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1. Introduction

Because of the universal existence of predation in nature, predator-prey models, especially delayed
predator-prey models, have been a research topic in the field of population dynamics. In order
to research mutual relationship between biological populations and regulating internal development,
a great number of predator-prey models have been established. By studying the various dynamic
behaviors of predator-prey models, we find that the parameters have a significant effect on the
population density of organisms under certain environmental conditions. In recent years, there have
been numerous research results on predator-prey models, and many excellent achievements have been
presented. For instance, Enatsu et al. [1] explored the effects of cooperative hunting and maturation
delay on the coexistence of predator-prey. Majumdar et al. [2] analyzed the equilibrium points and
local bifurcations of the non-delayed prey-predator model, as well as the local and global stability of
the interior equilibrium point in the presence of delay. Gao and Li. [3] discussed the Hopf bifurcation
of a symbiotic predator-prey model with double time delay. Yan et al. [4] analyzed how nonlocal
prey competition can trigger spatially inhomogeneous Hopf bifurcation and Turing instability, and its
impacts on the amplitude of periodic solutions and the risk of species extinction. For more detailed
studies, one can see [5–7].

In 2023, Pal et al. [8] put forward the following predator-prey model:

du1

dt
=

1
1 +$1u2(t)

γu1(t) − d(1 +$2u2(t))u2
1(t) −

1
1 +$3u3

a1u1(t)u2(t)
m + u1(t)

,

du2

dt
=

1
1 +$3u3(t)

λ̄1a1u1(t)u2(t)
m + u1(t)

− ξ1u2(t) − ξ2(1 +$4u3(t))u2
2(t) − a2u2(t)u3(t),

du3

dt
=

βu3(t)
1 + β0u3(t)

+ λ̄2a2u2(t)u3(t) − ξ3u3(t),

(1.1)

where u1(t), u2(t), u3(t) represent the densities of prey, intermediate predators, and top predators at any
time t > 0. γ denotes the intrinsic growth rate of the prey species in the absence of predators, and d is
the density-related mortality rate, a1 is the capture rate of prey species by intermediate predators, m is
the half saturation constant, λ̄1 represents the respective gain in intermediate predator density for prey
and top predators, being λ̄1 is between 0 and 1, λ̄2 stands for the proportional constant between the
growth rate of the top predator and the response of the function, ξ1–ξ3 represent the natural mortality
of intermediate predators, the coefficient of intraspecies competition of intermediate predators, and
the natural mortality of top predators, respectively, β and β0 represent per capita regeneration rate
and density-dependent intensity, $1–$4 are all fear parameters, $1 and $2 are the effects of fear on
the reproduction ability and intraspecies competition of prey populations, $3 is the changes in the
behavior of intermediate predators due to the presence of apex predators, and $4 is the impacts of
predators, fear of top predators on intraspecies competition among intermediate predators. For a more
detailed explanation of system (1.1), see [8]. Pal et al. [8] examined how fear responses influence
population reproduction and foraging behavior in a three-species food chain model, and affect the
system’s stability of model (1.1). In numerous instances, the introduction of time delay in predator-
prey models is necessary because the time delays in population development have an effect on the
density of prey and predators. Based on this consideration, we can build a more suitable delayed
predator-prey model, since the density of prey u1(t) not only depends on the current but also the past
density of intermediate predators. In addition, the density of intermediate predator and top predators

AIMS Mathematics Volume 9, Issue 12, 33891–33929.



33893

also depend on the current density and past density of top predators. Assuming that the density of prey
is affected by the self-feedback time from u1 to u1, the density of intermediate predators is affected by
the self-feedback time from u2 to u2, and the density of top predators is affected by the self-feedback
time from u3 to u3. In many cases, the self-feedback time for u1–u3 is different. For the sake of
mathematical simplification, we assume that all the self-feedback time for u1–u3 is similar, then, we
can adjust the model (1.1) as follows:

du1

dt
=

1
1 +$1u2(t − θ)

γu1(t) − d(1 +$2u2(t))u2
1(t) −

1
1 +$3u3(t − θ)

a1u1(t)u2(t)
m + u1(t)

,

du2

dt
=

1
1 +$3u3(t − θ)

λ̄1a1u1(t)u2(t)
m + u1(t)

− ξ1u2(t) − ξ2(1 +$4u3(t))u2
2(t) − a2u2(t)u3(t),

du3

dt
=

βu3(t)
1 + β0u3(t − θ)

+ λ̄2a2u2(t)u3(t) − ξ3u3(t),

(1.2)

where θ ≥ 0 represents the time delay, and all other parameters are positive real numbers. Many
studies indicate that delay is a key factor affecting the dynamic characteristics of various differential
systems. In a variety of examples, delay leads to loss of stability and appearance of bifurcation, and
trigger chaotic behavior and so forth [9–11]. Among these phenomena, delay-induced Hopf bifurcation
is a significant dynamic feature. In biology, delay-induced Hopf bifurcation effectively describes
the equilibrium relationship between biological population densities. Therefore, we argue that the
in-depth study of delay-induced Hopf bifurcation in predator-prey models holds crucial theoretical
value. Inspired by the viewpoint mentioned above, we are going to examine the delay-induced Hopf
bifurcation and its control for model (1.2). Specifically, we aim to assess the following essential
issues: (1) Analyze the characteristics of the solution of system (1.2), such as non-negativity, existence,
uniqueness, and boundedness. (2) Investigate the occurrence of the Hopf bifurcation phenomenon and
stability of the system (1.2). (3) Design three disparate controllers to adjust the stability region of the
system and control the time of bifurcation onset in model (1.2).

The crux prominent points in this study are described as follows: (i) Based on past
research achievements, a new delay-independent bifurcation and stability criterion for system (1.2)
is established. (ii) By employing various controllers, both the stability domain and the time of
bifurcation onset in system (1.2) can be effectively managed. (iii) The study explores how time
delay influences the control of Hopf bifurcation phenomena and the stabilization of predator and prey
densities in model (1.2)

The structure of this article is arranged as follows: The properties of the solution for system (1.2),
which include existence and uniqueness, non-negativity, and boundedness of the solution are presented
in Section 2. Section 3 focuses on the bifurcation behavior and stability of the system (1.2).
Section 4 addresses the control problem of the bifurcation phenomenon in system (1.2) by developing
a practical hybrid delayed feedback controller that incorporates parameter perturbation with delay
and state feedback. Section 5 selects a rational hybrid delayed feedback controller to solve the
bifurcation control issue in the system (1.2) by means of combining parametric perturbation with delay
feedback and state feedback. Section 6 manages the control problem of the bifurcation phenomenon
in system (1.2) by devising a practical extended hybrid delayed feedback controller, which includes
parameter perturbation with delay and state feedback. Section 7 presents simulation results obtained
using Matlab software to confirm the critical findings. A conclusion is provided in Section 8.
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2. Well-posedness of solution

In this section, we are about to construct a reasonable function to discuss the well-posedness
of solutions to model (1.2) (including boundedness, existence, uniqueness, and non-negativity) by
utilizing fixed point theory and inequality technique.
Theorem 2.1. Let Ω = {(u1, u2, u3) ∈ R3 : max{|u1|, |u2|, |u3|} ≤ U}, where U > 0 indicates a
constant. For (u10, u20, u30) ∈ Ω, system (1.2) under the initial value (u10, u20, u30) owns a unique
solution U = (u1, u2, u3) ∈ Ω.

Proof. Set
f (U) = ( f1(U), f2(U), f3(U)), (2.1)

where

f1(U) =
1

1 +$1u2(t − θ)
γu1(t) − d(1 +$2u2(t))u2

1(t) −
1

1 +$3u3(t − θ)
a1u1(t)u2(t)
m + u1(t)

,

f2(U) =
1

1 +$3u3(t − θ)
λ̄1a1u1(t)u2(t)

m + u1(t)
− ξ1u2(t) − ξ2(1 +$4u3(t))u2

2(t) − a2u2(t)u3(t),

f3(U) =
βu3(t)

1 + β0u3(t − θ)
+ λ̄2a2u2(t)u3(t) − ξ3u3(t).

(2.2)

For arbitrary U, Ũ ∈ Ω, we obtain

|| f (U) − f (Ũ)||

=

∣∣∣∣∣∣
[

1
1 +$1u2(t − θ)

γu1(t) − d(1 +$2u2(t))u2
1(t) −

1
1 +$3u3(t − θ)

a1u1(t)u2(t)
m + u1(t)

]
−

[
1

1 +$1ũ2(t − θ)
γũ1(t) − d(1 +$2ũ2(t))ũ2

1(t) −
1

1 +$3ũ3(t − θ)
a1ũ1(t)ũ2(t)
m + ũ1(t)

]∣∣∣∣∣∣
+

∣∣∣∣∣∣
[

1
$3u3(t − θ)

λ̄1a1u1(t)u2(t)
m + u1(t)

− ξ1u2(t) − ξ2(1 +$4u3)u2
2(t) − a2u2(t)u3(t)

]
−

[
1

$3ũ3(t − θ)
λ̄1a1ũ1ũ2

m + ũ1
− ξ1ũ2 − ξ2(1 +$4ũ3)ũ2

2 − a2ũ2ũ3

]∣∣∣∣∣∣
+

∣∣∣∣∣∣
[

βu3(t)
1 + β0u3(t − θ)

+ λ̄2a2u2(t)u3(t) − ξ3u3(t)
]

−

[
βũ3(t)

1 + β0ũ3(t − θ)
+ λ̄2a2ũ2(t)ũ3(t) − ξ3ũ3(t)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
[

1
1 +$1u2(t − θ)

γu1(t) − du2
1(t) − du2

1(t)$2u2(t) −
1

1 +$3u3(t − θ)
a1u1(t)u2(t)
m + u1(t)

]
−

[
1

1 +$1ũ2(t − θ)
γũ1 − dũ2

1 − dũ2
1(t)$2ũ2(t) −

1
1 +$3ũ3(t − θ)

a1ũ1ũ2

m + ũ1

]∣∣∣∣∣∣
+

∣∣∣∣∣∣
[

1
$3u3(t − θ)

λ̄1a1u1(t)u2(t)
m + u1(t)

− ξ1u2(t) − ξ2u2
2(t) − ξ2$4u3(t)u2

2(t) − a2u2(t)u3(t)
]

−

[
1

$3ũ3(t − θ)
λ̄1a1ũ1(t)ũ2(t)

m + ũ1(t)
− ξ1ũ2(t) − ξ2ũ2

2(t) − ξ2$4ũ3(t)ũ2
2 − a2ũ2(t)ũ3(t)

]∣∣∣∣∣∣
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+

∣∣∣∣∣∣
[

βu3(t)
1 + β0u3(t − θ)

+ λ̄2a2u2(t)u3(t) − ξ3u3(t)
]

−

[
βũ3(t)

1 + β0ũ3(t − θ)
+ λ̄2a2ũ2(t)ũ3(t) − ξ3ũ3(t)

]∣∣∣∣∣∣
≤ γ |u1 − ũ1| + γ$1U |u1 − ũ1| + 2dU |u1 − ũ1|

+ 2d$2U
2 |u1 − ũ1| +

a1

m
U |u1 − ũ1| +

λ̄1a1

m
U |u1 − ũ1|

+U2d$2 |u2 − ũ2| +
a1

m
U |u2 − ũ2| +

a1

m2U
2 |u2 − ũ2|

+
λ̄1a1

m
U |u2 − ũ2| +

λ̄1a1

m2 U
2 |u2 − ũ2| + ξ1 |u2 − ũ2|

+ 2ξ2U |u2 − ũ2| + 2ξ2$4U
2 |u2 − ũ2| + a2U |u2 − ũ2| + λ̄2a2U |u2 − ũ2|

+ ξ2$4U
2 |u3 − ũ3| + a2U |u3 − ũ3| + β |u3 − ũ3|

+ λ̄2a2U |u3 − ũ3| + ξ3 |u3 − ũ3|

≤ ρ̄1 |u1 − ū1| + ρ̄2 |u2 − ū2| + ρ̄3 |u3 − ū3|

=

[
γ(1 +$1U) + 2dU(1 +$2U) +

a1U

m
(1 + λ̄1)

] ∣∣∣∣∣u1 − ũ1

∣∣∣∣∣
+

[
(d$2U

2 +
a1U

m
(1 +

U

m
+ λ̄1 +

λ̄1U

m
) + ξ1

+ 2ξ2U(1 +$4U) + a2U(1 + λ̄2)
]∣∣∣∣∣u2 − ũ2

∣∣∣∣∣
+

[
ξ2$4U

2 + a2U(1 + λ̄2) + β + ξ3

]
|u2 − ū2| .

≤ ρ(|u1 − ū1| + |u2 − ū2| + |u3 − ū3| ), (2.3)

where
ρ̄1 = γ(1 +$1U) + 2dU(1 +$2U) +

a1U

m
(1 + λ̄1),

ρ̄2 = d$2U
2 +

a1U

m

(
1 +
U

m
+ λ̄1 +

λ̄1U

m

)
+ ξ1 + 2ξ2U(1 +$4U) + a2U(1 + λ̄2),

ρ̄3 = ξ2$4U
2 + a2U(1 + λ̄2) + β + ξ3.

(2.4)

Let
ρ = max {ρ̄1, ρ̄2, ρ̄3} . (2.5)

From (2.3), we get
|| f (U) − f (Ũ)|| ≤ ρ||U − Ũ ||. (2.6)

Thus, f (U) satisfies the Lipschitz condition for U. Applying the fixed point theorem, one can readily
conclude that Theorem 2.1 is accurate.
Theorem 2.2. Each solution to model (1.2) beginning with R3

+ is non-negative.
Proof. Based on the first equation of system (1.2), we can obtain

du1

dt
=

γu1

1 +$1u2(t − θ)
− d(1 +$2u2)u2

1 −
1

1 +$3u3(t − θ)
a1u1u2

m + u1
, (2.7)
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then

du1

u1
=

(
γ

1 +$1u2
− d(1 +$2u2)u1 −

1
1 +$3u3(t − θ)

a1u2

m + u1

)
dt, (2.8)

which results in∫ t

0

du1

u1
=

∫ t

0

[
γ

1 +$1u2(t − θ)
− d(1 +$2u2 (s))u1 (s) −

1
1 +$3u3(t − θ)

a1u2 (s)
m + u1 (s)

]
ds. (2.9)

Then one derives

u1(t)
u1(0)

= exp
{∫ t

0

[
γ

1 +$1u2(t − θ)
− d(1 +$2u2 (s)) −

1
1 +$3u3(t − θ)

a1u1 (s)
m + u1 (s)

]
ds

}
. (2.10)

Thus

u1(t) = u1(0)

× exp
{∫ t

0

[
γ

1 +$1u2(t − θ)
− d(1 +$2u2 (s)) −

1
1 +$3u3(t − θ)

a1u1 (s)
m + u1 (s)

]
ds

}
> 0. (2.11)

By the same method, we know

u2(t) = u2(0)

× exp
{∫ t

0

[
1

$3u3(t − θ)
λ̄1ξ1a1u1 (s)
m + u1 (s)

− ξ2(1 +$4u3 (s))u2 (s) − a2u3 (s)
]

ds
}
> 0. (2.12)

u3(t) = u3(0) exp
{∫ t

0

[
η

1 + η0u3(t − θ)
+ λ̄2a2u2 (s) − ξ3

]
ds

}
> 0. (2.13)

Hence, Theorem 2.2 holds true.
Theorem 2.3. If θ = 0 and λ̄1a1 < ξ1, λ̄2 < 1, η < ξ3, therefore, all solutions of system (1.2) initialized
at R3

+ are uniformly bounded.
Proof. Let

W(t) = u1(t) + u2(t) + u3(t). (2.14)

Then

dW(t)
dt

=
du1(t)

dt
+

du2(t)
dt

+
du3(t)

dt

=

[
1

1 +$1u2(t − θ)
γu1 − d(1 +$2u2)u2

1 −
1

1 +$3u3(t − θ)
a1u1u2

m + u1

]
+

[
1

1 +$3u3(t − θ)
λ̄1a1u1u2

m + u1
− ξ2u2 − ξ2(1 +$4u3)u2

2 − a2u2u3

]
+

[
β

1 + β0u3(t − θ)
+ λ̄2a2u2u3 − ξ3u3

]
≤ γu1 + d(1 +$2u2)u2

1 + λ̄1a1u2 − ξ1u2 − ξ2(1 +$4u3)u2
2 − a2u2u3
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+ηu3 + λ̄2a2u2u3 − ξ3u3

≤
(
−γu1 + (λ̄1a1 − ξ1)u2 + (η − ξ3)u3

)
+ 2γu1 − du2

1 − (a2 − λ̄2a2)u2u3

= −γ0W(t) +
γ2

d
, (2.15)

where where

γ0 = min{γ, ξ1 − θ1a1, ξ3 − η}. (2.16)

According to Eq (2.15), we obtain

W(t)→ γ2/dγ0,when t → ∞. (2.17)

Consequently, the solutions to the system (1.2) are uniformly bounded.

3. Exploration of bifurcation of model (1.2)

In this section, we intend to explore the issues of bifurcation and stability of the model (1.2). To
start, we suppose that F(u1?, u2?, u3?) is the equilibrium point of model (1.2), then u1?–u3? adhere to
the following requirement:



1
1 +$1u2?

γu1∗ − d(1 +$2u2?)u2
1? −

1
1 +$3u3?

a1u1?u2?

m + u1?
= 0,

1
1 +$3u3?

λ̄1a1u1?u2?

m + u1?
− ξ1u2? − ξ2(1 +$4u3?)u2

2? − a2u2?u3? = 0,
βu3?

1 + β0u3?
+ λ̄2a2u2?u3? − ξ3u3? = 0.

(3.1)

Let 
ū1(t) = u1(t) − u1?,

ū2(t) = u1(t) − u2?,

ū3(t) = u2(t) − u3?.

(3.2)

Insert system (3.2) into system (1.2) and we obtain the linear system of model (1.2) at F(u1?, u2?, u3?):



dū1

dt
= l1ū1 + l2ū2 − l3ū2(t − θ) − l4ū3(t − θ),

dū2

dt
= l5ū1 + l6ū2 − l7ū3 − l8ū2(t − θ),

dū2

dt
= l9ū2 + l10ū3 − l11ū3(t − θ),

(3.3)
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where

l1 =
γ

1 +$1u2?
− 2d$2u1?u2? −

a1u2?

(1 +$3u3?)(m + u1?)
+

a1u1?u2?

(1 +$3u3?)(m + u1?)2 ,

l2 =
a1u1?

(1 +$3u3?)(m + u1?)
,

l3 =
γ$1u1?

(1 +$1u2?)2 ,

l4 =
a1$3u1?u2?

(1 +$3u3?)2(m + u1?)
,

l5 =
λ̄1a1u2?

(1 +$3u3?)(m + u1?)
−

λ̄1a1u1?u2?

(1 +$3u3?)(m + u1?)2 ,

l6 =
λ̄1a1u1?

(1 +$3u3?)(m + u1?)
− ξ1 − 2ξ2(1 +$4u2?u3?) − a2u3?,

l7 = ξ2$4u2
2? + a2u2?,

l8 =
λ̄1a1$3u1?u2?

(1 +$3u3?)2(m + u1?)
,

l9 = λ̄2a2u3?,

l10 =
β

1 + β0u3?
+ λ̄2a2u2? − ξ3,

l11 =
ββ0u3?

(1 + β0u3?)2 .

(3.4)

The characteristic equation for system (3.3) takes the following expression:

det


λ − l1 −l2 + l3e−λθ −l4e−λθ

−l5 λ − l6 l7 + l8e−λθ

0 −l9 λ − l10 + l11e−λθ

 = 0, (3.5)

which results in

λ3 + c1λ
2 + c2λ + c3 + (c4λ

2 + c5λ + c6)e−λθ + c7e−2λθ = 0, (3.6)

where 

c1 = −l10 − l6 − l1,

c2 = l6l10 + l7l9 + l1l10 + l1l6 − l2l5,

c3 = l2l5l10 − l1l6l10 − l1l7l9,

c4 = l11,

c5 = l8l9 + l3l5 − l6l11 − l1l11,
c6 = l1l6l11 − l1b8l9 − l2l5l11 − l3l5l10 − l4l5l9,

c7 = l3l5l11.

(3.7)

If θ = 0. Equation (3.6) changes to

λ3 + (c1 + c4)λ2 + (c2 + c5)λ + c3 + c6 + c7 = 0. (3.8)

If

(Q1)


D1 = c1 + c3 > 0,

D2 =

∣∣∣∣∣∣ c1 + c4 1
c3 + c6 + c7 c2 + c5

∣∣∣∣∣∣ > 0,

D3 = (c3 + c6 + c7)D2 > 0.
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is satisfied, then the three roots λ1–λ3 of Eq (3.8) have negative real parts. Thus the equilibrium point
F(u1?, u2?, u1?) of system (1.2) under θ = 0 is locally asymptotically stable.

Presume that λ = iν is the root of Eq (3.6), then Eq (3.6) turns into

(iν)3 + c1(iν)2 + c2iν + c3 + [c4(iν)2 + c5iν + c6]e−iνθ + c7e−2iνθ = 0, (3.9)

which produces {
Θ1(ν) sin νθ + Θ2(ν) cos νθ = Θ3(ν),
Θ4(ν) sin νθ + Θ5(ν) cos νθ = Θ6(ν),

(3.10)

where 

Θ1 = ν3 − c2ν,

Θ2 = −c1ν
2 + e1,

Θ3 = c4ν
2 − c6,

Θ4 = −c1ν
2 + e2,

Θ5 = −ν3 + c2ν,

Θ5 = −c5ν,

(3.11)

and {
e1 = c3 + c7,

e2 = c3 − c7.
(3.12)

It follows from (3.10) that 
sin νθ =

Θ2Θ6 − Θ3Θ5

Θ2Θ4 − Θ1Θ5
,

cos νθ =
Θ3Θ4 − Θ1Θ6

Θ2Θ4 − Θ1Θ5
.

(3.13)

Because of cos2 νθ + sin2 νθ = 1, we can get

[
Θ2Θ6 − Θ3Θ5

Θ2Θ4 − Θ1Θ5

]2

+

[
Θ3Θ4 − Θ1Θ6

Θ2Θ4 − Θ1Θ5

]2

= 1. (3.14)

So

Θ2
1Θ

2
6 + Θ2

2Θ
2
6 + Θ2

3Θ
2
4 + Θ2

3Θ
2
5 − Θ2

1Θ
2
5 − Θ2

2Θ
2
4

−2Θ1Θ3Θ4Θ6 − 2Θ2Θ3Θ5Θ6 + 2Θ1Θ2Θ4Θ5 = 0. (3.15)

Hence, the result is as follows:

ν12 −G1ν
10 −G2ν

8 −G3ν
6 −G4ν

4 + G5ν
2 −G6 = 0. (3.16)
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where 

G1 = c2
4 + 4c2 − 2c2

1,

G2 = c2
5 + c2

1c2
4 + 2c1(e1 + e2 + 2c1c4) − c4

1 − 6c2
2 − 2c2c2

4 − 2c4c5,

G3 = c2
1c2

5 + c2
2c2

4 + c2
6 + 4c3

2 + 4c2c4c6 + 2c5c5e2 + (e1 + e2)(2c3
1 − 4c1c2)

− 2c2
1c2

2 − 2c1c2
4e2 − 2c2

1c4c6 − 2c2c2
5 − 2c4c5e1,

G4 = c2
2c2

4 + c2
1c2

5 + c2
3e2

2 + 2c2c3c4(1 − e2) + 2c4c5(e1 − e2) + 4e1e2(c2 − c2
1)

+ 4c1c3c2
5e2 − c2

1(e2
1 + e2

2) − c4
2 − 2c2c5(c2c3 + c5) − 2c1c2

4e1,

G5 = c2
2c2

5 + c2
4e2

1 + 2c1(e1e2
2 + e2

1e2) + 2c2c4c5(e2 − e1)
− 2c1c2

5e2 − 2c2
2e1e2 − 2c3c5e2

2,

G6 = c2
5e2

2 − e2
1e2

2.

(3.17)

Let
Υ1(ν) = ν12 −G1ν

10 −G2ν
8 −G3ν

6 −G4ν
4 + G5ν

2 −G6. (3.18)

Suppose that
(Q2) |c5| > |e1|.

Due to (Q2), we know Υ1(0) = −G6 < 0, given that limν→∞Υ1(ν) > 0, we can conclude that Eq (3.17)
has at least one positive real root. Therefore, Eq (3.6) has at least one pair of purely roots. Without loss
of generality, we can postulate that Eq (3.17) has twelve positive real roots (say ν j, j = 1, 2, 3, · · · , 12).
In light of (3.10), one gets

θ(n)
j =

1
ν j

[
arccos

(
Θ2(ν j)Θ6(ν j) − Θ3(ν j)Θ5(ν j)
Θ2(ν j)(Θ4(ν j) − Θ1(ν j)Θ5(ν j)

)
+ 2nπ

]
, (3.19)

where j = 1, 2, 3 · · · , 12; n = 0, 1, 2, · · · ;

Θ1(ν j) = ν3
j − c2ν j,

Θ2(ν j) = −c1ν
2
j + e1,

Θ3(ν j) = c4ν
2
j − c6,

Θ4(ν j) = −c1ν
2
j + e2,

Θ5(ν j) = −ν3
j + c2ν j,

Θ6(ν j) = −c5ν j.

(3.20)

Assume θ0 = min{ j=1,2,3,··· ,12;n=0,1,2,··· }{θ
(n)
j } and suppose that when θ = θ0, Eq (3.6) has a pair of imaginary

roots ±iν0. In the next step, the assumption presented is:

(Q3) J1RJ2R + J1I J2I > 0,

where 
J1R = (c2 − 3ν2

0) cos ν0θ0 − 2c1ν0 sin ν0θ0 + 5c4 + c5,

J1I = (c2 − 3ν2
0) sin ν0θ0 + 2c1ν0 cos ν0θ0,

J2R = (c7ν0 + c3ν0 − c1ν
3
0) sin ν0θ0 + (c2ν

2
0 − ν

4
0) cos ν0θ0,

J2I = (c2ν
2
0 − ν

4
0) sin ν0θ0 + (c7ν0 + c1ν

3
0 − c3ν0) cos ν0θ0.

(3.21)

Suppose that λ(θ) = %1(θ) + i%2(θ) is the root of Eq (3.6) at θ = θ0 such that ε1(θ0) = 0, ε2(θ0) = ν0, then
Re

(
dλ
dθ

) ∣∣∣∣
θ=θ=θ0,ν=ν0

> 0.
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Proof. Using Eq (3.6), we can gain

[
(
3λ2 + 2c1λ + c2)eλθ

] dλ
dθ

+ (λ3 + c1λ
2 + c2λ + c3)eλθ(

dλ
dθ
θ + λ)

+2c4
dλ
dθ

+ c5
dλ
dθ
− c7e−λθ(

dλ
dθ
θ + λ) = 0. (3.22)

It means that (
dλ
dθ

)−1

=
J1(λ)
J2(λ)

−
θ

λ
, (3.23)

where {
J1(λ) = (3λ2 + c1λ + c2)eλθ + 2c4 + c5,

J2(λ) = c7λe−λθ − (λ3 + c1λ
2 + c2λ + c3)λeλθ.

(3.24)

Hence

Re
(dλ

dθ

)−1
θ=θ0,ν=ν0

= Re
[

J1(λ)
J2(λ)

]
θ=θ0,ν=ν0

=
J1RJ2R + J1I J2I

J2
2R + J2

2I

. (3.25)

Through this assumption (Q3), we obtain

Re
(dλ

dθ

)−1
θ=θ0,ν=ν0

> 0. (3.26)

The proof is concluded. Based on the discussion above, the following result can be easily obtained.
Theorem 3.1. Assume that (Q1)–(Q3) are valid, then the equilibrium point F(u1?, u2?, u3?) of
model (3.1) is locally asymptotically stable state if θ ∈ [0, θ0). Moreover, model (3.1) exhibits a cluster
of Hopf bifurcations around the equilibrium point F(u1∗, u2∗, u3∗) when θ = θ0.

4. Regulation of bifurcation in model (1.2) through hybrid controller 1

In this portion, we will study the time of Hopf bifurcation onset in system (1.2) by utilizing a
sensible hybrid controller, containing parameter perturbation with delay and state feedback. Building
on the concepts from [13,14], we propose the following controlled predator-prey model:

du1

dt
=

1
1 +$1u2(t − θ)

γu1(t) − d(1 +$2u2(t))u2
1(t)

−
1

1 +$3u3(t − θ)
a1u1(t)u2(t)
m + u1(t)

,

du2

dt
=

1
1 +$3u3(t − θ)

λ̄1a1u1(t)u2(t)
m + u1(t)

− ξ1u2(t)

− ξ2(1 +$4u3(t))u2
2(t) − a2u2(t)u3(t),

du3

dt
= η1

[
βu3(t)

1 + β0u3(t − θ)
+ λ̄2a2u2(t)u3(t) − ξ3u3(t)

]
+ η2[u3(t) − u3(t − θ)],

(4.1)

where η1, η2 indicate control parameters. System (4.1) shares the same equilibrium point
F(u1?, u2?, u3?) as that in system (1.2). Let

u1? = u1(t) − ū1(t),
u2? = u1(t) − ū2(t),
u3? = u2(t) − ū1(t).

(4.2)
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The linear system of system (4.1) near F(u1?, u2?, u2?) can be represented as follows:

dū1

dt
= k1ū1 + k2ū2 − k3ū2(t − θ) + k4ū3(t − θ),

dū2

dt
= k5ū1 + 67ū2 − k7ū3 − k8ū3(t − θ),

dū2

dt
= k9ū2 + k10ū3 − k11ū3(t − θ),

(4.3)

where 

k1 =
γ

1 +$1u2?
− 2du1?(1 +$2u2?) −

a1u2?

(1 +$3u3?)(m + u1?)
(1 −

u1?

m + u1?
),

k2 =
a1u1?

(1 +$3u3∗)(m + u1?)
,

k3 =
γ$1u1?

(1 +$1u2?)2 ,

k4 =
a1$3u1?u2?

(1 +$3u3?)2(m + u1?)
,

k5 =
λ̄1a1u2?

(1 +$3u3?)(m + u1?)
(1 −

u1?

m + u1?
),

k6 =
λ̄1a1u1?

(1 +$3u3?)(m + u1?)
− ξ1 − 2ξ2(1 +$4u2?u3?) − a2u3?,

k7 = ξ2$4u2
2? + a2u2?,

k8 =
λ̄1a1$3u1?u2?

(1 +$3u3?)2(m + u1?)
,

k9 = λ̄2a2u3?,

k10 = η1

[
β

1 + β0u3?
+ λ̄2a2u2? − ξ3

]
,

k11 =
ββ0u3?

(1 + β0u3?)2 + η2.

(4.4)

The characteristic equation of system (4.3) is given by the following expression:

det


λ − k1 −k2 + k3e−λθ −k4e−λθ

−k5 λ − k6 k7 + k8e−λθ

0 −k9 λ − k10 + k11e−λθ

 = 0, (4.5)

which leads to
λ3 + h1λ

2 + h2λ + h3 + (h4λ
2 + h5λ + h6)e−λθ + h7e−2λθ = 0, (4.6)

where 

h1 = −k10 − k6 − k1,

h2 = k6k10 + k7k9 + k1k10 + k1k6 − k2k5,

h3 = k2k5k10 − k1k6k10 − k1k7k9,

h4 = k11,

h5 = k8k9 + k3k5 − k6k11 − k1k11,

h6 = k1k6k11 − k1k8k9 − k2k5k11 − k3k5k10,

h7 = k3k5k11.

(4.7)

If θ = 0, then Eq (4.6) simplifies to

λ3 + (h1 + h4)λ2 + (h2 + h5)λ + h3 + h6 + h7 = 0. (4.8)
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Thus, all roots of Eq (4.8) have negative real parts if and only if

(Q4)


∇1 = h1 + h4 > 0,

∇2 = det
[

h1 + h4 1
h3 + h6 + h7 h2 + h5

]
> 0,

∇3 = (h3 + h6 + h7)∇2 > 0.

(4.9)

is satisfied, then the three roots λ1–λ3 of Eq (4.8) have negative real parts. Thus the equilibrium point
F(u1?, u2?, u3?) of system (4.1) with θ = 0 is locally asymptotically stable.

Assume that λ = iν∗ is the root of Eq (4.6), then Eq (4.6) becomes:

((iν∗)3 + h1(iν∗)2 + h2iν∗ + h3)eiν∗θ + h4(iν∗)2 + h5iν∗ + h6 + h7e−iν∗θ = 0, (4.10)

From Eq (4.10), we can deduce that{
Ψ1(ν∗) sin ν∗θ + Ψ2(ν∗) cos νθ = Ψ3(ν∗),
Ψ4(ν∗) sin ν∗θ + Ψ5 cos ν∗θ = Ψ6(ν∗),

(4.11)

where 

Ψ1 = ν∗3 − h2ν
∗,

Ψ2 = −h1ν
∗2 + q1,

Ψ3 = h4nu∗2 − h6,

Ψ4 = −h1ν
∗2 + q2,

Ψ5 = −ν∗3 + h2ν
∗,

Ψ5 = −h5ν
∗,

(4.12)

and {
q1 = h3 + h7,

q2 = h3 − h7.
(4.13)

This means that 
sin ν∗θ =

Ψ2Ψ6 − Ψ3Ψ5

Ψ2Ψ4 − Ψ1Ψ5
,

cos ν∗θ =
Ψ3Ψ4 − Ψ1Ψ6

Ψ2Ψ4 − Ψ1Ψ5
.

(4.14)

On account of cos2 ν∗θ + sin2 ν∗θ = 1, from (4.14), it can be concluded that

[Ψ2(ν∗)Ψ4(ν∗) − Ψ3(ν∗)Ψ5(ν∗)]2 + [Ψ3(ν∗)Ψ4(ν∗) − Ψ1(ν∗)Ψ6(ν∗)]2

= [Ψ2(ν∗)Ψ4(ν∗) − Ψ1(ν∗)Ψ5(ν∗)]2. (4.15)

Thus, the following conclusions can be drawn

ν∗12
− V1ν

∗10
− V2ν

∗8 − V3ν
∗6 − V4ν

∗4 − V5ν
∗2 − V6 = 0, (4.16)
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where 

V1 = h2
4 + 4h2 − 2h2

1,

V2 = h2
5 + h2

1h2
4 + 2h1(q1 + q2 + 2h1h4) − h4

1 − 6h2
2 − 2h2h2

4 − 2h4h5,

V3 = h2
1h2

5 + h2
2h2

4 + h2
6 + 4h3

2 + 4h2h4h6 + 2h5h5q2 + (q1 + q2)(2h3
1 − 4h1h2)

− 2h2
1h2

2 − 2h1h2
4e2 − 2h2

1h4h6 − 2h2h2
5 − 2c4h5q1,

V4 = h2
2h2

4 + h2
1h2

5 + h2
3q2

2 + 2h2h3h4(1 − q2) + 2h4h5(q1 − q2) + 4q1q2(h2 − h2
1)

+ 4h1h3h2
5q2 − h2

1(q2
1 + q2

2) − h4
2 − 2q2q5(q2q3 + h5) − 2h1h2

4q1,

V5 = h2
2h2

5 + h2
4q2

1 + 2h1(q1q2
2 + q2

1q2) + 2q2q4q5(q2 − q1)
− 2h1h2

5q2 − 2h2
2q1q2 − 2h3h5q2

2,

V6 = h2
5q2

2 − q2
1q2

2.

(4.17)

Let
Υ2(ν∗) = ν∗12

− V1ν
∗10V2ν

∗8 − V3ν
∗6 − V4ν

∗4 + V5ν
∗2 − V6. (4.18)

Suppose that
(Q5) |h5| > |q1|.

If (Q5) remains, then Υ2(0) = −V6 < 0, since limν∗→∞Υ2(ν∗) > 0, then the Eq (4.16) possesses at
least one positive real root. Consequently, Eq (4.6) has at least one pair of purely imaginary roots.
Without loss of generality, we can assume that Eq (4.16) has twelve positive real roots (say ν∗j, j =

1, 2, 3, · · · , 12). Relying on (4.14), we know

θ(k)
j =

1
ν∗j

arccos
 Ψ2(ν j)Ψ6(ν∗j) − Ψ3(ν∗j)Ψ5(ν∗j)

Ψ2(ν∗j)(Ψ4(ν∗j) − Ψ1(ν∗j)Ψ5(ν∗j)
+ 2kπ

 , (4.19)

where j = 1, 2, 3, · · · , 12; k = 0, 1, 2, · · · . Assume θ∗ = min{ j=1,2,3,··· ,12;k=0,1,2,··· }{θ
(k)
j } and suppose that

when θ = θ∗, Eq (4.6) has a pair of imaginary roots ±iν∗0.

Next, we present the following assumption:

(Q6) M1RM2R + M1I M2I > 0,

where 
M1R = (h2 − 3ν∗0

2) cos ν∗0θ0 − 2h1ν
∗
0 sin ν∗0θ0 + 2h4 + h5,

M1I = (h2 − 3ν∗0
2) sin ν∗0θ0 + 2h1ν

∗
0 cos ν∗0θ0,

M2R = (h7ν
∗
0 + h3ν

∗
0 − h1ν

∗
0

3) sin ν∗0θ0 + (h2ν
∗2

0 − ν
∗
0

4) cos ν∗0θ0,

M2I = (h2ν
∗2

0 − ν
∗
0

4) sin ν∗0θ0 + (h7ν
∗
0 + h1ν

∗
0

3
− h3ν

∗
0) cos ν∗0θ0.

(4.20)

Lemma 4.1. Suppose that λ(θ) = %̄1(θ) + i%̄2(θ) is the root of Eq (4.6) at θ = θ∗ such that %̄1(θ∗) = 0,
%̄2(θ∗) = ν∗0, then Re

(
dλ
dθ

) ∣∣∣∣
θ=θ?,ν=ν

∗
0

> 0.

Proof. It follows from Eq (4.6) that

λ3 + h1λ
2 + h2λ + h3 + (h4λ

2 + h5λ + h6)e−λθ + h7e−2λθ = 0, (4.21)

we can get

[
(
3λ2 + 2h1λ + h2)eλθ

] dλ
dθ

+ (λ3 + h1λ
2 + h2λ + h3)eλθ(

dλ
dθ
θ + λ)
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+2h4
dλ
dθ

+ h5
dλ
dθ
− h7e−λθ(

dλ
dθ
θ + λ) = 0. (4.22)

It means that (
dλ
dθ

)−1

=
M1(λ)
M2(λ)

−
θ

λ
, (4.23)

where {
M1(λ) = (3λ2 + h1λ + h2)eλθ + 2h4 + h5,

M2(λ) = h7λe−λθ − (λ3 + h1λ
2 + h2λ + h3)λeλθ.

(4.24)

Hence

Re
(dλ

dθ

)−1
θ=θ∗,ν=ν

∗
0

= Re
[

M1(λ)
M2(λ)

]
θ=θ∗,ν=ν

∗
0

=
M1RM2R + M1I M2I

M2
2R + M2

2I

. (4.25)

Through this assumption (Q6), we obtain

Re
(dλ

dθ

)−1
θ=θ∗,ν=ν

∗
0

> 0. (4.26)

The proof is concluded. Based on the discussion above, the following result can be easily obtained
Theorem 4.1. Assuming that (Q4)–(Q6) is valid, then the equilibrium point F(u1?, u2?, u3?) of
model (4.1) is locally asymptotically stable if θ ∈ [0, θ∗); moreover, model (4.1) exhibits a cluster
of Hopf bifurcations around the equilibrium point F(u1?, u2?, u3?) when θ = θ∗.

Remark 4.1. In this paper, the purpose of control is to adjust the stability domain and the time of onset
of Hopf bifurcation. In this section, we enlarge (or reduce) some parameter values of model (1.2) and
add (or reduce) a suitable parameter perturbation with delay to adjust the density of top predators and
then achieve our control objectives. In the third equation, η1 and η2 are feedback gain parameters.
If η1 > 0(< 0), the density of top predators increases (decreases) and if η2 > 0(< 0), parameter
perturbation increases (decreases). In a biological sense, we realize the balance of biological
populations (the densities of prey, intermediate predators, and top predators) via this hybrid controller.
Of course, we can add this control to other equations of model (1.2), but whether the control goal can
be achieved will be explored it via mathematical analysis and computer simulation.

5. Regulation of bifurcation in model (1.2) through hybrid controller 2

In this segment, we will study the Hopf bifurcation problem of system (1.2) through the use of
a reasonable hybrid controller that combines parameter perturbation with delay and state feedback.
Based on the ideas presented in [13,14], we develop the following controlled predator-prey model:

du1

dt
=

1
1 +$1u2(t − θ)

γu1(t) − d(1 +$2u2(t))u2
1(t) −

1
1 +$3u3(t − θ)

a1u1(t)u2(t)
m + u1(t)

,

du2

dt
= ρ1

[
1

1 +$3u3(t − θ)
λ̄1a1u1(t)u2(t)

m + u1(t)
− ξ1u2(t) − ξ2(1 +$4u3(t))u2

2(t) − a2u2(t)u3(t)
]

+ ρ2[u2(t) − u2(t − θ)],
du3

dt
=

βu3(t)
1 + β0u3(t − θ)

+ λ̄2a2u2(t)u3(t) − ξ3u3(t),

(5.1)
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where ρ1, ρ2 indicate control parameters. System (5.1) shares the same equilibrium point as that in
system (1.2). Let 

u1? = u1(t) − ū1(t),
u2? = u1(t) − ū2(t),
u3? = u2(t) − ū1(t).

(5.2)

The linear system of system (5.1) near F(u1?, u2?, u2?) can be described as:

dū1

dt
= m1ū1 + m2ū2 − m3ū2(t − θ) + m4ū3(t − θ),

dū2

dt
= m5ū1 + m6ū2 − m7ū3 − m8ū2(t − θ),

dū2

dt
= m9ū2 + m10ū3 − m11ū3(t − θ),

(5.3)

where 

m1 =
γ

1 +$1u2?
− 2du1?(1 +$2u2?) −

a1u2?

(1 +$3u3?)(m + u1?)
(1 −

u1?

m + u1?
),

m2 =
a1u1?

(1 +$3u3∗)(m + u1?)
,

m3 =
γ$1u1?

(1 +$1u2?)2 ,

m4 =
a1$3u1?u2?

(1 +$3u3?)2(m + u1?)
,

m5 = ρ1

[
λ̄1a1u2?

(1 +$3u3?)(m + u1?)
(1 −

u1?

m + u1?
)
]
,

m6 = ρ1

[
λ̄1a1u1?

(1 +$3u3?)(m + u1?)
− ξ1 − 2ξ2(1 +$4u2?u3?) − a2u3?

]
,

m7 = ρ1[ξ2$4u2
2? + a2u2?] + ρ2,

m8 = ρ1

[
λ̄1a1$3u1?u2?

(1 +$3u3?)2(m + u1?)

]
+ ρ2,

m9 = λ̄2a2u3?,

m10 =
β

1 + β0u3?
+ λ2a2u2? − ξ3,

m11 =
ββ0u3?

(1 + β0u3?)2 .

(5.4)

The characteristic equation of system (5.3) owns the following expression:

det


λ − m1 −m2 + m3e−λθ −m4e−λθ

−m5 λ − m6 m7 + m8e−λθ

0 −m9 λ − m10 + m12e−λθ

 = 0, (5.5)

which leads to

λ3 + r1λ
2 + r2λ + r3 + (r4λ

2 + r5λ + r6)e−λθ + r7e−2λθ = 0, (5.6)
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where 

r1 = −m11 − m7 − m1,

r2 = m7m11 + m8m10 + m1m11 + m1m7 − m2m6,

r3 = m2m6m11 − m1m7m11 − m1m8m10 − m4m4m10,

r4 = m12,

r5 = m9m10 + m3m6 − m1m12 − m7m12,

r6 = m1m7m12 − m1m9m10 − m2m6m10 − m3m6m11 − m5m6m10,

r7 = m3m6m12.

(5.7)

If θ = 0, then Eq (5.6) becomes

λ3 + (r1 + r4)λ2 + (r2 + r5)λ + r3 + r6 + r7 = 0. (5.8)

Thus, all roots of Eq (5.8) have negative real parts if and only if

(Q7)


`1 = r1 + r4 > 0,

`2 = det
[

r1 + r4 1
r3 + r6 + r7 r2 + r5

]
> 0,

`3 = (r3 + r6 + r7)`2 > 0.

(5.9)

is fulfilled, then the three roots λ1–λ3 of Eq (5.8) have negative real parts. Thus the equilibrium point
F(u1?, u2?, u3?) of system (5.1) with θ = 0 is locally asymptotically stable.

Assume that λ = iντ is the root of Eq (5.8), then Eq (5.6) becomes:

((iντ)3 + r1(iντ)2 + r2iντ + r3)eiντθ + r4(iντ)2 + r5iντ + r6 + r7e−iντθ = 0, (5.10)

It follows from Eq (5.10) that{
Φ1(ντ) sin ντθ + Φ2(ντ) cos νθ = Φ3(ντ),
Φ4(ντ) sin ντθ + Φ5 cos ντθ = Φ6(ντ),

(5.11)

where 

Φ1 = ντ3
− r2ν

τ,

Φ2 = −r1ν
τ2 + p1,

Φ3 = r4nuτ2
− r6,

Φ4 = −r1ν
τ2 + p2,

Φ5 = −ντ3 + r2ν
τ,

Φ5 = −r5ν
τ,

(5.12)

and {
p1 = r3 + r7,

p2 = r3 − r7.
(5.13)

So there is 
sin ντθ =

Φ2Φ6 − Φ3Φ5

Φ2Φ4 − Φ1Φ5
,

cos ντθ =
Φ3Φ4 − Φ1Φ6

Φ2Φ4 − Φ1Φ5
.

(5.14)
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In view of cos2 ντθ + sin2 ντθ = 1, it follows from (5.14) that

[Φ2(ντ)Φ4(ντ) − Φ3(ντ)Φ5(ντ)]2 + [Φ3(ντ)Φ4(ντ) − Φ1(ντ)Φ6(ντ)]2

= [Φ2(ντ)Φ4(ντ) − Φ1(ντ)Φ5(ντ)]2, (5.15)

therefore, results can be obtained as follows:

ντ12
− R1ν

τ10
− R2ν

τ8
− R3ν

τ6
− R4ν

τ4
− R5ν

τ2
− R6 = 0, (5.16)

where 

R1 = r2
4 + 4r2 − 2r2

1,

R2 = r2
5 + r2

1r2
4 + 2r1(p1 + p2 + 2r1r4) − r4

1 − 6r2
2 − 2r2r2

4 − 2r4r5,

R3 = r2
1r2

5 + r2
2r2

4 + r2
6 + 4r3

2 + 4r2r4r6 + 2r5r5 p2 + (p1 + p2)(2r3
1 − 4r1r2)

− 2r2
1r2

2 − 2r1r2
4 p2 − 2r2

1r4r6 − 2r2r2
5 − 2r4r5 p1,

R4 = r2
2r2

4 + r2
1r2

5 + r2
3 p2

2 + 2r2r3r4(1 − p2) + 2r4r5(p1 − p2) + 4p1 p2(r2 − r2
1)

+ 4r1r3r2
5 p2 − r2

1(p2
1 + p2

2) − r4
2 − 2r2r5(r2r3 + r5) − 2r1r2

4 p1,

R5 = r2
2r2

5 + r2
4 p2

1 + 2r1(p1 p2
2 + p2

1 p2) + 2r2r4r5(p2 − p1)
− 2r1r2

5 p2 − 2r2
2 p1 p2 − 2r3r5 p2

2,

R6 = r2
5 p2

2 − p2
1 p2

2.

(5.17)

Let
Υ3(ντ) = ντ12

− R1ν
τ10R2ν

τ8
− R3ν

τ6
− R4ν

τ4 + R5ν
τ2
− R6. (5.18)

Assume that
(Q8) |r5| > |p1|.

If (Q8) holds, then Υ3(0) = −R6 < 0, since limντ→∞Υ2(ντ) > 0, then we know that Eq (5.16) has at
least one positive real root. Therefore, Eq (5.6) has at least one pair of pure roots. Without loss of
generality, we can assume that Eq (5.16) has twelve positive real roots (say ντj, j = 1, 2, 3, · · · , 12).
Relying on (5.14), we know

θ(w)
j =

1
ντj

arccos
 Φ2(ν j)Φ6(ντj) − Φ3(ντj)Φ5(ντj)

Φ2(ντj)(Φ4(ντj) − Φ1(ντj)Φ5(ντj)
+ 2wπ

 , (5.19)

where j = 1, 2, 3, · · · , 12; w = 0, 1, 2, · · · . Assume θ? = min{ j=1,2,3,··· ,12;w=0,1,2,··· }{θ
(w)
j } and suppose that

when θ = θ?, Eq (5.6) has a pair of imaginary roots ±iντ0.
Next, we present the following assumption:

(Q9) Y1RY2R + Y1IY2I > 0,

where 
Y1R = (r2 − 3ντ0

2) cos ντ0θ? − 2r1ν
τ
0 sin ντ0θ? + 2r4 + r5,

Y1I = (r2 − 3ντ0
2) sin ντ0θ? + 2r1ν

τ
0 cos ντ0θ?,

Y2R = (r7ν
τ
0 + r3ν

τ
0 − r1ν

τ
0

3) sin ντ0θ? + (r2ν
τ2

0 − ν
τ
0

4) cos ντ0θ?,
Y2I = (r2ν

τ2
0 − ν

τ
0

4) sin ντ0θ? + (r7ν
τ
0 + r1ν

τ
0

3
− h3ν

τ
0) cos ντ0θ?.

(5.20)
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Lemma 5.1. Suppose that λ(θ) = υ1(θ) + iυ2(θ) is the root of Eq (4.6) at θ = θ? such that υ1(θ?) = 0,
υ2(θ?) = ντ0, then Re

(
dλ
dθ

) ∣∣∣∣
θ=θ?,ν=ν

τ
0

> 0.

Proof. It follows from Eq (5.6) that

λ3 + r1λ
2 + r2λ + r3 + (r4λ

2 + r5λ + r6)e−λθ + r7e−2λθ = 0, (5.21)

we can get

[
(
3λ2 + 2r1λ + r2)eλθ

] dλ
dθ

+ (λ3 + r1λ
2 + r2λ + r3)eλθ(

dλ
dθ
θ + λ)

+2r4
dλ
dθ

+ r5
dλ
dθ
− r7e−λθ(

dλ
dθ
θ + λ) = 0. (5.22)

It means that (
dλ
dθ

)−1

=
Y1(λ)
Y2(λ)

−
θ

λ
, (5.23)

where {
Y1(λ) = (3λ2 + r1λ + r2)eλθ + 2r4 + r5,

Y2(λ) = r7λe−λθ − (λ3 + r1λ
2 + r2λ + r3)λeλθ.

(5.24)

Hence

Re
(dλ

dθ

)−1
θ=θ?,ν=ν

τ
0

= Re
[
Y1(λ)
Y2(λ)

]
θ=θ?,ν=ν

τ
0

=
Y1RY2R + Y1IY2I

Y2
2R + Y2

2I

. (5.25)

By the assumption (Q9), we get

Re
(dλ

dθ

)−1
θ=θ?,ν=ν

?
0

> 0, (5.26)

which ends the proof. According to the above discussion, the following outcome is easily derived.
Theorem 5.1. Suppose that (Q7)–(Q9) hold, then the equilibrium point F(u1?, u2?, u3?) of model (5.1)
is locally asymptotically stable if θ ∈ [0, θ?), and model (5.1) generates a cluster of Hopf bifurcations
around the equilibrium point F(u1?, u2?, u3?) when θ = θ?.

6. Controlling bifurcation in model (1.2) with an extended delayed feedback controller

In this segment, we will investigate the Hopf bifurcation issue of system (1.2) using a reasonable
hybrid controller that encompasses parameter perturbation with delay and state feedback. In
accordance with the notion in [15], we construct the controlled predator-prey model as follows:

du1

dt
= δ1

[
1

1 +$1u2(t − θ)
γu1(t) − d(1 +$2u2(t))u2

1(t)

−
1

1 +$3u3(t − θ)
a1u1(t)u2(t)
m + u1(t)

]
+ δ2[u1(t) − u1(t − θ)],

du2

dt
= δ3

[
1

1 +$3u3(t − θ)
λ̄1a1u1(t)u2(t)

m + u1(t)
− ξ1u2(t) − ξ2(1 +$4u3(t))u2

2(t) − a2u2(t)u3(t)
]

+ δ4[u2(t) − u2(t − θ)],
du3

dt
= δ5

[
βu3(t)

1 + β0u3(t − θ)
+ λ̄2a2u2(t)u3(t) − ξ3u3(t)

]
+ δ6[u3(t) − u3(t − θ)],

(6.1)
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where δ1–δ6 represent control parameters. System (6.1) shares the same equilibrium point as that in
system (1.2). Let 

u1? = u1(t) − ū1(t),
u2? = u1(t) − ū2(t),
u3? = u2(t) − ū1(t).

(6.2)

The linear system of system (1.3) near E(u1?, u2?, u3?) can be demonstrated as below:

dū1

dt
= n1ū1 + n2ū1(t − θ) + n3ū2 − n4ū2(t − θ) + n5ū3(t − θ),

dū2

dt
= n6ū1 + n7ū2 − n8ū2(t − θ) − n9ū3 − n10(t − θ),

dū2

dt
= n11ū2 + n12ū3 − n13ū3(t − θ),

(6.3)

where

n1 = (δ1(
γ

1 +$1u2?
− 2du1?(1 +$2u2?) −

a1u2?

(1 +$3u3?)(m + u1?)
(1 −

u1?

m + u1?
) + δ2),

n2 = δ2,

n3 =
δ1a1u1?

(1 +$3u3?)(m + u1?)
,

n4 =
δ1γ$1u1?

(1 +$1u2?)2 ,

n5 =
δ1a1$3u1?u2?

1 +$3u2
3?

,

n6 = δ3

[
λ̄1a1u2?

(1 +$3u3?)(m + u1?)
(1 −

u1?

m + u1?
)
]
,

n7 = δ3

[
λ̄1a1u1?

(1 +$3u3?)(m + u1?)
− ξ1 − 2ξ2(1 +$4u2?u3?) − a2u3?

]
+ δ4,

n8 = δ4,

n9 = δ3(ξ2$4u2
2? + a2u2?),

n10 =
δ3λ̄1a1$3u1?u2?

(1 +$3u3?)2(m + u1?)
,

n11 = δ5λ̄2a2u3?,

n12 = δ5(
β

1 + β0u3?
+ λ2a2u2? − ξ3) + δ6,

n13 =
δ5ββ0u3?

(1 + β0u3?)2 + δ6.

(6.4)

The characteristic equation of system (6.3) takes the following form:

det


λ − n1 + n2e−λθ −n3 + n4e−λθ −n5e−λθ

−n6 λ − n7 + n8e−λθ n9 + n10e−λθ

0 −n11 λ − n12 + n13e−λθ

 = 0, (6.5)

which leads to:

λ3 + s1λ
2 + s2λ + s3 + (s4λ

2 + s5λ + s6)e−λθ + (s7λ + s8)e−2λθ + s9e−3λθ = 0, (6.6)

AIMS Mathematics Volume 9, Issue 12, 33891–33929.



33911

where 

s1 = −n12 − n7 − n1,

s2 = n7n12 + n9n11 + n1n12 + n1n7 − n3k6,

s3 = n3n6n12 − n1n7n12 − n1n9n11,

s4 = n13 + n8 + n2,

s5 = n10n11 + n4n6 − n7n10 − n8n12 − n1n13 − n1n8 − n2n12 − n2n7,

s6 = n1n7n13 + n1n8n12 + n2n7n12 + n2n9n11 − n3n6n13 − n5n6n11 − n1n10n11,

s7 = n8n13 + n2n13 + n2n8,

s8 = n2n10n11 − n1n8n13 − n2n7n13 − n2n8n12 − n4n6n12 − n4n6n13.

(6.7)

If θ = 0, then Eq (6.6) becomes

λ3 + (s1 + s4)λ2 + (s2 + s5 + s7)λ + s3 + s6 + s8 + s9 = 0. (6.8)

Hence, the necessary and sufficient condition for all roots of Eq (6.8) to have negative real parts is

(Q10)


∆1 = s1 + s4 > 0,

∆2 = det
[

s1 + s4 1
s3 + s6 + s8 + s9 s2 + s5 + s7

]
> 0.

∆3 = (s3 + s6 + s8 + s9)∆2 > 0.

(6.9)

Then, three roots λ1–λ3 of Eq (6.8) that have negative real parts. As a result, the equilibrium point
F(u1?, u2?, u3?) of system (1.2) with θ = 0 is locally asymptotically stable.

It is assumed that λ = iνµ is the root of Eq (6.6) and one obtains

(λ3 + s1λ
2 + s2λ + s3)e2λθ + (s4λ

2 + s5λ + s6)eλθ + s9eλθ + s8 = 0. (6.10)

Next, referring to Eq (6.10), we obtain

[(iνµ)3 + s1(iνµ)2 + s2iνµ + s3](cos 2νµθ + i sin 2νµθ)
+(s4(iνµ)2 + s5iνµ + s6)(cos νµθ + i sin νµθ)
+s9(cos νµθ − i sin νµθ) + s7iνµ + s8 = 0. (6.11)

From Eq (6.11), we are able to derive

(νµ3 − s2ν
µ) sin 2νµθ + (s3 − s1ν

µ2) cos 2νµθ
−s5ν

µ sin νµθ + (s6 + s9 − s4)νµ2 cos νµθ
= −s8,

(s2ν
µ − νµ3) cos 2νµθ + (s3 − s1ν

µ2) sin 2νµθ
+s5ν

µ cos νµθ + (s6 − s9 − s4ν
µ2) sin νµθ

= −s7ν
µ.

(6.12)

Owing to sin2 νµθ = ±
√

1 − cos2 νµθ, Eq (6.12) can be modified to

[(νµ3 − s2ν
µ)2(±

√
1 − cos2 νµθ)cosνµθ) + (s3 − s1ν

µ2)(2 cos2 νµθ − 1)]
−r5ν

µ(±
√

1 − cos2 νµθ) + (r6 + r9 − r4ν
µ2)cosνµθ + s8 = 0. (6.13)
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Thus, the results can be summarized as

N1 cos2 νµθ + N2cosνµθ + N3 = (N4 + N5cosνµθ) ±
√

1 − cos2 νµθ, (6.14)

where 

N1 = 2s3 − 2s1ν
µ2,

N2 = s6 + h9 − s4ν
µ2,

N3 = r1ν
µ2 + r8 − r3,

N4 = r5ν
µ,

N5 = 2(r2ν
µ − νµ3).

(6.15)

Square each side of Eq (6.14) to achieve the result presented below.

T1cos4νµθ + T2cos3νµθ + T3cos2νµθ + T4cosνµθ + T5 = 0, (6.16)

where 

T1 = N2
1 + N5

5 ,

T2 = 2(N1N2 + N4N5),
T3 = 2N1N3 + N2

2 + N2
4 − N2

5 ,

T4 = 2(N2N3 − N4N5),
T5 = N2

5 − N2
4 .

(6.17)

Based on Eq (6.16), we can obtain the representation as presented below for cos νµ. Suppose that

cosνµθ = f1(νµ), (6.18)

where f1(νµ) is a function that varies with νµ. We can derive the expression for sin νµ. Assume that

sinνµθ = f2(νµ), (6.19)

where f2(νµ) denotes a function with respect to νµ. Referring to Eqs (6.18) and (6.19), we can determine

f 2
1 (νµ) + f 2

2 (νµ) = 1. (6.20)

By using a computer, we can obtain the roots of Eq (6.20). We denote the root of (6.20) as νµ∗, then

θ(n)
∗ =

1
νµ∗

[
arccos

(
1

f1(νµ∗)
+ 2nπ

)]
, (6.21)

where j = 1, 2, · · · ; n = 0, 1, 2, · · · .
Let θ∗ = min{n=1,2,··· }{θ

(n)
∗ } and suppose that when θ = θ∗, Eq (6.8) possesses a pair of imaginary

roots ±iνµ∗0 .
As the next step, we put forward the following assumption:

(Q11) Ȳ1RȲ2R + Ȳ1IȲ2I > 0,
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where 

Ȳ1R = (s2 − 3νµ∗0
2) cos 2νµ∗0 θ0∗ − 2s1ν

µ∗
0 sin 2νµ∗0 θ0∗

+ (s5 − 2s4ν
µ∗
0

2) cos νµ∗0 θ0∗ − 2s4ν
µ∗
0

2 sin νµ∗0 θ0∗,

Ȳ1I = (s2 − 3νµ∗0
2) sin 2νµ∗0 θ0∗ + 2s1ν

µ∗
0 cos 2νµ∗0 θ0∗ + s5 sin νµ∗0 θ0∗,

Ȳ2R = (2νµ∗0
2(s2 − ν

µ∗
0

2)) cos 2νµ∗0 θ0∗ + (2s3ν
µ∗
0 − 2s1ν

µ∗
0

3) sin 2νµ∗0 θ0∗

+ (νµ∗0 + s6ν
µ∗
0 + s5ν

µ∗
0

2
θ0∗ + s4ν

µ∗
0

3
θ0∗) sin νµ∗0 θ0∗,

Ȳ2I = (2νµ∗0
2(s2 − ν

µ∗
0

2)) sin 2νµ∗0 θ0∗ + (2s1ν
µ∗
0

3
− 2s3ν

µ∗
0 ) cos 2νµ∗0 θ0∗

+ (νµ∗0 − s6ν
µ∗
0 − s5ν

µ∗
0

2
θ0∗ − s4ν

µ∗
0

3
θ0∗) sin νµ∗0 θ0∗.

(6.22)

Lemma 6.1. Suppose that λ(θ) = ῡ1(θ) + iῡ2(θ) is the root of Eq (6.6) at θ = θ0∗ such that ῡ1(θ0∗) = 0,
ῡ2(θ0∗) = ν

µ∗
0 , then Re

(
dλ
dθ

) ∣∣∣∣
θ=θ0∗,ν=ν

µ∗
0

> 0.

Proof. As derived from Eq (6.6), it follows that

λ3 + s1λ
2 + s2λ + s3 + (s4λ

2 + s5λ + s6)e−λθ + (s7λ + s8)e−2λθ + s9e−3λθ = 0, (6.23)

we can get

(3λ2 + 2s1λ + s2)e2λθ dλ
dθ

+ (λ3 + s1λ
2 + s2λ + s3)2e2λθ

(
λ + θ

dλ
dθ

)
+(2s4λ + s5)eλθ

dλ
dθ

+ (s4λ
2 + s5λ + s6)eλθ

(
λ + θ

dλ
dθ

)
+s7

dλ
dθ
− e−λθ

(
λ + θ

dλ
dθ

)
= 0, (6.24)

which signifies (
dλ
dθ

)−1

=
Ȳ1(λ)
Ȳ2(λ)

−
θ

λ
, (6.25)

where {
Ȳ1(λ) = (3λ2 + 2s1λ + s2)e2λθ + (2s4λ + s5)eλθ + s7,

Ȳ1(λ) = λe−λθ − 2(λ3 + s1λ
2 + s2λ + s3)λe2λθ − (s4λ

2 + s5λ + s6)λeλθ.
(6.26)

Hence

Re
(dλ

dθ

)−1
θ=θ0∗,ν=ν

µ∗
0

= Re
[
Ȳ1(λ)
Ȳ2(λ)

]
θ=θ0∗,ν=ν

µ∗
0

=
Ȳ1RȲ2R + Ȳ1IȲ2I

Ȳ2
2R + Ȳ2

2I

. (6.27)

Under the assumption (Q11), we derive

Re
(dλ

dθ

)−1
θ=θ0∗,ν=ν

µ∗
0

> 0, (6.28)

which wraps up the proof. Following the preceding analysis, the subsequent result is
straightforwardly reached.
Theorem 6.1. Assuming that conditions (Q10) and (Q11) hold, then the equilibrium point
F(u1?, u2?, u3?) of model (6.1) is locally asymptotically stable state for θ ∈ [0, θ0∗). Additionally,
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when θ = θ0∗, model (6.1) exhibits a cluster of Hopf bifurcations around the equilibrium
point F(u1?, u2?, u3?).

Remark 6.1. Pal et al.[8] revealed the complex impact of fear-induced responses on the stability
and behavior of multi-species food web systems. In this article, we develop a more realistic delayed
predator-prey system model and investigate the bifurcation behavior and hybrid controller design
based on this model. On a theoretical level, these research methods enhance the understanding of
bifurcation theory for delayed differential equations. From a biological perspective, the findings of this
study are significant for managing the densities of predator and prey populations. Consequently, we
believe that this paper has a certain innovation to some degree.

Remark 6.2. Based on the existing literature methods and according to the biological implication
of this predator-prey model, we can add the parameter perturbation with delay and state feedback
artificially to adjust the densities of prey, intermediate predators, and top predators and achieve our
control objectives. Thus, these control techniques have practical significance in biology.

Remark 6.3. Although the form of hybrid controller I and hybrid controller II are same, we add this
controller to the third equation of model (1.2) and to the second equation of model (1.2), respectively.
Then, we obtain two different delay critical valus to generate Hopf bifurcation. In order to illustrate the
different control techniques, we give three different controllers in this paper. We apply these controllers
to achieve the control of stability domain and Hopf bifurcation.

Remark 6.4. Based on the biological implication, we introduce one delay into model (1). Even though
there is only one difference to model (1), the introduction of delay will lead to a great change to the
model. In this paper, the Hopf bifurcation and its control issue are our research topic. By exploring
the delay-induced Hopf bifurcation of this predator-prey, we can effectively control the balance among
the densities of prey, intermediate predators, and top predators.

Remark 6.5. In this paper, we mainly show the effect of delay on the stability domain and the time
of onset of Hopf bifurcation of model (1.2). For different controllers, we can choose different control
parameter values to achieve our control objectives. For this problem, we can continue the discussion
in the near future.

Remark 6.6. For example, corresponding to the predator-prey model (1.2), we can assume that u1(t)
stands for the density of mice, u2(t) stands for the density of bobcats, and u3(t) represent the density of
wolves. For controller I, we can adjust the value of per capita regeneration rate (β), the proportional
constant between the growth rate of wolves and the response of the function (λ̄2), and the natural
mortality of wolves (ξ3) (for (β, λ̄2, ξ3, the same multiple is enlarged) and add the small perturbation
to change the density of wolves to obtain control. The small perturbation is also a function of time t,
and the density of wolves will also change with delayed feedback term. Then we can obtain the control
model (4.1) from model (1.2). Based on this viewpoint, we think that this designed controller is suitable.
By choosing the suitable control parameters, we can effectively adjust the time of Hopf bifurcation
onset to ensure the balance of biological populations (mice, bobcats, and wolves). Based on this
viewpoint, we think that this control design has important biological significance. For other controllers,
we can explain them in a similar way.

Remark 6.7. In the three controlled predator-prey models (4.1), (5.1), and (6.1), we use three different
hybrid controllers that contain parameter perturbation with delay and state feedback, and then we
obtain three controlled predator-prey models. For controlled model (4.1), we add this hybrid controller
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to the third equation of model (1.2) in order to change the density of top predators and then adjust
the stability domain and onset of Hopf bifurcation of system (1.2). For the controlled model (5.1),
we add this hybrid controller to the second equation of model (1.2) in order to change the density
of intermediate predators, and then adjust the stability domain and onset of Hopf bifurcation of
system (1.2). For the controlled model (6.1), we add this hybrid controller to the three equations
of model (1.2) in order to change the densities of preys, intermediate predators, and top predators,
and then adjust the stability domain and onset of Hopf bifurcation of system (1.2). In actual biological
systems, this is possible (see Remark 6.6). To evaluate whether these controllers are reasonable in
the actual system and whether they are practical or not, we will carry out theoretical analysis via the
stability and Hopf bifurcation theory and computer simulations. It is not feasible to add controllers
at will.

Remark 6.8. For three different controllers, the conclusions of three controlled systems (4.1), (5.1)
and (6.1) are different since the delay critical values δ∗, θ∗0, θ0 are different under different parameter
conditions. When implementing control in ecosystems, we can control the growth rate and mortality
rate of predators via killing predators to add the mortality rate of predators and foster predators to
increase their growth rate artificially.

7. Matlab simulation outcomes

In this section, we will use Matlab 2021 software to carry out numerical simulation.

Example 7.1. Take into account the predator-prey model, which contains a delay:

du1

dt
=

1
1 +$1u2(t − θ)

γu1(t) − d(1 +$2u2(t))u2
1(t) −

1
1 +$3u3(t − θ)

a1u1(t)u2(t)
m + u1(t)

,

du2

dt
=

1
1 +$3u3(t − θ)

λ1a1u1(t)u2(t)
m + u1(t)

− ξ1u2(t) − ξ2(1 +$4u3(t))u2
2(t) − a2u2(t)u3(t),

du3

dt
=

βu3(t)
1 + β0u3(t − θ)

+ λ2a2u2(t)u3(t) − ξ3u3(t),

(7.1)

where γ = 2, d = 0.3,m = 3, $1 = 0.5, $2 = 0.5, $3 = 0.1, $4 = 0.5, a1 = 12, a2 = 1, λ1 =

0.7, λ2 = 0.3, ξ1 = 0.1, ξ2 = 0.03, ξ3 = 0.3, β0 = 2, β1 = 1. Obviously, model (7.1) possesses
a unique positive equilibrium point F(2.0589, 0.4597, 2.5849). It is simple to demonstrate that the
conditions (Q1)–(Q3) of Theorem 3.1 are satisfied. With the help of computational software, one can
obtain that θ0 ≈ 5.1. To assess the correctness of the results derived from Theorem 3.1, we pick
two unequal delay values. One is θ = 4.8 and the other is θ = 5.3. If θ = 4.8 < θ0 ≈ 5.1, we
derive the computer simulation diagrams depicted in Figure 1. As depicted in Figure 1, it is clear
that u1 → 2.0589, u2 → 0.4597, u3 → 2.5849 when t → +∞. In other words, the unique positive
equilibrium point F(2.0589, 0.4597, 2.5849) of model (7.1) sustains a locally asymptotically stable
status. As θ = 5.3 > θ0 ≈ 5.1, we acquire the computer simulation diagrams illustrated in Figure 2.
As depicted in Figure 2, we can see that u1 is going to maintain periodic quavering level around the
value 2.0589, u2 is about to keep periodic quavering level around the value 0.4597, and u3 will hold
periodic quavering level around the value 2.5849. In other words, a set of periodic solutions (namely,
Hopf bifurcations) arise in the vicinity of the positive equilibrium point F(2.0589, 0.4597, 2.5849).

AIMS Mathematics Volume 9, Issue 12, 33891–33929.



33916

Figure 1. Matlab simulation figures of system (7.1) under the delay θ = 4.8 < θ0 = 5.1. The
equilibrium point F(u1∗, u2∗, u3∗) = F(2.0589, 0.4597, 2.5849) holds a locally asymptotically
stable level.
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Figure 2. Matlab simulation figures of system (6.1) under the delay θ = 5.3 > θ0 = 5.1.
A set of periodic solutions (namely, Hopf bifurcations) arise in the vicinity of the positive
equilibrium point F(u1∗, u2∗, u3∗) = F(2.0589, 0.4597, 2.5849).
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Example 7.2. Take into account the following controlled predator-prey model:

du1

dt
=

1
1 +$1u2(t − θ)

γu1(t) − d(1 +$2u2(t))u2
1(t)

−
1

1 +$3u3(t − θ)
a1u1(t)u2(t)
m + u1(t)

,

du2

dt
=

1
1 +$3u3(t − θ)

λ1a1u1(t)u2(t)
m + u1(t)

− ξ1u2(t)

− ξ2(1 +$4u3(t))u2
2(t) − a2u2(t)u3(t),

du3

dt
= η1

[
βu3(t)

1 + β0u3(t − θ)
+ λ2a2u2(t)u3(t) − ξ3u3(t)

]
+ η2[u3(t) − u3(t − θ)],

(7.2)

where γ = 2, d = 0.3,m = 3, $1 = 0.5, $2 = 0.5, $3 = 0.1, $4 = 0.5, a1 = 12, a2 = 1, λ1 = 0.7, λ2 =

0.3, ξ1 = 0.1, ξ2 = 0.03, ξ3 = 0.3, β0 = 2, and β1 = 1. Let η1 = 0.4 and η2 = 0.5. Obviously, model (7.2)
possesses a unique positive equilibrium point F(2.0589, 0.4597, 2.5849). It is simple to demonstrate
that the conditions (Q4)–(Q6) of Theorem 3.2 are satisfied. With the help of computational software,
one can acquire that δ? ≈ 0.9. To assess the correctness of the results derived from Theorem 3.2, we
pick two unequal delay values. One is θ = 0.8 and the other is θ = 1.10. If δ = 0.8 < δ∗ ≈ 0.9,
we derive the computer simulation diagrams depicted in Figure 3. As depicted in Figure 3, it is clear
that u1 → 2.0589, u2 → 0.4597, u3 → 2.5849 when t → +∞. In other words, the unique positive
equilibrium point F(2.0589, 0.4597, 2.5849) of model (7.2) sustains a locally asymptotically stable
status. As θ = 5.3 > θ0 ≈ 5.1, we acquire the computer simulation diagrams illustrated in Figure 4.
As depicted in Figure 4, we can see that u1 is going to maintain a periodic quavering level around
the value 2.0589, u2 will keep a periodic quavering level around the value 0.4597, and u3 will hold a
periodic quavering level around the value 2.5849. In other words, a set of periodic solutions (namely,
Hopf bifurcations) arise in the vicinity of the positive equilibrium point F(2.0589, 0.4597, 2.5849).
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Figure 3. Matlab simulation figures of system (7.2) under the delay θ = 0.8 < θ∗ = 0.9. The
equilibrium point F(u1∗, u2∗, u3∗) = F(2.0589, 0.4597, 2.5849) holds a locally asymptotically
stable level.
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Figure 4. Matlab simulation figures of system (7.2) under the delay θ = 1.1 > θ∗ = 0.9.
A set of periodic solutions (namely, Hopf bifurcations) arise in the vicinity of the positive
equilibrium point F(u1∗, u2∗, u3∗) = F(2.0589, 0.4597, 2.5849).
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Example 7.3. Take into account the following controlled predator-prey model:

du1

dt
=

1
1 +$1u2(t − θ)

γu1(t) − d(1 +$2u2(t))u2
1(t) −

1
1 +$3u3(t − θ)

a1u1(t)u2(t)
m + u1(t)

,

du2

dt
= ς1[

1
1 +$3u3(t − θ)

λ1a1u1(t)u2(t)
m + u1(t)

− ξ1u2(t) − ξ2(1 +$4u3(t))u2
2(t) − a2u2(t)u3(t)]

+ ς2[u2(t) − u2(t − θ)],
du3

dt
=

βu3(t)
1 + β0u3(t − θ)

+ λ2a2u2(t)u3(t) − ξ3u3(t),

(7.3)

where γ = 2, d = 0.3,m = 3, $1 = 0.5, $2 = 0.5, $3 = 0.1, $4 = 0.5, a1 = 12, a2 = 1, λ1 = 0.7, λ2 =

0.3, ξ1 = 0.1, ξ2 = 0.03, ξ3 = 0.3, β0 = 2, and β1 = 1. Let ς1 = 0.4 and ς2 = 0.5. Obviously, model (7.3)
possesses a unique positive equilibrium point F(2.0589, 0.4597, 2.5849). It is simple to demonstrate
that the conditions (Q7)–(Q9) of Theorem 5.1 are satisfied. With the help of computational software,
one can acquire that θ∗0 ≈ 3.3. To assess the correctness of the results derived from Theorem 5.1,
we pick two unequal delay values. One is θ = 3.1 and the other is θ = 3.8. If θ = 3.1 < θ∗0 ≈

3.3, we derive the computer simulation diagrams depicted in Figure 5. As depicted in Figure 5, it
is clear that u1 → 2.0589, u2 → 0.4597, u3 → 2.5849 when t → +∞. In other words, the unique
positive equilibrium point F(2.0589, 0.4597, 2.5849) of model (7.3) sustains a locally asymptotically
stable status. As θ = 3.8 > θ∗0 ≈ 3.3, we acquire the computer simulation diagrams illustrated in
Figure 6. As depicted in Figure 5, we can see that u1 will maintain a periodic quavering level around
the value 2.0589, u2 will keep a periodic quavering level around the value 0.4597, and u3 will hold a
periodic quavering level around the value 2.5849. In other words, a set of periodic solutions (namely,
Hopf bifurcations) arise in the vicinity of the positive equilibrium point F(2.0589, 0.4597, 2.5849).
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Figure 5. Matlab simulation figures of system (7.3) under the delay θ = 3.1 < θ∗0 = 3.3. The
equilibrium point F(u1∗, u2∗, u3∗) = F(2.0589, 0.4597, 2.5849) holds a locally asymptotically
stable level.
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Figure 6. Matlab simulation figures of system (7.3) under the delay θ = 3.8 > θ∗0 = 3.3.
A set of periodic solutions (namely, Hopf bifurcations) arise in the vicinity of the positive
equilibrium point F(u1∗, u2∗, u3∗) = F(2.0589, 0.4597, 2.5849).
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Example 7.4. Take into account the predator-prey model , which contains a delay:

du1

dt
= δ1[

1
1 +$1u2(t − θ)

γu1(t) − d(1 +$2u2(t))u2
1(t)

−
1

1 +$3u3(t − θ)
a1u1(t)u2(t)
m + u1(t)

] + δ2[u1(t) − u1(t − θ)],

du2

dt
= δ3[

1
1 +$3u3(t − θ)

λ1a1u1(t)u2(t)
m + u1(t)

− ξ1u2(t) − ξ2(1 +$4u3(t))u2
2(t) − a2u2(t)u3(t)]

+ δ4[u2(t) − u2(t − θ)],
du3

dt
= δ5[

βu3(t)
1 + β0u3(t − θ)

+ λ2a2u2(t)u3(t) − ξ3u3(t)] + δ6[u3(t) − u3(t − θ)],

(7.4)

where γ = 2, d = 0.3,m = 3, $1 = 0.5, $2 = 0.5, $3 = 0.1, $4 = 0.5, a1 = 12, a2 = 1, λ1 =

0.7, λ2 = 0.3, ξ1 = 0.1, ξ2 = 0.03, ξ3 = 0.3, β0 = 2, and β1 = 1. Let δ1 = 0.6, δ2 = 0. − 0.3, δ3 =

0.3, δ4 = −0.3, δ5 = 0.4, and δ6 = 0.5. Obviously, model (7.4) possesses a unique positive equilibrium
point E(2.0589, 0.4597, 2.5849). It is simple to demonstrate that the conditions (Q10) and (Q11) of
Theorem 6.1 are satisfied. With the help of computational software, one can obtain that θ0 ≈ 1.450.
To assess the correctness of the results derived from Theorem 6.1, we pick two unequal delay values.
One is θ = 1.4 and the other is θ = 1.510. If θ = 1.40 < θ0 ≈ 1.450, we derive the computer simulation
diagrams depicted in Figure 7. As depicted in Figure 7, it is clear that u1 → 2.0589, u2 → 0.4597, u3 →

2.5849 when t → +∞. In other words, the unique positive equilibrium point F(2.0589, 0.4597, 2.5849)
of model (7.4) sustains a locally asymptotically stable status. As θ = 1.510 > θ0 ≈ 1.450, we obtain
the computer simulation diagrams illustrated in Figure 8. As depicted in Figure 8, we can see that u1

will maintain a periodic quavering level around the value 2.0589, u2 will keep a periodic quavering
level around the value 0.4597, and u3 will hold a periodic quavering level around the value 2.5849. In
other words, a set of periodic solutions (namely, Hopf bifurcations) arise in the vicinity of the positive
equilibrium point F(2.0589, 0.4597, 2.5849).
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Figure 7. Matlab simulation figures of system (7.4) under the delay θ = 1.40 < θ∗0 = 1.450
The equilibrium point F(u1∗, u2∗) = F(2.0589, 0.4597, 2.5849) holds a locally asymptotically
stable level.
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Figure 8. Matlab simulation figures of system (7.4) under the delay θ = 1.510 > θ∗0 = 1.450.
A set of periodic solutions (namely, Hopf bifurcations) arise in the vicinity of the positive
equilibrium point F(u1∗, u2∗, u3∗) = F(2.0589, 0.4597, 2.5849).

Remark 7.1. On the basis of the computer simulation graphics in Examples 7.1 and 7.2, one can
clearly observe that the bifurcation values of models (7.1) and (7.2) are θ0 ≈ 5.1 and θ∗ ≈ 0.9,which
indicates that we can diminish the stability region and cut down the time to bifurcation in model (7.1)
by implementing the formulated hybrid controller. On the basis of the computer simulation graphics
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in Examples 7.3 and 7.4, one can readily observe that the bifurcation values of models (7.3) and (7.4)
are θ? ≈ 1.45,θ0∗ ≈ 3.3, which indicates that we can enhance the stability region and prolong the time
of bifurcation onset in model (7.1) by implementing the formulated hybrid controller.

Remark 7.2. Compared with the work of Zhao et al. [16], although the controller design in this paper
is similar, since different controllers are added to different equations, then achieved control effects are
different. For example, in [16], the stability domain is enlarged and the onset of Hopf bifurcation
is postponed; in this paper, the stability domain is narrowed and the onset of Hopf bifurcation is
advanced. In addition, the controller design in the Section 6 of this paper is also different from that
in [16]. Also, the exploration methods on the boundedness of the solution in this paper are different
from that in [16]. Based on this viewpoint, we think that this paper presents some novelties.

8. Conclusions

For a long time, predator-prey models have played an important role in biology and attracted great
interest from both mathematical and biological fields. From a mathematical standpoint, how to reveal
the effect of time delay on the dynamics of predator-prey models is a vital theme. This paper introduces
a new delayed predator-prey model and provides a detailed analysis on its peculiarities, including the
non-negativity, existence, uniqueness, and boundedness of the solutions, as well as the Hopf bifurcation
issue. We derive the sufficient conditions on the stability and bifurcation of the model. By applying
various mixed delay feedback controllers, we have successfully adjusted the stability region and the
time of bifurcation onset of this model. The findings of this study hold significant theoretical value
in balancing the concentrations of predators and preys. Moreover, this research approach can also
be applied to explore bifurcation control issues in other complex differential models. Recently, several
works have focused on the stability and Hopf bifurcation control of fractional-order dynamical models.
We also plan to explore Hopf bifurcation in a fractional-order version of this model in the near future.
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