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Abstract: An m-polar fuzzy (mF) model offers a practical framework for decision-making by
providing higher flexibility in handling uncertainties and preferences. The ability of mF sets to
tackle multiple reference points permits for a more nuanced analysis, leading to more accurate
results in complex decision scenarios. This study was mainly devoted to introducing three novel
aggregation operators (AGOs) for multi-criteria decision-making (MCDM) based on generalized
geometric Heronian mean (GGHM) operations comprise the concept of mF sets. The presented
operators consisted of the weighted mF power GGHM (WmFPGGHM), ordered weighted mF power
GGHM averaging (OWmFPGGHM), and hybrid mF power GGHM (HmFPGGHM) operators. Some
essential fundamental properties of the proposed AGOs were investigated: idempotency, monotonicity,
boundedness, and Abelian property. Furthermore, an algorithm based on the initiated WmFPGGHM
operators was developed to address diverse daily-life MCDM scenarios. Next, to validate the efficiency
of the established algorithm, it was implemented in a daily-life MCDM problem involving urban
transportation management. At last, a sensitivity analysis of the initiated AGOs was provided with
existing mF set-based operators involving Dombi, Yager, and Aczel-Alsina’s operations-based AGOs.
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1. Introduction

Multi-criteria decision-making (MCDM) is a field of decision theory that refers to the procedure
of evaluating and prioritizing objects based on multiple criteria when making decisions. MCDM
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approaches aim to balance trade-offs among criteria to reach the optimal decision and are widely used
in several fields, including engineering, economics, and medical, to evaluate complicated decision-
making related problems involving conflicting alternatives. Some ordinary MCDM approaches include
the Analytical Hierarchy Process (AHP) [1], and Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) [2]. One major hindrance of these techniques is the involvement of qualitative
and quantitative factors without dealing with subjective judgments and incomplete information.
Integrating fuzzy sets for MCDM facilitate to deal with the uncertainties occurred in several decision-
making problems. The idea of fuzzy sets (FSs) was developed by Zadeh [3] in 1965. FSs allow
alternatives to be evaluated with belongingness degrees as compared to crisp values, which better
describes imprecision in real-world problems. Later, Bellman and Zadeh [4] were the first who
provided the phenomenon of decision-making under fuzzy information. Since the inception of this
powerful concept, FSs has received significant attention from experts around the world, who have
anticipated its real and theoretical aspects. For the most relevant research efforts on the theory and
applications of FSs, readers are referred to [5].

To date, several generalizations of the FS model have been proposed to better handle complex real-
life problems, such as intuitionistic fuzzy sets (IFSs) [6] and Pythagorean fuzzy sets (PFSs) [7], both
of which involve two separate degrees of membership and non-membership with specific summation
constraints. Many human decision-making situations involve bipolar judgmental information, i.e.,
positive and negative aspects. For example, friendship and hostility, likelihood and unlikelihood, or
effect and side effect. Similarly, in Chinese medicine, Yang (positive) and Yin (negative) are considered
two parts of a system. Motivated by this, Zhang [8] introduced the idea of bipolar fuzzy (BF) sets, also
known as Yin-Yang BF sets, which naturally extend the fuzzy set model. In the case of a BF set,
the co-domain is extended from the closed unit interval [0, 1] used in fuzzy sets to the product space
[−1, 0] × [0, 1]. Many significant contributions have been made to BF theory to improve decision-
making methods (see references [9, 10]). However, among the various extensions of FSs, m-polar
fuzzy (or mF) sets, proposed by Chen et al. [11], have emerged as a powerful mathematical tool for
addressing decision problems where each criterion must be evaluated from multiple perspectives or
poles. The presence of practical datasets involving multi-polar information was the primary motivation
behind the development of mF sets. For instance, consider the statement, “Spain is a good territory”.
This statement cannot be adequately explained by a truth value belonging to [0, 1] because different
properties of a good country (e.g., good in education, good in economic stability, good in agriculture)
should be evaluated to provide a truth degree regarding the country’s goodness. Each property may be
described by a value (membership) in [0, 1]. If we have m such properties to evaluate, then the truth
degree of the statement is an m-tuple of numbers in [0, 1], i.e., a member of [0, 1]m. Existing FSs and
their hybrid structures are inefficient in tackling with this variety of multi-polar information.

These days, the integration of various aggregation operators (AGOs) with FS-based MCDM
techniques plays an important role in numerous domains, including medicine, environmental sciences,
engineering, and economics. As a result, several MCDM approaches based on AGOs have been
developed to improve the precision of optimal decision-making, and they continue to evolve with
more advancements. For example, Asif et al. [12] presented Hamacher operations-based AGOs for
Pythagorean fuzzy information and its application in multi-attribute decision-making problem. Imran
et al. [13] introduced a MCDM method for robot selection by combining interval-valued IFSs and
Aczel-Alsina Bonferroni mean operations. Hussain and Ullah [14] proposed spherical fuzzy Sugeno-
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Weber AGOs and investigated their daily-life applications. Yager [15] proposed the idea of power
geometric operators. To generalize these operators, Xu and Yager [16] formulated power geometric
AGOs and discussed their applications in MCDM. In continuation of this effort, Xu [17] presented
the intuitionistic fuzzy power geometric AGOs and explored their applications in group decision-
making. Over the past decade, significant studies have emerged to aggregate bipolar data employing
well-established operators. For example, Jana et al. [18] employed Dombi’s operations to propose
AGOs for bipolar information, effectively addressing real-life issues.

Heronian mean (HM) operators have gained considerable attention in MCDM and group decision-
making (GDM) frameworks due to their ability to aggregate data while maintaining relationships
between attributes. For instance, Wang and Feng [19] proposed generalized intuitionistic fuzzy Yager
weighted HM-based AGOs and applied them to MCDM situations. Wang et al. [20] developed power
HM AGOs based on q-rung orthopair hesitant fuzzy data for MCDM. In a similar manner, Javed
et al. [21] proposed T -spherical fuzzy Dombi power HM-based AGOs for MCDM. Thilagavathy
and Mohanaselvi [22] introduced a T -spherical fuzzy TOPSIS method, integrating Hamacher HM-
based AGOs with distance measures, and implemented it to waste treatment. In another application,
Kakati et al. [23] studied the Fermatean fuzzy Archimedean HM-based MCDM method for sustainable
urban transport solutions. Zang et al. [24] generalized the scope of HM operators by developing the
linguistic complex T -spherical fuzzy HM operator and applying it to emergency information quality
assessment. Additionally, Hussain et al. [25] explored the selection of educational institutes using
spherical fuzzy HM operators combined with the Aczel-Alsina triangular norm. Further expanding
the framework, Yaacob et al. [26] introduced bipolar neutrosophic Dombi-based HM operators for
MCDM. Thilagavathy and Mohanaselvi [27] proposed T -spherical fuzzy Hamacher HM geometric
operators for decision-making, utilizing the SMART-based TODIM method. Naz et al. [28] applied 2-
tuple linguistic q-rung orthopair fuzzy power HM operators to evaluate historical sites. Similarly, Li
et al. [29] introduced generalized q-rung orthopair fuzzy interactive Hamacher power average and HM
operators for MCDM. Zhang et al. [30] focused on spherical fuzzy Dombi power HM-based AGOs. Mo
and Huang [31] proposed Archimedean geometric HM-based AGOs based on dual hesitant fuzzy sets.
Hu et al. [32] extended the application of HM operators by introducing a three-parameter generalized
weighted HM. Shi et al. [33] explored intuitionistic fuzzy power geometric HM operators, integrating
power geometric operations with intuitionistic FSs. Deveci et al. [34] utilized fuzzy trigonometric
AGOs based MCDM model for the assessment of objects in urban transportation. Faizi et al. [35]
presented a new MCDM method by fusing HM and Bonferroni mean with hesitant 2-tuple linguistic
term sets. Akram et al. [36] utilized generalized orthopair fuzzy Aczel-Alsina aggregation operators
(AGOs) for energy resource selection.

With recent advancements, experts have noted a global shift towards multipolarity. Consequently,
researchers have been investigating the aggregation of various datasets involving mF information
using existing AGOs. For instance, Waseem et al. [37] introduced mF Hamacher AGOs, which were
successfully applied in MCDM scenarios. Khameneh and Kilicman [38] proposed mF soft weighted
AGOs, demonstrating their effectiveness in addressing MCDM problems. Akram et al. [39] examined
mF Dombi AGOs and highlighted their applicability in MCDM. Later, Naz et al. [40] developed 2-tuple
linguistic BF Heronian mean AGOs specifically for MCDM. Furthermore, Ali et al. [41] established
specialized geometric and arithmetic AGOs for aggregating mF information using Yager’s t-norm and
t-conorm. Recently, Rehman et al. [42] proposed Aczel-Alsina operation based AGOs and studied
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their applications in the identification of wind power and desalination plants sites. For additional
insights into MCDM scenarios utilizing AGOs, readers may refer to [43]. Given the versatility and
broad applicability of Heronian mean operators, coupled with the growing demand for multipolar fuzzy
aggregation, we aim to develop mF set-based power geometric Heronian mean AGOs.

1.1. Research gaps

Inspection of the published studies on urban transportation concluded that the transport type and
route are crucial factors in the management of urban transportation [44–46]. To find a reasonable route
in transportation management, it is important to consider the multi-polar characteristics of each crucial
factor to avoid data loss. The preexisting literature did not consider multiple features of each attribute,
which are very important for effective decision-making. However, in view of the criticality of the route
selection problem in urban transportation, it is necessary to evaluate each information pole regarding
every attribute.

Besides, to enhance individual and societal welfare in urban transportation, the development of new
methods is the need of the hour, particularly when the construction of new routes is under consideration
to facilitate urban transportation. Due to the involvement of different stakeholders, any project related
to the improvement of urban transportation suffers from conflicts of interest among the various
associated organizations, including private and public transport companies, municipal bodies, and
government authorities [47]. To tackle the above-mentioned complexities, the suggested methodology
provides a reliable tool for all stakeholders. Several useful mathematical tools have been reported to
date for handling such complicated situations, like mF set-based AGOs, while there is a need for a more
powerful tool that provides accurate decisions by elaborating on the interrelationships of attributes in
the mF environment compared to existing operators. To sum up, the suggested AGOs, which integrate
the mF set model with the power geometric Heronian mean, make significant contributions to MCDM
methods. From the analysis of the above-discussed literature, some major research gaps are observed
as follows:

(1) All the integrated mF set-based AGOs with t-norm and t-conorm operations like Hamacher [37],
Dombi [39], Yager [41], Aczel-Alsina [42], etc., are not capable of effectively maintaining or
considering the interrelationships among attributes, and this issue can be easily overcome by the
Heronian mean (or HM).

(2) The existing HM-based AGOs, such as picture fuzzy interactional partitioned HM-AGOs [48],
Archimedean HM operators based on complex IFSs [55], etc., fail to demonstrate the multi-polar
sub-characteristics of each attribute, and this issue can be easily addressed by integrating the mF
set theory.

For more details on urban transportation techniques, the readers are refereed to Table 1.
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Table 1. Summary of urban transportation published works with research gaps.

References MCDM methods/AGOs Problem descriptions Research gaps
Kakati et al. [23] Fermatean fuzzy

Archimedean Heronian
Mean-Based Model

Estimation of sustainable
urban transport solutions

Unable to tackle mF
dataset

Sarkar [44] Dual hesitant q-rung
orthopair fuzzy Frank
power partitioned
Heronian mean AGOs

Estimation of the
sustainable urban
transport solutions

Inadequate to deal with
mF information

Deveci et al. [45] fuzzy trigonometric
based decision-making
method

Accelerating the
integration of the
metaverse into urban
transportation

Not considered both
interrelationships
among attributes and
their sub-features

Hezam et al. [46] Intuitionistic fuzzy
gained and lost
dominance score based
on symmetric point
criterion

Prioritization of zero-
carbon measures for
sustainable urban
transportation

Not capable to consider
interrelationships
among attributes in mF
environment

Görçün et al. [49] Modified WASPAS
approach based on
Heronian operators

Selection of tramcars
for sustainable urban
transportation

Not effective when
dealing with mF
information

Seker and
Aydin [50]

IVIF-AHP and CODAS
method

Evaluation of sustainable
public transportation
system

Inadequate to tackle
data involving
multi-polar(m-polar)
properties of objects
and interrelationship
among attributes

Erdogan
et al. [51]

Hybrid power Heronian
function-based model

Charging of scheduling
algorithms for workplace

Fail to tackle data
involving multi-polar
properties of objects

Deveci et al. [52] Fuzzy Einstein WASPAS
approach

Climate change
mitigation strategies in
urban mobility planning

Handicap to tackle
sub-characteristics and
interrelationship of
attributes

Pamucar
et al. [53]

Integrated DIBR and
fuzzy Dombi CoCoSo
model

Concept of Circular
economy in urban
mobility alternatives

Unable to deal with
sub-features and
interrelationship of
attributes

Li et al. [54] Modified spherical fuzzy
partitioned Maclaurin
symmetric mean operator

Sustainability assessment
of regional transportation

Inefficient to deal with
data having multiple
sub-characteristics of
attributes
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1.2. Motivations

The motivations of the presented research study are outlined below:

(1) To date, several well-known AGOs based on HM has been introduced to aggregate different
types of information. Among them, HM operators offer greater flexibility and accuracy in
aggregation compared to other operators due to their ability to handle interrelationship among
input arguments, which makes them very effective in decision-making situations. The literature
consistently highlights the superior accuracy of HM based AGOs.

(2) Multi-polar FSs address multi-index ambiguities by accounting for multiple different features of
an object. This approach enables more accurate, flexible, and appropriate MCDM in complex,
multi-attributed situations compared to existing decision-making approaches. To understand this
useful concept, suppose a group of students wishes to plan a summer holiday tour but is uncertain
about the location. This situation cannot be explained well by a membership value in [0, 1],
as different characteristics of a suitable location need to be evaluated, such as having lakes and
waterfalls, the availability of food and other services, and favorable weather conditions. These are
sub-characteristics of the location, with each characteristic having a membership value in [0, 1]. If
we use fuzzy set theory to deal with this information, we would have to choose a fuzzy set for each
sub-characteristic, which is not a precise way to represent this information. Hence, multi-polar
FSs, as an efficient extension of FSs, are more flexible and reliable.

(3) In a variety of MCDM problems, due to the interrelationships among attributes and existence
of their multi-polar sub-features, the experts may provide unreasonable data. However, existing
mF AGOs, including mF Dombi AGOs, mF Hamacher AGOs, mF Yager AGOs, and mF Aczel-
Alsina AGOs fail to effectively demonstrate the interrelationship between attributes, and thus fail
to mitigate the impact of such type of uncertain data. Moreover, other published literature of HM
operators, such as spherical fuzzy HM operators based on Aczel-Alsina operations has ability to
deal with interrelationship between attributes but fail to reflect multi-polar sub-characteristics of
attributes. Therefore, to overcome these issues, the fusion of mF sets and power GGHM operators
is initiated in this research article.

(4) Many MCDM problems, such as determining the best plan in urban transportation management,
require adequate handling due to involvement of complex, multi-faceted information with multi-
polar, multi-attribute, and multi-agent uncertainties. Conventional fuzzy, BF, and IFS models are
insufficient for effectively handling these complexities. However, the mF set-based AGOs, such
as mF Dombi, Hamacher, Yager, and Aczel-Alsina AGOs, are also ineffective when dealing with
interrelationships among attributes.

(5) The strong aggregation capabilities of the power geometric Heronian mean, combined with
the modeling of mF sets, can enhance MCDM paradigms in multi-polar uncertain scenarios.
However, existing literature has not sufficiently explored this powerful combination.

Motivated by these factors, the proposed work aims to develop multi-polar fuzzy (mF) power
geometric HM aggregation operators (AGOs) and demonstrate their effectiveness in MCDM. The
following list highlights the key contributions of this work:

(1) Three novel power geometric Heronian mean-based AGOs for m-polar fuzzy information are
introduced: the WmFPGGHM, OWmFPGHHM, and HmFPGGHM operators.
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(2) Some basic properties of the initiated AGOs, including idempotency, monotonicity, boundedness,
and commutativity, are investigated.

(3) An MCDM algorithm is developed for the aggregation of multi-polar fuzzy information under the
introduced WmFPGGHM operators.

(4) The newly designed algorithm is applied to a practical scenario: selecting the best plan for urban
transportation management: a case study of Saudi Arabia.

(5) A brief comparative analysis of the proposed technique is conducted with mF Yager AGOs [41],
mF Dombi AGOs [39], and mF Aczel-Alsina [42].

The forthcoming work is structured as follows: Section 2 reviews key m-polar fuzzy concepts and
revisits the geometric Heronian mean and power geometric operators. Section 3 presents three new
power geometric AGOs based on the Heronian mean, namely, the WmFPGGHM, OWmFPGGHM,
and HmFPGGHM operators. Some essential properties of the developed AGOs are also investigated
in this section. Section 4 develops a novel MCDM algorithm based on weighted mF power GHM
operators and explores a case study in Saudi Arabia for selecting the best plan for urban transportation
management. Section 5 provides a comparison of the introduced AGOs with certain preexisting
operators, including mF Yager AGOs [41], mF Dombi AGOs [39], and mF Aczel-Alsina [42].
Additionally, some advantages and limitations of the presented work are demonstrated in this section.
Section 6 concludes this work and provides some suitable future directions.

2. Preliminaries

In this section, we first revisit the key concepts of mF sets, followed by a discussion of basic
operations on mF numbers. Additionally, the definitions of the geometric HM and power geometric
HM operators are reviewed.

Definition 2.1. [11] An m-polar fuzzy (or mF) set T is a function ϕ : T → [0, 1]m where the
membership value of each object is defined by ϕ(t) = (p1 ◦ ϕ(t), p2 ◦ ϕ(t), . . . , pm ◦ ϕ(t)) where t ∈ T ,
and for q = 1, 2, . . . ,m, pq ◦ ϕ : [0, 1]m → [0, 1] is a function that represents q-th projection.

For every mF number (henceforth, mFN) ϕ̃ = (p1 ◦ ϕ, . . . , pm ◦ ϕ) with pq ◦ ϕ ∈ [0, 1] for all
q = 1, 2, . . . ,m, the functions (score and accuracy) ϕ̃ are provided as below:

Definition 2.2. [37] Suppose that ϕ̃ = (p1 ◦ ϕ, . . . , pm ◦ ϕ) is an mFN, then we define its score U and
accuracy V functions as below:

U(ϕ̃) =
1
m

( m∑
q=1

(pq ◦ ϕ)
)
,

A(ϕ̃) =
1
m

( m∑
q=1

(−1)q+1(pq ◦ ϕ − 1)
)
,

where U(ϕ̃) ∈ [0, 1] and V(ϕ̃) ∈ [−1, 1].

Based on the above definition, we present an ordering criterion for mFNs as follows:

Definition 2.3. [37] Suppose ϕ̃1 = (p1 ◦ϕ1, . . . , pm ◦ϕ1), and ϕ̃2 = (p1 ◦ϕ2, . . . , pm ◦ϕ2) are two mFNs,
then
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(1) ϕ̃1 < ϕ̃2, if U(ϕ̃1) < U(ϕ̃2),
(2) ϕ̃1 > ϕ̃2, if U(ϕ̃1) > U(ϕ̃2),
(3) If U(ϕ̃1) = U(ϕ̃2), then

• ϕ̃1 < ϕ̃2, if A(ϕ̃1) < A(ϕ̃2),
• ϕ̃1 > ϕ̃2, if A(ϕ̃1) > A(ϕ̃2),
• ϕ̃1 = ϕ̃2, if V(ϕ̃1) = A(ϕ̃2).

We now revisit some fundamental notions of mFNs [37] as follows:

(1) ϕ̃1 � ϕ̃2 =
(
p1 ◦ ϕ1 + p1 ◦ ϕ2 − p1 ◦ ϕ1.p1 ◦ ϕ2, . . . , pm ◦ ϕ1 + pm ◦ ϕ2 − pm ◦ ϕ1.pm ◦ ϕ2

)
,

(2) ϕ̃1 � ϕ̃2 =
(
p1 ◦ ϕ1.p1 ◦ ϕ2, . . . , pm ◦ ϕ1.pm ◦ ϕ2

)
,

(3) αϕ̃ =
(
1 − (1 − p1 ◦ ϕ)α), . . . , 1 − (1 − pm ◦ ϕ)α

)
, α > 0,

(4) (ϕ̃)α =
(
(p1 ◦ ϕ)α, . . . , (pm ◦ ϕ)α

)
, α > 0,

(5) ϕ̃c =
(
1 − p1 ◦ ϕ, . . . , 1 − pm ◦ ϕ

)
,

(6) ϕ̃1 ⊆ ϕ̃2, if and only if p1 ◦ ϕ1 ≤ p1 ◦ ϕ2, . . . , pm ◦ ϕ1 ≤ pm ◦ ϕ2,

(7) ϕ̃1 ∪ ϕ̃2 =
(

max(p1 ◦ ϕ1, p1 ◦ ϕ2), . . . ,max(pm ◦ ϕ1, pm ◦ ϕ2)
)
,

(8) ϕ̃1 ∩ ϕ̃2 =
(

min(p1 ◦ ϕ1, p1 ◦ ϕ2), . . . ,min(pm ◦ ϕ1, pm ◦ ϕ2)
)
.

Theorem 2.1. Suppose ϕ̃1 = (p1 ◦ ϕ1, . . . , pm ◦ ϕ1) and ϕ̃2 = (p1 ◦ ϕ2, . . . , pm ◦ ϕ2) are two mFNs, and
α, α1, α2 > 0. Then

(1) ϕ̃1 � ϕ̃2 = ϕ̃2 � ϕ̃1,
(2) ϕ̃1 � ϕ̃2 = ϕ̃2 � ϕ̃1,
(3) α(ϕ̃1 � ϕ̃2) = α(ϕ̃1) � α(ϕ̃2),
(4) (ϕ̃1 � ϕ̃2)α = (ϕ̃1)α � (ϕ̃2)α,
(5) α1ϕ̃1 � α2ϕ̃1 = (α1 + α2)ϕ̃1,
(6) (ϕ̃1)α1 � (ϕ̃2)α2 = (ϕ̃1)α1+α2 ,

(7)
(
(ϕ̃1)α1

)α2 = (ϕ̃1)α1α2 .

Proof. It can be immediately followed from the above properties and Definition 2.1. �
The HM operator is a standard tool, which is utilized to compute the relation between decision objects.
Yu [43] extended this concept by presenting the notion of generalized geometric HM operator.

Definition 2.4. [43] Suppose that ξ, η, and ti where i varies from 1 to n, are non-negative real numbers.
If

GHMξ,η(t1, t2, . . . , tn) =
1

ξ + η

n∏
i=1, j=i

(ξti + ηt j)

2
n(n + 1) , (2.1)

then GHMξ,η is referred to as geometric Heronian mean (or GHM) operator.

Now, we recall the definition of power geometric operator, which was proposed by Xu and
Yager [16].

Definition 2.5. [16] Suppose that ti where i varies from 1 to n, are non-negative real numbers. The
power geometric operator is given by

AIMS Mathematics Volume 9, Issue 12, 34109–34146.



34117

PG(t1, t2, . . . , tn) =

n∏
i=1

t

1 + T (ti)∑n
i=1(1 + T (ti))

i , (2.2)

where T (ti) =
∑n

j=1, j,i S upp(ti, t j), S upp(ti, t j) is the support that satisfies the following constraints:

(1) S upp(ti, t j) belongs to closed unit interval.
(2) S upp(ti, t j) = S upp(t j, ti).
(3) If d(ti, t j) ≤ d(tl, tk), then S upp(ti, t j) ≥ S upp(tl, tk), where d(ti, t j) serve as the distance between
ti and t j, which is computed as

d(ti, t j) =

n∑
j=1, j,i

√
1
2

((ti − t j)2 + (ti − t j)2 + (ti − t j)2). (2.3)

3. mF generalized geometric Heronian mean operators

In this section, we present novel mF set-based operators, including weighted mF generalized
geometric Heronian mean (WmFGGHM) operators, ordered WmFGGHM operators, and hybrid
mFGGHM operators. Moreover, we investigate their essential properties with illustrative numerical
examples.

Definition 3.1. Suppose that ϕ̃t = (p1 ◦ ϕt, . . . , pm ◦ ϕt) is a finite set of n mFNs, then a function
WmFGGHMθ : ϕ̃n → ϕ̃ is called weighted mF generalized geometric Heronian mean (or
WmFGGHM), which is provided by

WmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃n) =

( 2
n(n + 1)

n⊕
i=1

n⊕
j=i

(nθiλiϕ̃i)ξ ⊗ (nθ jλ jϕ̃ j)η
) 1
ξ + η , (3.1)

where θ = (θ1, θ2, . . . , θn) includes the weights for each ϕ̃t, ∀ t = 1, . . . , n and θt > 0 with
n∑

t=1
θt = 1. In

Eq (3.1), λi are the power weights of each ϕ̃t, which are given by

λi =
1 + T (ti)∑n

s=1(1 + T (ts))
. (3.2)

Following is the key result in the generalized theory of weighted mF power GHM operators.

Theorem 3.1. Suppose that ϕ̃i = (p1 ◦ ϕi, . . . , pm ◦ ϕi) is a family of n mFNs where i = 1, 2, . . . , n, then
by applying the WmFGGHM operators, an accumulated degree of these mFNs is computed as follows:

WmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃n) =

( 2
n(n + 1)

n⊕
i=1

n⊕
j=i

(nθiλiϕ̃i)ξ ⊗ (nθ jλ jϕ̃ j)η
) 1
ξ + η

=

((
1 −

n∏
i=1, j=i

(1 − (1 − (1 − p1 ◦ ϕi)nλiθi)ξ(1 − (1 − p1 ◦ ϕ j)nλ jθ j)η)
2

n(n+1)

) 1
ξ+η

, . . . ,

(
1 −

n∏
i=1, j=i

(1 − (1 − (1 − pm ◦ ϕi)nλiθi)ξ(1 − (1 − pm ◦ ϕ j)nλ jθ j)η)
2

n(n+1)

) 1
ξ+η

)
. (3.3)
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Now, the implementation of above theorem is performed in the following numerical example:

Example 3.1. Suppose that ϕ1 = (0.13, 0.34, 0.76), ϕ2 = (0.15, 0.50, 0.88), ϕ3 = (0.44, 0.27, 0.18),
and ϕ4 = (0.11, 17, 0.26) are 4FNs, and θ = (0.2, 0.5, 0.1, 0.2) contains weights associated to
these 4FNs. Then, for ξ = 3 and η = 5, we have

WmFGGHM3,5
θ (ϕ̃1, ϕ̃2, ϕ̃3, ϕ̃4) =

( 2
4(4 + 1)

4⊕
i=1

4⊕
j=i

(4θiλiϕ̃i)3 ⊗ (4θ jλ jϕ̃ j)5
) 1
3 + 5

=

((
1 −

4∏
i=1, j=i

(1 − (1 − (1 − p1 ◦ ϕi)4λiθi)3(1 − (1 − p1 ◦ ϕ j)4λ jθ j)5)
1

10

) 1
8

, . . . ,

(
1 −

4∏
i=1, j=i

(1 − (1 − (1 − p3 ◦ ϕi)4λiθi)3(1 − (1 − p3 ◦ ϕ j)4λ jθ j)5)
1

10

) 1
8
)
. (3.4)

Before finding the values λ1, λ2, λ3 and λ4 using Eq (3.2), we first compute the distances by the Eq (2.3)
as

d(ϕ1, ϕ2) =

√
1
2

((0.13 − 0.15)2 + (0.34 − 0.50)2 + (0.76 − 0.88)2) = 0.14213,

d(ϕ1, ϕ3) =

√
1
2

((0.13 − 0.44)2 + (0.34 − 0.27)2 + (0.76 − 0.18)2) = 0.46765,

d(ϕ1, ϕ4) =

√
1
2

((0.13 − 0.11)2 + (0.34 − 0.17)2 + (0.76 − 0.26)2) = 0.3737,

d(ϕ2, ϕ1) =

√
1
2

((0.15 − 0.13)2 + (0.50 − 0.34)2 + (0.88 − 0.76)2) = 0.14213,

d(ϕ2, ϕ3) =

√
1
2

((0.15 − 0.44)2 + (0.50 − 0.27)2 + (0.88 − 0.18)2) = 0.55991,

d(ϕ2, ϕ4) =

√
1
2

((0.15 − 0.11)2 + (0.50 − 0.17)2 + (0.88 − 0.26)2) = 0.49744,

d(ϕ3, ϕ1) =

√
1
2

((0.44 − 0.13)2 + (0.27 − 0.34)2 + (0.18 − 0.76)2) = 0.46765,

d(ϕ3, ϕ2) =

√
1
2

((0.44 − 0.15)2 + (0.27 − 0.50)2 + (0.18 − 0.88)2) = 0.55991,

d(ϕ3, ϕ4) =

√
1
2

((0.44 − 0.11)2 + (0.27 − 0.17)2 + (0.18 − 0.26)2) = 0.2503,

d(ϕ4, ϕ1) =

√
1
2

((0.11 − 0.13)2 + (0.17 − 0.34)2 + (0.26 − 0.76)2) = 0.3737,

d(ϕ4, ϕ2) =

√
1
2

((0.11 − 0.15)2 + (0.17 − 0.50)2 + (0.26 − 0.88)2) = 0.49744,

d(ϕ4, ϕ3) =

√
1
2

((0.11 − 0.44)2 + (0.17 − 0.27)2 + (0.26 − 0.18)2) = 0.3737.
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Now, we are ready to calculate the values of T(ϕi) where i varies from 1 to 4 as below:

T (ϕ1) = 2.0165, T (ϕ2) = 1.8005, T (ϕ3) = 1.7221, T (ϕ4) = 1.8786.

Consequently, we get the values each λi as

λ1 = 0.2642, λ2 = 0.24528, λ3 = 0.23841, and λ4 = 0.25211.

Finally, by putting all values in Eq (3.4), we have

WmFGGHM3,5
θ (ϕ̃1, ϕ̃2, ϕ̃3, ϕ̃4)

=

((
(1 − (1 − (1 − (1 − 0.13)4×0.20×0.2642)3(1 − (1 − 0.13)4×0.2×0.2642)5)

1
10

× (1 − (1 − (1 − 0.13)4×0.20×0.2642)3(1 − (1 − 0.15)4×0.50×0.24528)5)
1
10

× (1 − (1 − (1 − 0.13)4×0.20×0.2642)3(1 − (1 − 0.44)4×0.10×0.23841)5)
1
10

× (1 − (1 − (1 − 0.13)4×0.20×0.2642)3(1 − (1 − 0.11)4×0.20×0.25211)5)
1
10

× (1 − (1 − (1 − 0.15)4×0.50×0.24528)3(1 − (1 − 0.13)4×0.20×0.2642)5)
1
10

× (1 − (1 − (1 − 0.15)4×0.50×0.24528)3(1 − (1 − 0.15)4×0.50×0.24528)5)
1

10

× (1 − (1 − (1 − 0.15)4×0.50×0.24528)3(1 − (1 − 0.44)4×0.10×0.23841)5)
1

10

× (1 − (1 − (1 − 0.15)4×0.50×0.24528)3(1 − (1 − 0.11)4×0.20×0.25211)5)
1

10

× (1 − (1 − (1 − 0.44)4×0.10×0.23841)3(1 − (1 − 0.13)4×0.20×0.2642)5)
1
10

× (1 − (1 − (1 − 0.44)4×0.10×0.23841)3(1 − (1 − 0.15)4×0.50×0.24528)5)
1

10

× (1 − (1 − (1 − 0.44)4×0.10×0.23841)3(1 − (1 − 0.44)4×0.10×0.23841)5)
1

10

× (1 − (1 − (1 − 0.44)4×0.10×0.23841)3(1 − (1 − 0.11)4×0.20×0.25211)5)
1

10

× (1 − (1 − (1 − 0.11)4×0.20×0.25211)3(1 − (1 − 0.13)4×0.20×0.2642)5)
1
10

× (1 − (1 − (1 − 0.11)4×0.20×0.25211)3(1 − (1 − 0.15)4×0.50×0.24528)5)
1

10

× (1 − (1 − (1 − 0.11)4×0.20×0.25211)3(1 − (1 − 0.44)4×0.10×0.23841)5)
1

10

× (1 − (1 − (1 − 0.11)4×0.20×0.25211)3(1 − (1 − 0.11)4×0.20×0.25211)5)
1

10

) 1
8

,(
1 − (1 − (1 − (1 − 0.34)4×0.20×0.2642)3(1 − (1 − 0.34)4×0.20×0.2642)5)

1
10

× (1 − (1 − (1 − 0.34)4×0.20×0.2642)3(1 − (1 − 0.50)4×0.50×0.24528)5)
1
10

× (1 − (1 − (1 − 0.34)4×0.20×0.2642)3(1 − (1 − 0.27)4×0.10×0.23841)5)
1
10

× (1 − (1 − (1 − 0.34)4×0.20×0.2642)3(1 − (1 − 0.17)4×0.20×0.25211)5)
1
10

× (1 − (1 − (1 − 0.50)4×0.50×0.24528)3(1 − (1 − 0.34)4×0.20×0.2642)5)
1
10

× (1 − (1 − (1 − 0.50)4×0.50×0.24528)3(1 − (1 − 0.50)4×0.50×0.24528)5)
1

10

× (1 − (1 − (1 − 0.50)4×0.50×0.24528)3(1 − (1 − 0.27)4×0.10×0.23841)5)
1

10

AIMS Mathematics Volume 9, Issue 12, 34109–34146.



34120

× (1 − (1 − (1 − 0.50)4×0.50×0.24528)3(1 − (1 − 0.17)4×0.20×0.25211)5)
1

10

× (1 − (1 − (1 − 0.27)4×0.10×0.23841)3(1 − (1 − 0.34)4×0.20×0.2642)5)
1
10

× (1 − (1 − (1 − 0.27)4×0.10×0.23841)3(1 − (1 − 0.50)4×0.50×0.24528)5)
1

10

× (1 − (1 − (1 − 0.27)4×0.10×0.23841)3(1 − (1 − 0.27)4×0.10×0.23841)5)
1

10

× (1 − (1 − (1 − 0.27)4×0.10×0.23841)3(1 − (1 − 0.17)4×0.20×0.25211)5)
1

10

× (1 − (1 − (1 − 0.17)4×0.20×0.25211)3(1 − (1 − 0.34)4×0.20×0.2642)5)
1
10

× (1 − (1 − (1 − 0.17)4×0.20×0.25211)3(1 − (1 − 0.50)4×0.50×0.24528)5)
1

10

× (1 − (1 − (1 − 0.17)4×0.20×0.25211)3(1 − (1 − 0.27)4×0.10×0.23841)5)
1

10

× (1 − (1 − (1 − 0.17)4×0.20×0.25211)3(1 − (1 − 0.17)4×0.20×0.25211)5)
1

10

) 1
8

,(
1 − (1 − (1 − (1 − 0.76)4×0.20×0.2642)3(1 − (1 − 0.76)4×0.20×0.2642)5)

1
10

× (1 − (1 − (1 − 0.76)4×0.20×0.2642)3(1 − (1 − 0.88)4×0.50×0.24528)5)
1
10

× (1 − (1 − (1 − 0.76)4×0.20×0.2642)3(1 − (1 − 0.18)4×0.10×0.23841)5)
1
10

× (1 − (1 − (1 − 0.76)4×0.20×0.2642)3(1 − (1 − 0.26)4×0.20×0.25211)5)
1
10

× (1 − (1 − (1 − 0.88)4×0.50×0.24528)3(1 − (1 − 0.76)4×0.20×0.2642)5)
1
10

× (1 − (1 − (1 − 0.88)4×0.50×0.24528)3(1 − (1 − 0.88)4×0.50×0.24528)5)
1

10

× (1 − (1 − (1 − 0.88)4×0.50×0.24528)3(1 − (1 − 0.18)4×0.10×0.23841)5)
1

10

× (1 − (1 − (1 − 0.88)4×0.50×0.24528)3(1 − (1 − 0.26)4×0.20×0.25211)5)
1

10

× (1 − (1 − (1 − 0.18)4×0.10×0.23841)3(1 − (1 − 0.76)4×0.20×0.26411)5)
1

10

× (1 − (1 − (1 − 0.18)4×0.10×0.23841)3(1 − (1 − 0.88)4×0.50×0.24528)5)
1

10

× (1 − (1 − (1 − 0.18)4×0.10×0.23841)3(1 − (1 − 0.18)4×0.10×0.23841)5)
1

10

× (1 − (1 − (1 − 0.18)4×0.10×0.23841)3(1 − (1 − 0.26)4×0.20×0.25211)5)
1

10

× (1 − (1 − (1 − 0.26)4×0.20×0.25211)3(1 − (1 − 0.76)4×0.20×0.2642)5)
1
10

× (1 − (1 − (1 − 0.26)4×0.20×0.25211)3(1 − (1 − 0.88)4×0.50×0.24528)5)
1

10

× (1 − (1 − (1 − 0.26)4×0.20×0.25211)3(1 − (1 − 0.18)4×0.10×0.23841)5)
1

10

× (1 − (1 − (1 − 0.26)4×0.20×0.25211)3(1 − (1 − 0.26)4×0.20×0.25211)5)
1

10

) 1
8
)
,

= (0.0613, 0.2170, 0.4902).

We are now prepared to explore some fundamental concepts of WmFGGHM operators such as
monotonicity, idempotency, and boundedness. We start with monotonicity.

Theorem 3.2. (Monotonicity) For suppose that ϕ̃t and ϕ̃′t are two collections of n mFNs, if each ϕ̃t ≤ ϕ̃
′
t ,

then
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WmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃n) ≤ WmFGGHMξ,η

θ (ϕ̃′1, ϕ̃
′
2, . . . , ϕ̃

′
n). (3.5)

Proof. Its proof directly followed by Definition 3.1 and Theorem 3.1. �

Theorem 3.3. (Idempotency) For a collection of mF numbers which are ‘m’ in number given as ϕ̃t =

(p1 ◦ ϕt, . . . , pm ◦ ϕt) such that ϕ̃t = ϕ̃, we get

WmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃n) = ϕ̃. (3.6)

Hence, the result WmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃n) = ϕ̃ is verified when ϕ̃t = ϕ̃, where the range of ‘t’

is from 1 to n.

Theorem 3.4. (Boundedness) Suppose that ϕ̃t = (p1◦ϕt, . . . , pm◦ϕt) is a set of ‘n’ mFNs if ϕ̃l =
⋂n

t=1(ϕt)
and ϕ̃u =

⋃n
t=1(ϕt), then

ϕ̃l ≤ WmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃n) ≤ ϕ̃u. (3.7)

Proof. It can be readily proved by Theorem 3.1 and Definition 3.1. �

Next, we propose the idea of ordered WmFGGHM operators, whose main objective is to rank
mFNs first, and then apply the WmFGGHM operators. Moreover, we explain their phenomenon with
a numerical example and useful results.

Definition 3.2. Suppose ϕ̃t = (p1 ◦ ϕt, . . . , pm ◦ ϕt), t = 1, 2, . . . , n, is a collection of mFNs, then we
define an ordered WmFGGHM (OWmFGGHM) operator as a mapping OWmFGGHMξ,η

θ : ϕ̃n → ϕ̃,
which is provided as

OWmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃n) =

( 2
n(n + 1)

n⊕
i=1

n⊕
j=i

(nθiλiϕ̃δ(i))ξ ⊗ (nθ jλ jϕ̃δ( j))η
) 1
ξ + η , (3.8)

here θ = (θ1, θ2, . . . , θn) consists of the weights, and each θt ∈ (0, 1] with
n∑
t=1
θt = 1. Further, in Eq (3.8),

δ(t) serve as the permutation which satisfies the inequality ϕ̃δ(t−1) ≥ ϕ̃δ(t).

In the following theorem, the implementation process of OWmFGGHM operators on the collection
of mFNs is provided.

Theorem 3.5. Suppose that ϕ̃t = (p1 ◦ ϕt, . . . , pm ◦ ϕt) is a family of ‘n’ mFNs, then their aggregation
using an OWmFGGHM operator provide again an mFN, which is computed by the following equation:

OWmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃n) =

( 2
n(n + 1)

n⊕
i=1

n⊕
j=i

(nθiλiϕ̃δ(i))ξ ⊗ (nθ jλ jϕ̃δ( j))η
) 1
ξ + η

=

((
1 −

n∏
i=1, j=i

(1 − (1 − (1 − p1 ◦ ϕδ(i))nλiθi)ξ(1 − (1 − p1 ◦ ϕδ( j))nλ jθ j)η)
2

n(n+1)

) 1
ξ+η

, . . . ,

(
1 −

n∏
i=1, j=i

(1 − (1 − (1 − pm ◦ ϕδ(i))nλiθi)ξ(1 − (1 − pm ◦ ϕδ( j))nλ jθ j)η)
2

n(n+1)

) 1
ξ+η

)
, (3.9)
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Proof. Its proof followed same arguments as used in Theorem 3.1. Thus, we omit it. �

Now, we illustrate the above result with an example as below:

Example 3.2. Consider ϕ̃1 = (0.52, 0.61, 0.67), ϕ̃2 = (0.31, 0.91, 0.83), ϕ̃3 = (0.47, 0.36, 0.30) and
ϕ̃4 = (0.59, 0.99, 0.12) as four 3PFNs with respective weights θ = (0.55, 0.23, 0.11, 0.11). Then, first,
we find the scores as below:

U(ϕ̃1) =
0.52 + 0.61 + 0.67

3
= 0.6,

U(ϕ̃2) =
0.31 + 0.91 + 0.83

3
= 0.68,

U(ϕ̃3) =
0.47 + 0.36 + 0.30

3
= 0.37,

U(ϕ̃4) =
0.59 + 0.99 + 0.12

3
= 0.56.

This implies U(ϕ̃2) > U(ϕ̃1) > U(ϕ̃4) > U(ϕ̃3), therefore, the new ordering is given as follows:

ϕ̃δ(1) = ϕ̃2 = (0.31, 0.91, 0.83),
ϕ̃δ(2) = ϕ̃1 = (0.52, 0.61, 0.67),
ϕ̃δ(3) = ϕ̃4 = (0.59, 0.99, 0.12),
ϕδ(2) = ϕ̃3 = (0.47, 0.36, 0.30).

Now for ξ = 5 and η = 6, using Definition 3.2, we get

OWmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, ϕ̃3, ϕ̃4) =

( 2
4(4 + 1)

4⊕
i=1

4⊕
j=i

(4θiλiϕ̃δ(i))5 ⊗ (4θ jλ jϕ̃δ( j))6
) 1
5 + 6

=

((
1 −

4∏
i=1, j=i

(1 − (1 − (1 − p1 ◦ ϕδ(i))4λiθi)5(1 − (1 − p1 ◦ ϕδ( j))4λ jθ j)6)
1

10

) 1
11

, . . . ,

(
1 −

4∏
i=1, j=i

(1 − (1 − (1 − p3 ◦ ϕδ(i))4λiθi)5(1 − (1 − p3 ◦ ϕδ( j))4λ jθ j)6)
1

10

) 1
11
)
, (3.10)

Next, for the implementation of desired ordered weighted operator, we first determine the values λ1, λ2,
λ3 and λ4 using Eq (3.2) and Definition 2.5 as below:

d(ϕδ(1), ϕδ(2)) =

√
1
2

((0.31 − 0.52)2 + (0.91 − 0.61)2 + (0.83 − 0.67)2) = 0.2826,

d(ϕδ(1), ϕδ(3)) =

√
1
2

((0.31 − 0.59)2 + (0.91 − 0.99)2 + (0.83 − 0.12)2) = 0.5426,

d(ϕδ(1), ϕδ(4)) =

√
1
2

((0.31 − 0.47)2 + (0.91 − 0.36)2 + (0.83 − 0.30)2) = 0.5518,

d(ϕδ(2), ϕδ(1)) =

√
1
2

((0.52 − 0.31)2 + (0.61 − 0.91)2 + (0.67 − 0.83)2) = 0.2826,
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d(ϕδ(2), ϕδ(3)) =

√
1
2

((0.52 − 0.59)2 + (0.61 − 0.99)2 + (0.67 − 0.12)2) = 0.4753,

d(ϕδ(2), ϕδ(4)) =

√
1
2

((0.52 − 0.47)2 + (0.61 − 0.36)2 + (0.67 − 0.30)2) = 0.3177,

d(ϕδ(3), ϕδ(1)) =

√
1
2

((0.59 − 0.31)2 + (0.99 − 0.91)2 + (0.12 − 0.83)2) = 0.5426,

d(ϕδ(3), ϕδ(2)) =

√
1
2

((0.59 − 0.52)2 + (0.99 − 0.61)2 + (0.12 − 0.67)2) = 0.4753,

d(ϕδ(3), ϕδ(4)) =

√
1
2

((0.59 − 0.47)2 + (0.99 − 0.36)2 + (0.12 − 0.30)2) = 0.4710,

d(ϕδ(4), ϕδ(1)) =

√
1
2

((0.47 − 0.31)2 + (0.36 − 0.91)2 + (0.30 − 0.83)2) = 0.5518,

d(ϕδ(4), ϕδ(2)) =

√
1
2

((0.47 − 0.52)2 + (0.36 − 0.61)2 + (0.30 − 0.67)2) = 0.3177,

d(ϕδ(4), ϕδ(3)) =

√
1
2

((0.47 − 0.59)2 + (0.36 − 0.99)2 + (0.30 − 0.12)2) = 0.4710.

This implies

T (ϕδ(1)) = 1.6230, T (ϕδ(2)) = 1.9244, T (ϕδ(3)) = 1.5111 and T (ϕδ(4)) = 1.6594.

Then, we compute the value of each λi as follows:

λ1 = 0.2447, λ2 = 0.2729, λ3 = 0.2343 and λ4 = 0.2481.

Finally, by putting all these values in Eq (3.10), we have

OWmFGGHM5,6
θ (ϕ̃δ(1), ϕ̃δ(2), ϕ̃δ(3), ϕ̃δ(4))

=

((
(1 − (1 − (1 − (1 − (1 − 0.31)4×0.55×0.2447)5(1 − (1 − 0.31)4×0.55×0.2447)6)

1
10

× (1 − (1 − (1 − (1 − 0.31)4×0.55×0.2447)5(1 − (1 − 0.52)4×0.23×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.31)4×0.55×0.2447)5(1 − (1 − 0.59)4×0.11×0.2343)6)
1
10

× (1 − (1 − (1 − (1 − 0.31)4×0.55×0.2447)5(1 − (1 − 0.47)4×0.11×0.2481)6)
1
10

× (1 − (1 − (1 − (1 − 0.52)4×0.23×0.2729)5(1 − (1 − 0.31)4×0.55×0.2447)6)
1
10

× (1 − (1 − (1 − (1 − 0.52)4×0.23×0.2729)5(1 − (1 − 0.52)4×0.52×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.52)4×0.23×0.2729)5(1 − (1 − 0.59)4×0.11×0.2343)6)
1
10

× (1 − (1 − (1 − (1 − 0.52)4×0.23×0.2729)5(1 − (1 − 0.47)4×0.11×0.2481)6)
1
10

× (1 − (1 − (1 − (1 − 0.59)4×0.11×0.2343)5(1 − (1 − 0.31)4×0.55×0.2447)6)
1
10

× (1 − (1 − (1 − (1 − 0.59)4×0.11×0.2343)5(1 − (1 − 0.52)4×0.23×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.59)4×0.11×0.2343)5(1 − (1 − 0.59)4×0.11×0.2343)6)
1
10
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× (1 − (1 − (1 − (1 − 0.59)4×0.11×0.2343)5(1 − (1 − 0.47)4×0.11×0.2481)6)
1
10

× (1 − (1 − (1 − (1 − 0.47)4×0.11×0.2481)5(1 − (1 − 0.31)4×0.55×0.2447)6)
1
10

× (1 − (1 − (1 − (1 − 0.47)4×0.11×0.2481)5(1 − (1 − 0.52)4×0.23×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.47)4×0.11×0.2481)5(1 − (1 − 0.59)4×0.11×0.2343)6)
1
10

× (1 − (1 − (1 − (1 − 0.47)4×0.11×0.2481)5(1 − (1 − 0.47)4×0.11×0.2481)6)
1
10

) 1
11

,(
(1 − (1 − (1 − (1 − (1 − 0.91)4×0.55×0.2447)5(1 − (1 − 0.91)4×0.55×0.2447)6)

1
10

× (1 − (1 − (1 − (1 − 0.91)4×0.55×0.2447)5(1 − (1 − 0.61)4×0.23×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.91)4×0.55×0.2447)5(1 − (1 − 0.99)4×0.11×0.2343)6)
1
10

× (1 − (1 − (1 − (1 − 0.91)4×0.55×0.2447)5(1 − (1 − 0.36)4×0.11×0.2481)6)
1
10

× (1 − (1 − (1 − (1 − 0.61)4×0.23×0.2729)5(1 − (1 − 0.91)4×0.55×0.2447)6)
1
10

× (1 − (1 − (1 − (1 − 0.61)4×0.23×0.2729)5(1 − (1 − 0.61)4×0.52×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.61)4×0.23×0.2729)5(1 − (1 − 0.99)4×0.11×0.2343)6)
1
10

× (1 − (1 − (1 − (1 − 0.61)4×0.23×0.2729)5(1 − (1 − 0.36)4×0.11×0.2481)6)
1
10

× (1 − (1 − (1 − (1 − 0.99)4×0.11×0.2343)5(1 − (1 − 0.91)4×0.55×0.2447)6)
1
10

× (1 − (1 − (1 − (1 − 0.99)4×0.11×0.2343)5(1 − (1 − 0.61)4×0.23×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.99)4×0.11×0.2343)5(1 − (1 − 0.99)4×0.11×0.2343)6)
1
10

× (1 − (1 − (1 − (1 − 0.99)4×0.11×0.2343)5(1 − (1 − 0.36)4×0.11×0.2481)6)
1
10

× (1 − (1 − (1 − (1 − 0.36)4×0.11×0.2481)5(1 − (1 − 0.91)4×0.55×0.2447)6)
1
10

× (1 − (1 − (1 − (1 − 0.36)4×0.11×0.2481)5(1 − (1 − 0.61)4×0.23×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.36)4×0.11×0.2481)5(1 − (1 − 0.99)4×0.11×0.2343)6)
1
10

× (1 − (1 − (1 − (1 − 0.36)4×0.11×0.2481)5(1 − (1 − 0.36)4×0.11×0.2481)6)
1
10

) 1
11

,(
(1 − (1 − (1 − (1 − (1 − 0.83)4×0.55×0.2447)5(1 − (1 − 0.83)4×0.55×0.2447)6)

1
10

× (1 − (1 − (1 − (1 − 0.83)4×0.55×0.2447)5(1 − (1 − 0.67)4×0.23×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.83)4×0.55×0.2447)5(1 − (1 − 0.12)4×0.11×0.2343)6)
1
10

× (1 − (1 − (1 − (1 − 0.83)4×0.55×0.2447)5(1 − (1 − 0.30)4×0.11×0.2481)6)
1
10

× (1 − (1 − (1 − (1 − 0.67)4×0.23×0.2729)5(1 − (1 − 0.83)4×0.55×0.2447)6)
1
10

× (1 − (1 − (1 − (1 − 0.67)4×0.23×0.2729)5(1 − (1 − 0.67)4×0.52×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.67)4×0.23×0.2729)5(1 − (1 − 0.12)4×0.11×0.2343)6)
1
10

× (1 − (1 − (1 − (1 − 0.67)4×0.23×0.2729)5(1 − (1 − 0.30)4×0.11×0.2481)6)
1
10
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× (1 − (1 − (1 − (1 − 0.12)4×0.11×0.2343)5(1 − (1 − 0.83)4×0.55×0.2447)6)
1
10

× (1 − (1 − (1 − (1 − 0.12)4×0.11×0.2343)5(1 − (1 − 0.67)4×0.23×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.12)4×0.11×0.2343)5(1 − (1 − 0.12)4×0.11×0.2343)6)
1
10

× (1 − (1 − (1 − (1 − 0.12)4×0.11×0.2343)5(1 − (1 − 0.30)4×0.11×0.2481)6)
1
10

× (1 − (1 − (1 − (1 − 0.30)4×0.11×0.2481)5(1 − (1 − 0.83)4×0.55×0.2447)6)
1
10

× (1 − (1 − (1 − (1 − 0.30)4×0.11×0.2481)5(1 − (1 − 0.67)4×0.23×0.2729)6)
1
10

× (1 − (1 − (1 − (1 − 0.30)4×0.11×0.2481)5(1 − (1 − 0.12)4×0.11×0.2343)6)
1
10

× (1 − (1 − (1 − (1 − 0.30)4×0.11×0.2481)5(1 − (1 − 0.30)4×0.11×0.2481)6)
1
10

) 1
11
))
,

= (0.1616, 0.5932, 0.4994).

The properties, including monotonicity, idempotency and boundedness as provided in
Theorems 3.2–3.4 are satisfied by OWmFGGHM operators. Moreover, the OWmFGGHM operator
verify commutative law, which is given as:

Theorem 3.6. (Commutative Law) Suppose that ϕ̃t and ϕ̃′
t

are two finite families having ‘n’ mFNs,
then

OWmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃n) = OWmFGGHMξ,η

θ (ϕ̃′1, ϕ̃
′
2, . . . , ϕ̃

′
n), (3.11)

here ϕ̃′i serves as an arbitrary permutation of ϕ̃i.

Proof. Its proof is straightforward by Definition 3.2. �

One can easily observe from the Definitions 3.1 and 3.2 that both operators (WmFGGHM and
OWmFGGHM) are significant in aggregation of mFNs. The key distinction is that WmFGGHM
AGOs perform aggregation mF data without finding ranking orders of given mFNs while mFHOWG
operators submitted for their order. Focusing on the features of above-studied operators, we introduce
another general class of AGOs, called HmFGGHM operators, which retain the characteristics of both
WmFGGHM and OWmFGGHM operators.

Definition 3.3. Suppose that ϕ̃i = (p1 ◦ ϕi, p2 ◦ ϕi, . . . , pm ◦ ϕi) be a finite family of ‘n’ mFNs, then a
HmFGGHM operator is defined as

HmFGGHMξ,η

θ,Ω
(ϕ̃1, ϕ̃2, . . . , ϕ̃n) =

( 2
n(n + 1)

n⊕
i=1

n⊕
j=i

(nθiλi ˜̃ϕδ(i))ξ ⊗ (nθ jλ j ˜̃ϕδ( j))η
) 1
ξ + η , (3.12)

here θ = (θ1, θ2, . . . , θn) consists of the weights, and each θt ∈ (0, 1] with
n∑
t=1
θt = 1. Moreover, in

Eq (3.12), ˜̃ϕδ(t) is the biggest mFNs which is given by ˜̃ϕδ(t) = (nΩt)ϕ̃t, ∀ t = 1, 2, . . . , n, where Ω =

(Ω1,Ω2, . . . ,Ωn) includes weights that satisfy Ωi ∈ (0, 1],
n∑
t=1

Ωi = 1.
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Observe that for θ = ( 1
n ,

1
n , . . . ,

1
n ), HmFGGHM operators convert into WmFGGHM AGOs. When

Ω = ( 1
n ,

1
n , . . . ,

1
n ), then HmFGGHM operator converts into OWmFGGHM operator. Therefore,

HmFGGHM operators are generalization of both WmFGGHM and OWmFGGHM operators.
The main result that provide the process of execution of the HmFGGHM operators is given as

below:

Theorem 3.7. Suppose that ϕ̃t = (p1 ◦ ϕt, . . . , pm ◦ ϕt) is a family of ‘n’ mFNs, then their aggregation
using an HmFGGHM operator provide again an mFN, which is computed as

HmFGGHMξ,η

θ,Ω
(ϕ̃1, ϕ̃2, . . . , ϕ̃n) =

( 2
n(n + 1)

n⊕
i=1

n⊕
j=i

(nθiλi ˜̃ϕδ(i))ξ ⊗ (nθ jλ j ˜̃ϕδ( j))η
) 1
ξ + η

=

((
1 −

n∏
i=1, j=i

(1 − (1 − (1 − p1 ◦ ˜̃ϕδ(i))nλiθi)ξ(1 − (1 − p1 ◦ ˜̃ϕδ( j))nλ jθ j)η)
2

n(n+1)

) 1
ξ+η

, . . . ,

(
1 −

n∏
i=1, j=i

(1 − (1 − (1 − pm ◦ ˜̃ϕδ(i))nλiθi)ξ(1 − (1 − pm ◦ ˜̃ϕδ( j))nλ jθ j)η)
2

n(n+1)

) 1
ξ+η

)
. (3.13)

Proof. It is same as the proof of Theorem 3.1. So, we omit it. �

The following example demonstrates the utilization of the above theorem.

Example 3.3. Assume that ϕ̃1 = (0.77, 0.33, 0.55), ϕ̃2 = (0.22, 0.55, 0.73), ϕ̃3 = (0.81, 0.23, 0.11)
and ϕ̃4 = (0.67, 0.74, 0.93) are four 3FNs having weights Ω = (0.20, 0.33, 0.18, 0.29), and
θ = (0.33, 0.18, 0.29, 0.20) is another weight-vector containing weights from expert. Then, by
Definition 3.3, for ξ = 4 and η = 7, we have

HmFGGHM4,7
θ,Ω

(ϕ̃1, ϕ̃2, ϕ̃3, ϕ̃4) =
( 2
4(4 + 1)

4⊕
i=1

4⊕
j=i

(4θiλi ˜̃ϕδ(i))4 ⊗ (4θ jλ j ˜̃ϕδ( j))7
) 1
4 + 7

=

((
1 −

4∏
i=1, j=i

(1 − (1 − (1 − p1 ◦ ˜̃ϕδ(i))4λiθi)4(1 − (1 − p1 ◦ ˜̃ϕδ( j))4λ jθ j)7)
1
10

) 1
11

, . . . ,

(
1 −

4∏
i=1, j=i

(1 − (1 − (1 − pm ◦ ˜̃ϕδ(i))4λiθi)4(1 − (1 − pm ◦ ˜̃ϕδ( j))4λ jθ j)7)
1
10

) 1
11
)
. (3.14)

Next, for the implementation of desired ordered weighted operator, we first determine the values λ1, λ2,
λ3, and λ4 using Eq (3.2) and Definition 2.5 as below:

d(ϕ1, ϕ2) =

√
1
2

((0.77 − 0.22)2 + (0.33 − 0.55)2 + (0.55 − 0.73)2) = 0.4378,

d(ϕ1, ϕ3) =

√
1
2

((0.77 − 0.81)2 + (0.33 − 0.23)2 + (0.55 − 0.11)2) = 0.3203,

d(ϕ1, ϕ4) =

√
1
2

((0.77 − 0.67)2 + (0.33 − 0.74)2 + (0.55 − 0.93)2) = 0.4016,
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d(ϕ2, ϕ1) =

√
1
2

((0.22 − 0.77)2 + (0.55 − 0.33)2 + (0.73 − 0.55)2) = 0.4378,

d(ϕ2, ϕ3) =

√
1
2

((0.22 − 0.81)2 + (0.55 − 0.23)2 + (0.73 − 0.11)2) = 0.6461,

d(ϕ2, ϕ4) =

√
1
2

((0.22 − 0.67)2 + (0.55 − 0.74)2 + (0.73 − 0.93)2) = 0.3732,

d(ϕ3, ϕ1) =

√
1
2

((0.81 − 0.77)2 + (0.23 − 0.33)2 + (0.11 − 0.55)2) = 0.3203,

d(ϕ3, ϕ2) =

√
1
2

((0.81 − 0.22)2 + (0.23 − 0.55)2 + (0.11 − 0.73)2) = 0.6461,

d(ϕ3, ϕ4) =

√
1
2

((0.81 − 0.67)2 + (0.23 − 0.74)2 + (0.11 − 0.93)2) = 0.6900,

d(ϕ4, ϕ1) =

√
1
2

((0.67 − 0.77)2 + (0.74 − 0.33)2 + (0.93 − 0.55)2) = 0.4016,

d(ϕ4, ϕ2) =

√
1
2

((0.67 − 0.22)2 + (0.74 − 0.55)2 + (0.93 − 0.73)2) = 0.3732,

d(ϕ4, ϕ3) =

√
1
2

((0.67 − 0.81)2 + (0.74 − 0.23)2 + (0.93 − 0.11)2) = 0.6900.

This implies

T (ϕ1) = 1.8403, T (ϕ2) = 1.5429, T (ϕ3) = 1.3436 and T (ϕ4) = 1.5352.

Then, we compute the value of each λi as follows:

λ1 = 0.2768, λ2 = 0.2478, λ3 = 0.2284 and λ4 = 0.2470.

By putting all these values in Eq (3.10), we get

˜̃ϕ1 =

((
1 − (1 − (1 − (1 − 0.77)4×0.2768×0.33)4(1 − (1 − 0.77)4×0.2768×0.33)7)

1
10

) 1
11

,(
1 − (1 − (1 − (1 − 0.33)4×0.2768×0.33)4(1 − (1 − 0.33)4×0.2768×0.33)7)

1
10

) 1
11

,(
1 − (1 − (1 − (1 − 0.55)4×0.2768×0.33)4(1 − (1 − 0.55)4×0.2768×0.33)7)

1
10

) 1
11
)

= (0.3370, 0.1104, 0.2053).

Similarly,

˜̃ϕ2 =

((
1 − (1 − (1 − (1 − 0.22)4×0.2478×0.29)4(1 − (1 − 0.22)4×0.2478×0.29)7)

1
10

) 1
11

,(
1 − (1 − (1 − (1 − 0.55)4×0.2478×0.29)4(1 − (1 − 0.55)4×0.2478×0.29)7)

1
10

) 1
11

,
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1 − (1 − (1 − (1 − 0.73)4×0.2478×0.29)4(1 − (1 − 0.73)4×0.2478×0.29)7)

1
10

) 1
11
)

= (0.0559, 0.1664, 0.2544).

˜̃ϕ3 =

((
1 − (1 − (1 − (1 − 0.81)4×0.2284×0.18)4(1 − (1 − 0.81)4×0.2284×0.18)7)

1
10

) 1
11

,(
1 − (1 − (1 − (1 − 0.23)4×0.2284×0.18)4(1 − (1 − 0.23)4×0.2284×0.18)7)

1
10

) 1
11

,(
1 − (1 − (1 − (1 − 0.11)4×0.2284×0.18)4(1 − (1 − 0.11)4×0.2284×0.18)7)

1
10

) 1
11
)

= (0.1938, 0.0354, 0.0000).

˜̃ϕ4 =

((
1 − (1 − (1 − (1 − 0.67)4×0.2470×0.20)4(1 − (1 − 0.67)4×0.2470×0.20)7)

1
10

) 1
11

,(
1 − (1 − (1 − (1 − 0.74)4×0.2470×0.20)4(1 − (1 − 0.74)4×0.2470×0.20)7)

1
10

) 1
11

,(
1 − (1 − (1 − (1 − 0.93)4×0.2470×0.20)4(1 − (1 − 0.93)4×0.2470×0.20)7)

1
10

) 1
11
)

= (0.1597, 0.1896, 0.3315).

Now the scores of these 3FNs for ξ = 4 and η = 7 are calculated as below:

U( ˜̃ϕ1) =
0.3370 + 0.1104 + 0.2053

3
= 0.2177,

U( ˜̃ϕ2) =
0.0559 + 0.1664 + 0.2544

3
= 0.1589,

U( ˜̃ϕ3) =
0.1938 + 0.0354 + 0.0000

3
= 0.0764,

U( ˜̃ϕ4) =
0.1597 + 0.1896 + 0.3315

3
= 0.2269.

Since, U( ˜̃ϕ4) > U( ˜̃ϕ1) > U( ˜̃ϕ2) > U( ˜̃ϕ3), thus

˜̃ϕδ(1) = ˜̃ϕ4 = (0.1597, 0.1896, 0.3315), ˜̃ϕδ(2) = ˜̃ϕ1 = (0.3370, 0.1104, 0.2053),
˜̃ϕδ(3) = ˜̃ϕ2 = (0.0559, 0.1664, 0.2544), ˜̃ϕδ(4) = ˜̃ϕ3 = (0.1938, 0.0354, 0.0000).

Reconsider Eq (3.2) and Definition 2.5 to compute the values of λ∗1, λ∗2, λ∗3 and λ∗3 as follows:

d(ϕδ(1), ϕδ(2)) =

√
1
2

((0.1597 − 0.3370)2 + (0.1896 − 0.1104)2 + (0.3315 − 0.2053)2) = 0.1638,

d(ϕδ(1), ϕδ(2)) =

√
1
2

((0.1597 − 0.0559)2 + (0.1896 − 0.1664)2 + (0.3315 − 0.2544)2) = 0.0929,

d(ϕδ(1), ϕδ(2)) =

√
1
2

((0.1597 − 0.1938)2 + (0.1896 − 0.0354)2 + (0.3315 − 0.0000)2) = 0.2596,

d(ϕδ(2), ϕδ(1)) =

√
1
2

((0.3370 − 0.1597)2 + (0.1104 − 0.1896)2 + (0.2053 − 0.3315)2) = 0.1638,
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d(ϕδ(2), ϕδ(1)) =

√
1
2

((0.3370 − 0.0559)2 + (0.1104 − 0.1664)2 + (0.2053 − 0.2544)2) = 0.2056,

d(ϕδ(2), ϕδ(1)) =

√
1
2

((0.3370 − 0.1938)2 + (0.1104 − 0.0354)2 + (0.2053 − 0.0000)2) = 0.1848,

d(ϕδ(3), ϕδ(1)) =

√
1
2

((0.0559 − 0.1597)2 + (0.1664 − 0.1896)2 + (0.2544 − 0.3315)2) = 0.0929,

d(ϕδ(3), ϕδ(1)) =

√
1
2

((0.0559 − 0.3370)2 + (0.1664 − 0.1104)2 + (0.2544 − 0.2053)2) = 0.2056,

d(ϕδ(3), ϕδ(1)) =

√
1
2

((0.0559 − 0.1938)2 + (0.1664 − 0.0354)2 + (0.2544 − 0.0000)2) = 0.2246,

d(ϕδ(4), ϕδ(1)) =

√
1
2

((0.1938 − 0.1597)2 + (0.0354 − 0.1896)2 + (0.0000 − 0.3315)2) = 0.2596,

d(ϕδ(4), ϕδ(1)) =

√
1
2

((0.1938 − 0.3370)2 + (0.0354 − 0.1104)2 + (0.0000 − 0.2053)2) = 0.1848,

d(ϕδ(4), ϕδ(1)) =

√
1
2

((0.1938 − 0.0559)2 + (0.0354 − 0.1664)2 + (0.0000 − 0.2544)2) = 0.2246.

Using these calculated distances values, we have

λ∗1 = 0.2536, λ∗2 = 0.2508, λ∗3 = 0.2531 and λ∗4 = 0.2425.

Finally, by putting all these values in Eq (3.10), we get

HmFGGHM4,7
θ,Ω

(ϕ̃1, ϕ̃2, ϕ̃3, ϕ̃4)

=

((
(1 − (1 − (1 − (1 − 0.1597)4×0.20×0.2536)4(1 − (1 − 0.1597)4×0.20×0.2536)7)

1
10

× (1 − (1 − (1 − 0.1597)4×0.20×0.2536)4(1 − (1 − 0.3370)4×0.33×0.2508)7)
1
10

× (1 − (1 − (1 − 0.1597)4×0.20×0.2536)4(1 − (1 − 0.0559)4×0.18×0.2531)7)
1
10

× (1 − (1 − (1 − 0.1597)4×0.20×0.2536)4(1 − (1 − 0.1938)4×0.29×0.2425)7)
1
10

× (1 − (1 − (1 − 0.3370)4×0.33×0.2508)4(1 − (1 − 0.1597)4×0.20×0.2536)7)
1
10

× (1 − (1 − (1 − 0.3370)4×0.33×0.2508)4(1 − (1 − 0.3370)4×0.33×0.2508)7)
1
10

× (1 − (1 − (1 − 0.3370)4×0.33×0.2508)4(1 − (1 − 0.0559)4×0.18×0.2531)7)
1
10

× (1 − (1 − (1 − 0.3370)4×0.33×0.2508)4(1 − (1 − 0.1938)4×0.29×0.2425)7)
1
10

× (1 − (1 − (1 − 0.0559)4×0.18×0.2531)4(1 − (1 − 0.1597)4×0.20×0.2536)7)
1
10

× (1 − (1 − (1 − 0.0559)4×0.18×0.2531)4(1 − (1 − 0.3370)4×0.33×0.2508)7)
1
10

× (1 − (1 − (1 − 0.0559)4×0.18×0.2531)4(1 − (1 − 0.0559)4×0.18×0.2531)7)
1
10

× (1 − (1 − (1 − 0.0559)4×0.18×0.2531)4(1 − (1 − 0.1938)4×0.29×0.2425)7)
1
10

× ((1 − (1 − (1 − 0.1938)4×0.29×0.2425)4(1 − (1 − 0.1597)4×0.20×0.2536)7)
1
10
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× (1 − (1 − (1 − 0.1938)4×0.29×0.2425)4(1 − (1 − 0.3370)4×0.33×0.2508)7)
1
10

× (1 − (1 − (1 − 0.1938)4×0.29×0.2425)4(1 − (1 − 0.0559)4×0.18×0.2531)7)
1
10

× ((1 − (1 − (1 − 0.1938)4×0.29×0.2425)4(1 − (1 − 0.1938)4×0.29×0.2425)7)
1
10

) 1
11

,(
(1 − (1 − (1 − (1 − 0.1896)4×0.20×0.2536)4(1 − (1 − 0.1896)4×0.20×0.2538)7)

1
10

× (1 − (1 − (1 − 0.1896)4×0.20×0.2536)4(1 − (1 − 0.1104)4×0.33×0.2508)7)
1
10

× (1 − (1 − (1 − 0.1896)4×0.20×0.2536)4(1 − (1 − 0.1664)4×0.18×0.2531)7)
1
10

× (1 − (1 − (1 − 0.1896)4×0.20×0.2536)4(1 − (1 − 0.0354)4×0.29×0.2425)7)
1
10

× (1 − (1 − (1 − 0.1104)4×0.33×0.2508)4(1 − (1 − 0.1896)4×0.20×0.2536)7)
1
10

× (1 − (1 − (1 − 0.1104)4×0.33×0.2508)4(1 − (1 − 0.1104)4×0.33×0.2508)7)
1
10

× (1 − (1 − (1 − 0.1104)4×0.33×0.2508)4(1 − (1 − 0.1664)4×0.18×0.2531)7)
1
10

× (1 − (1 − (1 − 0.1104)4×0.33×0.2508)4(1 − (1 − 0.0354)4×0.29×0.2425)7)
1
10

× (1 − (1 − (1 − 0.1664)4×0.18×0.2531)4(1 − (1 − 0.1896)4×0.20×0.2536)7)
1
10

× (1 − (1 − (1 − 0.1664)4×0.18×0.2531)4(1 − (1 − 0.1104)4×0.33×0.2508)7)
1
10

× (1 − (1 − (1 − 0.1664)4×0.18×0.2531)4(1 − (1 − 0.1664)4×0.18×0.2531)7)
1
10

× (1 − (1 − (1 − 0.1664)4×0.18×0.2531)4(1 − (1 − 0.0354)4×0.29×0.2425)7)
1
10

× ((1 − (1 − (1 − 0.0354)4×0.29×0.2425)4(1 − (1 − 0.1896)4×0.20×0.2536)7)
1
10

× (1 − (1 − (1 − 0.0354)4×0.29×0.2425)4(1 − (1 − 0.1104)4×0.33×0.2508)7)
1
10

× (1 − (1 − (1 − 0.0354)4×0.29×0.2425)4(1 − (1 − 0.1664)4×0.18×0.2531)7)
1
10

× ((1 − (1 − (1 − 0.0354)4×0.29×0.2425)4(1 − (1 − 0.0354)4×0.29×0.2425)7)
1
10

) 1
11

,(
(1 − (1 − (1 − (1 − 0.3315)4×0.20×0.2536)4(1 − (1 − 0.3315)4×0.20×0.2538)7)

1
10

× (1 − (1 − (1 − 0.3315)4×0.20×0.2536)4(1 − (1 − 0.2053)4×0.33×0.2508)7)
1
10

× (1 − (1 − (1 − 0.3315)4×0.20×0.2536)4(1 − (1 − 0.2544)4×0.18×0.2531)7)
1
10

× (1 − (1 − (1 − 0.3315)4×0.20×0.2536)4(1 − (1 − 0.0000)4×0.29×0.2425)7)
1
10

× (1 − (1 − (1 − 0.2053)4×0.33×0.2508)4(1 − (1 − 0.3315)4×0.20×0.2536)7)
1
10

× (1 − (1 − (1 − 0.2053)4×0.33×0.2508)4(1 − (1 − 0.2053)4×0.33×0.2508)7)
1
10

× (1 − (1 − (1 − 0.2053)4×0.33×0.2508)4(1 − (1 − 0.2544)4×0.18×0.2531)7)
1
10

× (1 − (1 − (1 − 0.2053)4×0.33×0.2508)4(1 − (1 − 0.0000)4×0.29×0.2425)7)
1
10

× (1 − (1 − (1 − 0.2544)4×0.18×0.2531)4(1 − (1 − 0.3315)4×0.20×0.2536)7)
1
10

× (1 − (1 − (1 − 0.2544)4×0.18×0.2531)4(1 − (1 − 0.2053)4×0.33×0.2508)7)
1
10
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× (1 − (1 − (1 − 0.2544)4×0.18×0.2531)4(1 − (1 − 0.2544)4×0.18×0.2531)7)
1
10

× (1 − (1 − (1 − 0.2544)4×0.18×0.2531)4(1 − (1 − 0.0000)4×0.29×0.2425)7)
1
10

× ((1 − (1 − (1 − 0.0000)4×0.29×0.2425)4(1 − (1 − 0.3315)4×0.20×0.2536)7)
1
10

× (1 − (1 − (1 − 0.0000)4×0.29×0.2425)4(1 − (1 − 0.2053)4×0.33×0.2508)7)
1
10

× (1 − (1 − (1 − 0.0000)4×0.29×0.2425)4(1 − (1 − 0.2544)4×0.18×0.2531)7)
1
10

× ((1 − (1 − (1 − 0.0000)4×0.29×0.2425)4(1 − (1 − 0.0000)4×0.29×0.2425)7)
1
10

) 1
11
)
,

= (0.1037, 0.0354, 0.0709).

4. Application to MCDM using aggregation mF information

In this section, we first provide an algorithm based on the suggested weighted mF power generalized
geometric Heronian mean (or WmFPGGHM) AGOs. Then, we apply it on a practical case study
problem, that is, selection of best transportation plan in Saudi Arabia. For a better understanding, we
display the steps of Algorithm 1 in a flowchart diagram (see Figure 1).
Algorithm 1 Selecting a suitable alternative using WmFPGGHM operators.
Step I(Input):

(i) a universe of discourse containing ‘n’ alternatives,
(ii) a set of attributes Nk where k varies from 1 to t,

(iii) a t-tuple containing weights θ1, θ2, . . . , θt where
t∑

k=1
θk = 1,

(iv) an mF decision matrix regarding each alternative, which is given as:

Q̃ = (r̃is)n×t =
(
p1 ◦ ϕis, p2 ◦ ϕis, . . . , pm ◦ ϕis

)
n×t.

Step II: Compute the aggregated/preference value (r̃s) for every object of the universe of discourse
using WmFGGHM operators as provided by Eq (3.3), which can be calculated by the following
formula:

r̃s = WmFGGHMξ,η
θ (ϕ̃s1, ϕ̃s2, . . . , ϕ̃st) =

( 2
n(n + 1)

n⊕
i=1

n⊕
j=i

(nθiλiϕ̃i)ξ ⊗ (nθ jλ jϕ̃ j)η
) 1
ξ + η

=

((
1 −

n∏
i=1, j=i

(1 − (1 − (1 − p1 ◦ ϕi)nλiθi)ξ(1 − (1 − p1 ◦ ϕ j)nλ jθ j)η)
2

n(n+1)

) 1
ξ+η

, . . . ,

(
1 −

n∏
i=1, j=i

(1 − (1 − (1 − pm ◦ ϕi)nλiθi)ξ(1 − (1 − pm ◦ ϕ j)nλ jθ j)η)
2

n(n+1)

) 1
ξ+η

)
. (4.1)

Step III: By Definition 2.2, find the final scores U(r̃s) of each alternative of the universal set.
Step IV: Last, rank the available objects in descending order regarding their score values.
Output: The option having highest position in ranking will be the optimal choice. In the case if
multiple options have the same maximum score value, then anyone of them could be selected as the
best option.
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Figure 1. Flowchart diagram of Algorithm 1.

4.1. Urban transportation management: a case study of Saudi Arabia

Urban transportation management plays a crucial role in the environmental and economic stability
of every country. Efficient transportation is essential for enabling the movement of people and goods
for trade. Well-designed transportation systems provide benefits such as improved accessibility and
reduced congestion, which, in turn, contribute to a higher quality of urban life. A significant contributor
to greenhouse gas emissions in urban areas is vehicle usage. To reduce the carbon footprint, developed
countries promote public transportation and cycling. With the population increasing daily, effective
transportation is becoming a critical issue in major cities. Poor transportation management is a primary
cause of overcrowding in urban areas. Therefore, proper investment in efficient solutions is necessary
to address the challenges faced in urban transportation.

In the last decade, a rapid increase in urbanization and vehicle ownership has been observed in
Saudi Arabia, presenting a major challenge for sustainable transportation management, particularly
in large cities like Riyadh. As the capital of Saudi Arabia, Riyadh’s population has now exceeded
seven million. Rapid urbanization is a primary cause of road accidents, air pollution, and traffic
congestion. To address these issues, the government has launched various projects, such as the Riyadh
Metro, to support public transportation. However, the available transportation options are insufficient to
meet public needs. Consequently, the government of Saudi Arabia has proposed additional initiatives
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to manage Riyadh’s transportation system. For example, they are enhancing public transportation
infrastructure by designing various alternative transport modes to attract the public, such as advancing
dedicated cycling lanes and expanding bus routes. Additionally, the development of pedestrian-friendly
footpaths is being fully considered to enable people to move from one area to another within the city
without needing transportation. Furthermore, the government of Saudi Arabia is addressing these
transportation-related issues by announcing the construction of a new metro train in Riyadh. They
have twelve route plans in mind; however, to determine the best route for the metro train, they decided
to invite senior experts in this field for optimal solutions. After a detailed discussion, the experts agreed
to consider the following favorable parameters for selecting the optimal route.
N1 denotes the ‘Safety Issues’.
N2 denotes the ‘Environmental Issues’.
N3 denotes the ‘Travel Demand Forecasting’.
N4 denotes the ‘Transportation Cost’.
To help you better understand how mF numbers are constructed some additional sub parameters are

listed below.

• The parameter ‘Safety Issues’ consists of traffic congestion, inadequate infrastructure, lack of
proper safety regulations, and enforcement.
• The parameter ‘Environmental Issues’ consists of air pollution, noise, and temperature.
• The parameter ‘Travel Demand Forecasting’ consists of predict travel behavior and resulting

demand for a certain future time period based on the nature of transportation system, the number
and character of trip-makers, and assumptions dealing with land-use.
• The parameter ‘Transportation Cost’ includes the expenses related to the transportation of raw

materials, finished products, and employees.

The final evaluations of all twelve route plans with respect to the favorable parameters is described
in Table 2 by 3F decision matrix.

Table 2. 3F decision matrix.

N1 N2 N3 N4

S1 (0.35, 0.57, 0.68) (0.46, 0.97, 0.55) (0.81, 0.15, 0.44) (0.17, 0.24, 0.12)
S2 (0.65, 0.47, 0.78) (0.44, 0.18, 0.67) (0.68, 0.74, 0.20) (0.70, 0.16, 0.19)
S3 (0.18, 0.41, 0.39) (0.44, 0.38, 0.74) (0.67, 0.58, 0.96) (0.13, 0.15, 0.27)
S4 (0.76, 0.54, 0.45) (0.29, 0.37, 0.66) (0.78, 0.86, 0.75) (0.57, 0.54, 0.66)
S5 (0.68, 0.75, 0.47) (0.37, 0.52, 0.55) (0.79, 0.47, 0.88) (0.76, 0.92, 0.16)
S6 (0.45, 0.67, 0.74) (0.66, 0.78, 0.67) (0.68, 0.54, 0.66) (0.71, 0.78, 0.79)
S7 (0.58, 0.73, 0.77) (0.78, 0.17, 0.33) (0.55, 0.49, 0.28) (0.17, 0.16, 0.15)
S8 (0.27, 0.46, 0.42) (0.85, 0.89, 0.11) (0.48, 0.12, 0.15) (0.66, 0.77, 0.90)
S9 (0.76, 0.26, 0.22) (0.51, 0.49, 0.41) (0.98, 0.62, 0.95) (0.76, 0.97, 0.91)
S10 (0.59, 0.96, 0.22) (0.57, 0.79, 0.11) (0.28, 0.42, 0.75) (0.96, 0.27, 0.89)
S11 (0.67, 0.16, 0.12) (0.15, 0.59, 0.11) (0.18, 0.21, 0.51) (0.61, 0.71, 0.93)
S12 (0.79, 0.46, 0.32) (0.65, 0.92, 0.81) (0.88, 0.20, 0.50) (0.96, 0.73, 0.90)

According to the importance of attributes, the experts assign a suitable weight to each attribute as
below:
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θ1 = 0.24, θ2 = 0.35, θ3 = 0.10, θ4 = 0.31.

Clearly
4∑

t=1
θt = 1. We now compute the most suitable ranking of the available alternatives under the

WmFGGHM operators:
Step II: For ξ = 3 and η = 5, by implementing the WmFGGHM operator as provided in Eq (3.3), we
compute the preference value r̃s (s = 1, 2, . . . , 12) of each alternative as below:

r̃1 = (0.1576, 0.5271, 0.2237), r̃2 = (0.2566, 0.1215, 0.2858),
r̃3 = (0.1503, 0.1349, 0.3123), r̃4 = (0.2472, 0.1990, 0.2722),
r̃5 = (0.2798, 0.4084, 0.2037), r̃6 = (0.2879, 0.3617, 0.3346),
r̃7 = (0.3191, 0.1879, 0.2099), r̃8 = (0.3637, 0.4125, 0.3677),
r̃9 = (0.3263, 0.4937, 0.3974), ˜r10 = (0.4417, 0.4592, 0.3349),
˜r11 = (0.2048, 0.2499, 0.3851), ˜r12 = (0.4956, 0.4470, 0.4281).

Step III: Determine the score value U(r̃s) of each above calculated 3FN by Definition 2.2 as follows:

U(r̃1) = 0.3028, U(r̃2) = 0.2213, U(r̃3) = 0.1992,
U(r̃4) = 0.2395, U(r̃5) = 0.2973, U(r̃6) = 0.3281,
U(r̃7) = 0.2390, U(r̃8) = 0.3813, U(r̃9) = 0.4058,
U(r̃10) = 0.4119, U(r̃11) = 0.2799, U(r̃12) = 0.4569.

Step IV: Next, find the ranking of alternatives with respect to scores values U(r̃i),where i = 1, 2, . . . , 12
as:

S12 > S10 > S9 > S8 > S6 > S1 > S5 > S11 > S4 > S7 > S2 > S3.

Output: The alternative S12 has highest score, thus, it is the best route for the new urban transportation
project.

5. Discussion

One of the significant factors in urban transportation is the route selection, which is influenced
by a number of factors, such as technological, environmental, operational, and socio-economics. It
is clearly a MCDM problem due to the involvement of multiple attributes, and to obtain an optimal
result, it is important to deeply evaluate each attribute, which is only possible by applying mF set
theory. Besides, aggregation operators (AGOs) are designed to accumulate information in systems
that require the integration of multiple datasets to accomplish a specific objective. However, these
days, weighted AGOs are playing a significant role in MCDM situations by integrating the actions
of different attributes, along with their partial preferences, into a single outcome. Additionally, the
mF sets provide an appropriate mechanism for handling multi-dimensional parameterized information.
Since different AGOs yield different outcomes when applied to a dataset, this variability presents a
challenge in preexisting mF set-based weighted averaging and geometric AGOs. To address this issue,
we introduced WmFPGGHM operators.

Further, to validate this comparative analysis, Section 4.1 (Selection of the best route plan in urban
transportation management: a case study of Saudi Arabia) is reconsidered using preexisting AGOs-
based MCDM methodologies. Consequently, the results of the proposed WmFGGHM AGOs are
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compared with those obtained by applying the preexisting mF Yager weighted averaging (mFYWA),
mF Yager weighted geometric (mFYWG), mF Dombi weighted averaging (mFDWA), mF Dombi
weighted geometric (mFDWG) operators, mF Aczel-Alsina weighted averaging (mFAAWA), mF
Aczel-Alsina weighted geometric (mFAAWG) AGOs, and mF TOPSIS approach. Tables 3 and 4
provide the final score values and objects’ rankings, respectively. This comparison is graphically
represented in Figure 2. It is clear from Tables 3 and 4, and Figure 2 that the outcomes determined
by applying the proposed AGOs are largely consistent with those obtained using the existing mF
set-based operators, that is, the optimal objects obtained by implementing the proposed AGOs and
existing approaches is same, while there is a minor change in the rankings of sub-optimal alternatives.
It is important to note that the existing mF set-based models as discussed above, fail to depict the
interrelationship among the input values, while the suggested AGOs hold this feature. To pose a better
comparison analysis regarding features between the innovative WmFPGGHM AGOs and some HM
based operators, a feature-based comparison is provided by Table 5.

Table 3. Comparison between the scores of the developed WmFPGGHM AGOs
with mFYWA [41] and mFYWG [41], mFDWA [39], mFDWG [39], mFAAWA [42],
mFAAWG [42] operators, and mF TOPSIS approach [5].

Score Values\ AGOs mFYWA mFYWG mFDWA mFDWG
U (r̃1) 0.6504 0.4437 0.7383 0.7620
U (r̃2) 0.6060 0.4638 0.6441 0.6829
U (r̃3) 0.5399 0.3915 0.7114 0.7604
U (r̃4) 0.6403 0.5429 0.6939 0.7674
U (r̃5) 0.7006 0.5547 0.7943 0.5859
U (r̃6) 0.7120 0.6832 0.7250 0.3532
U (r̃7) 0.6191 0.4115 0.6740 0.8028
U (r̃8) 0.7554 0.5357 0.8380 0.7527
U (r̃9) 0.7877 0.5649 0.9412 0.5823
U (r̃10) 0.7843 0.5298 0.9085 0.6859
U (r̃11) 0.6536 0.4372 0.7115 0.8162
U (r̃12) 0.8167 0.6887 0.9517 0.8227
Score Values\ AGOs mFAAWA mFAAWG mF TOPSIS Proposed WmFPGGHM
U (r̃1) 0.6793 0.2709 0.4037 0.3028
U (r̃2) 0.5979 0.3478 0.3354 0.2213
U (r̃3) 0.5511 0.2780 0.4523 0.1992
U (r̃4) 0.6487 0.4783 0.6314 0.2395
U (r̃5) 0.7276 0.4527 0.3102 0.2973
U (r̃6) 0.7145 0.6603 0.4020 0.3281
U (r̃7) 0.6142 0.2494 0.6051 0.2390
U (r̃8) 0.7873 0.3262 0.2680 0.3813
U (r̃9) 0.8742 0.4592 0.5076 0.4058
U (r̃10) 0.8508 0.3669 0.3226 0.4119
U (r̃11) 0.6711 0.2294 0.6022 0.2799
U (r̃12) 0.8779 0.6612 0.6842 0.4569
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Table 4. Comparison between the rankings of the developed WmFPGGHM operators with
mFYWA [41] and mFYWG [41], mFDWA [39], mFDWG [39], mFAAWA [42], mFAAWG
[42] AGOs, and mF TOPSIS approach [5].

AGOs/MCDM method Ranking order Choice
WmFPGGHM S12 > S10 > S9 > S8 > S6 > S1 > S5 > S11 > S4 > S7 > S2 > S3 S12

mFYWA S12 > S9 > S10 > S8 > S6 > S5 > S11 > S1 > S4 > S2 > S7 > S3 S12

mFYWG S12 > S6 > S9 > S5 > S4 > S8 > S10 > S2 > S1 > S11 > S97 > S3 S12

mFAAWA S12 > S9 > S10 > S8 > S5 > S6 > S1 > S11 > S4 > S7 > S2 > S3 S12

mFAAWG S12 > S6 > S4 > S9 > S5 > S10 > S2 > S8 > S3 > S1 > S7 > S11 S12

mFDWA S12 > S10 > S9 > S8 > S5 > S1 > S6 > S11 > S3 > S4 > S7 > S2 S12

mFDWG S12 > S11 > S7 > S4 > S1 > S3 > S8 > S10 > S2 > S5 > S9 > S6 S12

mF TOPSIS S12 > S4 > S7 > S11 > S9 > S3 > S1 > S6 > S2 > S10 > S5 > S8 S12

Figure 2. Comparison between the rankings of the developed WmFPGGHM operators
with mFYWA [41] and mFYWG [41], mFDWA [39], mFDWG [39], mFAAWA [42],
mFAAWG [42] AGOs, and mF TOPSIS approach [5].
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Table 5. Comparison between the features of AGOs.

AGOs Consider sub-
characteristics
of attributes

Consider
interrelationship
among attributes

Consider criteria
weights from
decision-makers

Whether model
uncertainty is
more powerful

mF Hamacher AGOs
[37]

Yes No Yes No

mF soft weighted
AGOs [38]

Yes No Yes No

mF Dombi AGOs [39] Yes No Yes No
mF Yager AGOs [41] Yes No Yes No
mF Aczel-Alsina
AGOs [42]

Yes No Yes No

Picture fuzzy
interactional
partitioned HM-
AGOs [48]

No Yes No No

Archimedean HM
operators based on
complex IFSs [55]

No Yes Yes No

Cubic mF TOPSIS
approach [5]

Yes No No No

Cubic mF ELECTRE-I
method [5]

Yes No No No

T-spherical fuzzy
Aczel Alsina HM
operators [56]

No Yes Yes Yes

Bipolar complex fuzzy
partition HM operators
[57]

No Yes Yes No

Interval-valued IF-HM
AGOs [58]

No Yes Yes No

Interval-valued picture
fuzzy geometric HM
operators [59]

No Yes Yes Yes

q-Rung orthopair
fuzzy Aczel-Alsina
power HM-AGOs [60]

No No No Yes

T-spherical uncertain
linguistic MARCOS
method based on
HM [61]

No Yes Yes No

Proposed WmFGGHM
AGOs

Yes Yes Yes Yes
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5.1. Advantages of suggested operators

These days, experts accept the fact that various daily-life problems contain or are affected by multi-
polar information. Following this belief, a number of studies have been carried after the introduction
of mF set theory, while the integration of mF sets with AGOs is limited to date, for instance, mF
sets are integrated only with Dombi, Yager, Hamacher, and Aczel-Alsina operations. These AGOs
are not capable of effectively maintaining or considering the interrelationships among attributes, and
this issue can be easily overcome by the Heronian mean (or HM). Moreover, all other theories fail to
demonstrate the multi-polar sub-characteristics of each attribute, and this issue can be easily addressed
by integrating the mF set theory. Therefore, to support MCDM methods, an innovative fusion of power
geometric HM and mF sets is emerged as mFPGGHM operators.

On the other hand, in MCDM problems like selecting best route to support urban transportation, it is
important to consider every piece of information in addition to efficient uncertainty depiction (in terms
of both the multi-polar attributes and interrelationships of those attributes). However, the initiated mF-
HM based operators considered both multi-polar attributes and interrelationships of those attributes, to
approach an optimal decision or to compute the ranking of objects.

5.2. Limitations of proposed operators

Despite the merits of the proposed Heronian mean-based AGOs, the methodology presented in
Algorithm 1 has certain limitations. A key limitation is the complexity of the calculations, which
becomes more time-consuming as the volume of information increases. This can make the process
challenging when dealing with large datasets. In such scenarios, software tools like MATLAB can be
utilized to streamline the computations. Another limitation is that the suggested model fails to tackle
complicated scenarios like independent uncertainty depiction for non-membership, or interval fuzzy
values. To overcome this limitation, the proposed AGOs can be integrated with powerful structures like
interval-valued fuzzy sets, intuitionistic fuzzy sets, etc., which can improve the applicability to more
complicated problems. The third limitation is the known weights given by the experts, which may
provided a bias result. To overcome this issue, advanced approaches such as incorporating unknown
weights techniques, like mF-AHP approach [62] may be used for finding criteria weights.

6. Conclusions

With the rapid rise in population, urban areas are becoming increasingly congested, leading
to significant challenges in managing transportation systems. Efficient transportation plans are
essential for every city and country to address these growing issues. Development of improved
solutions of transportation needs consideration of multiple factors such as time efficiency, road
infrastructure, environmental impact, and traffic density. Some other factors like sustainability, cost-
effectiveness, and safety, also play an important role in finding the most suitable routes. To tackle
this type of MCDM problems, in this paper, we initiated three novel aggregation operators AGOs
for MCDM based on generalized geometric Heronian mean (GGHM) operations, integrating with
the concept of mF sets. The presented operators are: Weighted mF power GGHM (WmFPGGHM),
ordered weighted mF power GGHM averaging (OWmFPGGHM), and hybrid mF power GGHM
(HmFPGGHM) operators. We investigated some fundamental properties of the proposed AGOs,
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including idempotency, monotonicity, boundedness, and Abelian property. Further, we presented an
algorithm based on the initiated WmFPGGHM operators in order to address diverse daily-life MCDM
scenarios. Next, to validate the efficiency of developed algorithm, we implemented it to a daily-life
MCDM problem involving the urban transportation management: a case study of Saudi Arabia. Last,
we compared the developed AGOs with some preexisting mF set-based operators involving Dombi,
Yager, and Aczel-Alsina’s operations. For future research, this work can be easily expanded to
(1) Weighted m-polar fuzzy power generalized geometric Bonferroni mean operators, (2) Weighted
hesitant m-polar fuzzy power generalized geometric Bonferroni mean operators, and (3) m-polar fuzzy
power generalized geometric Bonferroni mean operators.
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Appendix

A.1. Proof of Theorem 3.1

Proof. It can be easily proved by the induction principle.
(1). By putting n = 1 in the Eq (3.3), we get θ1 = 1 and λ1 = 1, thus

WmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃n) =

( 2
n(n + 1)

n⊕
i=1

n⊕
j=i

(nθiλiϕ̃i)ξ ⊗ (nθ jλ jϕ̃ j)η
) 1
ξ + η

=

((
1 − (1 − (1 − (1 − p1 ◦ ϕ1)nλ1)ξ(1 − (1 − p1 ◦ ϕ1)nλ1θ1)η)

2
n(n+1)

) 1
ξ+η

, . . . ,(
1 − (1 − (1 − (1 − pm ◦ ϕ1)nλ1)ξ(1 − (1 − pm ◦ ϕ1)nλ1θ j)η)

2
n(n+1)

) 1
ξ+η

)
= (p1 ◦ ϕ1, . . . , p1 ◦ ϕm).

Therefore, when n = 1, the Eq (3.3) is verified.
(2). Now we suppose that the Eq (3.3) holds when n = k, here k ∈ N (set of natural numbers), then

WmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃k) =

( 2
k(k + 1)

k⊕
i=1

k⊕
j=i

(kθiλiϕ̃i)ξ ⊗ (kθ jλ jϕ̃ j)η
) 1
ξ + η

=

((
1 −

t∏
i=1, j=i

(1 − (1 − (1 − p1 ◦ ϕi)kλiθi)ξ(1 − (1 − p1 ◦ ϕ j)kλ jθ j)η)
2
k(k+1)

) 1
ξ+η

, . . . ,

(
1 −

k∏
i=1, j=i

(1 − (1 − (1 − pm ◦ ϕi)kλiθi)ξ(1 − (1 − pm ◦ ϕ j)kλ jθ j)η)
2
k(k+1)

) 1
ξ+η

)
.
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For n = k + 1, we get

WmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃k+1) =

( 2
k(k + 1)

k⊕
i=1

k⊕
j=i

(kθiλiϕ̃i)ξ ⊗ (kθ jλ jϕ̃ j)η
) 1
ξ + η ,

⊕
( 2
(k + 1)((k + 1) + 1)

⊕
i=k+1

⊕
j=k+1

((k + 1)θiλiϕ̃i)ξ ⊗ ((k + 1)θ jλ jϕ̃ j)η
) 1
ξ + η

=

((
1 −

k∏
i=1, j=i

(1 − (1 − (1 − p1 ◦ ϕi)kλiθi)ξ(1 − (1 − p1 ◦ ϕ j)kλ jθ j)η)
2
k(k+1)

) 1
ξ+η

, . . . ,

(
1 −

k∏
i=1, j=i

(1 − (1 − (1 − pm ◦ ϕi)kλiθi)ξ(1 − (1 − pm ◦ ϕ j)kλ jθ j)η)
2
k(k+1)

) 1
ξ+η

)
⊕

((
1 − (1 − (1 − (1 − p1 ◦ ϕk+1)(k+1)λk+1θk+1)ξ

(1 − (1 − p1 ◦ ϕk+1)(k+1)λk+1θk+1)η)
2

(k+1)((k+1)+1)

) 1
ξ+η

, . . . ,(
1 − (1 − (1 − (1 − pm ◦ ϕk+1)(k+1)λk+1θk+1)ξ

(1 − (1 − pm ◦ ϕk+1)(k+1)λk+1θk+1)η)
2

(k+1)((k+1)+1)

) 1
ξ+η

)
=

((
1 −

(k+1)∏
i=1, j=i

(1 − (1 − (1 − p1 ◦ ϕi)(k+1)λiθi)ξ(1 − (1 − p1 ◦ ϕ j)(k+1)λ jθ j)η)
2

(k+1)((k+1)+1)

) 1
ξ+η

, . . . ,

(
1 −

(k+1)∏
i=1, j=i

(1 − (1 − (1 − pm ◦ ϕi)(k+1)λiθi)ξ(1 − (1 − pm ◦ ϕ j)(k+1)λ jθ j)η)
2

(k+1)((k+1)+1)

) 1
ξ+η

)
.

Thus, Eq (3.3) is satisfied when n = k+ 1. Subsequently, the result in Eq (3.3) is verified for all natural
numbers. �

A.2. Proof of Theorem 3.3

Proof.

WmFGGHMξ,η
θ (ϕ̃1, ϕ̃2, . . . , ϕ̃n) =

( 2
n(n + 1)

n⊕
i=1

n⊕
j=i

(nθiλiϕ̃i)ξ ⊗ (nθ jλ jϕ̃ j)η
) 1
ξ + η

=

((
1 −

n∏
i=1, j=i

(1 − (1 − (1 − p1 ◦ ϕi)nλiθi)ξ(1 − (1 − p1 ◦ ϕ j)nλ jθ j)η)
2

n(n+1)

) 1
ξ+η

, . . . ,
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1 −

n∏
i=1, j=i

(1 − (1 − (1 − pm ◦ ϕi)nλiθi)ξ(1 − (1 − pm ◦ ϕ j)nλ jθ j)η)
2

n(n+1)

) 1
ξ+η

)

=

((
(1 − (1 − (1 − (1 − p1 ◦ ϕ)nλ)ξ(1 − (1 − p1 ◦ ϕ)nλ)η)

2
n(n+1)

) 1
ξ+η

, . . . ,(
(1 − (1 − (1 − (1 − pm ◦ ϕ)nλ)ξ(1 − (1 − pm ◦ ϕ)nλ)η)

2
n(n+1)

) 1
ξ+η

)
,

= (p1 ◦ ϕ, . . . , pm ◦ ϕ) f or ξ + η = 1.

�
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