence interval based on the Wilson score method provided similar results and were the best-
performing methods. Additionally, the study results show that as the sample size increases, all methods 
tend to become more effective. Finally, we applied all the methods presented to wind speed data from 
Ubon Ratchathani province and Si Sa Kat province in Thailand. 
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1. Introduction 

In science, wind speed is a fundamental quantity that results from the movement of air from high-
pressure areas to low-pressure areas, primarily caused by temperature changes. Wind speed has a 
diverse impact on life and the economy and is important, such as in renewable energy production, 
aviation operations, and crop production. Additionally, monitoring and predicting wind speed 
contributes to preparedness and disaster prevention. Mohammadi, Alavi, and McGowan [1] studied the 
estimation of wind speed distributions and demonstrated that the Birnbaum-Saunders distribution is 
the most suitable. However, on days or times with no wind, where the wind speed is zero, the 
Birnbaum-Saunders distribution cannot be used for analysis since it is positively skewed. Therefore, 
the delta-Birnbaum-Saunders distribution is a more suitable option. The delta-Birnbaum-Saunders 
distribution combines both zero and positive values. The zero observations follow the binomial 
distribution with binomial proportion 𝛿, whereas the positive observations with the probability 1 − 𝛿 
follow the Birnbaum-Saunders (BS) distribution. It is well known that the BS distribution is widely 
applied across various fields such as environmental research, agriculture, business, industry, and 
medical sciences [2–5]. Since the Birnbaum-Saunders distribution is positively skewed and cannot be 
applied when zero values are present, it is not suitable for datasets containing zeros. However, real-world 
data may include zeros, making the delta-Birnbaum-Saunders distribution a more appropriate choice. 
The concept of the delta-Birnbaum-Saunders distribution originates from Aitchison's research [6]. 
Subsequently, several researchers have applied the concept of incorporating zero values into various 
positive distributions, providing more diverse and accurate approaches for statistical analysis, such as 
the delta-lognormal distribution. Hasan and Krishnamoorthy [7] used the delta-lognormal distribution 
to construct confidence intervals for the mean, employing both the fiducial approach and the method 
of variance estimate recovery (MOVER). Maneerat, Niwitpong, and Niwitpon [8] constructed 
confidence intervals for the difference between variances using the delta-lognormal distribution. They 
compared the highest posterior density (HPD) method with the normal approximation (NA), 
parametric bootstrap (PB), and fiducial generalized confidence interval (FGCI) methods. 
Singhasomboon, Panichkitkosolkul, and Volodin [9] proposed methods for constructing confidence 
intervals for the ratio of medians in lognormal distributions. The methods they introduced include the 
NA, the MOVER, and the generalized confidence interval (GCI). Their findings indicate that GCI 
performs well in terms of coverage probabilities, and they recommend using the NA method for 
moderate to large sample sizes when the mean and variance are small. For the delta-Birnbaum-
Saunders distribution, Ratasukharom, Niwitpong, and Niwitpong [10] used the GCI, bootstrap 
confidence interval, generalized fiducial confidence interval (GFCI), and NA to estimate the 
proportion of zeros using the variance-stabilized transformation (VST), Wilson, and Hannig methods. 
These approaches were applied to construct confidence intervals for the variance of the delta-
Birnbaum-Saunders distribution. They found that the GFCI based on the Wilson method is most 
suitable for small sample sizes, the GFCI based on the Hannig method is optimal for medium sample 
sizes, and the GFCI based on the VST method performs best for large sample sizes. For the delta-
gamma distribution, Guo et al. [11] proposed GCIs based on fiducial inference, Box-Cox 
transformation, PB, and MOVER to construct confidence intervals for the difference between 
coefficients of variation in delta-gamma distributions. They found that all four GCI methods provided 
satisfactory results in terms of coverage probabilities. For the delta-two-parameter exponential 
distribution, Khooriphan, Niwitpong, and Niwitpong [12] proposed methods for constructing 
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confidence intervals for the mean of the delta-two-parameter exponential distribution using PB, 
standard bootstrapping, the GCI, and the MOVER. They found that GCI is recommended for small to 
moderate sample sizes, while PB is more suitable for large sample sizes. 

The coefficient of variation is a statistical measure of relative dispersion used to compare the 
variability of distinct datasets. The coefficient of variation is defined as the ratio of the standard 
deviation to the mean. The coefficient of variation value is typically expressed as a percentage. A 
higher coefficient of variation indicates greater relative variability, while a lower coefficient of 
variation suggests less relative variability. Moreover, the coefficient of variation is a useful tool and is 
applied in various real-world scenarios, for example, investment analysis, healthcare, education, and 
economics. Importantly, environmental scientists use coefficients of variation to study the variability 
in environmental data, such as rainfall patterns, temperature fluctuations, or pollutant levels [13–15]. 
Furthermore, numerous researchers have conducted studies on confidence intervals for the coefficient 
of variation in various distributions. In the normal distribution, Vangel [16] created the confidence 
intervals for the coefficient of variation. Buntao and Niwitpong [17] used delta-lognormal and 
lognormal distributions to create the confidence intervals for the coefficient of variation. D'Cunha and 
Rao [14] described a method for calculating the coefficient of variation of the lognormal distribution 
using Bayesian inference. Sangnawakij and Niwitpong [18] examined the Gamma distribution's ratio 
coefficient of variation. Yosboonruang, Niwitpong, and Niwitpong [19] suggested confidence intervals 
for the difference between two independent coefficients of variation of the two delta-lognormal 
distributions. Puggard, Niwitpong, and Niwitpong [20] proposed confidence intervals for the 
coefficient of variation in the Birnbaum-Saunders distribution. La-ongkaew, Niwitpong, and 
Niwitpong [21] presented the confidence intervals for the ratio of the coefficients of variation between 
the two Weibull distributions. 

Many researchers have studied and developed confidence intervals for parameters in various 
probability distributions. From the study on constructing confidence intervals for parameters in various 
positive distributions that include zero values, it was found that the generalized confidence interval 
and normal approximation methods are effective. Additionally, the bootstrap confidence interval is 
recognized as a fundamental technique for constructing confidence intervals. Many researchers 
recommend these methods after comparing them with other methods. However, to date, there has been 
no research conducted on confidence intervals for parameters of the delta-Birnbaum-Saunders 
distribution. As a result, the purpose of this study is to construct confidence intervals for the 
coefficients of variation in the delta-Birnbaum-Saunders distribution. This study proposes three 
methods for constructing confidence intervals: the normal approximation, the generalized confidence 
interval that estimates the proportion of zero using variance-stabilizing transformation, as proposed by 
Wu and Hsieh [22], and the generalized confidence interval that estimates the proportion of zero using 
the Wilson score method, as proposed by Li, Zhou, and Tian [23]. These three methods are then 
compared with the bootstrap confidence interval. Furthermore, to validate the accuracy of these 
methods, all four of them will be applied to real-world data, specifically wind speed data collected in 
Ubon Ratchathani and Si Sa Kat, Thailand. 

2. Preliminary 

Let 𝑌 = (𝑌ଵ, 𝑌ଶ, … , 𝑌௡)  be a random sample from the delta-Birnbaum-Saunders (DBS) 
distribution with the proportion of zero 𝛿, shape parameter 𝛼, and scale parameter 𝛽, denoted by 
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𝑌~𝐷𝐵𝑆(𝛿, 𝛼, 𝛽) , the probability density function for the delta-Birnbaum-Saunders population is 
expressed as 

𝑓(𝑦; 𝛿, 𝛼, 𝛽) = 𝛿Ι଴[𝑦] + (1 − 𝛿)
ଵ

ଶఈ √ଶగ
൤ቀ

ఉ

௬
ቁ

ଵ ଶ⁄

+ ቀ
ఉ

௬
ቁ

ଷ ଶ⁄

൨ exp ቂ−
ଵ

ଶ
ቀ

௬

ఉ
+

ఉ

௬
− 2ቁቃ Ι(଴,ஶ)[𝑦], 

 

where   is an indicator function, with Ι଴[𝑦] = ൜
1; 𝑦 = 0,
0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 and Ι(଴,ஶ)[𝑦] = ൜
0; 𝑦 = 0,
1; 𝑦 > 0.

 Then 

the distribution function of Y is given by 

𝐺(𝑦; 𝛿, 𝛼, 𝛽) = ൜
𝛿; 𝑦 = 0,

𝛿 + (1 − 𝛿)𝐹(𝑦; 𝛼, 𝛽); 𝑦 > 0,
     (1) 

where 𝐹(𝑦; 𝛼, 𝛽)  is the Birnbaum-Saunders distribution function. For 𝑌 = 0 , the number of zero 
observations is distributed according to the binomial distribution denoted by 𝑛(଴)~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝛿). 
Given 𝑛 = 𝑛(ଵ) + 𝑛(଴) , where 𝑛(ଵ)  and 𝑛(଴)  represent the numbers of positive and zero values, 

respectively, the maximum likelihood estimate of 𝛿  is 𝛿መ =
௡(బ)

௡
 . According to the Aitchison [6] 

concept, the population mean, variance, and coefficient of variation can be calculated as follows: 

𝐸(𝑌) = (1 − 𝛿)𝛽 ቀ1 +
ఈమ

ଶ
ቁ, 

𝑉(𝑌) = (1 − 𝛿)(𝛼𝛽)ଶ ቀ1 +
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ቁ + 𝛿(1 − 𝛿)𝛽ଶ ቀ1 −

ఈమ

ଶ
ቁ

ଶ

, 

and 

𝜃 =
ா(௒)

௏(௒)
=

ଵ

ଶାఈమ
ට

ఈమ(ସାହఈమ)ାఋ(ଶାఈమ)మ

ଵିఋ
.       (2) 

The method for constructing confidence intervals for the coefficient of variation of the delta-
Birnbaum-Saunders distribution will be presented in the next section. 

3. Proposed methods 

3.1. Normal approximation 

The normal approximation (NA) method is a technique that depends on the sample size, becoming 
more accurate as the sample size increases. A statistical approach used to derive an estimator with an 
asymptotically normal distribution is the delta method. Let 

𝜃 = 𝑔(𝛼, 𝛿) =
1

2 + 𝛼ଶ
ඨ

𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
. 

Using the delta method, the asymptotic distribution of the estimator based on the Taylor series of 

𝑔൫𝛼ො, 𝛿መ൯ at 𝛼 and 𝛿 is calculated as follows: 
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𝑔൫𝛼ො, 𝛿መ൯ = 𝑔(𝛼, 𝛿) +
డ௚(ఈ,ఋ)

డఈ
(𝛼ො − 𝛼) +

డ௚(ఈ,ఋ)

డఋ
൫𝛿መ − 𝛿൯ + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟.  (3) 

Consider that it is possible to demonstrate that the probability of √𝑛𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 converges to 0 as 

the sample size n approaches infinity. Since 𝛼ො~𝑁 ൬𝛼,
ఈమ

ଶ௡(భ)
൰  and 𝛿መ~𝑁 ቀ𝛿,

ఋ(ଵିఋ)

௡
ቁ , following 

computations, we can obtain 

𝑔൫𝛼ො, 𝛿መ൯ ≈
1

2 + 𝛼ଶ
ඨ

𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
 

                 +
8𝛼(1 − 𝛼ଶ)

(2 + 𝛼ଶ)ଶඥ(1 − 𝛿)[𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ]
(𝛼ො − 𝛼) 

                 +
2 + 𝛼ଶ(4 − 3𝛼ଶ)

(2 + 𝛼ଶ)ඥ(1 − 𝛿)ଷ[𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ]
൫𝛿መ − 𝛿൯. 

Subsequently, we can calculate the asymptotic mean and variance of the estimator as follows: 

𝐸ൣ𝑔൫𝛼ො, 𝛿መ൯൧ ≈
1

2 + 𝛼ଶ
ඨ

𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
 

and 

𝑉ൣ𝑔൫𝛼ො, 𝛿መ൯൧ ≈
1

𝑂(1 − 𝛿)[𝛼ଶ(4 + 5𝛼ଶ) + 𝑂δ]
ቊ

32𝛼ସ(1 + 2𝛼ଶ)ଶ

𝑛(ଵ)𝑂
+

𝛿[2 + 𝛼ଶ(4 + 3𝛼ଶ)]ଶ

𝑛(1 − 𝛿)
ቋ, 

where 𝑂 = (2 + 𝛼ଶ)ଶ . Detailed procedures for deriving the asymptotic mean and variance are 
provided in the appendix. Assume that 𝛼ො  and 𝛿መ  are independent; then the maximum likelihood 
estimator of 𝜃 can be determined as 

𝜃෠ =
ଵ

ଶାఈෝమ
ටఈෝమ(ସାହఈෝమ)ାఋ෡(ଶାఈෝమ)మ

ଵିఋ෡
.       (4) 

where 𝛼ො = ൝2 ൥ቆ∑
௬೔

௡(భ)

௡(భ)

௜ୀଵ
൬∑
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షభ

௡(భ)

௡(భ)

௜ୀଵ
൰ቇ

ଵ ଶ⁄

− 1൩ൡ

ଵ ଶ⁄

  is the modified moment estimator of 𝛼 

proposed by Ng, Kundu, and Balakrishnan [24]. Then, the estimated variance of 𝜃෠ can be written as 

𝑉෠ൣ𝜃෠൧ ≈
ଵ

ு൫ଵିఋ෡൯ൣఈෝమ(ସାହఈෝమ)ାுఋ෡൧
൜

ଷଶఈෝర൫ଵାଶఈෝమ൯
మ

௡(భ)ு
+

ఋ෡ൣଶାఈෝమ൫ସାଷఈෝమ൯൧
మ

௡൫ଵିఋ෡൯
ൠ,  (5) 

where 𝐻 = (2 + 𝛼ොଶ)ଶ. A random variable 𝑍 =
ఏ෡ିఏ

ට௏෡൫ఏ෡൯

~𝑁(0,1) according to the central limit theorem. 

Therefore, the (1 − 𝜐)100% CI for 𝜃 based on NA is given by 
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[𝐿ே஺, 𝑈ே஺] = ቈ𝜃෠ − 𝑧జ ଶ⁄ ට𝑉෠൫𝜃෠൯, 𝜃෠ + 𝑧జ ଶ⁄ ට𝑉෠൫𝜃෠൯቉,     (6) 

where 𝑧జ ଶ⁄  is the (𝜐 2⁄ )th quantile value from the standard normal distribution. 

3.2. Generalized confidence interval 

The concept of the generalized confidence interval (GCI) method proposed by Weerahandi [25] 
provides a general framework for constructing confidence intervals by considering the generalized 
pivotal quantity (GPQ). In constructing confidence intervals for 𝜃 based on GCI, the GPQs of 𝛽 and 

𝛼 are taken into consideration. Let 𝑇~𝑡൫𝑛(ଵ) − 1൯. Sun [26] recommended that the GPQ of the 𝛽 

should be provided by 

𝑅ఉ(𝑦; 𝑇) = ൜
max(𝛽ଵ, 𝛽ଶ); 𝑇 ≤ 0,

min(𝛽ଵ, 𝛽ଶ); 𝑇 > 0,
       (7) 

𝛽ଵand 𝛽ଶ are the two solutions of the quadratic equation, 

൤൫𝑛(ଵ) − 1൯𝐴ଶ −
ଵ

௡(భ)
𝐵𝑇ଶ൨ 𝛽ଶ − 2ൣ൫𝑛(ଵ) − 1൯𝐴𝐶 − (1 − 𝐴𝐶)𝑇ଶ൧𝛽 + ൫𝑛(ଵ) − 1൯𝐶ଶ −

ଵ

௡(భ)
𝐷𝑇ଶ = 0, (8) 

where 𝐴 =
1

𝑛(1)
∑

ଵ

ඥ௒೔

௡(భ)

௜ୀଵ
, 𝐵 = ∑ ൬

ଵ

ඥ௒೔
− 𝐴൰

ଶ
௡(భ)

௜ୀଵ
, 𝐶 =

1

𝑛(1)
∑ ඥ𝑌௜

௡(భ)

௜ୀଵ
, and 𝐷 = ∑ ൫ඥ𝑌௜ − 𝐶൯

ଶ௡(భ)

௜ୀଵ
, while 

the GPQ of 𝛼 should be provided by 

𝑅ఈ(𝑦; 𝑈, 𝑇) = ඨ
ாభାாమோഁ

మ ିଶ௡(భ)ோഁ

ோഁ௎
,       (9) 

where 𝐸ଵ = ∑ 𝑌௜
௡(భ)

௜ୀଵ
, 𝐸ଶ = ∑

ଵ

௒೔

௡(భ)

௜ୀଵ
 , and 𝑈~𝜒௡(భ)

ଶ . 

For the GPQ of 𝛿, we use two concepts: the variance-stabilized transformation (VST) and the 
Wilson score method (WS). The details are explained in the following subsections. 

3.2.1. GCI based on the VST: G.VST 

According to Wu and Hsieh [22], the GPQ of 𝛿 is defined as 

𝑅ఋ
௏ௌ் = sinଶ ቂarcsinඥ𝛿መ −

௏

ଶ√௡
ቃ,       (10) 

where 𝑉 = 2√𝑛 ቀarcsinඥ𝛿መ − arcsin√𝛿ቁ ~𝑁(0,1). Hence, the GPQ for 𝜃 is 

𝑅ఏ
௏ௌ் =

ଵ

ଶାோഀ
మ

ඨ
ோഀ

మ൫ସାହோഀ
మ൯ାோഃ

ೇೄ೅൫ଶାோഀ
మ൯

మ

ଵିோഃ
ೇೄ೅ .      (11) 
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Consequently, the (1 − 𝜐)100% CI for 𝜃 is based on G.VST is given by 

[𝐿ீ.௏ௌ், 𝑈ீ.௏ௌ்] = ൣ𝑅ఏ
௏ௌ்(𝜐 2⁄ ), 𝑅ఏ

௏ௌ்(1 − 𝜐 2⁄ )൧,     (12) 

where 𝑅ఏ
௏ௌ்(𝜐) is the (𝜐 2⁄ )th percentile of 𝑅ఏ

௏ௌ். 

3.2.2. GCI based on the WS: G.WS 

In accordance with Li, Zhou, and Tian [23], the GPQ of 𝛿 is described as 

𝑅ఋ
ௐௌ =

௡(బ)ାቀௐഔ మ⁄
మ ଶ⁄ ቁ

௡ାௐഔ మ⁄
మ −

ௐഔ మ⁄
మ

௡ାௐഔ మ⁄
మ

ට𝑛(଴) ቀ1 −
௡(బ)

௡
ቁ +

ௐഔ మ⁄
మ

ସ
,     (13) 

where 𝑊 =
௡(బ)ି௡ఋ

ඥ௡ఋ(ଵିఋ)
. Thus, the GPQ for 𝜃 is 

𝑅ఏ
ௐௌ =

ଵ

ଶାோഀ
మ

ඨ
ோഀ

మ൫ସାହோഀ
మ൯ାோഃ

ೈೄ൫ଶାோഀ
మ൯

మ

ଵିோഃ
ೈೄ .      (14) 

Therefore, the (1 − 𝜐)100% CI for 𝜃 is based on G.WS is given by 

[𝐿ீ.ௐௌ, 𝑈ீ.ௐௌ] = ൣ𝑅ఏ
ௐௌ(𝜐 2⁄ ), 𝑅ఏ

ௐௌ(1 − 𝜐 2⁄ )൧,      (15) 

where 𝑅ఏ
ௐௌ(𝜐) is the (𝜐 2⁄ )th percentile of 𝑅ఏ

ௐௌ. 

3.3. Bootstrap confidence interval 

The bootstrap method is a resampling technique used to estimate the sampling distribution of a 
statistic by repeatedly resampling from the observed data with replacement, as proposed by Efron [27]. 
Let 𝛼ො/  and 𝛿መ/  be observed values of 𝛼ො  and 𝛿መ  based on bootstrap samples. Suppose that 𝐾 
bootstrap samples are available. The bootstrap expectation 𝐸(𝛼ො) can be approximated by using the 

mean 𝛼ො(.)
/

=
ଵ

௄
∑ 𝛼ො௝

/௄
௝ୀଵ , where 𝛼ො௝

/ is sequence of the bootstrap MLEs of 𝛼, for 𝑗 = 1,2, … , 𝐾. The 

bootstrap bias estimate based on 𝐾 replications of 𝛼ො is given by  

𝐾෡(𝛼ො, 𝛼) = 𝛼ො(.)
/

− 𝛼ො. 

Then, the constant-bias-correcting estimates, as defined by Mackinnon and Smith [28], are used for 
creating the bias-corrected estimator, which is 

𝛼ො# = 𝛼ො/ − 2𝐾෡(𝛼ො, 𝛼).        (16) 

According to Brown, Cai, and DasGupta [29], they proposed the Jeffreys interval for the binomial 
proportion, which employs the Jeffreys prior and is represented by 𝐵𝑒𝑡𝑎(0.5,0.5). Therefore, it results 
in 
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𝛿መ∗~𝐵𝑒𝑡𝑎൫𝑛(଴)
∗ + 0.5, 𝑛(ଵ)

∗ + 0.5൯,       (17) 

where 𝑛(଴)
∗ = 𝑛𝛿መ/and 𝑛(ଵ)

∗ = 𝑛൫1 − 𝛿መ/൯. The bootstrap estimator of 𝜃 can be written as 

𝜃෠(஻௢௢௧) =
ଵ

ଶା(ఈෝ#)మ
ට

(ఈෝ#)మ(ସାହ(ఈෝ#)మ)ାఋ෡∗(ଶା(ఈෝ#)మ)మ

ଵିఋ෡∗
.      (18) 

Consequently, the (1 − 𝜐)100% CI for 𝜃 is based on BCI is given by 

[𝐿஻஼ூ , 𝑈஻஼ூ] = ൣ𝜃෠(஻௢௢௧)(𝜐 2⁄ ), 𝜃෠(஻௢௢௧)(1 − 𝜐 2⁄ )൧,     (19) 

where 𝜃෠(஻௢௢௧)(𝜐) is the (𝜐 2⁄ )th percentile of 𝜃෠(஻௢௢௧). 

4. Results and discussion 

In this simulation study, we have compared the performance of the proposed methods by 
considering the coverage probabilities greater than or equal to the nominal confidence level of 0.95, 
along with the expected lengths of the shortest confidence interval. This comparison was conducted 
using Monte Carlo simulations and the statistical software R. The overall number of replications was 
set to generate a simulation with 5,000 replications in total, 1,000 replications for the GCI, and 500 
replications for the BCI. In addition, the sample size has been set to n = 30, 50, 100, 150, and 200, and 
the following parameters have been specified: 𝛿= 0.1, 0.5, and 0.7; 𝛼 = 0.25, 0.50, 0.75, 1.00, and 1.50; 
and 𝛽 = 1. The algorithm presents the steps for estimating the coverage probability and expected 
length to compare the efficiency of the proposed methods. 

The results from Table 1 are as follows: it is evident that the NA and BCI methods have values 
that are close, both in terms of coverage probabilities and expected lengths. Similarly, the G.VST and 
G.WS methods also exhibit close values to each other in almost all the cases studied, with coverage 
probabilities remaining stable and close to 0.95, and they have the shortest expected lengths. This 
results in the G.VST and G.WS methods being more efficient than the NA and BCI methods. Figure 1 
shows a comparison of various methods in terms of shape parameters relative to coverage probability 
and expected length. It is evident that the coverage probabilities for the G.VST and G.WS methods are 
consistently greater than and close to the nominal confidence level of 0.95 in almost all cases. The BCI 
method achieves a coverage probability close to the specified criterion when the shape parameters 
are 0.25 and 1.00. Meanwhile, for the NA method, the coverage probability meets the required 
criterion when the shape parameter is small. As the shape parameter increases, the NA method’s 
coverage probability shows a tendency to decrease. When considering the expected lengths, a 
consistent trend is observed for all methods. As the shape parameter value increases, expected lengths 
also increase progressively. Figure 2 shows a comparison of various methods in terms of sample sizes 
relative to coverage probability and expected length. It was found that the coverage probabilities of 
the G.VST and G.WS methods meet the specified criteria. For the NA method, the coverage probability 
increases as the sample size increases. The BCI method provides coverage probability close to the 
specified level only when the sample size is 50. Regarding the expected length, it reveals that as the 
sample size increases, the expected length for all methods decreases, resulting in improved efficiency. 
Figure 3 shows a comparison of various methods in terms of the proportion of zero relative to coverage 
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probability and expected length. It demonstrates that the coverage probabilities for the G.VST and 
G.WS methods consistently align closely with the specified confidence level. However, the NA and 
BCI methods provide coverage probabilities that fall below the specified confidence level. When 
examining expected length, a similar trend is observed across all methods: as the proportion of zero 
increases, the expected length also increases. Nonetheless, the G.VST and G.WS methods yield a 
shorter expected length compared to the NA and BCI methods. 

Algorithm: The coverage probability and expected length 
I. For a given𝛼, 𝑛, 𝛿, and𝛽. 

II. For 𝑚 = 1 to 𝑀. Generate sample from the DBS distribution and calculate 𝛼ො  and 𝛿መ. 
III. Construct CIs for 𝜃 based on the NA, GCI, and BCI: 

For the NA; Calculate 𝑉෠൫𝜃෠൯ and calculate 𝐿ே஺ and 𝑈ே஺ using Equations (6) and (7). 

For the GCI; 

1. Calculate 𝐴, 𝐵, 𝐶, 𝐷, 𝐸ଵ and 𝐸ଶ, respectively. 
2. At the 𝑔𝑡ℎ step 

a) Generate 𝑇~𝑡൫𝑛(ଵ) − 1൯, and then calculate 𝑅ఉ(𝑦; 𝑇) using Equation (7). 

b) If 𝑅ఉ(𝑦; 𝑇) < 0, regenerate 𝑇~𝑡൫𝑛(ଵ) − 1൯. 

c) Generate 𝑈~𝜒௡(భ)
ଶ , and then calculate 𝑅ఈ(𝑦; 𝑇) using Equation (9) 

d) For G.VST method, calculate 𝑅ఋ
௏ௌ்  and 𝑅ఏ

௏ௌ் using Equations (10) and (11). 

e) For G.WS method, calculate 𝑅ఋ
ௐௌ and 𝑅ఏ

ௐௌ using Equations (13) and (14). 
3. Repeat step 2. a number of times, with G = 1,000 times. 

4. Calculate 𝐿ீ.௏ௌ், 𝑈ீ.௏ௌ், 𝐿ீ.ௐௌ, and 𝑈ீ.ௐௌ using Equations (12) and (15). 

For BCI; 

1. At the 𝑏𝑡ℎ step 

a) Generate 𝑦ଵ
∗, 𝑦ଶ

∗, … , 𝑦௡
∗ with replacement from 𝑦ଵ, 𝑦ଶ, … , 𝑦௡. 

b) Calculate 𝛼ො/ and 𝐾෡(𝛼ො, 𝛼). 

c) Calculate 𝛼ො#, 𝛿መ∗ and 𝜃෠(஻௢௢௧) using Equations (16), (17) and (18). 
2. Repeat step 1. a number of times, with B = 500 times. 
3. Calculate 𝐿஻஼ூand 𝑈஻஼ூ using Equation (19). 

IV. If 𝐿[≤ 𝜃 ≤ 𝑈], set 𝐻 = 1; else set 𝐻 = 0. The coverage probability and expected length 

for each method are obtained by 𝐶𝑃 =
ଵ

ெ
∑ 𝐻௠

ெ
௜ୀଵ  and 𝐸𝐿 =

௎ି௅

ெ
, where 𝑈 and 𝐿 are 

the upper and lower confidence limits, respectively. (End 𝑚 loop) 
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Table 1. The coverage probabilities and expected lengths for the 95% CIs for 𝜃. 

α 𝑛 𝛿 
Coverage probabilities Expected lengths 
NA G.VST G.WS BCI NA G.VST G.WS BCI 

0.25 30 0.1 0.9176 0.9508 0.9498 0.9318 0.3337 0.1001 0.1002 0.3308 
  0.3 0.9492 0.9515 0.9589 0.9444 0.5126 0.0934 0.0928 0.5075 
  0.5 0.9502 0.9489 0.9522 0.9505 0.7606 0.1195 0.1187 0.7635 
 50 0.1 0.9256 0.9526 0.9450 0.9417 0.2646 0.0740 0.0739 0.2590 
  0.3 0.9508 0.9520 0.9574 0.9422 0.3963 0.0671 0.0667 0.3919 
  0.5 0.9564 0.9552 0.9520 0.9488 0.5818 0.0795 0.0802 0.5791 
 100 0.1 0.9522 0.9513 0.9525 0.9597 0.1898 0.0506 0.0506 0.1861 
  0.3 0.9561 0.9540 0.9604 0.9549 0.2770 0.0446 0.0442 0.2724 
  0.5 0.9532 0.9537 0.9520 0.9502 0.4064 0.0515 0.0513 0.4013 
 150 0.1 0.9406 0.9501 0.9484 0.9478 0.1547 0.0408 0.0408 0.1516 
  0.3 0.9518 0.9542 0.9552 0.9510 0.2278 0.0356 0.0356 0.2268 
  0.5 0.9522 0.9518 0.9532 0.9541 0.3298 0.0410 0.0409 0.3066 
 200 0.1 0.9500 0.9520 0.9502 0.9530 0.1341 0.0350 0.0351 0.1337 
  0.3 0.9506 0.9512 0.9546 0.9528 0.1968 0.0307 0.0307 0.1824 
  0.5 0.9546 0.9548 0.9532 0.9502 0.2856 0.0348 0.0348 0.2589 
0.50 30 0.1 0.9341 0.9533 0.9555 0.9523 0.3683 0.2688 0.2678 0.3641 
  0.3 0.9512 0.9514 0.9549 0.9487 0.5689 0.2919 0.2932 0.5545 
  0.5 0.9524 0.9519 0.9516 0.9422 0.8574 0.3832 0.3848 0.8439 
 50 0.1 0.9465 0.9465 0.9516 0.9347 0.2875 0.2005 0.2004 0.2818 
  0.3 0.9554 0.9517 0.9484 0.9479 0.4339 0.2142 0.2134 0.4194 
  0.5 0.9547 0.9493 0.9497 0.9405 0.6514 0.2696 0.2689 0.6311 
 100 0.1 0.9556 0.9484 0.9466 0.9492 0.2035 0.1385 0.1384 0.1981 
  0.3 0.9562 0.9525 0.9476 0.9637 0.3078 0.1449 0.1439 0.2945 
  0.5 0.9628 0.9504 0.9491 0.9465 0.4615 0.1785 0.1780 0.4433 
 150 0.1 0.9506 0.9505 0.9515 0.9042 0.1663 0.1122 0.1122 0.1686 
  0.3 0.9566 0.9537 0.9529 0.9174 0.2511 0.1168 0.1167 0.2570 
  0.5 0.9544 0.9536 0.9552 0.9294 0.3739 0.1426 0.1425 0.3694 
 200 0.1 0.9526 0.9526 0.9543 0.9256 0.1442 0.0968 0.0968 0.1404 
  0.3 0.9562 0.9524 0.9560 0.9376 0.2174 0.1005 0.1004 0.2126 
  0.5 0.9620 0.9518 0.9520 0.9498 0.3235 0.1220 0.1222 0.1200 
0.75 30 0.1 0.9352 0.9511 0.9416 0.9538 0.4527 0.4075 0.4038 0.4480 
  0.3 0.9310 0.9509 0.9450 0.9412 0.6593 0.4705 0.4708 0.6473 
  0.5 0.9306 0.9530 0.9409 0.9405 0.9800 0.6242 0.6206 0.9646 
 50 0.1 0.9475 0.9651 0.9448 0.9547 0.3545 0.3070 0.3081 0.3503 
  0.3 0.9526 0.9563 0.9602 0.9510 0.5122 0.3538 0.3533 0.4972 
  0.5 0.9459 0.9456 0.9564 0.9395 0.7601 0.4572 0.4583 0.7385 
 100 0.1 0.9523 0.9460 0.9615 0.9482 0.2518 0.2144 0.2135 0.2475 
  0.3 0.9622 0.9459 0.9536 0.9513 0.3627 0.2436 0.2453 0.3515 
  0.5 0.9567 0.9431 0.9487 0.9500 0.5386 0.3132 0.3101 0.5203 

Continued on next page 
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α 𝑛 𝛿 
Coverage probabilities Expected lengths 
NA G.VST G.WS BCI NA G.VST G.WS BCI 

0.75 150 0.1 0.9538 0.9510 0.9524 0.8598 0.2061 0.1743 0.1741 0.2027 
  0.3 0.9530 0.9504 0.9512 0.8790 0.2967 0.1986 0.1986 0.2670 
  0.5 0.9558 0.9546 0.9519 0.9306 0.4399 0.2522 0.2525 0.4332 
 200 0.1 0.9518 0.9502 0.9528 0.8724 0.1793 0.1510 0.1509 0.1709 
  0.3 0.9518 0.9516 0.9532 0.9012 0.2567 0.1711 0.1709 0.2207 
  0.5 0.9530 0.9546 0.9552 0.9386 0.3810 0.2178 0.2177 0.3418 
1.00 30 0.1 0.9190 0.9482 0.9506 0.9352 0.5233 0.4901 0.4904 0.5209 
  0.3 0.9247 0.9471 0.9505 0.9407 0.7447 0.5875 0.5879 0.7419 
  0.5 0.9321 0.9460 0.9500 0.9413 1.1191 0.7878 0.7901 1.1260 
 50 0.1 0.9342 0.9478 0.9528 0.9387 0.4100 0.3755 0.3749 0.4065 
  0.3 0.9333 0.9506 0.9625 0.9471 0.5742 0.4467 0.4455 0.5743 
  0.5 0.9411 0.9576 0.9610 0.9410 0.8602 0.5933 0.5933 0.8628 
 100 0.1 0.9472 0.9511 0.9504 0.9548 0.2901 0.2625 0.2616 0.2892 
  0.3 0.9490 0.9521 0.9582 0.9522 0.4090 0.3111 0.3127 0.4080 
  0.5 0.9489 0.9545 0.9597 0.9514 0.6065 0.4093 0.4101 0.6084 
 150 0.1 0.9468 0.9514 0.9516 0.9556 0.2375 0.2142 0.2141 0.2318 
  0.3 0.9446 0.9526 0.9508 0.9536 0.3335 0.2538 0.2538 0.3035 
  0.5 0.9504 0.9530 0.9502 0.9526 0.4945 0.3328 0.3329 0.4903 
 200 0.1 0.9482 0.9540 0.9588 0.9524 0.2061 0.1854 0.1853 0.2059 
  0.3 0.9524 0.9510 0.9532 0.9508 0.2892 0.2196 0.2195 0.2768 
  0.5 0.9522 0.9524 0.9546 0.9510 0.4279 0.2872 0.2875 0.4209 
1.50 30 0.1 0.9209 0.9490 0.9542 0.9433 0.5521 0.5213 0.5235 0.5702 
  0.3 0.9072 0.9540 0.9528 0.9570 0.7735 0.6436 0.6442 0.8364 
  0.5 0.8931 0.9505 0.9449 0.9308 1.1629 0.8781 0.8739 1.2941 
 50 0.1 0.9246 0.9529 0.9548 0.9418 0.4281 0.4016 0.4012 0.4409 
  0.3 0.9162 0.9580 0.9522 0.9409 0.5987 0.4948 0.4947 0.6473 
  0.5 0.9097 0.9498 0.9560 0.9494 0.8909 0.6693 0.6685 0.9837 
 100 0.1 0.9453 0.9571 0.9535 0.9530 0.3028 0.2822 0.2823 0.3135 
  0.3 0.9349 0.9498 0.9526 0.9591 0.4231 0.3465 0.3468 0.4583 
  0.5 0.9164 0.9520 0.9484 0.9438 0.6292 0.4660 0.4664 0.6997 
 150 0.1 0.9338 0.9522 0.9514 0.9006 0.2475 0.2298 0.2301 0.2580 
  0.3 0.9272 0.9542 0.9522 0.9086 0.3439 0.2822 0.2822 0.3483 
  0.5 0.9188 0.9504 0.9500 0.9230 0.5113 0.3794 0.3795 0.5248 
 200 0.1 0.9522 0.9506 0.9510 0.9218 0.2144 0.1991 0.1992 0.2232 
  0.3 0.9364 0.9554 0.9542 0.9226 0.2977 0.2441 0.2440 0.3085 
  0.5 0.9276 0.9532 0.9500 0.9430 0.4417 0.3277 0.3279 0.3317 
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Figure 1. Graphs comparing the performance of the shape parameter with respect to the (A) 
coverage probability and (B) expected length. 

 

Figure 2. Graphs comparing the performance of the sample sizes with respect to the (C) 
coverage probability and (D) expected length (a = 30, b = 50, c = 100, d = 150, e = 200). 
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Figure 3. Graphs comparing the performance of the proportion of zero with respect to 
the (E) coverage probability and (F) expected length. 

5. Application 

Wind speed plays multiple important roles and has various impacts, particularly in agriculture. 
It affects plant growth rates, leading to faster growth and increased crop yields. Because Thailand 
is known as an agricultural country, a large portion of its population has always been engaged in 
farming or related occupations. Therefore, wind speed is an important factor that affects agriculture 
in Thailand. In this research, wind speed data from Ubon Ratchathani province for the hourly 
periods on March 9–10, 2023, and wind speed data from Si Sa Kat province for the hourly periods 
on April 3–7, 2023, have been applied for analysis, as presented in Tables 2 and 3. The wind speed 
data for both provinces was obtained from the Automatic Weather System in Thailand 
(http://www.aws-observation.tmd.go.th/main/main). We have plotted histograms of the wind speed 
data for Ubon Ratchathani and Si Sa Kat provinces to visualize the data distribution, shown in Figures 4 
and 5. Since the wind speed data include both zero values (no wind) and positive values, we examined 
the suitability of the data distribution for positive values by comparing it to other distributions, 
including the normal, exponential, Cauchy, logistic, and Birnbaum-Saunders distributions. To assess 
the suitability of these distributions for the data, we have used the Akaike information criterion (AIC) 
and the Bayesian information criterion (BIC), calculated as  

𝐴𝐼𝐶 = 2ln(𝐿) + 2𝑝, 

and 

𝐴𝐼𝐶 = 2ln(𝐿) + 2𝑝ln(𝑜), 

respectively, where p represents the number of parameters estimated, o represents the number of 
observations, and L represents the likelihood function. From Table 4, it is evident that the AIC and BIC 
values for the Birnbaum-Saunders distribution are the lowest compared to other distributions. This 
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suggests that the Birnbaum-Saunders distribution is the most suitable for the positive value of the wind 
speed data. As a result, the wind speed data, which contains both positive and zero values, is modeled 
as the delta-Birnbaum-Saunders distribution. Consequently, we have used this distribution to calculate 
confidence intervals for the coefficients of variation of the wind speed data. In addition, we have 
presented summary statistics for the wind speed data in Table 5. In the wind speed data, the parameter 
  represents the shape or skewness of the distribution, reflecting the tendency toward lower or higher-
than-normal wind speeds. The parameter 𝛽 indicates the scale of the wind speed distribution in the 
area; if 𝛽  changes, the distribution of the data will also shift. The parameter 𝛿  represents the 
proportion of zero values in the dataset. Point estimates or coefficients of variation for Ubon 
Ratchathani and Si Sa Kat provinces were found to be 1.2183 and 1.3085, respectively. Table 6 presents 
the calculated 95% confidence intervals for the coefficient of variation for the wind speed data from 
Ubon Ratchathani and Si Sa Kat provinces. We compared the wind speed data from Ubon Ratchathani 
with the parameters from the data simulation, using the sample size of 𝑛 = 50, parameter 𝛼 = 0.75, 
and parameter 𝛿 = 0.3, from Table 1. The simulation results indicate that the NA, G.VST, G.WS, and 
BCI methods achieve coverage probabilities greater than the specified confidence level of 0.95. 
Additionally, it was found that the G.WS method provides the shortest confidence interval compared 
to other methods. The confidence interval for the wind speed data from Ubon Ratchathani using the 
G.WS method is (1.0797, 1.4925), with the confidence interval length of 0.4128, the shortest among 
the methods. This indicates that the study results are consistent. Subsequently, we compared the 
wind speed data from Si Sa Ket with the parameters from the data simulation using the sample size 
of 𝑛 = 100, parameter 𝛼 = 1.00, and parameter 𝛿 = 0.3, from Table 1. The simulation results show 
that the G.VST, G.WS, and BCI methods achieve coverage probabilities greater than the specified 
confidence level, while the NA method has a coverage probability lower than the specified confidence 
level. Therefore, we considered only the G.VST, G.WS, and BCI methods. It was found that the G.VST 
method provides the shortest confidence interval. The confidence interval for the wind speed data from 
Si Sa Ket using the G.VST method is (1.2002, 1.4655), with the confidence interval length of 0.2653, 
the shortest among all methods. This indicates that the study results are consistent. Consequently, to 
construct confidence intervals for the coefficient of variation of wind speed data in Thailand, we 
recommend using the G.WS method for Ubon Ratchathani province and the G.VST method for Si Sa 
Ket province. 

Table 2. Data on the wind speed of Ubon Ratchathani, Thailand. 

Data on the wind speed of Ubon Ratchathani (Knots) 
4.9 2.9 2.3 1.0 3.9 0.0 0.6 5.8 
0.8 1.6 3.3 2.3 2.1 0.0 0.0 4.7 
6.2 3.9 0.8 0.0 1.6 0.0 0.0 1.6 
3.3 5.2 1.9 0.0 1.9 0.0 0.6 0.0 
3.3 0.6 3.3 0.0 1.6 1.6 0.0 0.6 
0.4 3.1 3.9 0.0 0.0 0.0 0.0 0.0 
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Figure 4. Histogram of wind speed data for Ubon Ratchathani. 

Table 3. Data on the wind speed of Si Sa Kat, Thailand. 

Data on the wind speed of Si Sa Kat (Knots) 
0.2 0.2 1.2 0.4 1.6 2.5 4.3 2.1 3.3 0.0 1.2 0.0 
2.3 0.0 3.3 0.4 1.9 9.9 8.7 0.0 2.9 1.0 0.0 1.6 
0.4 0.0 5.8 0.8 1.0 5.2 6.2 1.2 1.2 0.6 0.0 0.8 
2.3 0.0 7.6 0.6 0.6 7.2 5.8 0.0 3.9 0.4 0.0 0.0 
8.7 0.6 5.8 0.0 1.2 5.6 8.9 0.6 2.1 0.0 1.6 1.2 
3.3 2.5 5.2 0.6 0.6 0.8 2.5 0.8 3.5 1.6 0.6 1.0 
3.9 1.2 0.8 0.0 0.6 8.4 2.1 0.8 2.9 0.0 0.0 0.0 
2.9 0.0 2.9 1.2 0.0 2.5 0.2 0.2 3.9 1.2 0.0 0.0 
2.5 0.8 1.2 2.9 0.8 4.3 3.3 0.8 0.4 0.0 1.6 0.6 
3.1 0.2 2.3 1.2 1.6 1.6 3.1 0.0 0.6 1.0 0.6 0.0 

 

Figure 5.  Histogram of wind speed data for Si Sa Kat. 
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Table 4. The AIC and BIC values of each model for the wind speed data. 

Data Model Normal Exponential 
Birnbaum-
Saunders 

Cauchy Logistic 

Ubon 
Ratchathani 

AIC 125.404 125.910 121.308 139.931 127.085 
BIC 128.335 127.378 125.705 142.863 130.016 

Si Sa Kat AIC 321.226 294.814 288.638 345.058 316.721 
BIC 326.135 297.268 296.001 349.967 321.630 

Table 5. Summary statistics for the wind speed data. 

Data 𝑛 𝛼ො 𝛽መ  𝛿መ 𝜃෠ 
Ubon Ratchathani 48 0.7968 1.9355 0.3333 1.2183 
Si Sa Kat 120 0.9682 1.3744 0.2833 1.3085 

Table 6. The 95% confidence intervals for the coefficients of variation of the wind speed data. 

Data Methods Interval Length 
Ubon Ratchathani NA (0.9314, 1.5052) 0.5738 

G.VST (1.0736, 1.4905) 0.4169 
G.WS (1.0797, 1.4925) 0.4128 
BCI (0.9795, 1.5470) 0.5675 

Si Sa Kat NA (1.1290, 1.4881) 0.3591 
G.VST (1.2002, 1.4655) 0.2653 
G.WS (1.1992, 1.4783) 0.2791 
BCI (1.1382, 1.4969) 0.3587 

6. Conclusions 

In this study, we constructed confidence intervals for the coefficient of variation of the delta-
Birnbaum-Saunders distribution. We proposed three methods: NA, G.VST, and G.WS, and compared 
them with BCI. Then, we compared the performance of the proposed method based on the coverage 
probabilities greater than or equal to the 0.95 confidence level, along with the expected lengths of the 
shortest confidence interval. The simulation results indicate that the coverage probabilities of the 
G.VST and G.WS methods are greater than or close to the nominal confidence level. Meanwhile, the 
NA method shows coverage probability greater than the nominal confidence level when the shape 
parameter is small. Additionally, the coverage probability of the BCI method becomes closer to the 
nominal confidence level as the sample size increases. Considering the expected lengths, the BCI 
method provides shorter confidence intervals than the NA method, except when the shape parameter 
is large. However, the G.VST and G.WS methods yield the shortest and most similar confidence 
intervals, making these two methods the most efficient overall. Moreover, all the proposed methods 
were applied to wind speed data in Thailand and yielded results consistent with the simulation 
outcomes. Therefore, the G.VST and G.WS methods are recommended for constructing confidence 
intervals for the coefficient of variation of the delta-Birnbaum-Saunders distribution. In future 
research, we will investigate new methods and expand the parameters of interest in the delta-
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Birnbaum-Saunders distribution to enhance the effectiveness of constructing confidence intervals. 
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Appendix 

The asymptotic mean and variance 

We have used the Delta method to obtain an estimator with an asymptotically normal distribution 
based on the Taylor series, as follows: 

𝑔൫𝛼ො, 𝛿መ൯ = 𝑔(𝛼, 𝛿) +
డ௚(ఈ,ఋ)

డఈ
(𝛼ො − 𝛼) +

డ௚(ఈ,ఋ)

డఋ
൫𝛿መ − 𝛿൯ + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟,  (A.1) 

where 𝑔(𝛼, 𝛿) =
ଵ

ଶାఈమ
ට

ఈమ(ସାହఈమ)ାఋ(ଶାఈమ)మ

ଵିఋ
. Now, we will calculate the partial derivatives of 𝑔(𝛼, 𝛿) 

with respect to 𝛼 as follows: 

𝜕𝑔(𝛼, 𝛿)

𝜕𝛼
=

𝜕

𝜕𝛼
቎

1

2 + 𝛼ଶ
ඨ

𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
቏ 

≈ ቐ
1

2 + 𝛼ଶ

1

2
ቈ
𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
቉

ି
ଵ
ଶ 1

1 − 𝛿
(8𝛼 + 20𝛼ଷ + 8𝛼𝛿 + 4𝛼ଷ𝛿)ቑ 

+ ቐቈ
𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
቉

ଵ
ଶ

൤−
2𝛼

(2 + 𝛼ଶ)ଶ
൨ቑ 

  ≈ ൜
ସఈାଵ଴ఈయାସఈఋାଶ యఋ

(ଶାఈమ)ඥଵିఋ[ఈమ(ସାହఈమ)ାఋ(ଶାఈమ)మ]
ൠ −

ଶఈ

(ଶାఈమ)మ
ට

ఈమ(ସାହఈమ)ାఋ(ଶାఈమ)మ

ଵିఋ
 

  ≈
ଶఈ

(ଶାఈమ)√ଵିఋ
൤

ଶାହఈమାଶఋାఈమఋ

ඥఈమ(ସାହఈమ)ାఋ(ଶାఈమ)మ
−

ඥఈమ(ସାହఈమ)ାఋ(ଶାఈమ)మ

(ଶାఈమ)
൨ 
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  ≈
ଶఈ

(ଶାఈమ)√ଵିఋ
ቊ

ൣ൫ଶାఈమ൯൫ଶାହఈమାଶఋାఈమఋ൯൧ିቂఈమ൫ସାହఈమ൯ାఋ൫ଶାఈమ൯
మ

ቃ

(ଶାఈమ)ඥఈమ(ସାହఈమ)ାఋ(ଶାఈమ)మ
ቋ 

  ≈
ଶఈቄൣ൫ଶାఈమ൯൫ଶାହఈమାଶఋାఈమఋ൯൧ିఈమ൫ସାହఈమ൯ିఋ൫ଶାఈమ൯

మ
ቅ

(ଶାఈమ)మඥ(ଵିఋ)ఈమ(ସାହఈమ)ାఋ(ଶାఈమ)మ
 

  ≈
଼ఈ൫ଵାଶఈమ൯

(ଶାఈమ)మඥ(ଵିఋ)ఈమ(ସାହఈమ)ାఋ(ଶାఈమ)మ
. 

Next, we have calculated the partial derivatives of 𝑔(𝛼, 𝛿)with respect to 𝛿, and we obtain that 

𝜕𝑔(𝛼, 𝛿)

𝜕𝛿
=

𝜕

𝜕𝛿
቎

1

2 + 𝛼ଶ
ඨ

𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
቏ 

  ≈
ଵ

ଶାఈమ
൝

ଵ

ଶ
൤

ఈమ൫ସାହఈమ൯ାఋ൫ଶାఈమ൯
మ

ଵିఋ
൨

ି
భ

మ

ቈ
(ଵିఋ)൫ଶାఈమ൯

మ
ାቂఈమ൫ସାହఈమ൯ାఋ൫ଶାఈమ൯

మ
ቃ

(ଵିఋ)మ
቉ൡ 

  ≈
ఈమ൫ସାହఈమ൯ାఋ൫ଶାఈమ൯

మ

ଶ(ଶାఈమ)(ଵିఋ)య/మඥఈమ(ସାହఈమ)ାఋ(ଶାఈమ)మ
 

  ≈
ఈమ൫ସାହఈమ൯ାఋ൫ଶାఈమ൯

మ

(ଶାఈమ)ඥ(ଵିఋ)య[ఈమ(ସାହఈమ)ାఋ(ଶାఈమ)మ]
. 

After that, by using the equation above to substitute into Eq A.1, we get that 

𝑔൫𝛼ො, 𝛿መ൯ = 𝑔(𝛼, 𝛿) +
𝜕𝑔(𝛼, 𝛿)

𝜕𝛼
(𝛼ො − 𝛼) +

𝜕𝑔(𝛼, 𝛿)

𝜕𝛿
൫𝛿መ − 𝛿൯ + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 

≈
1

2 + 𝛼ଶ
ඨ

𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
 

+
8𝛼(1 + 2𝛼ଶ)

(2 + 𝛼ଶ)ଶඥ(1 − 𝛿)𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ
(𝛼ො − 𝛼) 

+
𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

(2 + 𝛼ଶ)ඥ(1 − 𝛿)ଷ[𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ]
൫𝛿መ − 𝛿൯,  

as 𝑛 → ∞. It is well known that the asymptotic distribution of 𝛼 and 𝛿 is given by 

ඥ𝑛(ଵ)(𝛼ො − 𝛼)
஽
→ 𝑁 ቀ0,

ఈమ

ଶ
ቁ and √𝑛൫𝛿መ − 𝛿൯

஽
→ 𝑁൫0, 𝛿(1 − 𝛿)൯, 

respectively. We have calculated the asymptotic mean of the coefficient of variation of the Delta-
Birnbaum-Saunders distribution as follows: 
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𝐸 ቀ𝑔൫𝛼ො, 𝛿መ൯ቁ ≈ 𝐸 ቎
1

2 + 𝛼ଶ
ඨ

𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
 

+
8𝛼(1 + 2𝛼ଶ)

(2 + 𝛼ଶ)ଶඥ(1 − 𝛿)𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ
(𝛼ො − 𝛼) 

+
𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

(2 + 𝛼ଶ)ඥ(1 − 𝛿)ଷ[𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ]
൫𝛿መ − 𝛿൯቉  

≈
1

2 + 𝛼ଶ
ඨ

𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
 

+
8𝛼(1 + 2𝛼ଶ)

(2 + 𝛼ଶ)ଶඥ(1 − 𝛿)𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ
𝐸(𝛼ො − 𝛼) 

 +
𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

(2 + 𝛼ଶ)ඥ(1 − 𝛿)ଷ[𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ]
𝐸൫𝛿መ − 𝛿൯ 

≈
1

2 + 𝛼ଶ
ඨ

𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
. 

In addition, the asymptotic variance of the coefficient of variation of the Delta-Birnbaum-Saunders 
distribution is given by 

𝑉 ቀ𝑔൫𝛼ො, 𝛿መ൯ቁ ≈ 𝑉 ቎
1

2 + 𝛼ଶ
ඨ

𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

1 − 𝛿
 

+
8𝛼(1 + 2𝛼ଶ)

(2 + 𝛼ଶ)ଶඥ(1 − 𝛿)𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ
(𝛼ො − 𝛼) 

+
𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

(2 + 𝛼ଶ)ඥ(1 − 𝛿)ଷ[𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ]
൫𝛿መ − 𝛿൯቉  

≈ ቈ
8𝛼(1 + 2𝛼ଶ)

(2 + 𝛼ଶ)ଶඥ(1 − 𝛿)𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ
቉

ଶ

𝑉(𝛼ො − 𝛼) 
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 + ቈ
𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ

(2 + 𝛼ଶ)ඥ(1 − 𝛿)ଷ[𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ]
቉

ଶ

𝑉൫𝛿መ − 𝛿൯ 

≈
1

(2 + 𝛼ଶ)ଶ(1 − 𝛿)[𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ]
ቊ

64𝛼ଶ(1 + 2𝛼ଶ)ଶ

(2 + 𝛼ଶ)ଶ
ቆ

𝛼ଶ

2𝑛(ଵ)
ቇ 

+
[2 + 𝛼ଶ(4 + 3𝛼ଶ)]ଶ

(1 − 𝛿)ଶ
ቆ

𝛿(1 − 𝛿)

𝑛
ቇቋ 

≈
1

(2 + 𝛼ଶ)ଶ(1 − 𝛿)[𝛼ଶ(4 + 5𝛼ଶ) + 𝛿(2 + 𝛼ଶ)ଶ]
ቊ

32𝛼ସ(1 + 2𝛼ଶ)ଶ

𝑛(ଵ)(2 + 𝛼ଶ)ଶ
 

+
𝛿[2 + 𝛼ଶ(4 + 3𝛼ଶ)]ଶ

𝑛(1 − 𝛿)
ቋ. 

Note that 𝛼ො~𝑁 ൬𝛼,
ఈమ

ଶ௡(భ)
൰ and 𝛿መ~𝑁 ቀ𝛿,

ఋ(ଵିఋ)

௡
ቁ. 
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