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Abstract: Marginally coupled designs (MCDs) with more economical run sizes than sliced Latin
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flexible run sizes than the existing MCDs with mixed-level qualitative factors.
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1. Introduction

Computer experiments, as a widely used method in scientific research, simulate complex real-
world problems through complex computer codes [1–3]. It is very important to plan computer
experiments efficiently. Latin hypercube designs (LHDs) introduced by McKay et al. [4] are very
suitable to plan computer experiments involving only quanlitative factors. Numerous methods have
been proposed to construct LHDs with good properties, such as low-dimensional projection property,
orthogonality, and other uniform criteria (such as uniform discrepancies, maximin distance, etc.).
Computer experiments with both qualitative and quantitative factors have also received a lot of attention
(see, for example, [5–9]). Sliced space-filling designs and sliced LHDs (SLHDs) are efficient choices
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when both quantitative and qualitative factors are included in computer experiments [10,11]. However,
such two types of designs are inefficient due to the increase in the number of runs as the number of
level combinations of the qualitative factors increases. To solve this problem, Deng et al. [12] first
proposed marginally coupled design (MCD), which is more cost-effective in terms of the number of
runs, and possesses excellent space-filling properties, i.e., in which the design for the quantitative
factors is an LHD, and such quantitative factor design is also an SLHD with respect to each qualitative
factor. Some researchers have worked on improving the low-dimensional stratification of the design
for the quantitative factors in MCDs; see, among others, [13, 14] and [15]. Other researchers have
constructed orthogonal MCDs in which the designs for the quantitative factors are orthogonal [16].
In order to improve the stratification between qualitative and quantitative factors, Yang et al. [17]
proposed doubly coupled design (DCD) which has the following attractive space-filling properties: (1)
the whole design is an MCD, and (2) the design points for the quantitative factors form an SLHD with
respect to the level combinations of any two qualitative factors. In the above improved MCDs and
DCDs, the designs for the qualitative factors are all equal-level orthogonal arrays (OAs). However,
there exist qualitative factors being mixed-level in real-world problems, and in MCDs the designs of
the qualitative factors are often mixed-level OAs. In this paper, we aim to construct MCDs in which
the designs for qualitative factors are mixed-level OAs.

For an MCD (D1,D2) where D1 and D2 are the designs for qualitative and quantitative factors,
respectively, Deng et al. [12] investigated the existence and construction of an MCD for mixed-level
qualitative factors. They gave the existence of an MCD (D1,D2) with D1 being an OA

(
n, sk1

1 sk2
2 , 2

)
,

s1 = βs2, in terms of the structure of D1. The existence is somewhat limited by the restriction s1 = βs2.
To overcome this limitation, we provide a necessary and sufficient condition on both D1 and D2 to
ensure the existence of an MCD with D1 being an OA

(
n, sk1

1 sk2
2 , 2

)
, s1 = βs2, or s1 , βs2. Given

a small initial MCD with mixed-level qualitative factors, a large MCD with mixed-level qualitative
factors can be constructed by Construction 3 of Deng et al. [12]. However, Deng et al. [12] did not
address the question of how to construct the initial MCDs. Fortunately, the MCDs constructed in this
paper can be used as initial MCDs for Construction 3 of [12]. Therefore, for the MCDs obtained in
this paper, the run sizes are more flexible than for the MCDs constructed in Construction 3 of Deng et
al. [12]. Based on the existence result of [12], for s1 = βs2, we give an algorithm to construct MCDs
for D2 with a large number of columns. By the necessary and sufficient condition in this paper, two
algorithms are proposed to construct MCDs with D1 being an OA

(
n, 2k1 sk2 , 2

)
, s = 2β, or s , 2β. For

the D2 constructed by Construction 3 of Deng et al. [12], the D2 only has stratification property in
one-dimensional projections. To enhance the space-filling property of D2, we present two algorithms
to construct MCDs with D2 possessing stratification properties in two-, three-, or four- dimensional
projections.

The paper is organized as follows: Section 2 introduces the basic definitions and notation. Section
3 gives five methods for constructing MCDs with mixed-level qualitative factors. Section 4 provides
the conclusions. All proofs are deferred to Appendix A. Some tables are listed in Appendix B.

2. Definitions and notation

Let GF(s) = {α0, α1, . . . , αs−1}, α0 = 0, α1 = 1, denote a Galois field of order s, which is simplified
as GF(s) = {0, 1, . . . , s − 1} if s is a prime. An n× p matrix is called a Latin hypercube design of n runs
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and p factors, denoted by LHD (n, p), if each of its columns is a random permutation of {0, 1, . . . , n−1}.
An n × k array A is said to be a mixed-level OA of strength 2, denoted by OA

(
n, s1

k1 s2
k2 , 2

)
, if any

n × 2 sub-array of A contains all possible level combinations with equal frequency, where the entries
in the first k1 columns and the last k2 columns are taken from {0, 1, . . . , s1 − 1} and {0, 1, . . . , s2 − 1},
respectively. When s1 = s2 = s and k1 + k2 = k, the orthogonal array A is equal-level, denoted by
OA

(
n, sk, 2

)
. An OA

(
st, sk, 2

)
with v = (st − 1)/(s − 1) can be constructed using the Rao-Hamming

construction, the details of which are described in Section 3.4 of [18]. For a prime power s, let η1 and
η2 be two s-level independent columns of length s2, where the entries of both η1 and η2 are taken from
GF(s) = {α0, α1, . . . , αs−1}, α0 = 0, α1 = 1. We apply the Rao-Hamming construction to create an
OA

(
s2, ss+1, 2

)
Φ as

Φ = {η1, η1 + η2, η1 + α2η2, η1 + α3η2, · · · , η1 + αs−1η2, η2} ,

where the addition and multiplication operations are based on GF(s). An OA
(
n, sk1

1 sk2
2 , 2

)
A is said to be

a (β1×β2)-resolvable OA, denoted by (β1×β2)-ROA
(
n, sk1

1 sk2
2 , 2

)
, if for i = 1, 2, its rows can be divided

into n/(βisi) sub-arrays A1, . . . , An/(βi si) of βisi rows each, where Ai is an OA
(
βisi, s1

k1 s2
k2 , 1

)
for i = 1, 2.

In particular, when s1=s2=s, β1=β2=β, and k1 + k2 = k, then the array reduces to β-ROA
(
n, sk, 2

)
. If

β=1, the array A is called a completely resolvable OA (CROA), denoted by CROA
(
n, sk, 2

)
.

Suppose D1 is an OA
(
n, sk1

1 sk2
2 , 2

)
and D2 is an LHD (n, p), then the design D = (D1,D2) is called

a MCD, denoted by MCD
(
n, sk1

1 sk2
2 , p

)
, where D1 and D2 are sub-designs for qualitative factors and

quantitative factors, respectively, if for every level of any factor of D1, the corresponding rows in D2

form a small LHD. When s1 = s2 = s and k1 + k2 = k, the MCD is denoted by MCD
(
n, sk, p

)
.

Let 1s be an s-dimensional column vector whose entries are all ones. An u× r matrix A with entries
from GF(s) is called a difference scheme of strength 2 based on GF(s), denoted by D(u, r, s), if for all
i and k with 1 ≤ i, k ≤ r, i , k, the vector difference between the ith and kth columns contains each
element of GF(s) exactly u/s times. Throughout, D(u, r, s) is a u-row, r-column, and s-level difference
schme (of strength 2). For an n×m matrix X and an s× p matrix Y , their Kronecker sum and Kronecker
product are defined as X ⊕ Y=

(
xi j + Y

)
and X ⊗ Y =

(
xi jY

)
, respectively, where xi j is the (i, j)th entry of

X. For a matrix X =
(
xi j

)
n×m

, define an n × m matrix f (X, s) as

f (X, s) =
(⌊ xi j

s

⌋)
. (2.1)

He et al. [13] demonstrated a necessary and sufficient condition for the design (D1,D2) being an
MCD

(
n, sk, p

)
, as stated in Lemma 1.

Lemma 1 ( [13]). Suppose D1 is an OA
(
n, sk, 2

)
and D2 is an LHD (n, p). Let di be the ith column of

D2 for i = 1, 2, . . . , p. Then, D = (D1,D2) is an MCD
(
n, sk, p

)
if, and only if, for i = 1, 2, . . . , p, the

(D1, f (di, s)) is an OA
(
n, sk(n/s), 2

)
, where f (∗, ·) can be obtained from Equation (2.1).

Lemma 2 given by Deng et al. [12] presents a necessary and sufficient condition for the existence
of an MCD

(
n, sk1

1 sk2
2 , p

)
with s1 = βs2.
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Lemma 2 ( [12]). Given that D1 is an OA
(
n, sk1

1 sk2
2 , 2

)
with s1 = βs2, an MCD

(
n, sk1

1 sk2
2 , p

)
D =

(D1,D2) exists if, and only if, D1 is a (1 × β)-ROA
(
n, sk1

1 sk2
2 , p

)
that can be expressed as(

AT
11 · · · AT

m1
AT

12 · · · AT
m2

)T

such that (Ai1, Ai2) is an OA
(
s1, s

k1
1 sk2

2 , 1
)
, where m = n/s1, and the Ai2 is a CROA

(
s1, s

k2
2 , 2

)
, for

i = 1, 2, . . . ,m.

The necessary and sufficient condition given by Lemma 2 is rather restricted by the restriction
s1 = βs2. Similar to Lemma 1, we provide directly a necessary and sufficient condition to break this
restriction, as shown in the following lemma.

Lemma 3. Suppose D1 = (Ω,Λ) is an OA
(
n, sk1

1 sk2
2 , 2

)
, where Ω and Λ are an OA

(
n, sk1

1 , 2
)

and an

OA
(
n, sk2

2 , 2
)
, respectively, and D2 is an LHD (n, p). Let di be the ith column of D2 for i = 1, 2 . . . , p.

Then, D=(D1,D2) is an MCD
(
n, sk1

1 sk2
2 , p

)
if, and only if, for i = 1, 2, . . . , p, (Ω, f (di, s1)) and

(Λ, f (di, s2)) are an OA
(
n, sk1

1 (n/s1), 2
)

and an OA
(
n, sk2

2 (n/s2), 2
)
, respectively, where f (∗, ·) can be

obtained from Equation (2.1).

3. Construction of MCDs

3.1. Construction of MCDs for D1 being an OA
(
N, sk1

1 sk2
2 , 2

)
with N = s2

1 (s1 = βs2), N = 2s (s ≥ 2),
N = 2λs2 (s ≥ 2)

This section presents three construction algorithms to construct MCDs. First, we construct an MCD
D = (D1,D2) via an OA

(
s2

1, s
k1+2
1 , 2

)
and a CROA

(
s1, s

k2
2 , 2

)
with s1 = βs2. Motivated by Lemma 2, we

present the following algorithm.

Algorithm 1 Construction of MCDs via an OA
(
s2

1, s
k1+2
1 , 2

)
and a CROA

(
s1, s

k2
2 , 2

)
with s1 = βs2

Step 1. For s1 = βs2, given an OA
(
s2

1, s
k1+2
1 , 2

)
, denote it as G. Rearrange the rows of G into G = (l1, l2, A), so that

l1 = (0, 1, · · · , s1 − 1)T ⊗ 1s1 and l2 = 1s1 ⊗ (0, 1, · · · , s1 − 1)T . Then A can be expressed as A =
(
AT

1 , A
T
2 , · · · , A

T
s1

)T
,

where Ai is an OA
(
s1, s

k1
1 , 1

)
and i = 1, 2, . . . , s1.

Step 2. Given a CROA
(
s1, s

k2
2 , 2

)
with s1 = βs2, denoted as B. B can be expressed as B =

(
BT

1 , B
T
2 , · · · , B

T
β

)T
, where Bi is

an OA
(
s2, s

k2
2 , 1

)
, i = 1, 2, . . . , β. Let B∗ = 1s1 ⊗ B.

Step 3. Construct an s2
1 × (k1 + k2) matrix D1 as D1=(A, B∗).

Step 4. For 1 ≤ i ≤ p, let ei = µi ⊗ 1s1 , where µi is a random permutation of (0, 1, . . . , s1 − 1)T . Stack the columns of ei for
1 ≤ i ≤ p together to obtain E =

(
e1, e2, . . . , ep

)
.

Step 5. For 1 ≤ i ≤ p and 1 ≤ j ≤ β, ci = 1s1 ⊗ wi, where wi is a random permutation of
(
cT

i,1, c
T
i,2, · · · , c

T
i,β

)T
with

ci, j = ( j − 1)s21s2 + τ, where τ is a random permutation of (0, 1, · · · , s2 − 1)T . Stack the columns of ci for 1 ≤ i ≤ p

together to obtain C, i.e., C =
(
c1, c2, . . . , cp

)
.

Step 6. Construct an s2
1 × p matrix D2 as D2 = s1E +C.

Step 7. Let D = (D1,D2).
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Theorem 1. For D = (D1,D2) constructed by Algorithm 1, we have

(i) D1 = (A, B∗) is an OA
(
s2

1, s
k1
1 sk2

2 , 2
)

with s1 = βs2;

(ii) D2 is an LHD
(
s2

1, p
)
;

(iii) D = (D1,D2) is an MCD
(
s2

1, s
k1
1 sk2

2 , p
)
.

If we take G in Step 1 of Algorithm 1 to be a regular saturated OA
(
s2

1, s
s1+1
1 , 2

)
, then D = (D1,D2)

is an MCD
(
s2

1, s
s1−1
1 sk2

2 , p
)
; alternatively, the G can also be a non-regular s1-level OA. Hence, s1 may

or may not be a prime power. Furthermore, if B is a CROA
(
s1, s

s2
2 , 2

)
and s1 = s2

2 in Step 2, then

D = (D1,D2) is an MCD
(
s2

1, s
s1−1
1 ss2

2 , p
)
.

In Theorem 1, the MCDs with at most β!s1!s2! distinct quantitative columns can be constructed from
Steps 4 and 5 of Algorithm 1. Thus, Theorem 1 provides the MCD with a large number of quantitative
factors. Let η = β!s1!s2!, and there can be as many as (η!)/(p!(η − p)!) different MCDs. Thus, an
optimal D2 under maximin distance criterion [19] (or the centered L2-discrepancy criterion [20, 21])
can be found by ranking the (η!)/(p!(η − p)!) candidate MCDs or via the simulated annealing [22] or
the threshold accepting algorithms [23] when the number of candidate MCDs is very large.

Example 1. Applying the Rao-Hamming construction to generate an OA
(
16, 45, 2

)
G, then the A

is obtained and listed in Table 1. The CROA
(
4, 22, 2

)
B is obtained as B =

(
0 1 0 1
0 1 1 0

)T

, then

B∗ =
(
BT , BT , BT , BT

)T
. Thus, D1 is constructed as D1 = (A, B∗). Consider the case p = 3. In Step

4, µ1, µ2, and µ3 are obtained as µ1 = (0, 1, 2, 3)T , µ2 = (1, 0, 2, 3)T , µ3 = (1, 2, 0, 3)T , then E can
be obtained and listed in Table 1. In Step 5, w1, w2, and w3 are obtained as w1 = (0, 1, 2, 3)T and
w2 = w3 = (2, 3, 0, 1)T , then C can be obtained and listed in Table 1. By the matrix operation of
s1E + C in Step 6, D2 can be generated. It is easy to check that D = (D1,D2) is an MCD

(
16, 4322, 3

)
,

which is provided in Table 2.

Table 1. Matrices A, E, and C in Example 1.

Run A E C Run A E C
1 0 0 0 0 1 1 0 2 2 9 2 3 1 2 2 0 0 2 2
2 1 1 1 0 1 1 1 3 3 10 3 2 0 2 2 0 1 3 3
3 2 2 2 0 1 1 2 0 0 11 0 1 3 2 2 0 2 0 0
4 3 3 3 0 1 1 3 1 1 12 1 0 2 2 2 0 3 1 1
5 1 2 3 1 0 2 0 2 2 13 3 1 2 3 3 3 0 2 2
6 0 3 2 1 0 2 1 3 3 14 2 0 3 3 3 3 1 3 3
7 3 0 1 1 0 2 2 0 0 15 1 3 0 3 3 3 2 0 0
8 2 1 0 1 0 2 3 1 1 16 0 2 1 3 3 3 3 1 1
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Table 2. D = (D1,D2) in Example 1.

Run
MCD(D1,D2)

Run
MCD(D1,D2)

D1 D2 D1 D2

1 0 0 0 0 0 0 6 6 9 2 3 1 0 0 8 10 2
2 1 1 1 1 1 1 7 7 10 3 2 0 1 1 9 11 3
3 2 2 2 0 1 2 4 4 11 0 1 3 0 1 10 8 0
4 3 3 3 1 0 3 5 5 12 1 0 2 1 0 11 9 1
5 1 2 3 0 0 4 2 10 13 3 1 2 0 0 12 14 14
6 0 3 2 1 1 5 3 11 14 2 0 3 1 1 13 15 15
7 3 0 1 0 1 6 0 8 15 1 3 0 0 1 14 12 12
8 2 1 0 1 0 7 1 9 16 0 2 1 1 0 15 13 13

For the MCD
(
s2

1, s
k1
1 sk2

2 , p
)

constructed by Algorithm 1, the s1 can be a non-prime power. The
following example provides an illustration of the non-prime power case in Algorithm 1.

Example 2. The OA
(
144, 127, 2

)
G listed in Table 17 of Appendix B and the CROA

(
12, 22, 2

)
B listed in Table 3 are obtained from the library of orthogonal arrays maintained by Sloane
(http://neilsloane.com/oadir/index.html). Then, divide G into G = (l1, l2, A) listed in Table 17 of
Appendix B. Moreover, B∗ =

(
BT , BT , BT , BT , BT , BT

)T
is obtained and listed in Table 18. Thus, D1 is

constructed as D1 = (A, B∗). Consider the case p = 3. In Step 4, µ1, µ2, and µ3 are obtained, which are
listed in Table 3, and then the E can be obtained, which is listed in Table 17 of Appendix B. In Step 5,
w1, w2, and w3 are obtained, which are listed in Table 3, then the C can be obtained and listed in Table
17 of Appendix B. By the matrix operation of s1E + C in Step 6, D2 can be generated. It is easy to
check that D = (D1,D2) is an MCD

(
144, 12522, 3

)
, which is provided in Table 18.

Table 3. Matrix B, vectors ui and wi in Example 2, where i = 1, 2, 3.

Run B u1 u2 u3 w1 w2 w3 Run B u1 u2 u3 w1 w2 w3 Run B u1 u2 u3 w1 w2 w3

1 1 1 0 1 1 0 2 0 5 1 1 4 4 4 4 4 8 9 0 1 8 8 8 8 8 4
2 0 0 1 0 0 1 3 1 6 0 0 5 5 5 5 5 9 10 1 0 9 9 9 9 9 5
3 0 0 2 2 2 2 0 2 7 0 1 6 6 6 6 6 10 11 1 0 10 10 10 10 10 6
4 1 1 3 3 3 3 1 3 8 1 0 7 7 7 7 7 11 12 0 1 11 11 11 11 11 7

Algorithm 1 can produce some MCDs based on the above Theorem 1, as shown in Table 4.

Table 4. Some MCDs from Algorithm 1.

D1 D2 MCDs
OA

(
16, 4322, 2

)
LHD (16, 2!4!2!) MCD

(
16, 4322, 2!4!2!

)
OA

(
36, 6122, 2

)
LHD (36, 3!6!2!) MCD

(
36, 6122, 3!6!2!

)
OA

(
64, 8722, 2

)
LHD (64, 4!8!2!) MCD

(
64, 8722, 4!8!2!

)
OA

(
36, 6133, 2

)
LHD (36, 2!6!3!) MCD

(
36, 6133, 2!6!3!

)
OA

(
81, 9733, 2

)
LHD (81, 3!9!3!) MCD

(
81, 9733, 3!9!3!

)
OA

(
144, 12133, 2

)
LHD (144, 4!12!3!) MCD

(
144, 12133, 4!12!3!

)
OA

(
64, 8744, 2

)
LHD (64, 2!8!4!) MCD

(
64, 8744, 2!8!4!

)
OA

(
144, 12144, 2

)
LHD (144, 3!12!4!) MCD

(
144, 12144, 3!12!4!

)
OA

(
256, 161544, 2

)
LHD (256, 4!16!4!) MCD

(
256, 161544, 4!16!4!

)
AIMS Mathematics Volume 9, Issue 12, 33731–33755.
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To employ Algorithm 1, we need several CROAs. Theorem 3 of He et al. [13] gives four types of
CROAs, as shown in Lemma 4.

Lemma 4 ( [13]). For a prime h and three positive integers k, t (t ≥ 2), and w, if s = hk, the following
four CROAs exist: (i) CROA

(
st, sst−1

, 2
)
; (ii) CROA

(
2st, s2st−1

, 2
)
; (iii) CROA

(
4st, s4st−1

, 2
)
; and (iv)

CROA
(
hws2, shw s, 2

)
.

According to Theorem 1 and Lemma 4, we can obtain a wealth of MCDs for mixed-level qualitative
factors as follows.

Corollary 1. For a prime h and three positive integers k, t (t ≥ 2), and w, let s = hk, then by Algorithm
1,
(i) if an OA

(
s2t, (st)k1+2, 2

)
exists, an MCD

(
s2t, (st)k1(s)st−1

, p
)

can be obtained;

(ii) if an OA
(
4s2t, (2st)k1+2, 2

)
exists, an MCD

(
4s2t, (2st)k1(s)2st−1

, p
)

can be obtained;

(iii) if an OA
(
16s2t, (4st)k1+2, 2

)
exists, an MCD

(
16s2t, (4st)k1(s)4st−1

, p
)

can be obtained;

(iv) if an OA
(
h2ws4, (hws2)k1+2, 2

)
exists, an MCD

(
h2ws4, (hws2)k1(s)hw s, p

)
can be obtained.

If there exists a small initial MCD for mixed-level qualitative factors, then a series of large MCDs
for mixed-level qualitative factors can be constructed by Construction 3 of Deng et al. [12], as shown
in Lemma 5.

Lemma 5 ( [12]). Let D(0)
1 = (Φ,Ψ) and D(0)

2 be an OA
(
n, sk1

1 sk2
2 , 2

)
and an LHD(n, p), respectively,

where Φ and Ψ are an OA
(
n, sk1

1 , 2
)

and an OA
(
n, sk2

2 , 2
)
, respectively. For some u, there are

two difference schemes D (u, r1, s1) and D (u, r2, s2) (of strength 2), denoted by D(i) for i = 1, 2,
respectively. Let C =

(
ci j

)
be an u × f matrix with ci j = 1 and H be an LHD (u, p f ). Construct

D1 = (D(1) ⊕ Φ,D(2) ⊕ Ψ) and D2 = C ⊗ D(0)
2 + nH ⊗ 1n. If D(0) =

(
D(0)

1 ,D
(0)
2

)
is an MCD, then

D = (D1,D2) is also an MCD, where D1 and D2 are an OA
(
nu, sk1r1

1 sk2r2
2 , 2

)
and an LHD (nu, p f ),

respectively.

The key to constructing MCDs, D = (D1,D2), using Lemma 5 is the existence of the initial MCD
D(0) =

(
D(0)

1 ,D
(0)
2

)
. However, the construction method of D(0) =

(
D(0)

1 ,D
(0)
2

)
is not mentioned in [12].

Excitingly, the MCDs obtained by Theorem 1 can be used as the initial MCDs. Based on Lemma 5,
a large number of MCDs with more columns can be constructed from the initial MCDs obtained by
Theorem 1 as follows.

Corollary 2. For D = (D1,D2) constructed by Algorithm 1 and Theorem 1, if there exist two
difference schemes D (u, r1, s1) and D (u, r2, s2) ( of strength 2) for some u, then for any integer f ,
an MCD

(
us2

1, (s1)k1r1(s2)k2r2 , p f
)

can be obtained by Lemma 5.

Based on Algorithm 1, Theorem 1 and Corollary 2 can generate a series of MCDs with D1 being an
OA

(
n, sk1

1 sk2
2 , 2

)
with s1 = βs2, but they can be criticized for the s1 = βs2 restriction. However, when

s1 , βs2, an MCD also exists, as in the following example.

Example 3. Given D1 is an OA
(
6, 2131, 2

)
and D2 is an LHD (6, 6) as listed in Table 5, it is easy to

verify that D = (D1,D2) is an MCD
(
6, 2131, 6

)
according to Lemma 3.
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Table 5. D = (D1,D2) in Example 3.

Run
MCD(D1,D2)

Run
MCD(D1,D2)

D1 D2 D1 D2

1 0 0 0 0 2 2 4 4 4 1 0 5 5 3 3 1 1
2 0 1 2 4 0 4 0 2 5 1 1 3 1 5 1 5 3
3 0 2 4 2 4 0 2 0 6 1 2 1 3 1 5 3 5

Obviously, the MCD
(
6, 2131, 6

)
listed in Table 5 cannot be constructed by Algorithm 1. Next, we

propose a new algorithm for constructing MCDs
(
2s, 21s1, s!

)
.

Algorithm 2 Construction of MCDs based on OA
(
2s, 21s1, 2

)
Step 1. Let L1 = (0, 1) ⊗ 1s and L2 = 12 ⊗ e, where e = (0, 1, . . . , s − 1)T . Obtain a (2s) × 2 matrix

D1 = (L1, L2).
Step 2. For 1 ≤ i ≤ s!, di = ((2ui)T , ((2s − 1)1s − 2ui)T )T , where ui is a random permutation of

(0, 1, 2, . . . , s − 1)T , let D2 = (d1, d2, . . . , ds!).
Step 3. The resulting design is D = (D1,D2).

Theorem 2. The design D = (D1,D2) constructed by Algorithm 2 is an MCD
(
2s, 21s1, s!

)
, where D1

is an OA
(
2s, 21s1, 2

)
and D2 is an LHD (2s, s!).

If p < s!, there can be as many as (s!)/(p!(s − p)!) different MCDs from Algorithm 2. Similar
to Algorithm 1, an optimal D2 under the maximin distance criterion or the centered L2-discrepancy
criterion can be obtained Hickernell [19, 20]. Next, we provide an example to illustrate Algorithm 2
and Theorem 2.

Example 4. Let s = 4, and an 8 × 2 matrix D1 = (L1, L2) is obtained from Step 1, as shown in Table
6. For 1 ≤ i ≤ 24, D2 = (d1, d2, · · · , d24) is constructed according to Step 2, as shown in Table 6. It is
easy to verify that D = (D1,D2) is an MCD

(
8, 2141, 24

)
from Lemma 3, which is provided in Table 6.

Table 6. D = (D1,D2) in Example 4.

Run MCD(D1,D2)

D1 D2

1 0 0 0 0 0 0 0 0 2 2 2 2 2 2 4 4 4 4 4 4 6 6 6 6 6 6
2 0 1 2 2 4 4 6 6 0 0 4 4 6 6 0 0 2 2 6 6 0 0 2 2 4 4
3 0 2 4 6 2 6 2 4 4 6 0 6 0 4 2 6 0 6 0 2 2 4 0 4 0 2
4 0 3 6 4 6 2 4 2 6 4 6 0 4 0 6 2 6 0 2 0 4 2 4 0 2 0
5 1 0 7 7 7 7 7 7 5 5 5 5 5 5 3 3 3 3 3 3 1 1 1 1 1 1
6 1 1 5 5 3 3 1 1 7 7 3 3 1 1 7 7 5 5 1 1 7 7 5 5 3 3
7 1 2 3 1 5 1 5 3 3 1 7 1 7 3 5 1 7 1 7 5 5 3 7 3 7 5
8 1 3 1 3 1 5 3 5 1 3 1 7 3 7 1 5 1 7 5 7 3 5 3 7 5 7

Algorithm 2 can produce some MCDs based on the above Theorem 2, as shown in Table 7.
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Table 7. Some MCDs from Algorithm 2.

D1 D2 MCDs
OA

(
6, 2131, 2

)
LHD (6, 3!) MCD

(
6, 2131, 3!

)
OA

(
8, 2141, 2

)
LHD (8, 4!) MCD

(
8, 2141, 4!

)
OA

(
10, 2151, 2

)
LHD (10, 5!) MCD

(
10, 2151, 5!

)
OA

(
12, 2161, 2

)
LHD (12, 6!) MCD

(
12, 2161, 6!

)
OA

(
14, 2171, 2

)
LHD (14, 7!) MCD

(
14, 2171, 7!

)
OA

(
16, 2181, 2

)
LHD (16, 8!) MCD

(
16, 2181, 8!

)
OA

(
18, 2191, 2

)
LHD (18, 9!) MCD

(
18, 2191, 9!

)
OA

(
20, 21101, 2

)
LHD (20, 10!) MCD

(
20, 21101, 10!

)
OA

(
22, 21111, 2

)
LHD (22, 11!) MCD

(
22, 21111, 11!

)
In Lemma 5, the MCDs constructed by Theorem 2 can also be used as the initial MCDs

for Construction 3 of [12]. Based on Lemma 5, a large number of MCDs with D1 being an
OA (2us, 2r1 sr2 , 2) can be obtained from the initial MCDs constructed by Theorem 2 as follows.

Corollary 3. For D = (D1,D2) constructed by Algorithm 2 and Theorem 2, if there exist two
difference schemes D (u, r1, 2) and D (u, r2, s) ( of strength 2) for some u, then for any integer f , an
MCD (2us, 2r1 sr2 , p f ) can be obtained by Lemma 5.

In the MCD (D1, D2) constructed by Algorithm 2 and Theorem 2, the D1 has only two columns.
In order to construct D1 that can accommodate more qualitative factors, we present Algorithm 3 as
follows.

Algorithm 3 Construction of MCDs via MCD (n, sm, p)

Step 1. Given an OA (n, sm, 2) and LHD (n, p), denoted as D(0)
1 and D(0)

2 , respectively.
Step 2. Let L1 = (0, 1)T

⊗ 1n and L2 = 12 ⊗ D(0)
1 . Obtain a (2n) × (m + 1) matrix D1 = (L1, L2).

Step 3. Construct a (2n) × p matrix D2 as D2 =

((
2D(0)

2

)T
,
(
(2n − 1)1n − 2D(0)

2

)T
)T

.
Step 4. The resulting design is D = (D1,D2).

Theorem 3. For D(0)
1 and D(0)

2 in Algorithm 3, if D(0) =
(
D(0)

1 ,D
(0)
2

)
is an MCD (n, sm, p), then the design

D = (D1,D2) constructed by Algorithm 3 is an MCD
(
2n, 21sm, p

)
, where D1 is an OA

(
2n, 21sm, 2

)
,

and D2 is an LHD (2n, p).

Remark 1. Note that Algorithm 2 and Algorithm 3 can construct MCDs with D1 being an
OA

(
N, 21sk, 2

)
, s = 2β, or s , 2β, but the values of N in the two Algorithms are different. Algorithm 2

works for k = 1 and N = 2s, while Algorithm 3 works for k ≥ 2 and N = 2λs2, where λ is a positive
integer. Thus, Algorithm 3 is able to construct MCDs with more columns in D1 than Algorithm 2, and
Algorithm 2 is not a special case of Algorithm 3. For example, for s = 3, Algorithm 2 constructs an
MCD

(
6, 2131, 6

)
, where D1 and D2 are an OA

(
6, 2131, 2

)
and an LHD (6, 6), respectively, while

Algorithm 3 constructs an MCD
(
18, 2132, 2

)
, where D1 and D2 are an OA

(
18, 2132, 2

)
and an
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LHD (18, 2), respectively. This shows that Algorithm 2 and Algorithm 3 cannot be replaced by each
other.

Next, we provide an example to illustrate Algorithm 3 and Theorem 3.

Example 5. Table 8 gives an MCD
(
9, 32, 2

)
D(0) =

(
D(0)

1 ,D
(0)
2

)
, where D(0)

1 is an OA
(
9, 32, 2

)
and D(0)

2

is an LHD (9, 2). Then, an 18 × 3 matrix D1 = (L1, L2) is obtained by the operations L1 = (0, 1)T ⊗ 1n

and L2 = 12 ⊗ D(0)
1 in Step 2, as shown in Table 9. An 18 × 2 matrix D2 is obtained by the operations

D2 =

((
2D(0)

2

)T
,
(
(2n − 1)1n − 2D(0)

2

)T
)T

in Step 3, as shown in Table 9. It is easy to verify that D =

(D1,D2) is an MCD
(
18, 2132, 2

)
from Lemma 3, which is provided in Table 9.

Table 8. D(0) =
(
D(0)

1 ,D
(0)
2

)
in Example 5.

Run
MCD(D(0)

1 ,D
(0)
2 )

Run
MCD(D(0)

1 ,D
(0)
2 )

Run
MCD(D(0)

1 ,D
(0)
2 )

D1 D2 D1 D2 D1 D2

1 0 0 0 2 4 1 0 4 4 7 2 0 8 7
2 0 1 3 8 5 1 1 7 0 8 2 1 2 3
3 0 2 6 5 6 1 2 1 6 9 2 2 5 1

Table 9. D = (D1,D2) in Example 5.

Run MCD(D1,D2) Run MCD(D1,D2) Run MCD(D1,D2)
D1 D2 D1 D2 D1 D2

1 0 0 0 0 4 7 0 2 0 16 14 13 1 1 0 9 9
2 0 0 1 6 16 8 0 2 1 4 6 14 1 1 1 3 17
3 0 0 2 12 10 9 0 2 2 10 2 15 1 1 2 15 5
4 0 1 0 8 8 10 1 0 0 17 13 16 1 2 0 1 3
5 0 1 1 14 0 11 1 0 1 11 1 17 1 2 1 13 11
6 0 1 2 2 12 12 1 0 2 5 7 18 1 2 2 7 15

Algorithm 3 can produce some MCDs based on the above Theorem 3, as shown in Table 10.

Table 10. Some MCDs from Algorithm 3.

MCD
(
D1

(0),D2
(0)

)
MCD (D1,D2)

Source D1
(0) D2

(0) D1 D2 MCDs

Table 5 OA
(
9, 32, 2

)
LHD (9, 2) OA

(
18, 2132, 2

)
LHD (18, 2) MCD

(
18, 2132, 2

)

Table B1

OA
(
27, 39, 2

)
LHD (27, 4) OA

(
54, 2139, 2

)
LHD (54, 4) MCD

(
54, 2139, 4

)
OA

(
32, 48, 2

)
LHD (32, 7) OA

(
64, 2148, 2

)
LHD (64, 7) MCD

(
64, 2148, 7

)
OA

(
32, 48, 2

)
LHD (32, 7) OA

(
64, 2148, 2

)
LHD (64, 7) MCD

(
64, 2148, 7

)
OA

(
100, 520, 2

)
LHD (200, 19) OA

(
100, 21520, 2

)
LHD (200, 19) MCD

(
200, 21520, 19

)
Example 2

OA
(
49, 75, 2

)
LHD (49, 3) OA

(
98, 2175, 2

)
LHD (98, 3) MCD

(
98, 2175, 3

)
OA

(
64, 87, 2

)
LHD (64, 2) OA

(
128, 2187, 2

)
LHD (128, 2) MCD

(
128, 2187, 2

)
OA

(
81, 98, 2

)
LHD (81, 2) OA

(
162, 2198, 2

)
LHD (162, 2) MCD

(
162, 2198, 2

)
1 Table 5, Table B1 and Example 2 come from [15], [13] and [12], respectively.
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Similar to Corollary 2 and Corollary 3, we can obtain the following Corollary 4 for the initial MCDs
constructed by Algorithm 3 and Theorem 3.

Corollary 4. For D = (D1,D2) constructed by Algorithm 3 and Theorem 3, if there exist two
difference schemes D (u, r1, 2) and D (u, r2, s) (of strength 2) for some u, then for any integer f , an
MCD (2un, 2r1 sr2m, p f ) can be obtained by Lemma 5.

Table 11 presents some designs D1 for mixed-level qualitative factors in MCDs constructed via
Algorithms 1, 2, and 3. In the fourth column of Table 11, the D1’s are obtained by Construction 3 of
Deng et al. [12] from the initial designs listed in the first three columns.

Table 11. Some designs D1 constructed by different algorithms.

Algorithm 1 Algorithm 2 Algorithm 3 Corollaries

D1 D1 D1 D1 source
OA

(
16, 4322, 2

)
OA

(
6, 2131, 2

)
OA

(
18, 2133, 2

)
OA

(
64, 41228, 2

)
corollary 2

OA
(
36, 6122, 2

)
OA

(
8, 2141, 2

)
OA

(
32, 2144, 2

)
OA

(
512, 856216, 2

)
corollary 2

OA
(
64, 8722, 2

)
OA

(
10, 2151, 2

)
OA

(
50, 2155, 2

)
OA

(
729, 963315, 2

)
corollary 2

OA
(
36, 6133, 2

)
OA

(
12, 2161, 2

)
OA

(
72, 2162, 2

)
OA

(
36, 2233, 2

)
corollary 3

OA
(
81, 9733, 2

)
OA

(
14, 2171, 2

)
OA

(
98, 2177, 2

)
OA

(
32, 2444, 2

)
corollary 3

OA
(
144, 12133, 2

)
OA

(
16, 2181, 2

)
OA

(
128, 2188, 2

)
OA

(
64, 2844, 2

)
corollary 3

OA
(
64, 8744, 2

)
OA

(
18, 2191, 2

)
OA

(
162, 2199, 2

)
OA

(
108, 2233, 2

)
corollary 4

OA
(
144, 12144, 2

)
OA

(
20, 21101, 2

)
OA

(
200, 21102, 2

)
OA

(
128, 24416, 2

)
corollary 4

OA
(
256, 161544, 2

)
OA

(
22, 21111, 2

)
OA

(
242, 211111, 2

)
OA

(
500, 22525, 2

)
corollary 4

For the MCD
(
s2

1, s
k1
1 sk2

2 , p
)

constructed by Algorithm 1, the relation s1 = βs2 is indispensable.

When s = 2β, the MCD
(
s2, 22ss−1, p

)
, MCD

(
2s, 21s1, s!

)
, and MCD

(
2λs2, 21sm, p

)
(λ ≥ 1) can be

constructed by Algorithms 1, 2, and 3, respectively. Clearly, the three MCDs have different numbers
of run sizes. For s , 2β, the MCD

(
2s, 21s1, s!

)
and MCD

(
2λs2, 21sm, p

)
(λ ≥ 1) can also be obtained

using Algorithms 2 and 3, respectively. Algorithm 2 is not a special case of Algorithm 3 due to the
different number of run sizes for the constructed MCDs.

3.2. Construction of MCDs for D1 being an OA
(
s2

1, s
k1
1 sk2

2 , 2
)

with s1 = s2
2 and D2 with the better

space-filling property

In the MCDs (D1,D2) constructed by the above three algorithms, the space-filling property of D2 is
not considered. The space-filling property is very important for the quantitative factor design D2. In
this section, we introduce another algorithm to construct MCDs D = (D1,D2) for D2 with the better
space-filling property.
Theorem 4. For s1 = s2

2, D1, and D2 obtained in Algorithm 4, we have

(i) D1 is an OA
(
s2

1, s
s1−1
1 ss2

2 , 2
)
;

(ii) D2 is an LHD
(
s2

1, 2k
)
, where if s2 is odd, k = (s2 + 1)/2; if s2 is even, k = s2/2;

(iii) (D1,D2) is an MCD
(
s2

1, s
s1−1
1 ss2

2 , 2k
)
;

(iv) any two distinct columns of D2 achieve s2 × s2 grids stratification.
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Algorithm 4 Construction of MCDs with the better space-filling property

Step 1. For s1 = s2
2, given an OA

(
s2

1, s
s1+1
1 , 2

)
F and an OA

(
s2

2, s
s2+1
2 , 2

)
H. Divide F as F = (F0, f1, f2),

where F0 is the first s1 − 1 columns of F and f1 and f2 are the s1th column and the (s1 + 1)th
column of F, respectively.

Step 2. Obtain an s2
1 × (s2 + 1) matrix U by replacing the levels 0, 1, . . . , (s1 − 1) of the f1 with the 1st,

2nd, . . . , and the s1th row of the H, respectively. Then partition U as U = (U0, u1, u2), where U0

is the first s2 − 1 columns of U and u1 and u2 are the s2th column and the (s2 + 1)th column of U,
respectively.

Step 3. If s2 is odd, let H∗ = H and k = (s2 + 1)/2. If s2 is even, let H∗ be the first s2 columns of H,
k = s2/2. Then, H∗ is an OA

(
s2

2, s
2k
2 , 2

)
.

Step 4. Obtain an s2
1× (2k) matrix V by replacing the levels 0, 1, . . . , (s1−1) of the f2 with the 1st, 2nd,

. . . , and the s1th row of the H∗, respectively. Denote V as V = (v1, v2, . . . , v2k), where vi is the ith
column of V for i = 1, 2, . . . , 2k.

Step 5. Construct D1 as D1 = (F0,U0, u1).

Step 6. Let W1 = V , W2 = (v2, v1, v4, v3, . . . , v2k, v2k−1), W3 = (u2, u2, . . . , u2), W4 = (u1, u1, . . . , u1).
Construct D2 as D2 = s3

2W1 + s2
2W2 + s2W3 +W4.

Theorem 4 (iv) tells us that D2 has two-dimensional projection property without considering D1.
For each level of any factor in D1, and for each level combination of any two factors in some columns
of D1, the corresponding rows in D2 can also achieve the two-dimensional space-filling property, as
stated in the following corollary.

Corollary 5. For D = (D1,D2) (D1 = (F0,U0, u1)) constructed by Algorithm 4 and Theorem 4, we
have
(i) the rows in D2 corresponding to each level of any factor in D1 can achieve stratification on the

s2 × s2 grids in any two-dimensional projection;
(ii) the rows in D2 corresponding to each level combination of any two factors in (U0, u1) can achieve

stratification on the s2 × s2 grids in any two-dimensional projection.

Next, we provide an example to illustrate Algorithm 4 and Theorem 4 .

Example 6. Consider the case s1 = 4 and s2 = 2. An OA
(
16, 45, 2

)
F and an OA

(
4, 23, 2

)
H are

obtained from the Rao-Hamming construction. Divide F as F = (F0, f1, f2) listed in Table 12. For the
H listed in Table 12, we obtain an 16×3 matrix U by replacing the levels 0, 1, 2, 3 of the f1 with the 1st,
2nd, 3rd, and the 4th row of the H, respectively. Then partition U as U = (U0, u1, u2) listed in Table
12. In Step 3 and Step 4, H∗ is the first 2 columns of H and k = s2/2 = 1, after replacing the levels
0, 1, 2, 3 of the f2 by the 1st, 2nd, 3rd, and the 4th row of the H∗, respectively. Then, V is obtained, and
denote V as V = (v1, v2) listed in Table 12.

From Step 5, D1 = (F0,U0, u1), and it is easy to check that D1 is an OA
(
16, 4322, 2

)
. In Step 6, let

W1 = V , W2 = (v2, v1), W3 = (u2, u2), W4 = (u1, u1), then by matrix operation of s3
2W1 + s2

2W2 + s2W3 +

W4, D2 can be generated. It is easy to verify that (D1,D2) is an MCD
(
16, 4322, 2

)
, which is provided

in Table 13.

AIMS Mathematics Volume 9, Issue 12, 33731–33755.



33743

Table 12. Matrices H, F, U, and V in Example 6.

Run F U V Run F U V

H F1 f1 f2 U0 u1 u2 v1 v2 F1 f1 f2 U0 u1 u2 v1 v2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 2 3 1 2 0 1 1 1 0
2 0 1 1 1 1 1 1 0 0 1 1 0 0 10 1 3 2 0 2 0 0 0 1 0
3 1 0 1 2 2 2 2 0 1 0 1 0 0 11 2 0 1 3 2 1 1 0 1 0
4 1 1 0 3 3 3 3 0 1 1 0 0 0 12 3 1 0 2 2 1 0 1 1 0
5 0 1 2 3 1 1 1 0 0 1 13 0 3 1 2 3 1 0 1 1 1
6 1 0 3 2 1 1 0 1 0 1 14 1 2 0 3 3 1 1 0 1 1
7 2 3 0 1 1 0 1 1 0 1 15 2 1 3 0 3 0 0 0 1 1
8 3 2 1 0 1 0 0 0 0 1 16 3 0 2 1 3 0 1 1 1 1

Table 13. D = (D1,D2) in Example 6.

Run
MCD(D1,D2)

Run
MCD(D1,D2)

D1 D2 D1 D2

1 0 0 0 0 0 0 0 9 0 2 3 0 1 11 7
2 1 1 1 0 1 3 3 10 1 3 2 0 0 8 4
3 2 2 2 1 0 2 2 11 2 0 1 1 1 9 5
4 3 3 3 1 1 1 1 12 3 1 0 1 0 10 6
5 0 1 2 1 1 5 9 13 0 3 1 1 0 14 14
6 1 0 3 1 0 6 10 14 1 2 0 1 1 13 13
7 2 3 0 0 1 7 11 15 2 1 3 0 0 12 12
8 3 2 1 0 0 4 8 16 3 0 2 0 1 15 15

Next, let D2 = (d1, d2). It is easy to see that d1 and d2 achieve stratification on 2 × 2 grids, as shown
in Figure 1.

Figure 1. Stratification on 2 × 2 grids.

Algorithm 4 can produce some MCDs based on the above Theorem 4, as shown in Table 14.
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Table 14. Some MCDs from Algorithm 4.

D1 D2 MCDs
OA

(
16, 4322, 2

)
LHD (6, 2) MCD

(
6, 4322, 2

)
OA

(
81, 9833, 2

)
LHD (8, 4) MCD

(
8, 9833, 4

)
OA

(
256, 161544, 2

)
LHD (10, 4) MCD

(
10, 161544, 4

)
OA

(
625, 252455, 2

)
LHD (12, 6) MCD

(
12, 252455, 6

)
OA

(
1296, 363566, 2

)
LHD (14, 6) MCD

(
14, 363566, 6

)
Next, we introduce the following algorithm to generate MCDs by modifying Algorithm 4, that is,

we rearrange the columns of F in Algorithm 4 and apply the idea of Step 4 in Algorithm 4 twice.

Algorithm 5 Modifying construction of MCDs

Step 1. For two OAs F and H in Algorithm 4, divide F as F = (F0
∗, f0, f1, f2), where F0

∗ is the first
s1 − 2 columns of F, and f0, f1, f2 are the (s1 − 1)th column, the s1th column and the (s1 + 1)th
column of F, respectively.

Step 2. Let U as U = (U0, u1, u2), H∗, and V be obtained by Algorithm 4.

Step 3. Let D1 as D1 = (F0
∗,U0, u1).

Step 4. Obtain an s2
1 × (2k) matrix Z by replacing the levels 0, 1, . . . , (s1 − 1) of the f0 with the 1st, 2nd,

. . . , and the s1th row of the H∗, respectively. Denote Z as Z = (z1, z2, . . . , z2k), where zi is the ith
column of Z for i = 1, 2, . . . , 2k.

Step 5. Let W1, W2, W3, W4 be obtained by Algorithm 4. Let X1 = Z, X2 = (z2, z1, z4, z3, . . . , z2k, z2k−1).
Construct two s2

1 × 2k matrices D21 and D22 as D21 = s3
2W1 + s2

2W2 + s2W3 + W4 and D22 =

s3
2X1 + s2

2X2 + s2W3 +W4.

Step 6. Let D2 = (D21,D22).

Theorem 5. For s1 = s2
2, D1, and D2 obtained in Algorithm 5, we have

(i) D1 is an OA
(
s2

1, s
s1−2
1 ss2

2 , 2
)
;

(ii) D2 is an LHD
(
s2

1, 4k
)
, where if s2 is odd, k = (s2 + 1)/2; if s2 is even, k = s2/2;

(iii) (D1,D2) is an MCD
(
s2

1, s
s1−2
1 ss2

2 , 4k
)
.

Theorem 6. For D1 and D2 constructed by Algorithm 5 and Theorem 5, D2 can be partitioned into
two disjoint groups of 2k columns, i.e., D2 = (D21,D22). For i = 1, 2, . . . , 2k, let di

1 and di
2 be the ith

columns of D21 and D22, respectively. Then,

(i) any two distinct columns of D2 achieve s2 × s2 grids stratification;

(ii) any two columns from different groups, d j
1 and d j′

2 , achieve s2
2 × s2

2 grids stratification, where
j, j′ = 1, 2, . . . , k;

(iii) any three columns from two different groups, d j
i , dt

i′ and dh
i′ , achieve s2

2× s2× s2 grids stratification,
where i, i′ = 1, 2, i , i′, j, t, h = 1, 2, . . . , 2k, t , h ;
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(iv) any four columns from two different groups, d j
i , dr

i , dt
i′ dh

i′ , achieve s2×s2×s2×s2 grids stratification,
where i, i′ = 1, 2, i , i

′

, j, r, t, h = 1, 2, . . . , 2k, , j , r, and t , h.

According to Theorem 6, there are 4k2 two-column groups achieving stratifications on s2
2 × s2

2 grids,
2k2(2k − 1) three-column groups achieving stratifications on s2

2 × s2 × s2 grids, and k2(2k − 1)2 four-
column groups achieving stratifications on s2 × s2 × s2 × s2 grids, respectively. Theorem 6 shows that
a large number of columns in D2 have good two-, three-, or four-dimensional projections. Next, we
provide an example to illustrate Algorithm 5, Theorem 5, and Theorem 6.

Example 7. Consider the case s1 = 9 and s2 = 3. An an OA
(
9, 34, 2

)
H listed in Table 19 of Appendix

B and an OA
(
81, 910, 2

)
F listed in Table 20 of Appendix B are obtained from the library of orthogonal

arrays maintained by Sloane (http://neilsloane.com/oadir/index.html). Divide F as F = (F0
∗, f0, f1, f2)

listed in Table 20 of Appendix B. For the H, obtain an 81 × 4 matrix U by replacing the levels
0, 1, . . . , 8 of the f1 with the 1st, 2nd, 3rd, . . . , the 9th row of the H according to Step 2 of Algorithm
4, respectively. Then, partition U as U = (U0, u1, u2) listed in Table 20 of Appendix B. In Step 3
and Step 4 of Algorithm 4, due to s2 = 3, let H∗ = H and k = (s2 + 1)/2 = 2, after replacing
the levels 0, 1, . . . , 8 of the f2 by the 1st, 2nd, 3rd, . . . , the 9th row of the H∗, respectively. Then,
V is obtained, and denote V as V = (v1, v2, v3, v4) listed in Table 20 of Appendix B. From Step 3,
D1 = (F0

∗,U0, u1), and it is easy to check that D1 is an OA
(
81, 9733, 2

)
. In Step 4, obtain an 81 × 4

matrix Z by replacing the levels 0, 1, . . . , 8 of the f0 with the 1st, 2nd, 3rd, . . . , the 9th row of the H∗,
respectively. Then, Z is obtained, and denote Z as Z = (z1, z2, z3, z4) listed in Table 20 of Appendix B.
In Step 5, let W1 = V , W2 = (v2, v1, v4, v3), W3 = (u2, u2, u2, u2), W4 = (u1, u1, u1, u1) according to Step 6
of Algorithm 4 and let X1 = Z, X2 = (z2, z1, z4, z3), then by matrix operation of s3

2W1+ s2
2W2+ s2W3+W4

and s3
2X1 + s2

2X2 + s2W3 +W4, D21 and D22 can be generated, respectively. Then, D2 = (D21,D22). It
is easy to verify that (D1,D2) is an MCD

(
81, 9733, 8

)
listed in Table 21 of Appendix B. Next, let the

first two columns of D21 be d1 and d2, and the first two columns of D22 be d3, d4. After collapsing the
levels of d1, d2, d3, d4, it is easy to see that the d1, d2, d3, d4 satisfies the stratifications of (i) and (ii) in
Theorem 6, as shown in Figure 2 and Figure 3.

Figure 2. Stratification on 3 × 3 grids.
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Figure 3. Stratification on 9 × 9 grids.

Inspired by Corollary 5, Corollary 6 is given as follows.

Corollary 6. For D = (D1,D2) (D1 = (F0
∗,U0, u1), D2 = (D21,D22)) constructed by Algorithm 5 and

Theorem 5, we have

(i) the rows in D2i, i = 1, 2, corresponding to each level of any factor in D1 can achieve stratification
on the s2 × s2 grids in any two-dimensional projection;

(ii) the rows in D2i, i = 1, 2, corresponding to each level combination of any two factors in (U0, u1)
can achieve stratification on the s2 × s2 grids in any two-dimensional projection.

Algorithm 5 can produce some MCDs based on the above Theorem 5, as shown in Table 15.

Table 15. Some MCDs from Algorithm 5.

D1 D2 MCDs
OA

(
16, 4222, 2

)
LHD (6, 4) MCD

(
6, 4322, 4

)
OA

(
81, 9733, 2

)
LHD (8, 8) MCD

(
8, 9833, 8

)
OA

(
256, 161444, 2

)
LHD (10, 8) MCD

(
10, 161544, 8

)
OA

(
625, 252355, 2

)
LHD (12, 12) MCD

(
12, 252455, 12

)
OA

(
1296, 363366, 2

)
LHD (14, 12) MCD

(
14, 363566, 12

)
4. Conclusions

Many researchers have constructed MCDs for equal-level qualitative factors. However, there has
been less research on MCDs when the qualitative factors are mixed-level. Construction 3 of Deng et
al. [12] generates large MCDs for mixed-level qualitative factors from small initial MCDs for mixed-
level qualitative factors. Obviously, such a construction is not valid when the initial MCD does not
exist. The key to Construction 3 of Deng et al. [12] is how to obtain a small initial MCD. However,
they did not answer the question. Fortunately, the constructed MCDs in this paper can be considered
as the initial MCDs for Construction 3 of [12].

In this paper, we propose five algorithms to construct MCDs where the designs for the qualitative
factors are mixed-level. The construction of the first algorithm is characterized by the fact that it is
based on an OA

(
s2

1, s
k1+2
1 , 2

)
and a CROA

(
s1, s

k2
2 , 2

)
with s1 = βs2. Clearly, its constructed MCD is

limited by s1 = βs2. To break this limitation, Algorithms 2 and 3 employ a mirror-symmetric structure
to construct D2. Moreover, the D1 constructed by Algorithm 3 can accommodate more columns than
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the one constructed by Algorithm 2, and the two algorithms construct different numbers of run sizes.
The fourth and fifth algorithms construct the MCD using the level replacement method and the rotation
method, where D2 has stratification in two- or higher-dimensional projection. Finally, Table 16 lists
some types and features of MCDs that can be constructed using our five algorithms. Obviously,
compared to the MCDs constructed by Construction 3 of Deng et al. [12], our constructed MCDs
have more flexible run sizes, and the more flexible fixed level D1 -D1 is an OA

(
n, sk1

1 sk2
2 , 2

)
, s1 = βs2,

or s1 , βs2. Moreover, in contrast to Construction 3 of Deng et al. [12] , which does not consider the
space-filling property of D2, Algorithm 4 and Algorithm 5 construct D2 with the space-filling property.

For future work, a direction is to introduce methods that can produce MCDs with three or more
mixed-level qualitative factors, which deserves further investigation.

Table 16. Some of the MCDs (D1,D2) results.

Source D1 Constraints

Theorem 1 OA
(
s2

1, s
k1
1 sk2

2 , 2
) s1 = βs2, an OA

(
s2

1, s
k1+2
1 , 2

)
and

a CROA
(
s1, s

k2
2 , 2

)
exist.

Corollary 1

OA
(
s2t, (st)k1(s)st−1

, 2
)

an OA
(
s2t, (st)k1+2, 2

)
exists.

OA
(
4s2t, (2st)k1(s)2st−1

, 2
)

an OA
(
4s2t, (2st)k1+2, 2

)
exists.

OA
(
16s2t, (4st)k1(s)4st−1

, 2
)

an OA
(
16s2t, (4st)k1+2, 2

)
exists.

OA
(
h2ws4, (hws2)k1(s)hw s, 2

)
an OA

(
h2ws4, (hws2)k1+2, 2

)
exists.

Corollary 2 OA
(
us2

1, s
r1k1
1 sr2k2

2 , 2
)

s1 = βs2, D(u, r1, s1) and D(u, r2, s2) exist.
Theorem 2 OA

(
2s, 21s1, 2

)
s ≥ 2.

Corollary 3 OA (2su, 2r1 sr2 , 2) s ≥ 2, D(u, r1, 2) and D(u, r2, s) exist.
Theorem 3 OA

(
2n, 21sm, 2

)
s ≥ 2.

Corollary 4 OA (2nu, 2r1 sr2m, 2) s ≥ 2, D(u, r1, 2) and D(u, r2, s) exist.
Theorems 4 OA

(
s2

1, s
s1−1
1 ss2

2 , 2
)

s1 = s2
2, s2 is a prime or prime power.

Theorems 5 OA
(
s2

1, s
s1−2
1 ss2

2 , 2
)

s1 = s2
2, s2 is a prime or prime power.
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Appendix A. PROOFS

Proof of Lemma 3. From the definition of an MCD, it is clear that D = (D1,D2) is an
MCD

(
n, s1

k1 s2
k2 , p

)
if, and only if, (Ω,D2) and (Λ,D2) are an MCD

(
n, s1

k1 , p
)

and an MCD
(
n, s2

k2 , p
)
,

respectively. Let di be the ith column of D2, for i = 1, . . . , p. From Lemma 1, we have (i)
(Ω,D2) is an MCD

(
n, s1

k1 , p
)

if, and only if, (Ω, f (di, s1)) is an OA
(
n, s1

k1(n/s1), 2
)
; (ii) (Λ,D2) is

an MCD
(
n, s2

k2 , p
)

if, and only if, (Λ, f (di, s2)) is an OA
(
n, s2

k2(n/s2), 2
)

for i = 1, . . . , p. □

Proof of Theorem 1. (i) In the design (l2, A, B∗), the levels 0, 1, . . . , s1−1 of the l2 correspond to the 1st,
2nd, . . . , s1th rows of the B, respectively, where B∗ = 1s1 ⊗B. Thus, D1 = (A, B∗) is an OA

(
s2

1, s
k1
1 sk2

2 , 2
)

with s1 = βs2.
(ii) From Steps 4 and 5 of Algorithm 1, it is clear that (ei, ci) is an OA

(
s2

1, s
2
1, 2

)
for i = 1, 2, . . . , p,

where s1 = βs2. Thus, D2 is an LHD
(
s2

1, p
)

from Step 6 of Algorithm 1.
(iii) Let a, b, and d be any columns of A, B∗, and D2, respectively. From Steps 3, 4, 5, and 6,

let e and c be the columns corresponding to d in E and C, respectively. From Step 6 and Equation
(2.1), (a, f (D2, s)) = (a, e), thus (a, f (D2, s1)) is an OA

(
s2

1, s
2
1, 2

)
. From Steps 4, 5, and 6 of

Algorithm 1, it is clear that f (D2, s2) = βe + c∗, where c∗ = 1s1 ⊗ w, w is a random permutation of(
(c∗i,1)T , (c∗i,2)T , · · · , (c∗i,β)

T
)T

with c∗i, j = ( j − 1)1s2 . Since (b, e, c∗) is an OA
(
s2

1, s
1
2s1

1β
1, 3

)
, (b, f (D2, s2))

is an OA
(
s2

1, s
1
2(βs1)1, 2

)
. Thus, D = (D1,D2) is an MCD

(
s2

1, s
k1
1 sk2

2 , p
)

from Lemma 3. □

Proof of Theorem 2. From Steps 1 and 2 of Algorithm 2, it is easy to check that D1 is an OA
(
2s, 21s1, 2

)
and D2 is an LHD (2s, s!). By Step 2, we can see that di is the ith column of D2 for i = 1, 2, . . . , s!.
Since f (di, 2)=

(
(ui)T , ((s − 1)1s − ui)T

)T
, (L1, f (di, 2)) is an OA

(
2s, 21s1, 2

)
, where ui is a random

permutation of (0, 1, 2, . . . , s−1)T , i = 1, 2, . . . , s!. For 1 ≤ i ≤ s!, let ξ1 = 2ui and ξ2 = (2s−1)1s−2ui,
then

(L2, di) =
(

e ξ1
e ξ2

)
and (L2, f (di, s)) =

(
e f (ξ1, s)
e f (ξ2, s)

)
,

where e = (0, 1, . . . , s − 1)T . Obviously, the elements of f (ξ1, s) and f (ξ2, s) are all taken from {0, 1}.
Since f (ξ2, s) = 1s − f (ξ1, s), (L2, f (di, s)) is an OA

(
2s, s121, 2

)
, i = 1, 2, . . . , s!. From Lemma 3, the

design D = (D1,D2) is an MCD
(
2s, 21s1, s!

)
□

Proof of Theorem 3. The proof of Theorem 3 is similar to that of Theorem 2 and is therefore omitted
here. □

Proof of Theorem 4. For i = 1, 2, . . . , s1 − 1, j = 1, 2, . . . , s2 − 1, let f0i and u0 j be the ith and jth
columns of F0 and U0, respectively.

(i) Since F = (F0, f1, f2) is an OA
(
s2

1, s
s1+1
1 , 2

)
, U = (U0, u1, u2) is an OA

(
s2

1, s
s2+1
2 , 2

)
, ( f0i, u0 j) is an

OA
(
s2

1, s
1
1s1

2, 2
)
, and ( f0i, u1) is an OA

(
s2

1, s
1
1s1

2, 2
)
, i = 1, 2, . . . , s1 − 1, j = 1, 2, . . . , s2 − 1, thus D1 is an

OA
(
s2

1, s
s1−1
1 ss2

2 , 2
)
.

(ii) According to Proposition 1 of [24], we can obtain that (vi, v j, u1, u2) is an OA
(
s2

1, s
4
2, 4

)
, where

s1 = s2
2, i , j, i, j = 1, 2, . . . , 2k. Thus, D2 is an LHD

(
s2

1, 2k
)
, where if s2 is odd, k = (s2 + 1)/2; if s2

is even, k = s2/2.
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(iii) For h = 1, 2, . . . , k, let d2h−1 and d2h be the (2h−1)th and 2hth columns of D2, respectively, then
d2h−1 = s3

2v2h−1+ s2
2v2h+ s2u2+u1 and d2h = s3

2v2h+ s2
2v2h−1+ s2u2+u1. Obviously, for i = 1, 2, . . . , s1−1,

j = 1, 2, . . . , s2 − 1, h = 1, 2, . . . , k, ( f0i, f (d2h−1, s1)) = ( f0i, s2v2h−1 + v2h), ( f0i, f (d2h, s1)) = ( f0i, s2v2h +

v2h−1), (u0 j, f (d2h−1, s1)) = (u0 j, s2
2v2h−1 + s2v2h + u2), (u0 j, f (d2h, s1)) = (u0 j, s2

2v2h + s2v2h−1 + u2),
(u1, f (d2h−1, s1)) = (u1, s2

2v2h−1 + s2v2h + u2), and (u1, f (d2h, s1)) = (u0 j, s2
2v2h + s2v2h−1 + u2), where

s1 = s2
2. According to Proposition 1 of [24], for s1 = s2

2, it is easy to obtain that ( f0i, v2h−1, v2h)
is an OA

(
s2

1, s
1
1s2

2, 3
)
, and both (u1, u2, v2h−1, v2h) and (u2, u0 j, v2h−1, v2h) are OA

(
s4

2, s
4
2, 4

)
’s, where i =

1, 2, . . . , s1−1, j = 1, 2, . . . , s2−1, h = 1, 2, . . . , k. Therefore, both ( f0i, f (d2h−1, s1)) and ( f0i, f (d2h, s1))
are OA

(
s2

1, s
2
1, 2

)
’s, and (u0 j, f (d2h−1, s2)), (u0 j, f (d2h, s2)), (u1, f (d2h−1, s2)), and (u1, f (d2h, s2)) are all

OA
(
s4

2, s
1
2(s3

2)1, 2
)
’s, where s1 = s2

2, i = 1, 2, . . . , s1 − 1, j = 1, 2, . . . , s2 − 1, h = 1, 2, . . . , k. From

Lemma 3, the design (D1,D2) is an MCD
(
s2

1, s
s1−1
1 ss2

2 , 2k
)
.

(iv) Since f
(
D2, s2

3
)
= W1 and W1 is an OA

(
s2

1, s
2k
2 , 2

)
with s1 = s2

2, thus any two distinct columns
of D2 achieve s2 × s2 grids stratification. □

Proof of Theorem 5. The proof of Theorem 5 is similar to that of Theorem 4 and is therefore omitted
here. □

Proof of Theorem 6. (i) Since f (D2, s3
2) = (W1, X1) and (W1, X1) is an OA

(
s2

1, s
4k
2 , 2

)
, thus Theorem 6

(i) is true.
(ii) For j, j′ = 1, 2, . . . , 2k, it is easy to see that f (d j

1, s
2
2) = s2v2 j−1 + v2 j or f (d j

1, s
2
2) = s2v2 j + v2 j−1

, and f (d j′

2 , s
2
2) = s2z2 j′−1 + z2 j′ or f (d j′

2 , s
2
2) = s2z2 j′ + z2 j′−1 . According to Proposition 1 of [24], it is

easy to obtain that (v2 j−1, v2 j, z2 j′−1, z2 j′) is an OA
(
s4

2, s
4
2, 4

)
. Thus, Theorem 6 (ii) is true.

(iii-iv) From Proposition 1 of [24], it is known that any two columns of V in Algorithm 4 and any
two columns of Z in Algorithm 5 form an OA

(
s4

1, s
4
2, 4

)
with s1 = s2

2. Similar to the proof of (ii), thus
(iii) and (iv) are true. □

Appendix B. Tables
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Table 19. Matrix H in Example 7.

Run H Run H Run H
1 0 0 0 0 4 1 0 1 1 7 2 0 2 2
2 0 1 1 2 5 1 1 2 0 8 2 1 0 1
3 0 2 2 1 6 1 2 0 2 9 2 2 1 0

Table 20. Matrices F, U, V , and Z in Example 7.

Run
F U V Z

Run
F U V Z

F0
∗ f0 f1 f2 U0 u1 u2 v1 v2 v3 v4 z1 z2 z3 z4 F0

∗ f0 f1 f2 U0 u1 u2 v1 v2 v3 v4 z1 z2 z3 z4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 4 5 6 3 2 0 7 1 5 8 1 2 0 2 2 2 1 0 0 1 1 2
2 0 1 1 2 3 4 5 6 7 8 2 1 0 1 2 2 1 0 2 0 2 2 43 4 6 3 2 0 7 1 5 8 6 2 2 1 0 2 0 2 2 1 2 0 2
3 0 2 2 3 4 5 6 7 8 1 2 2 1 0 0 1 1 2 2 1 0 1 44 4 7 2 0 7 1 5 8 6 3 2 0 2 2 1 0 1 1 2 2 1 0
4 0 3 3 4 5 6 7 8 1 2 0 1 1 2 0 2 2 1 2 2 1 0 45 4 8 0 7 1 5 8 6 3 2 1 0 1 1 0 2 2 1 2 0 2 2
5 0 4 4 5 6 7 8 1 2 3 0 2 2 1 1 0 1 1 0 1 1 2 46 5 0 5 5 5 5 5 5 5 5 1 2 0 2 1 2 0 2 1 2 0 2
6 0 5 5 6 7 8 1 2 3 4 1 0 1 1 1 1 2 0 0 2 2 1 47 5 1 0 8 2 6 1 7 4 3 1 1 2 0 1 0 1 1 2 1 0 1
7 0 6 6 7 8 1 2 3 4 5 1 1 2 0 1 2 0 2 1 0 1 1 48 5 2 8 2 6 1 7 4 3 0 1 0 1 1 0 0 0 0 1 1 2 0
8 0 7 7 8 1 2 3 4 5 6 1 2 0 2 2 0 2 2 1 1 2 0 49 5 3 2 6 1 7 4 3 0 8 0 0 0 0 2 2 1 0 1 0 1 1
9 0 8 8 1 2 3 4 5 6 7 2 0 2 2 2 1 0 1 1 2 0 2 50 5 4 6 1 7 4 3 0 8 2 2 2 1 0 0 2 2 1 0 0 0 0
10 1 0 1 1 1 1 1 1 1 1 0 1 1 2 0 1 1 2 0 1 1 2 51 5 5 1 7 4 3 0 8 2 6 0 2 2 1 2 0 2 2 2 2 1 0
11 1 1 5 3 8 7 0 4 6 2 2 0 2 2 0 2 2 1 1 1 2 0 52 5 6 7 4 3 0 8 2 6 1 2 0 2 2 0 1 1 2 0 2 2 1
12 1 2 3 8 7 0 4 6 2 5 0 2 2 1 1 2 0 2 2 0 2 2 53 5 7 4 3 0 8 2 6 1 7 0 1 1 2 2 1 0 1 2 0 2 2
13 1 3 8 7 0 4 6 2 5 3 1 2 0 2 1 0 1 1 0 2 2 1 54 5 8 3 0 8 2 6 1 7 4 2 1 0 1 1 1 2 0 0 1 1 2
14 1 4 7 0 4 6 2 5 3 8 1 0 1 1 2 2 1 0 1 2 0 2 55 6 0 6 6 6 6 6 6 6 6 2 0 2 2 2 0 2 2 2 0 2 2
15 1 5 0 4 6 2 5 3 8 7 2 2 1 0 2 1 0 1 1 0 1 1 56 6 1 4 0 1 3 7 2 8 5 2 2 1 0 1 2 0 2 0 2 2 1
16 1 6 4 6 2 5 3 8 7 0 2 1 0 1 0 0 0 0 2 2 1 0 57 6 2 0 1 3 7 2 8 5 4 1 2 0 2 1 1 2 0 2 2 1 0
17 1 7 6 2 5 3 8 7 0 4 0 0 0 0 1 1 2 0 2 1 0 1 58 6 3 1 3 7 2 8 5 4 0 1 1 2 0 0 0 0 0 1 2 0 2
18 1 8 2 5 3 8 7 0 4 6 1 1 2 0 2 0 2 2 0 0 0 0 59 6 4 3 7 2 8 5 4 0 1 0 0 0 0 0 1 1 2 1 1 2 0
19 2 0 2 2 2 2 2 2 2 2 0 2 2 1 0 2 2 1 0 2 2 1 60 6 5 7 2 8 5 4 0 1 3 0 1 1 2 1 0 1 1 0 0 0 0
20 2 1 3 6 4 1 8 0 5 7 1 2 0 2 2 1 0 1 0 0 0 0 61 6 6 2 8 5 4 0 1 3 7 1 0 1 1 2 1 0 1 0 1 1 2
21 2 2 6 4 1 8 0 5 7 3 2 1 0 1 1 0 1 1 1 2 0 2 62 6 7 8 5 4 0 1 3 7 2 2 1 0 1 0 2 2 1 1 0 1 1
22 2 3 4 1 8 0 5 7 3 6 1 0 1 1 2 0 2 2 2 1 0 1 63 6 8 5 4 0 1 3 7 2 8 0 2 2 1 2 2 1 0 2 1 0 1
23 2 4 1 8 0 5 7 3 6 4 2 0 2 2 1 1 2 0 1 0 1 1 64 7 0 7 7 7 7 7 7 7 7 2 1 0 1 2 1 0 1 2 1 0 1
24 2 5 8 0 5 7 3 6 4 1 1 1 2 0 0 1 1 2 2 0 2 2 65 7 1 6 5 0 2 4 8 3 1 1 0 1 1 0 1 1 2 2 2 1 0
25 2 6 0 5 7 3 6 4 1 8 0 1 1 2 2 2 1 0 1 1 2 0 66 7 2 5 0 2 4 8 3 1 6 0 1 1 2 2 0 2 2 1 0 1 1
26 2 7 5 7 3 6 4 1 8 0 2 2 1 0 0 0 0 0 0 1 1 2 67 7 3 0 2 4 8 3 1 6 5 2 0 2 2 1 2 0 2 0 1 1 2
27 2 8 7 3 6 4 1 8 0 5 0 0 0 0 1 2 0 2 2 2 1 0 68 7 4 2 4 8 3 1 6 5 0 1 2 0 2 0 0 0 0 2 0 2 2
28 3 0 3 3 3 3 3 3 3 3 1 0 1 1 1 0 1 1 1 0 1 1 69 7 5 4 8 3 1 6 5 0 2 0 0 0 0 0 2 2 1 1 2 0 2
29 3 1 8 4 7 5 2 1 0 6 0 0 0 0 2 0 2 2 0 1 1 2 70 7 6 8 3 1 6 5 0 2 4 0 2 2 1 1 1 2 0 0 0 0 0
30 3 2 4 7 5 2 1 0 6 8 2 0 2 2 2 2 1 0 0 0 0 0 71 7 7 3 1 6 5 0 2 4 8 1 1 2 0 2 2 1 0 0 2 2 1
31 3 3 7 5 2 1 0 6 8 4 2 2 1 0 1 1 2 0 2 0 2 2 72 7 8 1 6 5 0 2 4 8 3 2 2 1 0 1 0 1 1 1 1 2 0
32 3 4 5 2 1 0 6 8 4 7 1 1 2 0 2 1 0 1 2 2 1 0 73 8 0 8 8 8 8 8 8 8 8 2 2 1 0 2 2 1 0 2 2 1 0
33 3 5 2 1 0 6 8 4 7 5 2 1 0 1 1 2 0 2 1 1 2 0 74 8 1 2 7 6 0 3 5 1 4 0 1 1 2 1 1 2 0 1 2 0 2
34 3 6 1 0 6 8 4 7 5 2 1 2 0 2 0 2 2 1 2 1 0 1 75 8 2 7 6 0 3 5 1 4 2 1 1 2 0 0 2 2 1 0 1 1 2
35 3 7 0 6 8 4 7 5 2 1 0 2 2 1 0 1 1 2 1 2 0 2 76 8 3 6 0 3 5 1 4 2 7 0 2 2 1 2 1 0 1 1 1 2 0
36 3 8 6 8 4 7 5 2 1 0 0 1 1 2 0 0 0 0 0 2 2 1 77 8 4 0 3 5 1 4 2 7 6 2 1 0 1 2 0 2 2 0 2 2 1
37 4 0 4 4 4 4 4 4 4 4 1 1 2 0 1 1 2 0 1 1 2 0 78 8 5 3 5 1 4 2 7 6 0 2 0 2 2 0 0 0 0 2 1 0 1
38 4 1 7 1 5 8 6 3 2 0 0 2 2 1 0 0 0 0 1 0 1 1 79 8 6 5 1 4 2 7 6 0 3 0 0 0 0 1 0 1 1 2 0 2 2
39 4 2 1 5 8 6 3 2 0 7 0 0 0 0 2 1 0 1 0 2 2 1 80 8 7 1 4 2 7 6 0 3 5 1 0 1 1 1 2 0 2 0 0 0 0
40 4 3 5 8 6 3 2 0 7 1 2 1 0 1 0 1 1 2 0 0 0 0 81 8 8 4 2 7 6 0 3 5 1 1 2 0 2 0 1 1 2 1 0 1 1
41 4 4 8 6 3 2 0 7 1 5 0 1 1 2 1 2 0 2 2 1 0 1
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Table 21. D = (D1,D2) in Example 7.

MCD(D1,D2) MCD(D1,D2)

Run D1 D2 Run D1 D2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 4 5 6 3 2 0 7 1 2 0 78 78 33 15 15 33 51 69
2 0 1 1 2 3 4 5 2 1 0 75 75 30 12 57 21 75 75 43 4 6 3 2 0 7 1 2 2 1 55 19 73 73 46 64 19 55
3 0 2 2 3 4 5 6 2 2 1 10 28 46 64 64 46 10 28 44 4 7 2 0 7 1 5 2 0 2 35 17 44 44 80 80 35 17
4 0 3 3 4 5 6 7 0 1 1 25 61 70 52 79 79 34 16 45 4 8 0 7 1 5 8 1 0 1 22 58 67 49 58 22 76 76
5 0 4 4 5 6 7 8 0 2 2 32 14 41 41 14 32 50 68 46 5 0 5 5 5 5 5 1 2 0 51 69 24 60 51 69 24 60
6 0 5 5 6 7 8 1 1 0 1 40 40 58 22 22 58 67 49 47 5 1 0 8 2 6 1 1 1 2 29 11 38 38 65 47 11 29
7 0 6 6 7 8 1 2 1 1 2 47 65 20 56 29 11 38 38 48 5 2 8 2 6 1 7 1 0 1 4 4 4 4 40 40 58 22
8 0 7 7 8 1 2 3 1 2 0 60 24 78 78 42 42 60 24 49 5 3 2 6 1 7 4 0 0 0 72 72 27 9 27 9 36 36
9 0 8 8 1 2 3 4 2 0 2 71 53 17 35 53 71 26 62 50 5 4 6 1 7 4 3 2 2 1 19 55 64 46 1 1 1 1

10 1 1 1 1 1 1 1 0 1 1 16 34 52 70 16 34 52 70 51 5 5 1 7 4 3 0 0 2 2 59 23 77 77 77 77 32 14
11 1 1 5 3 8 7 0 2 0 2 26 62 71 53 44 44 62 26 52 5 6 7 4 3 0 8 2 0 2 17 35 53 71 26 62 71 53
12 1 2 3 8 7 0 4 0 2 2 50 68 23 59 59 23 77 77 53 5 7 4 3 0 8 2 0 1 1 70 52 16 34 61 25 79 79
13 1 3 8 7 0 4 6 1 2 0 33 15 42 42 24 60 69 51 54 5 8 3 0 8 2 6 2 1 0 39 39 57 21 12 30 48 66
14 1 4 7 0 4 6 2 1 0 1 76 76 31 13 49 67 22 58 55 6 0 6 6 6 6 6 2 0 2 62 26 80 80 62 26 80 80
15 1 5 0 4 6 2 5 2 2 1 64 46 10 28 28 10 37 37 56 6 1 4 0 1 3 7 2 2 1 46 64 19 55 19 55 64 46
16 1 6 4 6 2 5 3 2 1 0 3 3 3 3 75 75 30 12 57 6 2 0 1 3 7 2 1 2 0 42 42 60 24 78 78 33 15
17 1 7 6 2 5 3 8 0 0 0 36 36 54 18 63 45 9 27 58 6 3 1 3 7 2 8 1 1 2 2 2 2 2 47 65 20 56
18 1 8 2 5 3 8 7 1 1 2 56 20 74 74 2 2 2 2 59 6 4 3 7 2 8 5 0 0 0 9 27 45 63 36 36 54 18
19 2 0 2 2 2 2 2 0 2 2 23 59 68 50 23 59 68 50 60 6 5 7 2 8 5 4 0 1 1 34 16 43 43 7 7 7 7
20 2 1 3 6 4 1 8 1 2 0 69 51 15 33 6 6 6 6 61 6 6 2 8 5 4 0 1 0 1 67 49 13 31 13 31 49 67
21 2 2 6 4 1 8 0 2 1 0 30 12 39 39 48 66 21 57 62 6 7 8 5 4 0 1 2 1 0 21 57 66 48 30 12 39 39
22 2 3 4 1 8 0 5 1 0 1 58 22 76 76 67 49 13 31 63 6 8 5 4 0 1 3 0 2 2 77 77 32 14 68 50 14 32
23 2 4 1 8 0 5 7 2 0 2 44 44 62 26 35 17 44 44 64 7 0 7 7 7 7 7 2 1 0 66 48 12 30 66 48 12 30
24 2 5 8 0 5 7 3 1 1 2 11 29 47 65 56 20 74 74 65 7 1 6 5 0 2 4 1 0 1 13 31 49 67 76 76 31 13
25 2 6 0 5 7 3 6 0 1 1 79 79 34 16 43 43 61 25 66 7 2 5 0 2 4 8 0 1 1 61 25 79 79 34 16 43 43
26 2 7 5 7 3 6 4 2 2 1 1 1 1 1 10 28 46 64 67 7 3 0 2 4 8 3 2 0 2 53 71 26 62 17 35 53 71
27 2 8 7 3 6 4 1 0 0 0 45 63 18 54 72 72 27 9 68 7 4 2 4 8 3 1 1 2 0 6 6 6 6 60 24 78 78
28 3 0 3 3 3 3 3 1 0 1 31 13 40 40 31 13 40 40 69 7 5 4 8 3 1 6 0 0 0 18 54 63 45 45 63 18 54
29 3 1 8 4 7 5 2 0 0 0 54 18 72 72 9 27 45 63 70 7 6 8 3 1 6 5 0 2 2 41 41 59 23 5 5 5 5
30 3 2 4 7 5 2 1 2 0 2 80 80 35 17 8 8 8 8 71 7 7 3 1 6 5 0 1 1 2 74 74 29 11 20 56 65 47
31 3 3 7 5 2 1 0 2 2 1 37 37 55 19 55 19 73 73 72 7 8 1 6 5 0 2 2 2 1 28 10 37 37 37 37 55 19
32 3 4 5 2 1 0 6 1 1 2 65 47 11 29 74 74 29 11 73 8 0 8 8 8 8 8 2 2 1 73 73 28 10 73 73 28 10
33 3 5 2 1 0 6 8 2 1 0 48 66 21 57 39 39 57 21 74 8 1 2 7 6 0 3 0 1 1 43 43 61 25 52 70 25 61
34 3 6 1 0 6 8 4 1 2 0 24 60 69 51 69 51 15 33 75 8 2 7 6 0 3 5 1 1 2 20 56 65 47 11 29 47 65
35 3 7 0 6 8 4 7 0 2 2 14 32 50 68 50 68 23 59 76 8 3 6 0 3 5 1 0 2 2 68 50 14 32 41 41 59 23
36 3 8 6 8 4 7 5 0 1 1 7 7 7 7 25 61 70 52 77 8 4 0 3 5 1 4 2 1 0 57 21 75 75 21 57 66 48
37 4 0 4 4 4 4 4 1 1 2 38 38 56 20 38 38 56 20 78 8 5 3 5 1 4 2 2 0 2 8 8 8 8 71 53 17 35
38 4 1 7 1 5 8 6 0 2 2 5 5 5 5 32 14 41 41 79 8 6 5 1 4 2 7 0 0 0 27 9 36 36 54 18 72 72
39 4 2 1 5 8 6 3 0 0 0 63 45 9 27 18 54 63 45 80 8 7 1 4 2 7 6 1 0 1 49 67 22 58 4 4 4 4
40 4 3 5 8 6 3 2 2 1 0 12 30 48 66 3 3 3 3 81 8 8 4 2 7 6 0 1 2 0 15 33 51 69 33 15 42 42
41 4 4 8 6 3 2 0 0 1 1 52 70 25 61 70 52 16 34
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