
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(12): 33818–33842.
DOI: 10.3934/math.20241613
Received: 04 August 2024
Revised: 11 November 2024
Accepted: 19 November 2024
Published: 28 November 2024

Research article

A study of value iteration and policy iteration for Markov decision processes
in Deterministic systems

Haifeng Zheng* and Dan Wang

School of Economics, Jinan University, Guangzhou 510632, Guangdong, China

* Correspondence: Email: 15892732432@163.com; Tel: +8615892732432.

Abstract: In the context of deterministic discrete-time control systems, we examined the
implementation of value iteration (VI) and policy (PI) algorithms in Markov decision processes
(MDPs) situated within Borel spaces. The deterministic nature of the system’s transfer function
plays a pivotal role, as the convergence criteria of these algorithms are deeply interconnected with the
inherent characteristics of the probability function governing state transitions. For VI, convergence is
contingent upon verifying that the cost difference function stabilizes to a constant k ensuring uniformity
across iterations. In contrast, PI achieves convergence when the value function maintains consistent
values over successive iterations. Finally, a detailed example demonstrates the conditions under
which convergence of the algorithm is achieved, underscoring the practicality of these methods in
deterministic settings.
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1. Introduction

A Markov chain, introduced by the Soviet mathematician Andrey Markov in the early 20th century,
is a class of stochastic processes characterized by the property that future states depend only on
the current state, independent of the sequence of preceding states. Early applications of Markov
decision theory concentrated on solving optimal decision problems in deterministic settings. However,
decision-making in real-world scenarios typically involves significant uncertainty and risk, prompting
the expansion of decision theory frameworks to encompass stochastic environments. Markov decision
processes (MDPs) provide a structured approach for stochastic optimization in control systems. In
cases where the transition probability is degenerate, resulting in a deterministic distribution, the
control system is termed a deterministic system, a concept rooted in the work of Bellman [1].
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Within deterministic systems, the transition dynamics can be explicitly defined by a transition
function, situating these systems within a specialized domain of stochastic Markov decision theory
where state evolution follows deterministic rules. The foundational theory of discrete-time Markov
decision processes (MDPs), as outlined by Hernandez and Lasserre [2, 3], includes a comprehensive
treatment of random optimization problems under both discounted and non-discounted criteria.
Section 1.2 of their work provides a detailed exploration of deterministic systems, though certain
critical conclusions may not universally hold, as noted in further discussions by Hernandez et al. [4].
Earlier work by Meyn and Tweedie [5] recharacterized deterministic systems as nonlinear systems,
positing the transition function as a nonlinear mapping—a perspective demonstrated in examples
provided by Hernandez et al. [4]. While many real-world MDPs involve optimization with stochastic
(or “random”) transition probabilities, problems featuring deterministic transition probabilities are
applicable across various domains, including linear programming and certain economic models [6, 7].
These applications highlight the practical breadth of deterministic optimization within stochastic
frameworks, underscoring its relevance in systems with known transition dynamics. Building on this
framework, Hernandez et al. [4] examined the average cost optimization problem for discrete-time
MDPs in deterministic systems. Their analysis focused on establishing the conditions for the existence
of an average cost criterion, operating under the assumptions that both the state and action spaces are
Borel spaces and that all costs are non-negative. To this end, they employed three distinct approaches:
the average cost inequality, the stationary method, and the vanishing discount method. Notably, the
literature does not extend to discussing two approximate processes applicable to dynamic programming
within deterministic systems: the value iteration (VI) process and the policy iteration (PI) process.

In these three approaches, the average cost inequality method facilitates a comparative analysis
of strategies by evaluating expected returns. This framework enables decision-makers to determine
optimal strategies through the calculation of expected outcomes across various decisions. When state
transitions and rewards are stochastic, the average cost inequality serves as a tool to assess the expected
returns across potential future states, thereby addressing inherent uncertainties. For deterministic
systems, however, the average cost inequality offers a direct method for comparing deterministic
returns, leveraging the known state transition functions to provide clear strategic insights. The steady-
state approach, or stable strategy method, aims to identify policies under which the system’s state
distribution converges to a steady state over time in specific Markov decision processes. In this
equilibrium, returns across different states stabilize, emphasizing policy consistency and clarity within
deterministic systems, where predictable state transitions are key to achieving stable returns in the long
term. The vanishing discount method, on the other hand, incorporates time preference by discounting
future returns, thus emphasizing their present value. Through a discount factor—typically set between
0 and 1—future returns gradually diminish in influence, aligning decisions with immediate priorities.
In deterministic systems, a discount factor close to 1 underscores the value of long-term returns,
promoting decision-making that is stable, consistent, and geared toward sustained effectiveness.

1.1. Where do the ways of implementation originate from?

The two primary approaches proposed here aim to address dynamic programming challenges by
enhancing computational efficiency. Before establishing their validity, it is essential to review the
underlying dynamic programming framework. Building on the work of Hernandez and Lasserre [2, 3]
and Gaitsgory et al. [8], the computation of the cost function transitions from a sequence of integral
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functions to a summation of costs over specific state-action pairs. This reformulation significantly
improves the efficiency of iterative procedures and provides a foundation for examining the validity of
the value iteration (VI) process in deterministic systems.

Costa and Dufour [9] extended this approach by deriving new results for the average cost criterion
under the Feller property of transition probabilities, thus ensuring policy iteration (PI) convergence
under these conditions. However, they noted that the Feller property alone does not fully guarantee PI
validity within deterministic frameworks. In their verification, Meyn [10] demonstrated that PI has a
linear convergence rate, effectively reflecting its convergence properties. This prompts consideration
of whether similar methods can be employed to validate these approaches fully.

When analyzing the VI and PI processes under the average cost criterion, they find application
in both finite-level cost growth assessments and in operations research at the infinite-horizon level,
as initially explored by Bellman [11] and Howard [12]. On the topic of discount factors, Dai
and Menoukeu [13] investigated the optimal stopping problem for value functions under stochastic
discounting, with relevance to pulse control problems. Feinberg and Liang [14] further explored
scenarios where the discount factor approaches 1, thereby approximating deterministic behavior. Using
a similar approach, Yu et al. [15] confirmed the existence of an optimal value in game-theoretic settings
under these conditions.

In deterministic systems, discussions typically adopt an offline approach that applies to all cases
where the transition function is deterministic, regardless of whether these functions are linear or
nonlinear. This contrasts with the online policy iteration method proposed by He et al. [16], specifically
targeting nonlinear systems. He et al.’s work emphasizes real-time, dynamic processes, using policy
iteration to forecast future outcomes under uncertain conditions by approximating nonlinear problems
as linear ones. Similarly, the online reinforcement learning study by Fang et al. [17] encounters
comparable challenges. Although both approaches are based on Markov decision processes, online
reinforcement learning methods do not require prior knowledge of state transitions that are better suited
for scenarios where data collection and model training occur concurrently.

In another study by Fang et al. [18], an online fuzzy optimization algorithm based on Markov
jump systems demonstrated convergence and introduced a completely model-free, offline policy
iteration fuzzy reinforcement learning algorithm. This algorithm effectively controls without relying
on system dynamics or transition probability information. This fully model-free approach is
fundamentally different from deterministic systems that depend on known system dynamics and
transition probabilities.

1.2. Key innovations

This study primarily investigates value iteration (VI) and policy iteration (PI) for deterministic
Markov decision processes (DMDPs), introducing their application under the average cost (AC)
criterion within deterministic systems for the first time. Section 2 examines the existence of dynamic
programming processes within deterministic systems, noting that while Hernandez et al. [4] have
extensively explored these systems, many foundational theorems in this specialized domain remain
unverified.

In Section 3, we focus on establishing the validity of VI within deterministic systems. If the
value function converges under deterministic conditions, this convergence confirms the existence of an
optimal value function in DMDPs, thereby enabling the derivation of an optimal policy set. Section 4
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addresses the convergence of PI, where each step of policy evaluation and improvement incorporates
VI, iteratively refining policies toward optimality.

VI and PI serve as essential methods for analyzing the convergence of decision processes in
stochastic systems. Therefore, verifying the validity of these iterations within deterministic contexts is
vital to advancing research across the entire field of Markov decision processes.

2. Dynamic programming problems in deterministic systems

DMDPs, as a subfield of stochastic processes, have been discussed by Hernandez and Laura [4] to
have the following form for their transition function:

xt+1 = F(xt, at), t = 0, 1, 2... (2.1)

Given the cost function for each stage, the total cost function c(x, a) within time T is expressed as
follows:

JT (λ, x) :=
T−1∑
t=0

c (xt, at) . (2.2)

Equation (2.2) represents the total cost generated by the path taken in the decision-making process
under a given initial state x0 and strategy λ. Due to the infinity of time, the average cost is calculated
by taking the limit over time:

J(λ, x) = lim inf
T→∞

1
T

JT (λ, x). (2.3)

The convergence of MDPs is discussed by using the convergence of the average cost function.
VI and PI are classic methods for solving dynamic programming problems, first introduced by

Howard [12]. The following verifies whether the dynamic programming problem holds in deterministic
systems. The specific definition of dynamic programming problems is as follows:

Jt(x) := min [c(x, a) + Jt+1(F(x, a))] ,

for the above equation, the time is calculated by the backward t = N,N − 1, ..., 1, 0.

Theorem 1. Let J0, J1, ..., JT−1, JT be a function on the state space X and from t = T to t = 0 , if the
value function is defined as:

JT (x) = cT (x), t = N,N − 1, ..., 1, 0, (2.4)

the momentary cost function is:

Jt(x) = min
a∈A(x)

[c(x, a) + Jt+1(F(x, a))] .

Then, there must exist a set of strategies Λt that λt(x) ∈ Λ(x) contains the minimum value in the above
equation, i.e.:

Jt(x) = c(x, a) + Jt+1(F(x, a)),

and for each stage, there will exist a deterministic policy λ∗ = {λ1, λ2, . . . , λt−1} such that the following
equation holds:

J∗(x) = J0(x) = J ( f ∗, x) . (2.5)
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Proof of Theorem 1. Let λ = λt be the set of fixed strategies, and Ct be the value of the cost from the
time T to the time t, and given the state xt = x at the moment t, if t = 0, 1, ...,T − 1.

Ct(λ, x) =
T−1∑
n=t

c (xn, an) + cT (xT ) , (2.6)

CT (λ, x) = cT (xT ) = cT (x), xT = x, (2.7)
J(λ, x) = C0(λ, x)

=

T−1∑
n=0

c (xn, an) + cT (xT ) .

Assuming that for all t = 0, 1, ...,T

Ct(λ, x) ≥ Jt(x) (2.8)

holds. When λ = λ∗,
Ct (λ∗, x) = Jt(x) (2.9)

holds. In particular when taken to t = 0, for any state x, there are

J(λ, x) ≥ J0(x)andJ (λ∗, x) = J0(x).

If the hypothesis holds, the desired result Eq (2.5) is obtained.
Now, verify Eqs (2.8) and (2.9): When t = T , it is obtained from Eqs (2.4) and (2.7):

CT (λ, x) = JT (x) = cT (x).

The inductive hypothesis method: if for t = T − 1, ..., 1, 0:

Ct+1(λ, x) ≥ Jt+1(x), x ∈ X

holds, then for Eq (2.7).

Ct(λ, x) = c(x, a) +
T−1∑

n=t+1

c (xn, an) + cT (xT )

≥ min
a∈A(x)

[c(x, a) + Jt+1(F(x, a))]

= Jt(x).
So there is:

Ct(x) ≥ Jt(x).

If t = 0, then there is:

J(λ, x) ≥ J0 : = min
a∈A(x)

[c(x, a) + J1(F(x, a))]

= min
a∈A(x)

[c(x, a) + c (x1, a1) + J2 (F (x1, a1))]

= min
a∈A(x)

T−1∑
t=0

c (xt, at) + JT (x)

 .
The equation holds when the set of optimal strategies is taken. □

It follows from the above proof that DP holds under deterministic systems.
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3. Value iteration in deterministic systems

In deterministic systems, dynamic programming problems offer a clearer and more efficient
framework for applying value iteration and policy iteration, facilitating a faster determination of value
functions or optimal policy sets. Section 3 centers on an in-depth examination of value iteration,
exploring its convergence properties and implications for identifying optimal solutions.

3.1. The basic idea of value iteration

In the deterministic system, the cost function is shown in Eq (2.2), and the AC is shown in Eq (2.3),
if we make:

J∗n(x) =: min
a∈A(x)

Jn(λ, x).

For any n ≥ 1, representing the optimal cost of the n-th stage and the:

J∗0(x) = 0,

J∗n(x) = min
a∈A(x)

[
c(x, a) + J∗n−1(F(x, a))

]
.

Definition 1.
xt+1 = F (xt, at) = F (F (xt−1, at−1) , at)

= F (F (F . . . (F(x, a), a1)) , at)︸                               ︷︷                               ︸
t

,

F (F(F, . . . (F(x, a))), at) =: F t+1 (x, (at, . . . , a)) .

Assumption 1. The OCP (2.1)–(2.3) satisfies:

(1) The value function for each stage t in sequence
{
J∗n(x)

}
is equicontinuous;

(2) There exists a continuous function F such that xn+1 = F (xn, an);
(3) If there exists a termination cost function l(x) that satisfies:

−N ≤ l(x) ≤ b(x),

b(x) is any bounded non-negative function with:

b (F (x, (λn−1, λn−2, . . . , λ0)) ≤ L(x) ,

L(x) for a mappingX → R hold.

In the Borel space, consider a fixed state z and define the following equations:

pn(x) := J∗n(x) − J∗n(z),

qn(x) := J∗n(x) − J∗n−1(x).

The following conditions are given:

pn(x)→ l(x), qn(x)→ ρ∗ ∀x ∈ X,

where (ρ∗, l(x)) is the solution to the AC equation.
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The purpose of VI is to find λn such that the following equation holds true:

J∗n(x) = c (x, λn) + J∗n−1 (F (x, λn)) .

Introduce the canonical triplet(ρ∗, l(x), λ∗) to satisfy the following equation:

ρ∗ + l(x) = c(x, a) + l∗ (F (x, λ∗)) . (3.1)

In Eq (3.1), ρ∗ denotes the average optimal cost, l(x) denotes a termination cost function, and λ∗

denotes the optimal strategy.

3.2. Value iteration processes

Theorem 2. For the difference function:

h(x) := J∗n + l (xn) − nρ∗, x ∈ X. (3.2)

For all x ∈ X and n ≥ 0 , the following three inequalities hold:

(1) h(x) ≥ −N;
(2) hn (Fm (x, (λn+m−1, λn+m−2, . . . , λn)) ≤ hn+m(x) ;
(3) hn(x) ≤ hn−1 (F (x, λn)) .

Proof of Theorem 2. (1) By

Jt(λ, x, l) =
T−1∑
t=0

c (xt, at) + l (xT )

= Jt(λ, x) + l (xT ) .

Also due to −N ≤ l(x) ≤ b(x) :
J∗n(x, l) := min

a∈A(x)
Jn(λ, x, l),

when l(x) ≡ 0 is available,
J∗n(x) := min

a∈A(x)
Jn(λ, x)

is the general cost function:
Jn (λ∞, x, l) = J∗n(x, l) = nρ + l(x).

When ρ = ρ∗,:
nρ∗ + l(x) ≥ J∗n(x) + l(x) ≥ J∗n(x) − N,

therefore
nρ∗ + l(x) − J∗n(x) ≥ −N.

(2)
hn(F(x, λ)) =nρ∗ + l(F(x, λ)) − J∗n(F(x, λ))

≤ nρ∗ + J(F(x, λ)) + c(x, λ) − J∗n+1(x)
≤ (n + 1)ρ∗ + l(x) − J∗n+1(x).

Therefore, we get hn(F(x, λ)) ≤ hn+1(x), which is the same as

hn (Fm (x, (λn+m−1, λn+m−2, . . . , λt))) ≤ hn+m(x).
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(3)
ρ∗ + l(x) ≤c (x, λn) + l (F (x, λn))

= J∗n(x) + h (F (x, λn)) − J∗n−1 (F (x, λn)) ,

ρ∗ + l(x) − J∗n(x) ≤ h (F (x, λn)) − J∗n−1 (F (x, λn)) ,

nρ∗ + l(x) − J∗n(x) ≤ (n − 1)ρ∗ + h (F (x, λn)) − J∗n−1 (F (x, λn))x,

hn(x) ≤ hn−1 (F (x, λλ)) .

□

Theorem 3. For the sequnce {hn(x)}:

(1) {hn(x)} is uniformly continuous and bounded;
(2) For each sub-sequence

{
hni(x)

}
there exists a constant k such that

lim
i→∞

hni(x) = k, ∀x ∈ X;

(3) If any subsequence
{
hni(x)

}
converges to the unique constant k, then {hn(x)} converges to the

constant k.

Proof of Theorem 3. (1) For any x1, x2 ∈ X , from Eq (3.3) we can obtain:

|hn (x1) − hn (x2)| ≤ |l (x1) − l (x2)| +
∣∣∣J∗n (x1) − J∗n (x2)

∣∣∣ ,
due to the uniform continuity of the function J∗n, it is bounded. Furthermore,

hn(x) ≤ h0 (Fn (x, λn−1, . . . , 0)) ,

since: h0 is l0(x) , and l(x) is finite, we have

hn(x) ≤ h0 (Fn (x, λn−1, . . . , 0)) ≤ L(x),

thus:
−N ≤ hn(x) ≤ L(x), ∀x ∈ X.

(2) Assuming
{
hni(x)

}
is a subsequence of {hn(x)} by (1) and Ascoli’s theorem [2, 3], it is known that

as i→ ∞ converges to a continuous function θ,

hni(x)→ θ(x),∀x ∈ X, (3.3)

hn+m (Fn (x, (λn+m−1, . . . , λn))) ≤ hn+m(x).

When n is fixed and m→ ∞,
hn+m(x)→ θ(x)

for deterministic systems, the probability P values are either 0 or 1. As P (Fm(x, a)) = 1, the VI
converges and satisfies ∑

hnP ≤ lim
X

min hn (Fm (xn, an)) ≤ θ(x). (3.4)
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By Fatou’s lemma: ∑
θ(x)P ≤ lim min

X
hn+m (F (xn+m, an+m)) ≤ θ(x),∑
θ(x)P ≤ θ(x),

let
k := min

X
θ(x)

be such that
k ≤
∑
θ(x)P ≤ k,

thus ∑
θ(x)P = k.

Furthermore, due to the arbitrariness of P we know that θ(x) = k. Since

lim
i→∞

hti(x) = k,

if
{
hni(x)

}
is assumed not to converge to k, implying the existence of ε > 0 such that the subsequence{

hni(x)
}

converges in the following manner: ∣∣∣hni(x) − k
∣∣∣ > ε.

Contradicting (2).
(3) If (2) holds, for another sub-sequence

{
hn j(x)

}
of {hn(x)}, as in the proof of (2), if

{
hn j(x)

}
converges

to k′, then from Eqs (3.3) and (3.4) we can deduce that k ≥ k′ , k ≤ k′ and for all states x,

hn(x)→ θ(x)

holds. Otherwise, the sequence {hn(x)} and
{
x j

}
must converge to∣∣∣∣hn j

(
x j

)
− k
∣∣∣∣ > ε, ∀i ≥ 1

contradicts the condition of 3, so
lim
n→∞

hn(x) = k.

□

Theorem 4. (Theorem of VI Convergence): With the above assumptions holding, the value iteration
processes are convergent, i.e., pn(x) converges to l(x) and qn(x) converges to ρ∗ and the following
holds:

lim
n→∞

pn(x) = l(x),

lim
n→∞

qn(x) = ρ∗.
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Proof of Theorem 4. For the canonical triplet (ρ∗, l, λ) that solves the average optimal equation (3.1),
and when n→ ∞ , the value of the deviation function converges to a constant k . Hence, for

qn(x) = ρ∗ − hn(x) + hn−1(x),

pn(x) = l(x) − hn(x) + hn(z),

satisfy:
lim
n→∞

pn(x) = l(x),

lim
n→∞

qn(x) = ρ∗.

Therefore, the VI converges. □

4. Policy iteration in deterministic systems

In Section 3, the convergence of value iteration (VI) within deterministic systems is confirmed
under specific assumptions. Once the optimal value function is obtained in practical applications,
the corresponding optimal policy can then be derived. Policy iteration (PI) is generally employed to
identify the optimal policy through an iterative approach that alternates between policy evaluation and
policy improvement, progressively refining the policy until optimality is achieved. Each step in the
PI process involves evaluating the policy using the value function and improving the policy via the
selection function. Section 4 delves into the application and convergence of PI within deterministic
systems, emphasizing its effectiveness in obtaining optimal decision policies.

4.1. The basic idea of policy iteration

For the initial stage of the policy λ, there exists a cost function V (λ0, ·) related to the discount
factor α:

Vε(λ, x) :=
Tλ∑
t=0

εtc (xt, at) ,

the relationship between its cost function and the AC function Eq (2.3) without the discount factor is:

(1 − ε)Vε(λ, x) = J(λ, x) + (1 − ε)
Tλ∑
t=0

εt (c (xt, at) − J(λ, x)) . (4.1)

When α → 1 , V → J. The cost function is defined V(λ0, ·) as ω0(·) and it satisfies the following
equation:

ω0(x) = c (x, λ0) + εω0 (F (x, λ0)) . (4.2)

A kernel function is defined by Eq (4.1):

Kt(x, A) := (1 − ε)
Tλt−1∑

i=1

εi (c (xi, ai) − ρt) . (4.3)
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Equation (4.3) signifies iterating into the system with a policy λ0, reaching time t and utilizing this
kernel function to reflect the deviation in function values. In deterministic systems, the discount factor
ε→ 1. The selection rules for policy iteration are introduced:

λt(x) := arg min
a∈A(x)

(c(x, a) + εωt−1(F(x, a))) , (4.4)

κt−1 = (x, a).

From Eq (4.4), it follows that the policy λ1 at the first time step leads to:

c (x, λ1) + εω0 (F (x, λ1)) = min
a∈A(x)

[c(x, a) + εω0(F(x, a))] (4.5)

at this point
ω1(·) := V (λ1, ·).

Given the optimal policy λt at t-th, the cost function along the path is as follows:

V (λt, ·) =: ωt(·),

the optimal policy λt+1 at time t + 1 satisfies the following equation:

c (x, λt+1) + εω0 (F (x, λi+1)) = min
a∈A(x)

[c(x, a) + εωi(F(x, a))] . (4.6)

Equations (4.2), (4.4)–(4.6) represent the processes of PI in MDPs, where in each iteration, the
minimum cost for each stage needs to be calculated to choose the optimal policy based on this minimum
cost.

Remark: The function presented in Eq (4.3) draws on concepts introduced by Meyn [10], where it
is described as the sum of probability distribution functions in stochastic systems. In deterministic
systems, however, the probability distribution values are restricted to either 0 or 1, allowing for
integration with the discrepancy function. From Eq (4.3), it becomes evident that the core mechanism
of policy iteration involves alternating between policy evaluation and policy improvement through the
value iteration method. At each step, this approach enables the selection of an optimal policy based on
iterative evaluation.

4.2. Policy iteration processes

Without considering the termination cost l(x), the discrepancy value function h(·) for Eq (3.2) in
Section 3 is redefined as follows:

H(x) =
T−1∑
t=0

c̄ (xt) ,

c̄ = c − ρ.

Theorem 5. Assuming there exists an initial policy λ0, and the AC generated by the iteration processes
at this point is ρ0, if the following two conditions hold for the DMDPs:

(1) The cost function is continuous in product space and there exists a cost function c(x) such that for
any κ there exists c(x, a) ≥ c(x);
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(2) There exists a state χ ∈ X and a continuous function s : X → (0, 1) satisfying the following
conditions:
When n ≥ 1 , there exists a canonical triplet (λn−1,Hn−1, ρn−1), which is generated by the initial
policy iteration λ0 under Eq (4.4), further λn obtained by iteration in Eq (4.5) satisfies the
following inequality:

Kn(x, χ) ≥ s(x),∀x ∈ X, (4.7)

then for stage n-th, the algorithm will have a solution (λn,Hn, ρn) and the related value function:

Hλn(x) =
Tλn−1∑
n=0

cλn (xi, ai) , n ≥ 0,

is finite and satisfies Proposition 1.

Remark: In stochastic processes, defining a continuous function s(x) [10] ensures that for any state
x, the probability of transitioning to another state remains within the range (0, 1) until convergence is
achieved in the iteration process. The kernel function used in these processes is given by:

Kn := (1 − ε)
∞∑

n=0

εnPn,

where ε represents a discount factor. In contrast, within deterministic systems, the probability of states
participating in the iteration path due to policy selection is precisely 1. Thus, this paper primarily
employs the discrepancy value function in place of the transition function used in stochastic processes,
as indicated in Eq (4.3).

In the context of deterministic systems, kernel functions play a critical role in assessing the stability
and convergence of policy iteration. Specifically, when the result of a kernel function equals zero, it
indicates that the selected set of policies fails to consistently follow the same iterative path throughout
the policy iteration process. Thus, the kernel function value reflects the consistency and reliability of
policies during iteration. Moreover, the construction of the kernel function is crucial for verifying
the convergence of policy iteration. In stochastic processes, the kernel function helps determine
whether each state can effectively converge to a corresponding state at the boundary, thus ensuring
convergence of the entire policy iteration. However, in deterministic systems, the lack of randomness
means there is no need to consider boundary state points. Instead, the focus shifts to constructing
a kernel function that verifies whether the chosen policy function ensures that the optimal state
consistently follows the same iterative path. This simplification renders kernel function analysis in
deterministic systems more efficient and straightforward. Additionally, enhancing the construction
methods of kernel functions—such as refining their definitions and computational approaches—can
improve the performance of policy iteration, thereby offering stronger theoretical support for analyzing
deterministic systems.

Property 1. Difference function: The discrepancy cost function has the following properties:

Hn−1
(
Fλn−1(x, a)

)
= Hn−1(x) − c(x, a) + ρn−1, (4.8)
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Hn
(
Fλn(x, a)

)
= Hn (xn) − c̄ (xn) , (4.9)

Hn−1
(
Fλn(x, a)

)
= Hn−1(x) − c̄ (xn) − γn, (4.10)

c̄ (xn) = c (xn) − ρn.

Equation (4.8) represents a degenerate form of the AC equation, where

κn = (x, a)

denotes the feasible state-action pair under the optimal policy at the n-th stage. Hn−1 represents the
deviation function obtained from the n− 1th stage of PI, with the value of this deviation function being
the sum of the differences between the cost function and the AC along the subsequent iteration path.

Equation (4.9) indicates that the discrepancy value under the optimal policy differs from the
discrepancy value along any feasible path state at the n-th stage. Equation (4.10) introduces the
sequence γn , which signifies that as the iteration process reaches the n − 1-th stage, the current
deviation function is evaluated, and the next optimal policy is applied to continue calculating the
deviation function along the current path. If the current selection in the iteration process fails to lead to
convergence, even after selecting the next optimal policy, deviations may persist that the system cannot
accept. In this context, the discrepancy γ describes the potential for convergence within the iterative
process.

From Eq (4.4):
c
(
Fλn(x, a)

)
+ Hn−1

(
Fλn(x, a)

)
≤ c(x, a) + Hn−1(x, a). (4.11)

The transformed form of Eq (4.8) is as follows:

c(x, a) + Hn−1
(
Fλn(x, a)

)
= Hn−1(x) + ρn−1, (4.12)

By combining Eqs (4.11) and (4.12), we obtain:

H
(
Fλn(x, a)

)
+ c
(
Fλn(x, a)

)
≤ Hn−1(x) + ρn−1;

H(x) − c̄
(
Fλn(x, a)

)
− γn + c

(
Fλn(x, a)

)
≤ H(x) + ρn−1.

Therefore, it is not difficult to derive:
γn ≥ ρn − ρn−1. (4.13)

If the sequence {ρn} is monotonically decreasing, then there exists a lower bound 0 for {γn} and also a
lower bound for the sequence {Hn}.

Proposition 1. (1) Uniform boundedness: For some constants 0 < N < ∞ such that

inf
x∈X,n≥0

H (xn) > −N;

(2) Almost monotonicity:
There exists a sequence of functions {gn : n ≥ 0} such that:

gn(x) ≤ gn−1(x) ≤ . . . ≤ g0(x), x ∈ X, n ≥ 0,

for some positive sequence satisfying the linear relationship

gn(x) = αnh (xn) + βn. (4.14)

When n increases αn ↓ 1, βn ↓ 0.
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In reference [10] the stability of the decision processes are reflected through the regression of linear
functions. In this paper, the convergence of the cost function also satisfies this condition, where as n
increases, the function H(xn) point of convergence to gn(x), i.e.:

H(x) := lim
n→∞

gn(x).

Proof of Theorem 5. Let S be a compact set:

S :=
{
x : c(x) ≤ 2ρ0

}
.

The upper bound for c(x) is not restricted to a specific value 2ρ0 and can also be any finite function that
contains c(x). If there exists δ > 0 such that

Kn(x, χ) ≥ δ. (4.15)

The state χ that each λn−1 can reach after the n−1th stage under the policy. The function H(x) is almost
everywhere bounded, and from Eqs (4.10) and (4.11), we have

Hn−1
(
Fλn(x, a)

)
≤ Hn−1(x) −

1
2

c (xn) + ρn−1PS .

If the selected state falls within the set S , then PS = 1, for the cost function at stage n the cost function
is obvious, it is evident:

{x : c (xn) ≤ ρn−1} ⊂ S .

By Fatou’s lemma, it is obtained that

Tχ−1∑
i=0

cλn (xi, ai) ≤ 2

Hn−1(x) − Hn−1(x) + ρn−1

Tχ−1∑
i=0

Ps (xi)

 .
The following inequality for the sum of probabilities falling into the set S ensures the validity of the
following expression:

Tχ−1∑
i=1

Ps (xi) ≤
Tχ−1∑
i=0

Kn (xi, S ) /δ ≤ επ/δ.

Due to the boundedness of the cost function c(·), the following holds:

Tχ−1∑
i=0

Kn (xi, S ) = (1 − ε)
Tχ−1∑
i=0

εi (c (xi, ai) − ρt) ≤ (1 − ε)π
ε

1 − ε
= πε,

π represents a constant for the difference between the maximum cost and the average cost. The original
expression becomes:

Tχ−1∑
n=0

c (xn, an) ≤ 2
[
Hn−1(x) + ρ0π/δ

]
.

In particular, when:
N = ρ0π/δ,
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we have:
H(x) ≥ −N.

By Eq (4.14), the following inequality can be derived:

Hn−1
(
Fλn(x, a)

)
≤ Hn−1 (xn) − c (xn) + ηn−1,

Hλn(x) =
Tχ−1∑
i=0

c (xi)

=

Tχ−1∑
i=0

[
c (xi) − ρn

]
=

Tχ−1∑
i=0

[
(c (xi) − ρn−1) + (ρn−1 − ρn)

]
≤ Hn−1(x) + (ρn−1 − ρn)

Tχ−1∑
i=0

c (xi)

≤ Hn−1(x)
[
1 + 2 (ρn−1 − ρn)

]
+ 2 (ρ0π/δ) (ρn−1 − ρn) .

Thus, an upper bound for the discrepancy function is obtained as follows::

−ρ0π/δ ≤ Hn(x) ≤ (1 + ξn) Hn−1(x) + (ρ0π/δ) ξn,

ξn = 2 (ρn−1 − ρn) ,

Hn ≤ (1 + ξn) Hn−1(x) + (ρ0π/δ) ξn.

Likewise, it can be obtained that:

Hn ≤ (1 + ξn) Hn(x) + (ρ0π/δ) ξn+1.

Thus, there exists:

gn(x) :=

 ∞∏
i=n+1

(1 + ξi)

 Hn(x) + (ρ0π/δ)
∞∑

i=n+1

ξi

 .
Let

αn =

∞∏
i=t+1

(1 + ξn+1) , βn =

(ρ0π/δ)
∞∑

i=n+1

ξi

 ∞∏
i=n+1

(1 + ξn+1)

satisfying Eq (4.14). □

This completes the proof. Theorem 5 primarily describes the characteristics that policy iteration
exhibits in deterministic systems, laying the foundation for the subsequent theorems.
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4.3. Convergence of the PI

In the previous section, the discussion of PI shifted focus to the discrepancy function, which
has demonstrated that the cumulative cost discrepancy converges linearly to a value function. This
result shows that in the decision-making process, the discrepancies between stages gradually stabilize,
providing a preparatory condition for the convergence of PI. As a consequence, this approach relaxes
the verification conditions for convergence. The following section will further validate the convergence
of PI.

Assumption 2. For

(1) Each stage n, if the policy iteration generates a canonical triplet (λn−1,Hn−1, ρn−1) satisfying the
Poisson equation (4.8):

Hn−1
(
Fλn−1(x, a)

)
= Hn−1(x) − c(x, a) + ρn−1,

which results in a solution and for Ht−1 being a bounded function

Hn−1
(
xλn

)
≤ Hn−1 (xn) − cn−1 (xn) + ηλn−1 ,

Hn−1(x) it can be minimized, utilizing the decision Eq (4.4)

λn(x) := arg min
a∈A(x)

[c(x, a) + Hn−1(x, a)]

to find the next stage’s policy λn(x) for the next stage n.

(2) For a fixed x, the cost function c(x, ·) and the function c(x) on the action space are functions
resembling a norm , for any x ∈ X,n ∈ Z+ for any satisfying:

∞ > Kn(x, A) ≥ c(x).

Under this assumption, the algorithm iteratively generates stable policies.

Theorem 6. Strategy convergence theorem: If the above assumptions hold, for a certain stage n, the
policy set {λi : i < n} and the associated cumulative discrepancy functions {Hi : i < n} are both defined
through the policy iteration process, provided that:

(1) The relevant value function has a lower bound i ≤ n − 1;
(2) Under tight sets, the level sets of the value functions of the MDPs obtained under the strategy as

per assumption 2 are all bounded.

Then for the PI, there exists a solution (λn,Hn, ρn) such that

(1) The cumulative cost Hn discrepancy is bounded from below;
(2) When 0 ≤ i ≤ t , the constant ρi is the average cost function at i stage, i.e.,

ρi = J (λi)

and the cost sequence decreases, i.e.:

ρ0 ≥ ρ1 ≥ . . . ≥ ρn.
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If the cumulative cost discrepancy
Hn−1 = Hn,

then the policy iteration converges.

Remark: In deterministic systems, the deterministic nature of the transition function and the
validity of the average cost optimality inequality imply that the selection of policies during the iterative
process effectively transforms into the selection of iterative paths. On one hand, the reduction of
randomness contributes to enhancing the convergence of the algorithm. Throughout the iteration,
there is an expectation that the optimal policy obtained at each stage will be included along the
same iterative path. An increase in path determinacy signifies that policy selections will become
more consistent, thereby improving the likelihood of converging to the optimal policy. On the other
hand, the reduction of randomness can elevate the efficiency of the algorithm. When paths are more
stable, the outcomes obtained during iteration will become more reliable, assisting in the reduction
of unnecessary computations and accelerating convergence speed. The reduction of randomness
reinforces the predictability of the decision-making processes, allowing the iterative algorithm to
better assess the convergence of the policies. It is only when the randomness in path selection is
diminished that the convergence conditions for the iteration can be satisfied, which is advantageous for
both algorithm design and performance evaluation. In summary, as the number of iterations increases,
the reduction of path randomness not only decreases the computational load but also provides a clearer
indication of whether the iteration can converge, ultimately enhancing the performance of the algorithm
in deterministic systems.

5. Application of VI and PI

In Sections 3 and 4, the VI and the PI are proved to hold under deterministic systems. The idea is to
optimize the policy step by step until the optimal policy is found by performing the two steps of policy
evaluation and policy improvement alternately. In the policy iteration process, the two steps of policy
evaluation and policy improvement are performed at each iteration, but the value function is used in
each step. In Section 4, the main focus is on the PI for deterministic systems.

Example: (Brock-Mirman model [6, 7]): For the infinite model, the criterion of discounting and
non-discounting was introduced by Brock and Mirman [6, 7]. The state and control variables xt, at

denote capital and expenses at the time t = 0, 1, 2, ..., respectively. The state space is X = (0,∞), and
the action space A = (0,∞) are Borel space, A(x) =

(
0, rxθ

]
. The dynamic process of the system is as

follows:
xt+1 = F(x, a) = rxθt − at, t = 0, 1, 2 . . . (5.1)

Its initial state is x0. Consider the objective function is to optimize the long-term AC:

J (π, x0) = lim inf
T→∞

1
T

T−1∑
t=0

log (at) . (5.2)

Proof. From:

J (π, x0) = lim inf
T→∞

1
T

T−1∑
t=0

log (at) ,
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it can be shown that the cost function is:

c(x, a) = log(a), (5.3)

for the AC inequality:
ρ∗ + l(x) = c(x, a) + l∗ (F (x, λ∗)) . (5.4)

5.1. Use of VI

These are the results obtained by Hernández et al. [4] on the AC criterion, which will be used as a
basis to continue the discussion of the value iteration process in the following: assumption 1 is satisfied
for Eqs (5.2)–(5.4), and for the difference function:

ht(x) = J∗t + l(x) − tρ∗

=
∑t−1

i=0 log (ai) + l (xt) − tρ∗

= θ−θ
t

1−θ log x0 +

[
θ

t− θ−θ
t−1

1−θ
1−θ +

θ
1−θ ·

1−θt−1

1−θ

]
log rθ − t θ1−θ log(rθ).

If t → ∞, then:

lim
t→∞

ht =
θ

1 − θ
[
log x0 + log rθ

]
=

1
1 − θ

log x0rθ.

Therefore, it can be seen that the discrepancy function is converging to a fixed value, and the iterative
convergence of values is satisfied. □

5.2. Use of PI

Continuation of Brock-Mirman model. If the tth difference function:

ht−1(x) =
Tλt−1−1∑

i=0

[
log ai−1 − ρt−1

]
already satisfies Properties 1 and 2, then for the difference function at tth

hi(x) =
Tλt−1∑

i=0

[
log ai − ρt

]
=

Tλt−1∑
i=0

[
log ai − ρt−1

]
+ Tλt (ρt−1 − ρt) .

The Tλt th is equal to the Tλt−1; this is because the strategy λt at the tth is continued to be realized under
the path generated by λt − 1, so there is, when t → ∞:

ht(x) = ht−1(x).

Satisfying the convergence of the PI. □
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In the financial domain, many problems exhibit significant nonlinear characteristics, such as
portfolio selection and option pricing. These nonlinear challenges often involve multiple factors, each
contributing complex nonlinear effects. Such intricate dependencies not only complicate the direct
resolution of the problems but also significantly increase the dimensionality of the state space.

In deterministic systems, the processes of value iteration and policy iteration provide an effective
framework for addressing these challenges. In high-dimensional state spaces, these algorithms
consolidate information from multiple related states into an abstract value by updating the state
value function. This abstraction simplifies the decision-making process and reduces dimensionality,
making it more feasible to handle high-dimensional decision problems. The Bellman equation plays
a central role in this context. It recursively updates state values, effectively performing expected
calculations of potential future returns for each state. Through each update, the algorithm uses existing
information to assess the effectiveness of the current policy, thereby refining the strategy over time.
Due to the dynamic nature of the system, the value dependencies among different states lead to the
phenomenon of information sharing. This implies that the algorithm can efficiently synthesize and
integrate information across iterations, utilizing prior learning to inform current decision-making. This
mechanism of information sharing enables the derivation of effective strategies, even in the presence
of complex, high-dimensional nonlinear problems.

Value iteration and policy iteration under deterministic systems not only offer a clear decision-
making process but also provide theoretical support for tackling nonlinear problems. They leverage
the interdependencies among states and the mechanisms of information sharing, thereby effectively
addressing complex decision-making challenges.

5.3. Simulation

Algorithm1. Deterministic system value iteration.

Step1: Initialization
Set k = 1. Initialize the value function V(0) = 0 for all states. Choose a small constant ϵ > 0 as
the accuracy threshold, the iteration counter k = 1 and begin the iterative process.

Step2: Iteration
For each state x ∈ S , calculate the value of the system under each action a ∈ A. For each action
a, calculate:

V(x) = c(x, a) + γ · V(T (x, a)),

where T (x, a) is the transition function, and c(x, a) is the cost associated with action a at state x.
Record the maximum change δ in the value function across all states:

δ = max
x∈S
|V(x)new − V(x)old|.

Step3: Convergence Check
If δ < ϵ, stop the iteration and return the value function V as the solution. Otherwise, set k = k+1
and return to Step 2 for the next.

Step4: Output the Results
Once the iteration has converged, output the final value function.
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In the value iteration, with the number of states is set to 10, the number of actions is set to 3, and
the threshold value is set to 1 × 10−3; the following results are obtained:

• Final value function: [0, 3, 3, 0, 0, 0, 3, 3, 0, 0].
• Final average cost: 1.2.
• Figure 1.
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Figure 1. Value iteration.

From the above results, we can obtain the following results:

(1) Final value function: This vector represents the optimal value for each state, obtained by the
convergence of the value iteration algorithm. Some states (positions 2, 3, 7, and 8) have a higher
value of 3, while other states have a value of 0. This indicates a higher expected return in these
particular states, possibly due to their ability to reach the target state faster or reduce the average
cost more effectively. The distribution of the value function reflects the priority or preference in
different states, where states with a value of 3 are considered more advantageous, due to higher
rewards or lower costs in these states.

(2) Average cost: The average cost represents the expected cost per time step over an infinite
operational period. The final average cost is 1.2, indicating that the current policy stabilizes
the system’s long-term operating cost.

(3) Convergence analysis:

• Average cost convergence (middle plot): The average cost stabilizes at 1.2 after a few
iterations, indicating that the current policy is near-optimal, as the average cost no longer
fluctuates significantly. The stability of the average cost reflects the policy’s effectiveness in
balancing cost and return, allowing the system to operate at a low cost.
• Policy change convergence (left plot): In the left plot, the policy change rate rapidly decreases

to near zero after the initial few iterations. This fast convergence aligns with the final value
function and average cost results, indicating that the policy iteration finds a stable set of
policies within a few steps, maintaining the final average cost at 1.2.
• Time per iteration (right plot): The time per iteration remains constant, showing that

computation time did not increase with changes in state or policy. This is due to the
simplification of the state space or the optimized handling of the algorithm.
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Algorithm2. Deterministic system value iteration.

Step1: Initialization
Define the state space with size numstates, and the action space with size numactions. Initialize a
random policy and value function V . Set a convergence threshold δ to track error.

Step2: Iteration
Evaluate the value function V under the current policy. Initialize δ = 0. For each state s, compute
the updated value function:

V(s) = c(s, π(s)) + V(T (s, π(s))),

where T (s, π(s)) denotes the state transition given state s and action π(s). Calculate the difference:

δ = max(δ, |Vnew(s) − V(s)|).

Continue until δ ≤ ϵ.
Step3: Policy Improvement

For each state s, improve the policy by choosing the action that minimizes:

π(s) = arg min
a

(c(s, a) + V(T (s, a))) .

Check if the policy π changes. If the policy has changed, continue to the next step; otherwise,
terminate the iteration.

Step4: Record and Analyze
Track the policy change (as error), average cost, and time per iteration to assess the convergence
and performance of the algorithm.

Step5: Check Convergence and Output
If the policy π remains stable (no changes), output the final policy and value function. Otherwise,
return to Step 2 and continue iterating.

In the policy iteration, when the number of states is set to 10, the number of actions is set to 3, but
the threshold value is set to 1 × 10−6 (policy iteration is faster), the following results are obtained:

• Final Policy: [0, 0, 0, 2, 1, 0, 0, 0, 2, 1].
• Final Value Function:[0, 0, 0, 0, 0, 0, 0, 0, 0, 0].
• Final average cost: 0.6.
• Figure 2.
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Figure 2. Policy iteration.

From the above results, we can obtain the following results:

(1) Final policy: The final policy vector represents the optimal action for each state in the state space.
Each element corresponds to an action that minimizes the long-term cost for the specific state. In
this case, the policy has converged, indicating the algorithm has found the preferred actions for
each state based on the cost and transition functions.

(2) Final value function: The value function for each state has converged to zero, suggesting that each
state’s cost balances out over time, leading to zero additional value. This outcome aligns with the
final average cost and implies a steady-state configuration.

(3) Final average cost: The average cost per time step, computed over an infinite horizon, converges
to 0.6. This value indicates the expected cost that the system incurs per step under the optimal
policy, reflecting a balance that minimizes the total cost per step.

(4) Convergence analysis:

• Convergence rate of policy iteration (left plot): The policy change rate decreases rapidly,
converging toward zero within a few iterations, indicating that the policy stabilizes quickly.
• Average cost convergence (middle plot): The average cost converges smoothly to 0.6,

maintaining stability across iterations, suggesting the system reaches a steady state with
minimal fluctuation in cost.
• Time per iteration (right plot): The time per iteration remains consistent, indicating that

each iteration takes a similar amount of computational time, reflecting the stability of the
processes.

Based on the simulation results mentioned above, we observe that the iterative process in
deterministic systems is very rapid. When the initial threshold is set to 1 × 10−3 , policy iteration can
achieve convergence in a remarkably short time. Therefore, even with increased precision requirements
during the policy iteration process, convergence can still be realized within a short period (1 × 10−6).

As can be clearly seen from Figures 1 and 2, stability can be achieved in the iterative process
without substantial fluctuations. This phenomenon is largely attributed to the fact that, in deterministic
environments, the state transitions of the system are deterministic and the entire iterative processes
are conducted offline. This presents a significant contrast to the work of He [16] and Fang [17, 18].
Thus, the degraded value iteration and policy iteration are more suitable for this specific subfield of
deterministic systems.
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6. Conclusions

This study primarily focuses on demonstrating the convergence of the value iteration and policy
iteration under the average criterion in deterministic systems. The main areas of focus are divided into
the following three parts:

(1) Verification of the validity of DP in deterministic systems;
(2) Convergence verification of the VI based on the AC criterion;
(3) Convergence verification of the PI based on the AC criterion.

In deterministic systems, value iteration (VI) can converge to the optimal value function, exhibiting
a notably improved convergence speed. Furthermore, policy iteration (PI), based on the value function,
also demonstrates enhanced convergence. A comparison between the contents of Sections 3 and 4
reveals that PI is more intricate than VI. In practical applications, PI is often easier to understand, and
the policy derived at each update step is more meaningful compared to the policy obtained after VI
convergence. As demonstrated in Section 5, both value iteration and policy iteration algorithms in
deterministic systems can more effectively address certain nonlinear problems.

However, the limitations of existing theorems primarily lie in their lack of robustness. Specifically,
the theorems regarding stochastic Markov processes necessitate considering the “boundary”
surrounding each state point, which influences the selected state and typically requires integration
to eliminate uncertainty. In contrast, deterministic systems do not face this uncertainty: given a
current state and action, the subsequent state will be deterministic, not subject to random fluctuations.
Therefore, the transition function in deterministic systems needs adjustment. The originally stochastic
transition function, arising from multiple state points, can be simplified into an indicator function,
rendering state transitions clear and stable. This transformation not only simplifies the complexity of
the model but also allows for the avoidance of challenges and limitations related to randomness in the
application of theorems.

During the derivation process in this study, it was further observed that the policy iteration algorithm
in deterministic systems exhibits decreasing randomness in paths as the number of iterations increases,
a result distinct from those observed in stochastic processes. Given that the field of deterministic
systems has not yet been fully developed into a comprehensive framework, certain aspects still rely
on existing theorems. For example, in Sections 2 and 3, dynamic programming processes discussed
by Hernandez et al. [4] were employed, and in Section 5, the properties of the policy iteration
algorithm were based on Meyn’s work [10] There may be better methods for defining kernel functions
in deterministic systems. Hernandez [2] raised several unresolved questions at the conclusion of their
work, emphasizing the need for further development in addressing these challenges. Once a more
comprehensive system is established, adjustments can be made to address the imperfections in the
framework set forth in this study.
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