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Abstract: This article studies the phase portraits, chaotic patterns, and traveling wave solutions of
the fractional order generalized Pochhammer—Chree equation. First, the fractional order generalized
Pochhammer—Chree equation is transformed into an ordinary differential equation. Second, the
dynamic behavior is analyzed using the planar dynamical system, and some three-dimensional and
two-dimensional phase portraits are drawn using Maple software to reflect its chaotic behaviors.
Finally, many solutions were constructed using the polynomial complete discriminant system
method, including rational, trigonometric, hyperbolic, Jacobian elliptic function, and implicit function
solutions. Two-dimensional graphics, three-dimensional graphics, and contour plots of some solutions
are drawn.
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1. Introduction

In the late 19th and early 20th centuries, some mathematicians began to study fractional order
differential equations. However, due to the limitations of mathematical tools and the lack of practical
application requirements at that time, research progress in this field was relatively slow. In the past
few decades, with the advancement of science and technology and the increasing demand for practical
applications, the study of fractional order differential equations has gradually emerged. More and
more scholars are paying attention to this field and have achieved many important research results. At
present, the research on fractional differential equations has involved multiple directions, including the
definition, properties, calculation methods, solution methods, stability analysis, control strategies, etc.
of fractional derivatives. In addition, the application of fractional differential equations in various fields
is constantly expanding and deepening. Fractional differential equations have unique characteristics,
wide application fields, and important historical significance. With the continuous advancement
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of science and technology and the increasing demand for practical applications, it is believed that
fractional differential equations will play a more important role in the future.

Compared with classical integer order differential equations [1, 2], fractional order differential
equations [3—13] have significant characteristics: nonlocality and memory; power law characteristics
and low-rate decay; fractal structure and multiple time scales. Fractional differential equations
have shown their importance in multiple fields. Compared with integer order differential equations,
fractional-order differential equations can more accurately describe the dynamic behavior of certain
complex systems. For example, in fields such as rheology, thermal systems, acoustics, and mechanics,
fractional calculus models can provide clearer physical meanings and more concise expression
processes. Fractional order differential equations have wide applications in control theory, signal
processing, image processing, biomedical engineering, and other fields. For example, in biomedical
engineering, fractional differential equations can be used to describe physical processes such as
electrical conductivity and thermal conductivity of biological tissues. The study of fractional
differential equations has not only promoted the development of mathematics and physics; but also
facilitated research in related interdisciplinary fields. For example, the combination of fractional
calculus with fractional dynamics, fractional thermodynamics, fractional electromagnetics, and other
fields provides new research perspectives and methods for these areas.

In recent years, nonlinear problems in the fields of communication, traffic control, physics, and
chemistry can usually be simulated using fractional order partial differential equations (FPDEs) [3-7].
Therefore, obtaining numerical simulations and exact solutions for such FPDE:s is one of the key areas
of current research [8—10]. Many predecessors devoted themselves to the research of this field of
work. Moreover, analyzing the qualitative behavior of such equations without solving their solutions
is also a hot topic in the current academic community, and many important theoretical studies have
been reported [11-13]. On the one hand, as early as 2010, Professor Liu [14] proposed a polynomial
complete discriminant system method to solve traveling wave solutions of nonlinear partial differential
equations. In recent years, many experts and scholars have applied this method to the traveling
wave reconstruction of FPDEs. On the other hand, Professor Li [15] transformed nonlinear partial
differential equations into ordinary differential equations through traveling wave transformation, and
transformed the ordinary differential equation into a two-dimensional planar dynamical system. By
studying the phase diagram of the two-dimensional dynamical system, the dynamic behavior of the
ordinary differential equation was analyzed. This article will consider the qualitative behavior and
traveling wave solutions of a very typical FPDE based on the research work in the above two aspects.

In this section, we review the definition of conformable fractional derivatives.

Definition 1.1. [/6] Let f : [0,00) — R. Then, the conformable fractional derivative of f of order o
is defined as

-0y _
fo(t):lirrolf(t+8tgg) f(t), VY te[0,+00), o€ (0,1], (1.1)

the function f is o-conformable the differentiable at a point t if the limit in Eq (1.1) exists.

Proposition 1.2. [16] The conformable fractional derivative possesses the following properties:
(i) D?(#*) = ut*2,Yu € R.
(ii) DY(af(t) + bg(r)) = aD? f(t) + bD{g(r),¥Ya,b € R.
(ii) D{(f o g)(1) = 1'2g(0)°™' ¢ (DD (f(tDli=gr)
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The conformable fractional derivative has many important properties. The detailed proof is given
in the reference [17].

The fractional order generalized Pochhammer—Chree equation is an important model in the fields
of mathematics and physics, which combines the theory of fractional calculus and nonlinear partial
differential equations to describe wave and diffusion phenomena in complex systems. In the future,
with the continuous development of mathematical theory, numerical methods, and computational
techniques, greater progress and breakthroughs will be made in the research and application of
fractional order generalized Pochhammer—Chree equations. In this paper, we present the conformable
space-time fractional order generalized Pochhammer—Chree equation [18] as follows:

D®q - D® q—D¥(ug + 64" +vg")=0, n>1, 0<p<1, (1.2)

where g = g(x, 1) is the longitudinal displacement, which is a function of x and #; here x is the abscissa
of the particle and ¢ is time. y, 6, v are real parameters. Equation (1.3) is widely used in the field of ion
acoustic waves and has attracted the interest of many scholars. It is a model equation that describes the
longitudinal deformation wave propagation of an elastic rod under certain limitations, such as under
incompressible or approximate conditions. In [18], Aniqa Zulfigar and his collaborators first studied
Eq (1.2) using the exp-function method.

When o = 1, Eq (1.2) is simplified into an integer-order generalized Pochhammer—Chree
equation [19] as follows:

qi — Guxx — (/lq + Qqnﬂ + Vq2n+1)xx = 0, n>1, (13)

where the generalized Pochhammer—Chree equation is a nonlinear partial differential equation that
simulates the propagation of elastic waves in a cylinder. Equation (1.3) is a special case of Eq (1.2),
which has a wider applicability. In this paper, we will study Eq (1.2).

Specifically, many interesting methods are still studying the traveling wave solution of Eq (1.3), for
example, the Sardar sub-equation method [19], the Galilean transformation [20], the extended direct
algebraic method [21], the Weierstrass elliptic function method [22], the planar dynamical system
method [23], etc. However, further research is still needed on Eq (1.2). In this article, we plan to
continue studying Eq (1.2) using the methods of planar dynamic equilibrium systems and polynomial
complete discriminant systems [24,25].

The structure of this article is as follows: In Section 2, we perform a traveling wave transformation
on Eq (1.2) and perform a series of identity transformations and simplifications, providing a complete
discriminant system for fourth-order polynomials. In Section 3, we conduct a study on the dynamic
properties of the equations and draw some three-dimensional (3D), two-dimensional (2D) phase
portraits and Lyapunov exponent diagram. In Section 4, we obtain the traveling wave solutions of
Eq (1.2) by using the complete discriminant system method of quartic polynomials. In Section 5, we
conduct numerical analysis and draw 2D graphics, 3D graphics, and contour plots. In Section 6, we
summarize the work of this article.
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2. Mathematical preliminaries

We perform the following traveling wave transformation on Eq (1.2).
x° 1
q=0.x =k(——-p—), (2.1)
% ©

where g = g(x, t) is a function of x and ¢, Q = Q(y) is a real function of y, k and p are parameters.
Through Eq (2.1), we can calculate the following results:

©* - Q" = Oln(n+ Q" NQ) + (n+ DQ"Q"] - v[2n2n + DO Q) + 2n + 1)Q* Q"1 - Kp*0W =0, (2.2)

/ 7 2 4
where Q' represents %, Q" represents %, O™ represents %.
Integrating y twice on both sides of Eq (2.2), and then taking the integration constant as zero, we

can obtain

”

©* = )0 — 0™ —v0¥™*! — I2p*Q" = 0. (2.3)

Assuming = = (", we can obtain

(0% — =22 — n*0=° — n?vE* — (1 — nk2p*(E)? — nk?p*EE" = 0, (2.4)
where = = E(y) is a real function of y, £’ represents 4=, E" represents ‘;27%.
If we set
R —2 —_
E = m)E + a2+ a1B + a, (2.5)
then
e oy 2 =2 =
E) = §a3.: + gaz.: + a2+ 2a9E + ¢, (2.6)
where ¢ is the integral constant.
Substituting Eqgs (2.5) and (2.6) into Eq (2.4) again yields
2n%y 3n%6 n*(p* — )
a3=—-————:7,0) = ————,0] = ———,dy = ¢y = 0. 2.7
: (n+ Dk2p2” 2 (n+2)k2p2 " k*p? 0= @7
So,
(E) = by + b3E? + b,E2, (2.8)
_ n’v _ 2n%6 _ P’
where b4 - _(n+1)k2p2’ b3 - _(n+2)k2p2’ b2 T T2
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3. Dynamics analysis

We will analyze the dynamic behavior of Eq (2.5). First, we need to change Eq (2.5) to the following

form
d=
==z
d b
oo (3.1)
q = B +ar=” +az,

oy _ 3% )]
where a3 = — 555, 0 = — e 1 = oz

Next, we will study the chaotic behavior caused by periodic disturbances using the following
balanced dynamical system.

d= _
d_ = I,
{ & (3.2)

L= 35 + a,5% + a, E + Asin(wy),

where A sin(wy) is disturbance factor, A is amplitude and w is frequency. We can use mathematical
software to draw the 3D and 2D phase portraits and the Lyapunov exponent diagram of Eq (3.2), as
shown in Figures 1 and 2.

(a) 3D phase portrait with a; = 3, a, = =1, a3 = =1, A = £ and (b) 3D phase portrait witha; = -1, a, = —1,a3 = —1,A = 2 and
w = 3 w = 3
3 3

(¢) 2D phase portrait with a; = 3, a, = =1, a3 = =1, A = £ and (d) 2D phase portrait with a, =
w = 3 w = 3
3 3

Figure 1. The phase portraits of Eq (3.2).
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Figure 2. The Lyapunov exponent diagram of Eq (3.2) with a; = —%, a = —-1,a; = -1,
A=fandw=3.

The Lyapunov exponent is an important tool for analyzing chaotic systems. It provides a way to
quantify a system’s response to changes in initial conditions, thereby helping us predict the long-term
behavior of the system. The three Lyapunov exponents of Eq (3.2) are shown in Figure 2, which
approach 0.014949, 0, and -0.014903, respectively. From the graph, it can be seen that the maximum
exponent is a positive number, indicating that the system Eq (3.2) exhibits chaotic behavior.

4. Traveling wave solutions of Eq (1.2)

If by > 0, we set

1 b 1
@ = (hy)*(E + ﬁx & = (bs)ix, (4.1)

where ® = O(€) is a function of ¢ and = = Z(y) is a function of y.
Substituting Eq (4.1) into Eq (2.8), we can obtain

(@) = F(®) = D* + 0,D? + 0,D + 03, 4.2)

/ 32 _1 b3 _1
where @' = 2. 01 = (b2~ )(ba) %, 02 = (s = F2)(ba) 4. 03 =

3b3 byb?
- 3 2
256b; 165

If b, < 0, we set

1 b 1
@ = (—by) (2 + ﬁx £ = (=by)iy, (4.3)

where ® = O(¢) is a function of € and = = E(y) is a function of y.
Substituting Eq (4.3) into Eq (2.8), we can obtain

(@) = —F(®) = —(@* + 0, + 0,® + 03), (4.4)

/ 32 _1 b3 _1
where @' = 92, 01 = (=by + })(=ba)"2, 02 = (=% + F(-ba) %, o5

4 2
368 bob?

= 3 2.
25663 1652
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We provide the complete discriminant system for the quartic polynomial F(®) = ®*+0,®*+0,D+03
as follows:

L =4, L=—0, L= —ZQ? + 80103 — 903,

27 (4.5)
s = 40103 — 0103 — 320105 + 36010303 = 05 + 6403, I5 = 90; — 320103.
We firstly integrate Eqs (4.2) and (4.4) into one equation as follows:
dd
+(&—&o) = : (4.6)
V(D4 + 0, D2 + 0, + 03)

where 7 = +£1 and & is any integral constant.

Using the complete discriminant system of quartic polynomials as Eq (4.5), we can obtain solutions
of Eqgs (4.6) and (1.2) in nine different scenarios (see [14]).

Case 1. When I, < 0,15 =0, I; = 0, F(®) = (®* + o?)?, where « is a real number and o > 0. If
7 = 1, we can obtain

do 1 ()
E—&o = f—cDZ 3 = arctan —. 4.7
Thus, the solution of Eq (4.2) is
® = atan[a(¢ - &)l (4.8)
and the solution of Eq (1.2) is
n%y | n%v v 1@ On+1)
= ac—"" S anfac—"Y iy C gy - 2D 4
q1 \/a( n 1)k2p2) + tan[a( o 1)k2p2)4 (Q pg) o] T 2)
Case2. Whenl, =0,1; =0, I, =0, F(®) = ®*. If T = 1, we can obtain
do 1
—& = | 2= = ——, 4.10
(6= =5 (4.10)
So the solution of Eq (4.2) is
O = ! (4.11)
E-& '
and the solution of Eq (1.2) is
n%v | n?v LoXe e On+1)
= ()i [ )ik(— —p—) =& - —— L (4.12)
7 \/ Caroe?) e MG T T T ey

Case3. Whenl, >0, =0,1, =0, Is > 0, F(®) = (O — a?)?, where « is a real number and

a > 0. If T = 1, we can obtain
dod 1 (I
+ —_ = —:—1 . 4.1
(& — &) fq)z_az 5o Inlg—| (4.13)
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When @ > « or ® < —a, the solution of Eq (4.2) is

® = —a coth(aé — a&)). (4.14)
Thus, the solution of Eq (1.2) is
n%y i n%v Lox© Y O(n+1)
= |—a(-————)"7 - coth[o( - ———)ik(— — p—) — - 4.15
g3 \/ a( it 1)k2p2) i - coth[a( o 1)](2102)4 (Q pQ) aéo] T 2) (4.15)

When —a < ® < a, the solution of Eq (4.2) is

O = —a tanh(aé — aé)). (4.16)
Then, the solution of Eq (1.2) is
" n’y | n’vy LoXe e O(n + 1)
= ea(—————— Y7 -.tanh[o(—————— Vik(=— — p—) — - 4.17
? \/ D) bl G e sl -5 ey @D

Cased. When, > 0,13 =0,1, =0, Is = 0, F(®) = (® — a)*(® - ), where a, S are real numbers
and3a+£=0.If r =1, when ® > @ and ® > 3, or when ® < @ and ® < S, the solution of Eq (4.2) is

_ 4@-p
(B— P — &) -

Therefore, the solution of Eq (1.2) is

Lt (4.18)

Y LA 4(a-p) BCED)
v \/( e e ap s a4 pary G
Ifr=-1,whena < ® <3, or 8 < ® < q, the solution of Eq (4.4) is
4(a—-p)
D= . 4.20
~B-arE-gr-4 " (420
Thus, the solution of Eq (1.2) 1s
I L A A(a - ) BCE
e \/( ar0fr e ke —ap 4 Dy 42D

Case 5. When I,1; < 0, I, = 0, F(®) = (O — a)*[(® + @) + §*], where « and 3 are real numbers. If
7 = 1, we can obtain

i(f—fo):f = LI Y yor S
(@ - ) (@ +a)?+5  4a?+p? ¢ -«

_ 3a 2 2
where { = Nl ¥ = \da® + 5 — \/m & 1s an integral constant.
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Then, the solution of Eq (4.2) is

[e* Vi 48 €6 _ £] 1 \JAaZ + B2(2 - 3

O = (4.23)
[e* Va2 +B2(E-&0) _ 4]2 -1
Thus, the solution of Eq (1.2) is
Va2 +4%((~ iy lk Lply- @ a
[e= Vi PGz G =P~ _ 432+ =] + Vda? + B2 - 43” = 2 9 1
0= i L AT~ SLRNCET)
7= - ", .
[ VIR 60 s (n+ D2 2v(n +2)
Vi

Case 6. When I, > 0,13 > 0,1, > 0, F(®) = (® — a)(D - B)(® — y)(D - ), where «, B, v, ¢ are real
numbers,a ++y+d=0anda>L>y>06.If r=1,when ® > o or ® < 9, we let

Bla — 8)sin® ¢ — a(B - 6)
(@—0)sin®¢p—(B-06)

D= (4.25)

wheny < ® < S,
Here, we assume that
58— y)sin*¢ —y(B -6
oo 0B y)Sl.nsz YB-0) (4.26)
B—y)sin"¢ - (B—06)

Then, we have

4D 2 4D
— &0 = f 4.27)

V@ -a@ - P 1@-3 @ B-9Y [i_psnte

2 _ (@=6)B-y)

where m~ = @)

Let

V(@ =vy)(B-0)

2

sn( (& —&y),m) = sin ¢. (4.28)

Therefore, the solutions of Eq (4.2) are

_ Bla - s — &) m) - a(B - 0) 29,
- ( 5 Vi ) ’ '
@ = S [ G E — o)) = (B )

o 06~ P2 [ YED e ), m] — (B - 2} .
B -y [ 2E2 e — &), m] - (B-0)

(@=6)B=y)
T (@nE-9)°

where m? =

AIMS Mathematics Volume 9, Issue 12, 33956-33972.
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Thus, the solutions of Eq (1.2) are

il il - w(ﬁ - ((_(”+')k2 2 k( _pg) — &o),m] — (B - 0) ny 1 Bm+1) 4.31)
qs = (= R , .
= 1)k2p? 2 2
\ (- o YOI ek - ) g m - gy DO 20D
., 6(B — y)sn? ‘\/(a 7)(ﬂ %) ((— n+l)k2 z) k( —pﬁ) - &), m] —y(B—0) n2y B on+ 1) (4 32)
q9 = e . . .
- 1)k2p? 2 2
\ B - 7)8112[ V( )’)(ﬂ —6) ((_(n+1)k2 )i k(ﬁ _p ) &),ml — (B = 0) (n+ Dk’p v(n+2)

If r = -1, when @ > ® > 3, we assume that

.2
oo Ye—Bsin¢-pla-y) (4.33)

(@-p)sin®¢— (@ —7y)

When 6 < @ < vy, we assume that

_aly - 9)sin’ ¢~ 8(y — @)

. (4.34)
(y = 0)sin’¢ — (y — )
Thus, the solutions of Eq (4.4) are
2 V(fl 7)(5 —6)
_ Y@ - p)sn (——-5—— (f &o),m) — Bla - 7) 435)

mm%vm”wéq £0),m) —

(o - (@—7)

o Q0= O E — ). m) ~ 5y — ) w36
(y = O)sn2 (YT — o)m) -

(y -
2 _ (@=py-9)
where m” = W)g_&,
Then, the solutions of Eq (1.2) are
L e S R I D Lt T O T S TR
q10 = I ’ .
vier 1)k2p? 2 2
\ (Q/ B)Snz( ( Y)w 2 (((n+l)k2 2) k(x” _P ) f()) m) (a'_'y) (n+ ) p V(n+ )
[t~ P G K —pH e m b0 iy see) (g
q11 = 1 . .
a— 0 Dk2p2 2 2
\ - o D ik )~ gy - (e DR 20D

Case 7. When L1; > 0, I < 0, F(®) = (® — a)(® — B)[(P — y)* + 6°], where «, B, v, § are real
numbers, ¥ + B+ 2y =0anda > B,y > 0,0 > 0. If =1, we let

_ Kj COs o+ Ky
 K3COSP + Ky (4.39)
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1 1 1 1 P
where k1 = 3(a + B)ks — 5(a@ — Plks, k2 = 5(@ + Bkg — 5(@ — B)k3, k3 = @ —y — o Ke=a—y - 0Ks,
_ +@=nB-y)

5 = S@—pB)  ° Ko = K5 + (K5)2 + 1. We obtain
£ dd 2KeK7 f
- & = = )
VO-a)@-PI@ -7+ N2k@=P I [|_ vy
where («k7)% = H(IW
Thus, we can get
Y _
en( 2B ) ko) = cos . (4.41)
2KeK7
So, the solution of Eq (4.2) is
\ —26k6(@—P)
. chn(#(g—go),lﬁ)'*b 4.42)
\/—25ke(@—B) ' '
K3CH(#(§ —&0), K7) + Ky
So, the solution of Eq (1.2) is
A\ —26k6(—p3)
| eGSR - o) = €0 k) + ko P AR E3)
qi2 = - .
“26k6(a—p) n+ Dk?p? 2v(n + 2
kaen(YD (e ik py g kg TP r+2)

(4.43)

If r = -1, we let
K1 COS ¢ + Ko

O=——", (4.44)
K3 COS ¢ + Ky

where k; = L(a + )k — 2@ - Bka k= Lo+ B — Yo - s ks = —y - L.k = a — y - 6k,

P +@=y)(B—y)
Ks = ;a—zgy,/% = ks — (ks)* + 1.

Let

E-& =

de _ 2kek7 f d¢
V@ -@-pI@ =+ 7 @B [ intg LG4

2 1
where (K7) = Tk
Thus, we can obtain

CH(M@: — &), k7) = COS . (4.46)

2K6K7

So, the solution of Eq (4.4) is
26k (a
D€~ E0) k) + k2

(D _ Kicn ( 2KeK7 (4 47)
ksen(o D (£ — £0), k) + K

2K6K7
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So, the solution of Eq (1.2) is

A/ 26ks(@—P) 0
° (((,H_])kz 2) k(xg ptg) - é:O), K7) + K3

e Kkien(—=——- n%y - O(n+1) (4.48)
13 — . 1 — . .
26ke(@—p) , 0 n+ 1)k*p? 2v(n + 2)
K3en( 2K:K7 (((n+1)k2 2)4 k(xt —p5) = &0, K7) + Ka ( o

Case 8. When LI; < 0, I, > 0, F(®) = [(D — a)* + B2][(D — y)? + 6°], where «, B, v, ¢ are real
numbers,a +y=0and 8> 6> 0. If =1, we let

_ K tan¢+/<2

Kytan ¢ + ks~ (4.49)

_ _ _ (a=y)*+p*+8* _
where k; = ak3 + Bk, ko = @ky — PBK3, kK3 = —B— S, Ky =@ — Y, K5 = g Ke = Ks + V(ks)? — 1.
We can get

£t = f do _ (k3)* + (k4)? f A
Vi@ =P+ P71 o iwr + W wawar + @) i _opsimg )

-1
where (k7)* = %

Let

6W%V+mﬂWw¥+WW

(k3)? + (Ka)?

(& = &0), k7) = sin g,

4.51)
5 V((K3)? + (k) ((k3K6)? + (K4)?) B
e (& — &), 17) = cos ¢.
Thus, the solution of Eq (4.2) is
_ ki8n(kg(€ — &), k7) + Kaen(kg(§ — o), K7) (4.52)

 kasn(ks(€ — &o), K7) + kaen(kg (€ — &), k7)

_ 0 \/ ((K'S)z+(K4)2)((K3K6)2+(K4)2)
where kg = PGP

Thus, the solution of Eq (1.2) is

KiSn(ks((— ) Hh(E = p2) = £9)., k1) + kaen(ks(— s V(S = p2) = &), k7)

k(g ((— it () &)mﬂ«me«(mm“)MW—pﬁ E16) (453
B n’y 1 6(n + 1)
(n + DHk*p? 2v(n + 2)

q1s ={

Case9. Whenl, > 0,13 > 0,1, = 0, F(®) = (O —a)*(®-B)(P—7y), where a, 3, y are real numbers,
20 +B+y=0andB >vy. If r=1,whena > fand ® > 3, or @ < y and ® < 7, the solution of
Eq (4.2)1s

1L We=-9@-p) - Je-p@-yr (4.54)
~B)a~7) © ~af

+(& = &) = @
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When a > fand @ <y, or @ <y and ® > S, the solution of Eq (4.2) is

1 In [V - )@ -p) - JB-a)® -y

—&) = 4.55
T B [ (39
When a > 8 > v, the solution of Eq (4.2) is
B 1 (@@= =B+ (@-B(P-7)
B R 77 T (420
Ifr=-1,whena > and ® > B, or @ < y and @ < vy, the solution of Eq (4.4) is
1 [V(a =)@ -p) — (a-B)(D@ -]
+(&— &) = 1 _ 4.57
T e 0l @2
When a > S and @ < vy, or @ <y and ® > 3, the solution of Eq (4.4) is
1 (VO =)@ =) - VB- )@ - 458
i(f—fo)—(ﬁ_a)(a_y)ln ® - (4.58)
When 8 > @ > v, the solution of Eq (4.4) is
E—f) = aresin YT V@ =P B )@ y) (4.59)

(@=p)a-7) (B =)D - a)

5. Discussion and physical explanation

We use mathematical software to draw 2D graphics, 3D graphics, and contour plots of partial
solutions to Eq (1.2) under specific parameters as shown in Figures 3-5.

25 1 10 P 70

©

0 2 4 3 8 10 0 2 4 6 8 10
t

(a) 3D graphic (b) 2D graphic(x = 1) (c) Contour plot

Figure 3. The trigonometric function solution g;(x,#) with parameters: n = 2, v = _%,
0=-2,u=0,k=p=a=1&=0,0=3.
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(a) 3D graphic (b) 2D graphic(x = 1) (c) Contour plot

0 2 4 6 8 10
t

Figure 4. The hyperbolic function solution ¢3(x, ) with parameters: n = 2, v = —%, 0=-2,

#:O,K:p:azl’é‘o:o’gz%_

agx)
a1
t

0 2 4 6 8 10
t x

(a) 3D graphic (b) 2D graphic(x = 1) (c) Contour plot

Figure 5. The rational function solution gs(x,?) with parameters: n = 2, v = —3, 6 = 2,
p=lk=p=a=1B=-3,64=0,0=1

Remark 5.1. Through Figures 3-5, we obtained the 3D graphics, 2D graphics, and contour plots of

the trigonometric function solution q,(x,t) and the hyperbolic function solution gs(x,t) for Eq (1.2)

with parameters n = 2, v = —%, 0=-2,u=0ck=p=a=1,&6=0,0= % and the 3D graphic, 2D

graphic, and contour plot of the rational function solution qs(x, t) for Eq (1.2) with parameters n = 2,
1

v = —%, 0=2u=1Lk=p=a=1=-3 & =0, 0= 5 These graphs visually display the

distribution and changes of data, and can also help readers better understand the above solutions.
6. Conclusions

This article investigates the chaotic behavior and traveling wave solutions of the fractional order
generalized Pochhammer—Chree equation. In the paper, we applied appropriate traveling wave
transformations to Eq (1.2) and obtained 3D and 2D phase portraits and a Lyapunov exponent diagram
displaying chaotic behavior. We also used a complete discriminant system of quartic polynomials to
solve Eq (1.2) and obtained a richer variety of solutions, including rational, hyperbolic, triangular,
Jacobian elliptic function solutions, and implicit function solutions. We conducted numerical analysis
and used mathematical software to draw 2D graphics, 3D graphics, and contour plots of a trigonometric

AIMS Mathematics Volume 9, Issue 12, 33956-33972.
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function solution ¢, (x, 1), a hyperbolic function solution g;3(x, #), and a rational function solution gs(x, f)
under specific parameters as shown in Figures 3-5. Compared with existing literature [21], the
polynomial complete discriminant system method used in the paper for solving equations has clearer
classification, simpler solution forms, and a wider variety of solution types. This is the advantage and
highlight of using a fully discriminative system to solve equations. However, the polynomial complete
discriminant system method is currently only applicable to solving partial differential equations that
can be converted into ordinary differential equations. In the future, we will discuss the traveling wave
solutions and chaotic behavior of more complex partial differential equations.
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