
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(12): 33843–33860.
DOI: 10.3934/math.20241614
Received: 25 September 2024
Revised: 21 November 2024
Accepted: 25 November 2024
Published: 28 November 2024

Research article

On maximum residual block Kaczmarz method for solving large consistent
linear systems

Wen-Ning Sun and Mei Qin*

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

* Correspondence: Email: qin5670830@163.com.

Abstract: In this paper, we propose two block variants of the Kaczmarz method for solving large-scale
consistent linear equations Ax = b. The first method, named the maximum residual block Kaczmarz
(denoted as MRBK) method, first partitions the coefficient matrix, and then captures the largest block
in the residual vector during each block iteration to ensure that it is eliminated first. Simultaneously, in
order to avoid the pseudo-inverse calculation of the MRBK method during block iteration and improve
the convergence speed, we further propose the maximum residual average block Kaczmarz method.
This method completes the iterative process by projecting the current solution vector onto each row of
the constrained subset of the matrix A and averaging it with different extrapolation steps. We analyze
and prove the deterministic convergence of both methods. Numerical experiments validate our theory
and show that our proposed methods are superior to some other block Kaczmarz methods.

Keywords: consistent linear system; maximum residual block Kaczmarz; maximum residual average
block Kaczmarz; free pseudo-inverse; convergence property
Mathematics Subject Classification: 65F10, 65F20

1. Introduction

Consider the following large-scale system of linear equations:

Ax = b, with A ∈ Rm×n and b ∈ Rm, (1.1)

where researchers often employ iterative methods [1, 2] to solve them. A simple and effective
method is the Kaczmarz method [3], which is extensively utilized across various large-scale computing
fields, including computed tomography [4–8], image reconstruction [9–11], signal processing [11,12],
distributed computing [13,14], etc. As a row iteration method, the classic Kaczmarz method iteratively
updates the solution vector by selecting the working row of the coefficient matrix in sequence and
projecting it orthogonally to the hyperplane where the row is located. To be more specific, let A(i)

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241614

33844

represent the ith row of A, and b(i) represent the ith entry of b. Given an initial approximation value x0,
the Kaczmarz method can be expressed as follows:

xk+1 = xk +
(b(ik) − A(ik)xk)
∥ A(ik) ∥22

(A(ik))T

where (·)T and ∥ · ∥2 denote the transpose and Euclidean norm of a vector or matrix, respectively, and
the target row index ik = mod(k,m) + 1.

The theory of the Kaczmarz method has seen significant development since its inception. Initially,
Kaczmarz [3] demonstrated the convergence of this method. Subsequently, Galántai [15] provided
an upper bound on its convergence rate, while Knight conducted error analysis on it under a limited
precision operation in [16]. In recent years, Bai and Liu [17] established a new convergence theorem
for the Kaczmarz method using the block Meany inequality. For further research literature, please refer
to [18, 19].

When the scale of the coefficient matrix is very large, the efficiency of the classic Kaczmarz method
significantly decreases as it selects rows in a sequential manner to approximate the solution of the
system of equations. In 2009, Strohmer and Vershynin [20] introduced the randomized Kaczmarz
(RK) method with expected exponential rate of convergence for solving overdetermined consistent
linear systems, reigniting interest in Kaczmarz methods. They refined the row selection strategy
by proposing to select the working row with probability Pr(row = ik) = ∥A(ik)∥22/∥A∥

2
F , resulting

in a substantial acceleration of its convergence rate. Subsequently, Bai and Wu [21] proposed a
greedy randomized Kaczmarz (GRK) method, which introduced a greedy probability criterion to
obtain the larger component of the module of the residual vector in each iteration, so that it would
be eliminated first in the iteration process, and thus accelerate the convergence rate. It is worth noting
that Ansorge [22] proposed a maximal residual Kaczmarz (MRK) method, and Popa analyzed it in [23].
Similar to the working row obtained by the GRK method, this method selects the target working row
index ik so that the ik-th component of the residual has relatively the largest absolute value compared
to other components, i.e., ik = arg max

1≤i≤m
|b(i) − A(i)xk|. Based on the GRK method, Bai and Wu [24]

proposed a more efficient method, named the relaxed greedy randomized Kaczmarz (RGRK) method,
by introducing a relaxation factor. Zhang [25] developed a new greedy Kaczmarz method, and Bai and
Wu proved a more precise convergence upper bound for the randomized Kaczmarz method in [26]. For
further study of the randomized Kaczmarz method and its variants, see [27–31].

For iterative solutions of large linear equations, in order to further accelerate the convergence rate
of the Kaczmarz method, it is a natural idea to use block iteration instead of single-row iteration, so
the block Kaczmarz method emerges as the times require. Bai and Liu proved the convergence of the
block Kaczmarz method in [17]. Needell et al. pointed out in [32] that the matrix has good row paving,
introduced a block strategy that depends on matrix eigenvalues, and proposed the first block Kaczmarz
method with (expected) linear convergence to solve the overdetermined least squares problems, which
projected the current iterative solution vector onto the solution space of the constrained subsets at
each iteration step. To be specific, if the subset Jk is selected at the k-th iteration, let A†

Jk
denote the

Moore-Penrose pseudo-inverse of AJk , and the iteration formula for xk can be expressed as:

xk+1 = xk + A†
Jk

(bJk − AJk xk)

with AJk = A(Jk, :) and bJk = b(Jk). Needell et al. then proposed a randomized block Kaczmarz
(RBK) method for solving the least squares problem in [33]. As a natural follow-up to the RBK

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33845

method, Liu and Gu [34] proposed the greedy randomized block Kaczmarz (GRBK) method for
solving consistent linear systems. To avoid the high computational cost of pseudo-inverse calculations
during block iterations, Necoara [35] proposed the randomized average block Kaczmarz (RABK)
method, which projects the current iteration vector onto each row of the selected submatrix and
averages them using different extrapolated step sizes. Subsequently, based on the idea of the average
block method, Miao and Wu [36] extended the GRBK method to propose the greedy randomized
average block Kaczmarz (GRABK) method, while Li et al. introduced the greedy average block
Kaczmarz (GABK) method in [37]. Recently, Xiao et al. [38] combined the greedy strategy with
the average block method to develop the fast greedy randomized block Kaczmarz method. For more
research on the block Kaczmarz method, refer to [39–43].

In this paper, combining the row selection strategy in the MRK method [22] with the row
partitioning strategy in the RBK method [33], we construct the maximum residual block Kaczmarz
(denoted as MRBK) method, which is designed to prioritize the elimination of the largest block within
the residual vector rk during every iteration. Simultaneously, in order to avoid the pseudo-inverse
calculation of the MRBK method during iteration, we further develop the maximum residual average
block Kaczmarz (denoted as MRABK) method, which completes each iteration by projecting the
current solution xk onto each row of AVik

and applying different extrapolation step sizes to average
them. We give the deterministic convergence analysis of these two methods. Numerical experiments
show that the MRABK method outperforms the MRBK method, while both methods are more efficient
than the GRK, MRK, RBK, and GRBK methods.

The structure of this paper is outlined as follows. We introduce the maximum residual block
Kaczmarz method and prove its convergence in Section 2. In Section 3, we establish the maximum
residual average block Kaczmarz method and analyze its convergence. Section 4 features numerical
experiments that validate the effectiveness of the proposed methods. Lastly, Section 5 ends the paper
with conclusions.

Some basic assumptions: For a real matrix A ∈ Rm×n, ∥A∥2, ∥A∥F , and A† signify the Euclidean
norm, Frobenius norm, and Moore-Penrose pseudo-inverse of matrix A, respectively. We define A as a
standardized matrix if each row has a Euclidean norm of 1, meaning ∥A(i)∥2 = 1, for all i = 1, 2, . . . ,m.
Similarly, for a given vector u, ∥u∥2 also represents its Euclidean norm. The notation σmin(A)
and σmax(A) are employed to express the smallest nonzero and largest singular values of matrix A,
respectively. Additionally, let us define the set [m] as {1, 2, ...,m}, where m is an arbitrary positive
integer. We consider the collection V = {V1,V2, . . . ,Vt} to be a partition of [m] such that the index
setsVi (for i = 1, 2, . . . , t) satisfy the conditionsVi∩V j = ∅ for i , j, and ∪t

i=1Vi = [m]. Furthermore,
given a specified row index setVi, we represent the row submatrix of matrix A that corresponds toVi

as AVi , and we denote the subvector of vector b as bVi . The identity matrix of appropriate dimensions
is denoted by I. Define the randomized partition of [m] asV = {V1,V2, . . . ,Vt} with

Vi = {π(k) : k = ⌊(i − 1)m/t⌋ + 1, ⌊(i − 1)m/t⌋ + 2, . . . , ⌊im/t⌋} (1.2)

where i = 1, 2, . . . , t, and we assume that the row partition anywhere else in this paper is as shown
in (1.2).

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33846

2. Maximum residual block Kaczmarz method

In this section, drawing inspiration from the ideas behind the MRK [22], RBK [33], and GRBK [34]
methods, we are going to construct the maximum residual block Kaczmarz (MRBK) method and
analyze its convergence property.

There are typically two approaches to accelerate the Kaczmarz method: the first approach focuses
on selecting working rows more efficiently to achieve faster convergence in each iteration, while the
second approach aims to utilize row block iteration instead of single-row iteration for acceleration.
Building upon these approaches, we propose the MRBK method as follows as Method 1. First, we
partition the rows of matrix A to obtain the row block divisionV of A, i.e., {AV1 , AV2 , . . . , AVt}. Next,
we denote r(i)

k as the ith block component corresponding to the residual vector rk, and then r(i)
k =

bVi−AVi xk, where i = 1, 2, . . . , t. We select the working row blockVik according to ik = arg max
1≤i≤t
∥bVi−

AVi xk∥
2
2, ensuring that the largest block component of the residual vector rk is eliminated first in each

iteration. This significantly improves the convergence rate.
Next, we try to analyze the differences and improvements of the MRBK method compared to the

other three methods:
(1) The MRBK method versus the MRK method: The MRBK method accelerates the MRK method

naturally by utilizing row block iterations instead of single-row iterations.
(2) The MRBK method versus the RBK and GRBK methods: In comparison to the RBK method,

the GRBK method improves the RBK method by introducing a new greedy probability criterion to
randomly select the index of the row blocks, which ensures that row blocks with large residual values
are prioritized for elimination, thus accelerating the RBK method. However, the GRBK method
requires constructing the index set of row blocks and then selecting them based on probability in each
iteration. In contrast, our proposed MRBK method selects the row blocks with the largest residual
directly, enhancing the iteration efficiency. In fact, along with the idea of “greedy”, our method can be
called “extremely greedy” when it comes to selecting the index of the row blocks.

Method 1 The MRBK Method
Input: A, b, ℓ, x0.
Output: xℓ
1: Let {V1,V2, . . . ,Vt} be a partition of [m]
2: for k = 0, 1, . . . , ℓ − 1 do
3: Select ik = arg max

1≤i≤t
∥bVi − AVi xk∥

2
2

4: Set xk+1 = xk + A†
Vik

(
bVik
− AVik

xk

)
5: end for

Definition 2.1. [33] (Row paving) A row paving A(t, α, β) of an m×n matrix A is defined as a partition
V = {V1,V2, . . . ,Vt} of the rows such that for eachVi ∈ V, the following inequalities hold:

α ≤ σ2
min(AVi) and σ2

max(AVi) ≤ β,

where t is referred to as the size of the paving, while α and β are known as the lower and upper paving
bounds, respectively.

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33847

For the MRBK method, Theorem 2.1 is given to illustrate its convergence.

Theorem 2.1. Assuming that the linear system (1.1) is consistent, for a fixed partition V =

{V1,V2, . . . ,Vt} of [m], we assume that σ2
max(AVi) ≤ β for eachVi ∈ V = {V1,V2, . . . ,Vt}, starting

from any initial vector x0 ∈ R(AT), the iteration sequence {xk}
∞
k=0 generated by the MRBK method,

converges to the unique least-norm solution x⋆ = A†b. Moreover, for any k ≥ 0, we have

∥x1 − x⋆∥22 ≤
(
1 −
σ2

min(A)
βt

)
∥x0 − x⋆∥22 (2.1)

and

∥xk+1 − x⋆∥22 ≤
(
1 −
σ2

min(A)
β(t − 1)

)k (
1 −
σ2

min(A)
βt

)
∥x0 − x⋆∥22. (2.2)

Proof. From the definition of the MRBK method, for a partitionV = {V1,V2, . . . ,Vt}, k = 0, 1, 2, . . .
and ik ∈ {1, 2, . . . , t} , we have

xk+1 − x⋆ = xk − x⋆ + A†
Vik

(
bVik
− AVik

xk

)
.

Since AVik
x⋆ = bVik

, it holds that

xk+1 − x⋆ = xk − x⋆ − A†
Vik

AVik
(xk − x⋆) .

Since A†
Vik

AVik
is an orthogonal projector, we can derive the following relation using the Pythagorean

Theorem:

∥xk+1 − x⋆∥22 = ∥xk − x⋆∥22 − ∥A
†

Vik
AVik

(xk − x⋆) ∥22. (2.3)

We note that

∥A†
Vik

AVik
(xk − x⋆) ∥22 ≥ σ

2
min

(
A†
Vik

)∥AVik
(xk − x⋆) ∥22

=
1

σ2
max

(
AVik

)
∥AVik

(xk − x⋆) ∥22

≥
1
β
∥AVik

(xk − x⋆) ∥22

=
1
β
∥bVik

− AVik
xk∥

2
2

=
1
β

max
1≤i≤t
∥bVi − AVi xk∥

2
2. (2.4)

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33848

Furthermore, from Method 1, we have

bVik
− AVik

xk+1 = bVik
− AVik

(
xk + A†

Vik

(
bVi − AVi xk)

)
= bVik

− AVik
xk − AVik

A†
Vik

(
bVik
− AVik

xk

)
= bVik

− AVik
xk − AVik

A†
Vik

bVik
+ AVik

A†
Vik

AVik
xk

= bVik
− AVik

A†
Vik

bVik
− AVik

xk + AVik
xk

= AVik
x⋆ − AVik

A†
Vik

AVik
x⋆

= AVik
x⋆ − AVik

x⋆
= 0.

Thus we obtain, for k = 1, 2, . . ., that

∥b − Axk∥
2
2 =

∑
Vik∈V\Vik−1

∥bVik
− AVik

xk∥
2
2 ≤

(
t − 1) max

1≤i≤t
∥bVi − AVi xk∥

2
2,

and hence

max
1≤i≤t
∥bVi − AVi xk∥

2
2 ≥

1
t − 1
∥b − Axk∥

2
2. (2.5)

Combining (2.3), (2.4), and (2.5), for k = 1, 2, . . ., we finally have

∥xk+1 − x⋆∥22 ≤ ∥xk − x⋆∥22 −
1
β

∥b − Axk∥
2
2

t − 1

= ∥xk − x⋆∥22 −
1
β

∥A
(
xk − x⋆)∥22
t − 1

≤ ∥xk − x⋆∥22 −
σ2

min(A)
β
(
t − 1)

∥xk − x⋆∥22

=
(
1 −
σ2

min(A)
β
(
t − 1)

)∥xk − x⋆∥22.

In particular, when k = 0, we also obtain

∥b − Ax0∥
2
2 ≤ t max

1≤i≤t
∥bVi − AVi x0∥

2
2.

Thus, we have

∥x1 − x⋆∥22 ≤
(
1 −
σ2

min(A)
βt

)
∥x0 − x⋆∥22.

□

Subsequently, we aim to conduct a more in-depth analysis of the convergence factors associated
with the MRBK, RBK, and GRBK methods. The convergence factors of these three methods are
denoted as ρMRBK , ρRBK , and ρGRBK , respectively. Based on Theorem 2.1, we derive

ρMRBK = 1 −
σ2

min(A)
β
(
t − 1)

, (2.6)

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33849

and from Theorem 3.1 in [34], we can get

ρGRBK = 1 −
ζ

2

(
∥A∥2F
∥A∥2F + ζ

+ 1
)
σ2

min(A)
β∥A∥2F

, (2.7)

where ζ = min
Vi∈V
∥AVi∥

2
F .

Assuming that the matrix A is a standardized matrix, we can obtain from Theorem 2.1 in [33] that

ρRBK = 1 −
σ2

min(A)
βm

.

We observe that ρMRBK < ρRBK as long as t−1 < m. In order to compare ρMRBK and ρGRBK , we consider
rewriting ρMRBK:

ρMRBK = 1 −
σ2

min(A)
β
(
t − 1)

= 1 −
∥A∥2F
t − 1

σ2
min(A)
β∥A∥2F

. (2.8)

For the row paving {AV1 , AV2 , . . . , AVt} of standardized matrix A, we assume that every cardinality of
AVi is equal, i.e., equal to ⌊m

t ⌋, where ⌊·⌋ means to round down to an integer. Thus

∥A∥2F
t − 1

=
m

t − 1
, (2.9)

and

ζ

2

(
∥A∥2F
∥A∥2F + ζ

+ 1
)
=
⌊m

t ⌋

2

(t
t + 1

+ 1
)
≤

m
2t

(t
t + 1

+ 1
)
=

1
2

(m
t + 1

+
m
t

)
. (2.10)

Substitute (2.9) into (2.8), and (2.10) into (2.7), and it can be concluded that ρMRBK < ρGRBK .

Remark 2.1. Based on the preceding analysis, it is evident that when the dimensions of matrix A are
substantial, the convergence factors of both the MRBK and GRBK methods exhibit a close resemblance,
indicating that their iterative steps are similarly aligned. However, owing to the lower computational
cost associated with selecting working row block AVik

in the MRBK method, it demonstrates a
faster convergence rate in practical applications. The numerical experiments in Section 4 verify our
inference.

3. Maximum residual average block Kaczmarz method

In this section, we consider further improvements to the MRBK method. In step 4 of Method 1, each
update of xk requires the pseudo-inverse of AVik

to be applied to the vector, which is computationally
expensive when the size of matrix A is very large. We develop the maximum residual average
block Kaczmarz (MRABK) method by projecting xk onto each row of AVik

and averaging them with
different extrapolation steps, avoiding the computation of the pseudo-inverse and greatly saving the
computational cost at each iteration, as shown in Method 2.

For the MRABK method, Theorem 3.1 is given to illustrate its convergence.

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33850

Method 2 The MRABK Method
Input: A, b, ℓ, ω ∈ (0, 2) and x0.
Output: xℓ
1: Let {V1,V2, . . . ,Vt} be a partition of [m]
2: for k = 0, 1, . . . , ℓ − 1 do
3: Select ik = arg max

1≤i≤t
∥bVi − AVi xk∥

2
2

4: Compute αk = ω
∥bVik

−AVik
xk∥

2
2∥AVik

∥2F

∥AT
Vik

(bVik
−AVik

xk)∥22

5: Set xk+1 = xk + αk

AT
Vik

(bVik
−AVik

xk)

∥AVik
∥2F

6: end for

Theorem 3.1. Assuming that the linear system (1.1) is consistent, for a fixed partition V =

{V1,V2, . . . ,Vt} of [m] and ω ∈ (0, 2), we assume that σ2
max(AVi) ≤ β for each Vi ∈ V =

{V1,V2, . . . ,Vt}, starting from any initial vector x0 ∈ R(AT), the iteration sequence {xk}
∞
k=0 generated

by the MRABK method, converges to the unique least-norm solution x⋆ = A†b. Moreover, for any
k ≥ 0, we have

∥x1 − x⋆∥22 ≤
(
1 − (2ω − ω2)

σ2
min(A)
βt

)
∥x0 − x⋆∥22 (3.1)

and

∥xk+1 − x⋆∥22 ≤
(
1 − (2ω − ω2)

σ2
min(A)
β
(
t − 1)

)k (
1 − (2ω − ω2)

σ2
min(A)
βt

)
∥x0 − x⋆∥22. (3.2)

Proof. From step 5 of Method 2 and AVik
x⋆ = bVik

, we can get

xk+1 − x⋆ = xk − x⋆ + αk

AT
Vik

(bVik
− AVik

xk)

∥AVik
∥2F

= xk − x⋆ − αk

AT
Vik

AVik
(xk − x⋆)

∥AVik
∥2F

=

I − αk

AT
Vik

AVik

∥AVik
∥2F

 (xk − x⋆).

By squaring the Euclidean norm on both sides of the above equation, it holds that

∥xk+1 − x⋆∥22 = ∥

I − αk

AT
Vik

AVik

∥AVik
∥2F

 (xk − x⋆)∥22

= ∥xk − x⋆∥22 − 2αk

∥AVik
(xk − x⋆)∥22
∥AVik

∥2F

+ α2
k

∥AT
Vik

AVik
(xk − x⋆)∥22

∥AVik
∥4F

.

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33851

Substituting αk into this equality, we have

∥xk+1 − x⋆∥22 = ∥xk − x⋆∥22 − (2ω − ω2)
∥bVik

− AVik
xk∥

4
2

∥AT
Vik

(bVik
− AVik

xk)∥22

≤ ∥xk − x⋆∥22 − (2ω − ω2)
∥bVik

− AVik
xk∥

4
2

σ2
max(AVik

)∥(bVik
− AVik

xk)∥22

≤ ∥xk − x⋆∥22 − (2ω − ω2)
∥bVik

− AVik
xk∥

2
2

β

= ∥xk − x⋆∥22 − (2ω − ω2)
max
1≤i≤t
∥bVi − AVi xk∥

2
2

β
.

We see that the first of these inequalities is true since 2ω − ω2 > 0 for ω ∈ (0, 2), and

∥AT
Vik

(bVik
− AVik

xk)∥22 ≤ σ
2
max(AVik

)∥(bVik
− AVik

xk)∥22.

From (2.5) in the proof of Theorem 2.1, we can obtain, for k = 1, 2, . . ., that

∥xk+1 − x⋆∥22 ≤ ∥xk − x⋆∥22 − (2ω − ω2)
∥b − Axk∥

2
2

β
(
t − 1)

≤ ∥xk − x⋆∥22 − (2ω − ω2)
σ2

min(A)∥
(
xk − x⋆)∥22

β
(
t − 1)

=

(
1 − (2ω − ω2)

σ2
min(A)
β
(
t − 1)

)
∥xk − x⋆∥22.

In particular, when k = 0, we have

∥x1 − x⋆∥22 ≤
(
1 − (2ω − ω2)

σ2
min(A)
βt

)
∥x0 − x⋆∥22.

□

From (3.2), we can obtain

ρMRABK = 1 − (2ω − ω2)
σ2

min(A)
β
(
t − 1)

, (3.3)

and it is not difficult to find that when ω = 1, ρMRABK reaches its minimum value, which is 1 − σ
2
min(A)
β(t−1) ,

and at the same time, ρMRABK = ρMRBK . However, as can be seen from steps 4 and 5 of Method 2, the
average block method is adopted in the MRABK method, which avoids the pseudo-inverse calculation
in the xk update process in step 4 of the MRBK method. Therefore, the convergence speed of the
MRABK method may be faster than that of the MRBK method. The numerical experiment results in
Section 4 verify our conclusions well in the convergence rate.

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33852

4. Experimental results

In this section, the efficiency of the MRBK and MRABK methods is verified through numerical
experiments. We test and compare our proposed two methods with the GRK, MRK, RBK, RABK [35],
and GRBK methods. In each iteration of the RBK, GRBK, and MRBK methods, we utilize CGLS [44]
to solve linear problems. Additionally, we use the same randomized row partition {AV1 , AV2 , . . . , AVt}

defined as (1.2) for the RBK, RABK, GRBK, MRBK, and MRABK methods, and for the selection
of the number of blocks, [36] proves that ⌈∥A∥22⌉ is a good choice, so we set the number of blocks
t = ⌈∥A∥22⌉ uniformly, where ⌈·⌉means to round up to an integer. Specifically, in the case of the MRABK
method, ω is set to 1 to ensure that the convergence factor of MRABK is minimized. Similarly, in the
RABK method, ω is also set to 1. The effectiveness of the aforementioned method is assessed based on
the quantity of iterative steps (referred to as “IT”) and the computing time taken in seconds (referred
to as “CPU”). Both IT and CPU indicate the arithmetic mean of the iterative steps and CPU duration
needed to perform the process 20 times for every method. To illustrate the effectiveness of our proposed
methods, we also compute the speed-up values of the MRBK method in comparison to both the MRK
and GRBK methods, as well as the speed-up value of the MRABK method relative to the MRBK
method. The definitions for these speed-up values are provided below:

SU1 =
CPU of MRK

CPU of MRBK
,

SU2 =
CPU of GRBK
CPU of MRBK

,

SU3 =
CPU of MRBK

CPU of MRABK
.

All experiments are conducted on a personal computer equipped with MATLAB (version R2022a),
featuring an AMD Ryzen 7 8845H w/ Radeon(TM) 780M Graphics CPU clocked at 3.80 GHz,
alongside 32.00 GB of RAM and running on the Windows 11 operating system.

For consistent linear systems (1.1), the coefficient matrix is either given by the MATLAB function
sprandn or taken from the SuiteSparse Matrix Collection [45]. For the coefficient matrix A being tested,
any zero row vectors are removed and A is normalized to the standard matrix. The right vector is set
to b = Ax∗, where vector x∗ is the solution vector generated using the MATLAB function randn. All
calculations start with the initial zero vector x0 = 0 and stop once the relative solution error (RSE) at
the current iteration meets the criterion of RSE < 10−6 or when IT surpasses the set limit of 200,000,
defined as

RSE =
∥xk − x⋆∥22
∥x⋆∥22

,

where the minimum norm solution x⋆ is obtained using the MATLAB function lsqminnorm.
Define the density of a matrix as

density =
number of nonzeros of an m-by-n matrix

mn
.

For the first kind of sparse matrix A, we set its sparse parameter is 0.01, i.e., A = sprandn (m, n, 0.01),
in Tables 1 and 2, the IT and CPU for the GRK, MRK, RBK, RABK, GRBK, MRBK, and MRABK
methods are listed, and we also list the speed-up values for several methods.

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33853

Table 1. Numerical results for m-by-n random matrices A with m = 6000 and different n.

m × n 6000×1000 6000×1500 6000×2000 6000×2500 6000×3000
∥A∥22 12.29 9.13 7.64 6.63 5.86

GRK
IT 2325.8 5217.6 10418.6 18855.0 34941.8
CPU 0.5867 1.8596 4.9190 12.7430 28.2539

MRK
IT 2230.0 5115.0 10297.0 18647.0 34598.0
CPU 0.1538 0.5342 1.4035 5.2019 11.9263

RBK
IT 31.4 41.4 55.6 81.6 113.8
CPU 0.0339 0.1514 0.1013 0.1851 0.2908

RABK
IT 55.6 69.2 87.8 123.4 177.4
CPU 0.0118 0.0191 0.0332 0.0540 0.0912

GRBK
IT 25.2 29.8 37.0 52.4 72.8
CPU 0.0486 0.0773 0.1340 0.2639 0.3927

MRBK
IT 22.0 29.0 36.0 51.0 69.0
CPU 0.0239 0.0319 0.0590 0.1035 0.1391

MRABK
IT 40.0 50.0 62.0 79.0 104.0
CPU 0.0085 0.0160 0.0260 0.0410 0.0599

S U1 6.44 16.75 23.79 50.28 85.74

S U2 2.04 2.42 2.27 2.55 2.82

S U3 2.82 1.99 2.27 2.52 2.32

From Table 1, we can find that when m = 6000 and n = 1000, 1500, 2000, 2500, or 3000, both
the MRBK method and MRABK method proposed by us outperform other methods in terms of CPU
time. Now we focus on the MRK, GRBK, MRBK, and MRABK methods. We observe that the MRBK
method, as a block-improved version of the MRK method, is significantly more efficient in terms of
IT and CPU time. The SU1 value of these two methods is at least 6.44 and the maximal is 85.74. We
analyzed the convergence factors of the GRBK and MRBK methods in Section 2, and concluded that
their IT should be very close when the size of A is large. From Table 1, we can observe that the IT
of these two methods is very close, and the IT of the MRBK method is slightly smaller than that of
the GRBK method. The SU2 value is at least 2.04 and at most 2.82. The MRABK method has the
shortest CPU time among all the above methods, and its SU3 value relative to the MRBK method is at
least 1.99 and up to 2.82.

From Table 2, we can find that when n = 6000 and m = 1000, 1500, 2000, 2500, or 3000, the
MRBK and MRABK methods are still superior to other methods. Among all the above methods, the
MRBK method has the fewest IT, while the MRABK method has the shortest CPU time. We note that
under these conditions, the SU1 value is at least 75.35 and the maximum is 155.46. Even though the IT
of the MRBK and GRBK methods are almost the same, the CPU time of the MRBK method is better
than that of the GRBK method. Compared with the MRBK method, the SU3 value of the MRABK
method is at least 1.99 and at most 2.89.

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33854

Table 2. Numerical results for m-by-n random matrices A with n = 6000 and different m.

m × n 1000×6000 1500×6000 2000×6000 2500×6000 3000×6000
∥A∥22 2.01 2.24 2.50 2.69 2.93

GRK
IT 4057.8 8544.0 14833.6 27124.0 43610.2
CPU 2.4823 6.4250 13.0586 27.2911 48.0314

MRK
IT 4051.0 8324.0 14761.0 27112.0 42903.0
CPU 1.5622 3.6929 7.3926 14.9410 24.4223

RBK
IT 19.2 43.4 58.2 81.2 113.8
CPU 0.0396 0.0954 0.1552 0.2670 0.2885

RABK
IT 26.2 59.4 58.6 102.2 140.0
CPU 0.0120 0.0322 0.0452 0.0713 0.1010

GRBK
IT 10.0 22.0 29.4 40.6 55.6
CPU 0.0303 0.0779 0.1245 0.2487 0.3010

MRBK
IT 10.0 21.0 28.0 40.0 55.0
CPU 0.0207 0.0482 0.0748 0.1277 0.1571

MRABK
IT 19.0 32.0 40.0 55.0 73.0
CPU 0.0104 0.0198 0.0281 0.0441 0.0638

S U1 75.35 76.58 98.88 116.96 155.46

S U2 1.46 1.62 1.67 1.95 1.92

S U3 1.99 2.44 2.66 2.89 2.46

The second type of coefficient matrices selected from the SuiteSparse Matrix Collection [45]
are derived from different applications, such as the combinatorial problem and linear programming
problem. These matrices possess some unique structures and characteristics, such as being thin (m > n)
(e.g., Franz9, GL7d12), fat (m < n) (e.g., p6000, lp 80bau3b), or square (m = n) (e.g., Trefethen 700),
and we list details about them in Table 3, including their size, density, and cond(A). For these matrices,
we implement the GRK, MRK, RBK, GRBK, RABK, MRBK, and MRABK methods, and list the IT
and CPU time for each method in Table 3.

In Table 3, we observe that the MRABK method still maintains the shortest CPU time. When
the coefficient matrix is GL7d12 and lp 80bau3b, the MRBK method has the smallest IT. When the
coefficient matrix is Trefethen 700 or p6000, the IT is the same as that of the GRBK method. Compared
to the MRK method, the MRBK method exhibits a minimal SU1 value of 1.60 and a maximal SU1 value
of 60.55. In comparison to the GRBK method, the MRBK method demonstrates a minimal SU2 value
of 1.19 and a maximal SU2 value of 2.29. Furthermore, compared to the MRBK method, the MRABK
method showcases a minimal SU3 value of 1.09, reaching a maximal SU3 value of 3.33.

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33855

Table 3. Numerical results for matrices A from the SuiteSparse Matrix Collection.

name Franz9 GL7d12 Trefethen 700p6000 lp 80bau3b
m × n 19588×4164 8899×1019 700×700 2095×7967 2262×12061
density 0.12% 0.41% 2.58% 0.12% 0.09%
cond(A) 1.46e+16 Inf 4.71e+03 6.50e+05 567.23
∥A∥22 60.80 55.75 2.54 2.35 2.82

GRK
IT 9056.8 2394.0 1555.2 4676.8 15874.6
CPU 5.5755 0.6003 0.0969 1.2815 6.3763

MRK
IT 2307.0 2492.0 1536.0 4387.0 15924.0
CPU 1.6704 0.1403 0.0326 0.8933 4.2627

RBK
IT 382.6 722.6 37.2 34.6 77.8
CPU 0.6476 0.5484 0.0180 0.0292 0.2153

RABK
IT 1351.6 877.8 221.6 35.6 202.0
CPU 0.1695 0.1576 0.0132 0.0071 0.0467

GRBK
IT 124.8 145.3 10.0 18.0 35.0
CPU 0.5942 0.2011 0.0055 0.0193 0.1097

MRBK
IT 129.0 121.0 10.0 18.0 34.0
CPU 0.3076 0.0879 0.0044 0.0148 0.0921

MRABK
IT 545.0 176.0 75.0 26.0 126.0
CPU 0.1662 0.0264 0.0040 0.0052 0.0301

S U1 5.43 1.60 7.38 60.55 46.29

S U2 1.93 2.29 1.25 1.31 1.19

S U3 1.85 3.33 1.09 2.83 3.06

To further assess the performance of various block Kaczmarz methods, Figures 1 and 2 display
the relationship between the RSE and the IT, as well as the relationship between the RSE and CPU
time for different block Kaczmarz methods. As we can see from Figures 1 and 2, with the increase of
the IT, the RSE of the MRBK and MRABK methods both decrease faster than the RBK and RABK
methods, and the MRBK method has the fastest decline in RSE among all block Kaczmarz methods.
With the increase of the CPU time, the RSE of the MRABK method decreases the fastest, followed by
the RABK and MRBK methods. Both of the MRBK and MRABK methods are ahead of the RBK and
GRBK methods.

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33856

0 50 100 150 200

IT

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

RBK

RABK

GRBK

MRBK

MRABK

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

RBK

RABK

GRBK

MRBK

MRABK

(b)

Figure 1. (a) RSE versus IT and (b) RSE versus CPU for different block Kaczmrarz methods
when the coefficient matrices are the 6000 × 3000 matrix in Table 1.

0 20 40 60 80 100 120 140

IT

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

RBK

RABK

GRBK

MRBK

MRABK

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

RBK

RABK

GRBK

MRBK

MRABK

(b)

Figure 2. (a) RSE versus IT and (b) RSE versus CPU for different block Kaczmrarz methods
when the coefficient matrices are the 3000 × 6000 matrix in Table 2.

5. Conclusions

This paper presents two new Kaczmarz (MRBK and MRABK) methods for solving consistent linear
systems. Both methods utilize uniform randomized partition of the rows of matrix A to construct the
row subsets {AV1 , AV2 , . . . , AVt}. In each iteration, the MRBK method updates the solution vector
by projecting x onto the hyperplane defined by AVik

x = bVik
, where Vik is selected according to

ik = arg max
1≤i≤t
∥bVi − AVi xk∥

2
2, ensuring that the block with the largest residual is eliminated first, leading

to rapid convergence. Building upon the MRBK method, the MRABK method introduces an adaptive
step size, eliminating the need for calculating the pseudo-inverse of the row subset AVik

of A during the
x update process, thereby enhancing the convergence speed. We provide a comprehensive analysis

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

33857

of the convergence theory for these two methods and conduct numerical experiments to validate
their effectiveness. Both the theoretical analysis and numerical results demonstrate the superiority
of our proposed methods over other Kaczmarz methods, including the GRK, MRK, RBK, and GRBK
methods. In addition, we have realized that some valuable topics deserve further study, such as fully
considering the structure and properties of A, making more efficient row partition of A, and finding a
better step size for the MRABK method.

Author contributions

Wen-Ning Sun: Conceptualization, methodology, method design and implementation, numerical
experiments and visualization, writing original drafts, reviewing and editing drafts; Mei Qin:
Methodology, reviewing, editing drafts. All authors have reviewed and approved the final version
of the manuscript prior to its publication.

Conflict of interest

The authors declare no competing interests.

References

1. L.-P. Sun, Y.-M. Wei, J.-Y. Zhou, On an iterative method for solving the least
squares problem of rank-deficient systems, Int. J. Comput. Math., 92 (2014), 532–541.
https://doi.org/10.1080/00207160.2014.900173

2. Z.-Z. Bai, C.-H. Jin, Column-decomposed relaxation methods for the overdetermined systems of
linear equations, Int. J. Appl. Math., 13 (2003) , 71–82.

3. S. Kaczmarz, Angenäherte Auflösung von systemen linearer gleichungen, Bull. Int. Acad. Polon.
Sci. Lett., 35 (1937), 355–357.

4. M. A. Brooks, A survey of algebraic algorithms in computerized tomography, Oshawa: University
of Ontario Institute of Technology, 2010.

5. G. N. Hounsfield, Computerized transverse axial scanning (tomography): Part 1. Description of
system, Brit. J. Radiol., 46 (1973), 1016–1022. https://doi.org/10.1259/0007-1285-46-552-1016

6. G. T. Herman, Fundamentals of computerized tomography: Image reconstruction from projections,
2 Eds., London: Springer, 2009. https://doi.org/10.1007/978-1-84628-723-7

7. F. Natterer, The mathematics of computerized tomography, Philadelphia: SIAM Publications, 2001.
https://doi.org/10.1137/1.9780898719284

8. G. T. Herman, R. Davidi, Image reconstruction from a small number of projections, Inverse Probl.,
24 (2008), 045011. https://doi.org/10.1088/0266-5611/24/4/045011

9. R. Gordon, R. Bender, G. T. Herman, Algebraic reconstruction techniques (ART) for three-
dimensional electron microscopy and X-ray photography, J. Theor. Biol., 29 (1970), 471–481.
https://doi.org/10.1016/0022-5193(70)90109-8

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

https://dx.doi.org/https://doi.org/10.1080/00207160.2014.900173
https://dx.doi.org/https://doi.org/10.1259/0007-1285-46-552-1016
https://dx.doi.org/https://doi.org/10.1007/978-1-84628-723-7
https://dx.doi.org/https://doi.org/10.1137/1.9780898719284
https://dx.doi.org/https://doi.org/10.1088/0266-5611/24/4/045011
https://dx.doi.org/https://doi.org/10.1016/0022-5193(70)90109-8

33858

10. G. T. Herman, L. B. Meyer, Algebraic reconstruction techniques can be made computationally
efficient (positron emission tomography application), IEEE. Trans. Med. Imaging, 12 (1993), 600–
609. https://doi.org/10.1109/42.241889

11. C. Byrne, A unified treatment of some iterative algorithms in signal processing and image
reconstruction, Inverse Probl., 20 (2004), 103. https://doi.org/10.1088/0266-5611/20/1/006

12. D. A. Lorenz, S. Wenger, F. Schöpfer, M. Magnor, A sparse Kaczmarz solver and a linearized
Bregman method for online compressed sensing, In: 2014 IEEE International conference on image
processing, 2014, 1347–1351. https://doi.org/10.1109/ICIP.2014.7025269

13. F. Pasqualetti, R. Carli, F. Bullo, Distributed estimation via iterative projections
with application to power network monitoring, Automatica, 48 (2012), 747–758.
https://doi.org/10.1016/j.automatica.2012.02.025

14. J. M. Elble, N. V. Sahinidis, P. Vouzis, GPU computing with Kaczmarz’s and
other iterative algorithms for linear systems, Parallel Comput., 36 (2010), 215–231.
https://doi.org/10.1016/j.parco.2009.12.003

15. A. Galántai, Projectors and projection methods, New York: Springer, 2004.
https://doi.org/10.1007/978-1-4419-9180-5

16. P. A. Knight, Error analysis of stationary iteration and associated problems, Manchester:
University of Manchester, 1993.

17. Z.-Z. Bai, X.-G. Liu, On the Meany inequality with applications to convergence analysis of several
row-action iteration methods, Numer. Math., 124 (2013), 215–236. https://doi.org/10.1007/s00211-
012-0512-6

18. A. Ma, D. Needell, A. Ramdas, Convergence properties of the randomized extended
Gauss-Seidel and Kaczmarz methods, SIAM J. Matrix Anal. Appl., 36 (2015), 1590–1604.
https://doi.org/10.1137/15M1014425

19. L. Dai, T. B. Schön, On the exponential convergence of the Kaczmarz algorithm, IEEE Signal
Process. Lett., 22 (2015), 1571–1574. https://doi.org/10.1109/LSP.2015.2412253

20. T. Strohmer, R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J.
Fourier Anal. Appl., 15 (2009), 262–278. https://doi.org/10.1007/s00041-008-9030-4

21. Z.-Z. Bai, W.-T. Wu, On greedy randomized Kaczmarz method for solving large sparse linear
systems, SIAM J. Sci. Comput., 40 (2018), A592–A606. https://doi.org/10.1137/17M1137747

22. R. Ansorge, Connections between the Cimmino-method and the Kaczmarz-method for the
solution of singular and regular systems of equations, Computing, 33 (1984), 367–375.
https://doi.org/10.1007/bf02242280

23. C. Popa, Convergence rates for Kaczmarz-type algorithms, Numer. Algor., 79 (2018), 1–17.
https://doi.org/10.1007/s11075-017-0425-7

24. Z.-Z. Bai, W.-T. Wu, On relaxed greedy randomized Kaczmarz methods for solving large sparse
linear systems, Appl. Math. Lett., 83 (2018), 21–26. https://doi.org/10.1016/j.aml.2018.03.008

25. J.-J. Zhang, A new greedy Kaczmarz algorithm for the solution of very large linear systems, Appl.
Math. Lett., 91 (2019), 207–212. https://doi.org/10.1016/j.aml.2018.12.022

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

https://dx.doi.org/https://doi.org/10.1109/42.241889
https://dx.doi.org/https://doi.org/10.1088/0266-5611/20/1/006
https://dx.doi.org/https://doi.org/10.1109/ICIP.2014.7025269
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2012.02.025
https://dx.doi.org/https://doi.org/10.1016/j.parco.2009.12.003
https://dx.doi.org/https://doi.org/10.1007/978-1-4419-9180-5
https://dx.doi.org/https://doi.org/10.1007/s00211-012-0512-6
https://dx.doi.org/https://doi.org/10.1007/s00211-012-0512-6
https://dx.doi.org/https://doi.org/10.1137/15M1014425
https://dx.doi.org/https://doi.org/10.1109/LSP.2015.2412253
https://dx.doi.org/https://doi.org/10.1007/s00041-008-9030-4
https://dx.doi.org/https://doi.org/10.1137/17M1137747
https://dx.doi.org/https://doi.org/10.1007/bf02242280
https://dx.doi.org/https://doi.org/10.1007/s11075-017-0425-7
https://dx.doi.org/https://doi.org/10.1016/j.aml.2018.03.008
https://dx.doi.org/https://doi.org/10.1016/j.aml.2018.12.022

33859

26. Z.-Z. Bai, W.-T. Wu, On convergence rate of the randomized Kaczmarz method, Linear Algebra
Appl., 553 (2018), 252–269. https://doi.org/10.1016/j.laa.2018.05.009

27. Y. Jiang, G. Wu, L. Jiang, A semi-randomized Kaczmarz method with simple random sampling
for large-scale linear systems, Adv. Comput. Math., 49 (2023), 20. https://doi.org/10.1007/s10444-
023-10018-2

28. Y. Zeng, D. Han, Y. Su, J. Xie, Randomized Kaczmarz method with adaptive stepsizes for
inconsistent linear systems, Numer. Algor., 94 (2023), 1403–1420. https://doi.org/10.1007/s11075-
023-01540-x

29. Z.-Z. Bai, W.-T. Wu, Randomized Kaczmarz iteration methods: Algorithmic extensions
and convergence theory, Japan J. Indust. Appl. Math., 40 (2023), 1421–1443.
https://doi.org/10.1007/s13160-023-00586-7

30. Z.-Z. Bai, L. Wang, On convergence rates of Kaczmarz-type methods with di
erent selection rules of working rows, Appl. Numer. Math., 186 (2023), 289–319.
https://doi.org/10.1016/j.apnum.2023.01.013

31. X.-Z. Wang, M.-L. Che, Y.-M. Wei, Randomized Kaczmarz methods for tensor complementarity
problems, Comput. Optim. Appl., 82 (2022) , 595–615. https://doi.org/10.1007/s10589-022-00382-
y

32. D. Needell, J. A. Tropp, Paved with good intentions: Analysis of a randomized block Kaczmarz
method, Linear Algebra Appl., 441 (2014), 199–221. https://doi.org/10.1016/j.laa.2012.12.022

33. D. Needell, R. Zhao, A. Zouzias, Randomized block Kaczmarz method with
projection for solving least squares, Linear Algebra Appl., 484 (2015), 322–343.
https://doi.org/10.1016/j.laa.2015.06.027

34. Y. Liu, C.-Q. Gu, On greedy randomized block Kaczmarz method for consistent linear systems,
Linear Algebra Appl., 616 (2021), 178–200. https://doi.org/10.1016/j.laa.2021.01.024

35. I. Necoara, Faster randomized block Kaczmarz algorithms, SIAM J. Matrix Anal. Appl., 40 (2019),
1425–1452. https://doi.org/10.1137/19M1251643

36. C.-Q. Miao, W.-T. Wu, On greedy randomized average block Kaczmarz method
for solving large linear systems, J. Comput. Appl. Math., 413 (2022), 114372.
https://doi.org/10.1016/j.cam.2022.114372

37. W. Li, F. Yin, Y.-M. Liao, G.-X. Huang, A greedy average block Kaczmarz method for the
large scaled consistent system of linear equations, AIMS Mathematics, 7 (2022), 6792–6806.
https://doi.org/10.3934/math.2022378

38. A.-Q. Xiao, J.-F. Yin, N. Zheng, On fast greedy block Kaczmarz methods for solving large
consistent linear systems, Comput. Appl. Math., 42 (2023), 119. https://doi.org/10.1007/s40314-
023-02232-x

39. J. Briskman, D. Needell, Block Kaczmarz method with inequalities, J. Math. Imaging Vis., 52
(2015), 385–396. https://doi.org/10.1007/s10851-014-0539-7

40. Y. Zhang, H. Li, Block sampling Kaczmarz-Motzkin methods for consistent linear systems,
Calcolo, 58 (2021), 39. https://doi.org/10.1007/s10092-021-00429-2

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

https://dx.doi.org/https://doi.org/10.1016/j.laa.2018.05.009
https://dx.doi.org/https://doi.org/10.1007/s10444-023-10018-2
https://dx.doi.org/https://doi.org/10.1007/s10444-023-10018-2
https://dx.doi.org/https://doi.org/10.1007/s11075-023-01540-x
https://dx.doi.org/https://doi.org/10.1007/s11075-023-01540-x
https://dx.doi.org/https://doi.org/10.1007/s13160-023-00586-7
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2023.01.013
https://dx.doi.org/https://doi.org/10.1007/s10589-022-00382-y
https://dx.doi.org/https://doi.org/10.1007/s10589-022-00382-y
https://dx.doi.org/https://doi.org/10.1016/j.laa.2012.12.022
https://dx.doi.org/https://doi.org/10.1016/j.laa.2015.06.027
https://dx.doi.org/https://doi.org/10.1016/j.laa.2021.01.024
https://dx.doi.org/https://doi.org/10.1137/19M1251643
https://dx.doi.org/https://doi.org/10.1016/j.cam.2022.114372
https://dx.doi.org/https://doi.org/10.3934/math.2022378
https://dx.doi.org/https://doi.org/10.1007/s40314-023-02232-x
https://dx.doi.org/https://doi.org/10.1007/s40314-023-02232-x
https://dx.doi.org/https://doi.org/10.1007/s10851-014-0539-7
https://dx.doi.org/https://doi.org/10.1007/s10092-021-00429-2

33860

41. Y. Zhang, H. Li, Randomized block subsampling Kaczmarz-Motzkin method, Linear Algebra
Appl., 667 (2023), 133–150. https://doi.org/10.1016/j.laa.2023.03.003

42. R.-R. Li, H. Liu, On randomized partial block Kaczmarz method for solving huge linear algebraic
systems, Comput. Appl. Math., 41 (2022), 278. https://doi.org/10.1007/s40314-022-01978-0

43. J.-Q. Chen, Z.-D. Huang, On a fast deterministic block Kaczmarz method for solving large-scale
linear systems, Numer. Algor., 89 (2022), 1007–1029. https://doi.org/10.1007/s11075-021-01143-
4

44. Å. Björck, Numerical methods for least squares problems, Philadelphia: SIAM Publications, 1996.
https://doi.org/10.1137/1.9781611971484

45. S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis, M. Henderson, et al.,
The SuiteSparse matrix collection website interface, J. Open Source Softw., 4 (2019), 1244.
https://doi.org/10.21105/joss.01244

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 12, 33843–33860.

https://dx.doi.org/https://doi.org/10.1016/j.laa.2023.03.003
https://dx.doi.org/https://doi.org/10.1007/s40314-022-01978-0
https://dx.doi.org/https://doi.org/10.1007/s11075-021-01143-4
https://dx.doi.org/https://doi.org/10.1007/s11075-021-01143-4
https://dx.doi.org/https://doi.org/10.1137/1.9781611971484
https://dx.doi.org/https://doi.org/10.21105/joss.01244
https://creativecommons.org/licenses/by/4.0

	Introduction
	Maximum residual block Kaczmarz method
	Maximum residual average block Kaczmarz method
	Experimental results
	Conclusions

