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1. Introduction

Computer experiments, as a widely used method in scientific research, simulate complex real-
world problems through complex computer codes [1-3]. It is very important to plan computer
experiments efficiently. Latin hypercube designs (LHDs) introduced by McKay et al. [4] are very
suitable to plan computer experiments involving only quanlitative factors. Numerous methods have
been proposed to construct LHDs with good properties, such as low-dimensional projection property,
orthogonality, and other uniform criteria (such as uniform discrepancies, maximin distance, etc.).
Computer experiments with both qualitative and quantitative factors have also received a lot of attention
(see, for example, [5-9]). Sliced space-filling designs and sliced LHDs (SLHDs) are efficient choices
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when both quantitative and qualitative factors are included in computer experiments [10,11]. However,
such two types of designs are inefficient due to the increase in the number of runs as the number of
level combinations of the qualitative factors increases. To solve this problem, Deng et al. [12] first
proposed marginally coupled design (MCD), which is more cost-effective in terms of the number of
runs, and possesses excellent space-filling properties, i.e., in which the design for the quantitative
factors is an LHD, and such quantitative factor design is also an SLHD with respect to each qualitative
factor. Some researchers have worked on improving the low-dimensional stratification of the design
for the quantitative factors in MCDs; see, among others, [13,14] and [15]. Other researchers have
constructed orthogonal MCDs in which the designs for the quantitative factors are orthogonal [16].
In order to improve the stratification between qualitative and quantitative factors, Yang et al. [17]
proposed doubly coupled design (DCD) which has the following attractive space-filling properties: (1)
the whole design is an MCD, and (2) the design points for the quantitative factors form an SLHD with
respect to the level combinations of any two qualitative factors. In the above improved MCDs and
DCDs, the designs for the qualitative factors are all equal-level orthogonal arrays (OAs). However,
there exist qualitative factors being mixed-level in real-world problems, and in MCDs the designs of
the qualitative factors are often mixed-level OAs. In this paper, we aim to construct MCDs in which
the designs for qualitative factors are mixed-level OAs.

For an MCD (D, D,) where D; and D, are the designs for qualitative and quantitative factors,
respectively, Deng et al. [12] investigated the existence and construction of an MCD for mixed-level
qualitative factors. They gave the existence of an MCD (D, D,) with D; being an OA (n, s’fl sgz, 2) ,
s1 = Bsa, in terms of the structure of D;. The existence is somewhat limited by the restriction s; = 8.
To overcome this limitation, we provide a necessary and sufficient condition on both D; and D, to
ensure the existence of an MCD with D; being an OA (n, s/f‘ s/;z, 2) , S1 = Bsy, or 51 # Bs,. Given
a small initial MCD with mixed-level qualitative factors, a large MCD with mixed-level qualitative
factors can be constructed by Construction 3 of Deng et al. [12]. However, Deng et al. [12] did not
address the question of how to construct the initial MCDs. Fortunately, the MCDs constructed in this
paper can be used as initial MCDs for Construction 3 of [12]. Therefore, for the MCDs obtained in
this paper, the run sizes are more flexible than for the MCDs constructed in Construction 3 of Deng et
al. [12]. Based on the existence result of [12], for s; = Bs,, we give an algorithm to construct MCDs
for D, with a large number of columns. By the necessary and sufficient condition in this paper, two
algorithms are proposed to construct MCDs with D, being an OA (n, 2k gka 2), s =24, or s # 28. For
the D, constructed by Construction 3 of Deng et al. [12], the D, only has stratification property in
one-dimensional projections. To enhance the space-filling property of D,, we present two algorithms
to construct MCDs with D, possessing stratification properties in two-, three-, or four- dimensional
projections.

The paper is organized as follows: Section 2 introduces the basic definitions and notation. Section
3 gives five methods for constructing MCDs with mixed-level qualitative factors. Section 4 provides
the conclusions. All proofs are deferred to Appendix A. Some tables are listed in Appendix B.

2. Definitions and notation

Let GF(s) = {ag, @1,...,a51}, g = 0, @; = 1, denote a Galois field of order s, which is simplified
asGF(s)=1{0,1,...,s— 1}if sisa prime. An n X p matrix is called a Latin hypercube design of n runs
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and p factors, denoted by LHD (n, p), if each of its columns is a random permutation of {0, 1,...,n—1}.
An n X k array A is said to be a mixed-level OA of strength 2, denoted by OA (n, sik s,k 2), if any
n X 2 sub-array of A contains all possible level combinations with equal frequency, where the entries
in the first k; columns and the last k, columns are taken from {0,1,...,s; — 1} and {0, 1,..., 5, — 1},
respectively. When s; = s, = s and k; + k, = k, the orthogonal array A is equal-level, denoted by
OA (n, sk, 2). An OA (s’, sk, 2) with v = (s' = 1)/(s — 1) can be constructed using the Rao-Hamming
construction, the details of which are described in Section 3.4 of [18]. For a prime power s, let n; and
17, be two s-level independent columns of length s?, where the entries of both 1; and 7, are taken from
GF(s) = {ap, a1,...,a5-1}, g = 0, @y = 1. We apply the Rao-Hamming construction to create an
OA(s%, 5*1,2) D as

@ ={ni,m +m2,m + @12, + @302, M1+ U172, 72

where the addition and multiplication operations are based on GF'(s). An OA (n s s2 , 2) A s said to be
a (B1%xB,)-resolvable OA, denoted by (8,%3,)-ROA (n s s];z, 2), if for i = 1, 2, its rows can be divided
into n/(B;s;) sub-arrays Ay, ..., A, g, of Bis; rows each, where A; is an OA (ﬁis,, 51k s,k 1) fori=1,2.
In particular, when s;=s,=s,8,=3,=0, and k; + k, = k, then the array reduces to S-ROA (n, s<, 2). If
B=1, the array A is called a completely resolvable OA (CROA), denoted by CROA (n, sk, 2).

Suppose D is an OA (n s, sk2 2) and D, is an LHD (n, p), then the design D = (D, D,) is called

a MCD, denoted by MCD (n s 52 , p) where D; and D, are sub-designs for qualitative factors and
quantitative factors, respectlvely, if for every level of any factor of D, the corresponding rows in D,
form a small LHD. When s, = s, = s and k| + k, = k, the MCD is denoted by MCD (n, sk, p).

Let 1, be an s-dimensional column vector whose entries are all ones. An u X r matrix A with entries
from GF(s) is called a difference scheme of strength 2 based on GF(s), denoted by D(u, r, s), if for all
iand k with 1 < i, k < r, i # k, the vector difference between the ith and kth columns contains each
element of GF(s) exactly u/s times. Throughout, D(u, r, s) is a u-row, r-column, and s-level difference
schme (of strength 2). For an nxm matrix X and an s X p matrix Y, their Kronecker sum and Kronecker
product are defined as X @ Y :(x,- i+ Y) and X®Y :(x,-.,-Y ), respectively, where x;; is the (i, j)th entry of

X. For a matrix X = (xi j) . define an n X m matrix f (X, s) as
nxXm

x,'j
f X, s) = QTJ) 2.1)
He et al. [13] demonstrated a necessary and sufficient condition for the design (D, D,) being an
MCD (n, sk, p), as stated in Lemma 1.

Lemma 1 ( [13]). Suppose D, is an OA (n, sk, 2) and D, is an LHD (n, p). Let d; be the ith column of
D, fori=1,2,...,p. Then, D = (Dy, D;) is an MCD(n,s",p) if, and only if, fori = 1,2,..., p, the
(D, f(d;, 5)) is an OA (n, sk(n/s), 2), where f(x,-) can be obtained from Equation (2.1).

Lemma 2 given by Deng et al. [12] presents a necessary and sufficient condition for the existence
of an MCD (n s sgz,p) with s; = Bs;.
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Lemma 2 ( [12]). Given that D, is an OA (n s sk2 2) with s, = Bs,, an MCD(n s1's5 ,p) D =
(D1, Dy) exists if, and only if, Dy is a (1 X §)-ROA (n s s2 , p) that can be expressed as

T
( A;I A’;l )
A12 Am2
such that (Aj,Ap) is an OA (sl, s 52 , 1) where m = n/s;, and the Ap is a CROA (sl,s2 , ) for
i=1,2,....,m

The necessary and sufficient condition given by Lemma 2 is rather restricted by the restriction
s1 = Bs,. Similar to Lemma 1, we provide directly a necessary and sufficient condition to break this
restriction, as shown in the following lemma.

Lemma 3. Suppose D; = (Q,A) is an OA (n s s’;, 2), where € and A are an OA (n it 2) and an
OA (n 55, 2) respectively, and D, is an LHD (n, p). Let d; be the ith column of D, fori = 1,2...,p
Then, D=(D;,D,) is an MCD(n 5,85 ,p) if, and only if, for i = 1,2,...,p, (Q, f(d; s1)) and

(A, f (d;, 52)) are an OA (n, sl‘(n/sl), 2) and an OA (n, slf(n/sz), 2), respectively, where f (x,-) can be
obtained from Equation (2.1).

3. Construction of MCDs
3.1. Construction of MCDs for D, being an OA (N, s’fl s’f, 2) with N = s% (s1 =PBs2), N =2s(s>2),

N =21s* (s > 2)

This section presents three construction algorithms to construct MCDs. First, we construct an MCD
D = (Dy, Dy) viaan OA (s}, 5{'%,2) and a CROA (51, 5§, 2) with s, = fBs,. Motivated by Lemma 2, we
present the following algorithm.

Algorithm 1 Construction of MCDs via an OA (s% s]f'+2, 2) and a CROA (s1 , s];z, 2) with s; = Bs;

Step 1. For s; = Bsy, given an OA (sl, slf‘ 2 2) denote it as G. Rearrange the rows of G into G = (I1,1,A), so that

T
L =0,1,---,51 = 1) ®1;, and [ = 1;, ® (0, 1,--- , sy — 1), Then A can be expressed as A = (AIT,Ag,n- ,AsTl) ,
where A; is an OA (sl, s’]“, 1) andi=1,2,...,s
T

Step 2. Given a CROA (sl, sgz, 2) with s; = s, denoted as B. B can be expressed as B = (B]T, Bg, I Bg) , where B; is
an OA (s5, 85, 1),i=1,2,....6. Let B = 1,, ® B.

Step 3. Construct an s7 X (ki + k,) matrix Dy as D1=(A, B*).

Step 4. For1 <i< p,lete; = y; ® 15, where y; is a random permutation of (0, 1, ..., s; — 1)T. Stack the columns of e; for
1 <i < p together to obtain E = (el,ez, . e,,).

T

Step5. For 1 <i < pandl < j < B,¢; = 1, ®w;, where w; is a random permutation of( Cips 1,2,--- ,cirﬁ) with
¢i,j = (j— 1)s21,, + 7, where 7 is a random permutation of (0,1,---, 5, — DT, Stack the columns of ¢; for 1 <i < p
together to obtain C, i.e., C = (cl, Coynns c,,).

Step 6. Construct an s7 X p matrix D; as D, = s;E + C.

Step 7. Let D = (Dy, D).
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Theorem 1. For D = (D,, D;) constructed by Algorithm 1, we have
(i) D; = (A, B") is an OA (sf, SII‘1 s’;, 2) with s = Bsa;
(ii) D, is an LHD (3, p);

(i) D = (D, D,) isan MCD (s%, S]f' S];z, P)-

If we take G in Step 1 of Algorithm 1 to be a regular saturated OA (sf, s‘l”“, 2), then D = (D, D»)
is an MCD (s%, sil_lsgz, p); alternatively, the G can also be a non-regular s;-level OA. Hence, s; may
or may not be a prime power. Furthermore, if B is a CROA (sl, sgz, 2) and s, = 5,7 in Step 2, then

D = (D;,D,)is an MCD (sf, sfl_lsgz,p).

In Theorem 1, the MCDs with at most 8!s; !'s,! distinct quantitative columns can be constructed from
Steps 4 and 5 of Algorithm 1. Thus, Theorem 1 provides the MCD with a large number of quantitative
factors. Let n = Bls;!s,!, and there can be as many as (n!)/(p!(n — p)!) different MCDs. Thus, an
optimal D, under maximin distance criterion [19] (or the centered L,-discrepancy criterion [20, 21])
can be found by ranking the (n!)/(p!(n — p)!) candidate MCDs or via the simulated annealing [22] or
the threshold accepting algorithms [23] when the number of candidate MCDs is very large.

Example 1. Applying the Rao-Hamming construction to generate an 0A(16, 45,2) G, then the A

01 01
0110

B* = (BT,BT,BT,BT)T. Thus, D; is constructed as D; = (A, B*). Consider the case p = 3. In Step
4, uy, uo, and ps are obtained as u; = (0,1,2,3), u, = (1,0,2,3)", uz = (1,2,0,3)7, then E can
be obtained and listed in Table 1. In Step 5, wi, w,, and ws are obtained as w; = (0, 1,2,3)” and
wy, = w3 = (2,3,0,1)7, then C can be obtained and listed in Table 1. By the matrix operation of
s1E + C in Step 6, D, can be generated. It is easy to check that D = (Dy, D,) is an MCD (16, 4322, 3),
which is provided in Table 2.

T
is obtained and listed in Table 1. The CROA (4, 22, 2) B is obtained as B = ( ) , then

Table 1. Matrices A, E, and C in Example 1.

Run A E C Run A E C
1 0 0 O 0o 1 1 0o 2 2 9 2 3 1 2 2 0 0o 2 2
2 1 1 1 0o 1 1 1 3 3 10 3 2 0 2 2 0 1 3 3
3 2 2 2 0o 1 1 2 0 O 11 0O 1 3 2 2 0 2 0 0
4 3 3 3 0o 1 1 31 1 12 1 0 2 2 2 0 31 1
5 1 2 3 1 0 2 0o 2 2 13 3 1 2 3 3 3 o 2 2
6 0o 3 2 1 0 2 1 3 3 14 2 0 3 3 3 3 1 3 3
7 3 0 1 1 0 2 2 0 O 15 1 3 0 3 3 3 2 0 0
8 2 1 0 1 0 2 31 1 16 0o 2 1 3 3 3 31 1
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Table 2. D = (D, D,) in Example 1.

Run MCD(D,, D,) Run MCD(D,, D,)
Dl D2 Dl D2
1 0 0 0 0 O 0 6 6 9 2 3 1 0 O 8 10 2
2 1 1 1 1 1 1 7 7 10 32 0 1 1 9 11 3
3 2 2 2 0 1 2 4 4 11 0 1 3 0 1 10 8 0
4 33 3 1 0 3 5 5 12 1 0 2 1 O 11 9 1
5 1 2 3 0 O 4 2 10 13 31 2 0 O 12 14 14
6 0 3 2 1 1 5 3 11 14 2 0 3 1 1 13 15 15
7 30 1 0 1 6 0 8 15 1 3 0 0 1 14 12 12
8 21 0 1 0 7 1 9 16 0 2 1 1 0 15 13 13

For the MCD (s2 sk s’;z, p) constructed by Algorithm 1, the s; can be a non-prime power. The

1°71

following example provides an illustration of the non-prime power case in Algorithm 1.

Example 2. The OA(144,127,2) G listed in Table 17 of Appendix B and the CROA(12,22,2)
B listed in Table 3 are obtained from the library of orthogonal arrays maintained by Sloane
(http://neilsloane.com/oadir/index.html). Then, divide G into G = (I;,,,A) listed in Table 17 of
Appendix B. Moreover, B* = (BT, BT, BT, BT, BT, BT)T is obtained and listed in Table 18. Thus, D; is
constructed as D = (A, B*). Consider the case p = 3. In Step 4, u;, 1o, and p3 are obtained, which are
listed in Table 3, and then the E can be obtained, which is listed in Table 17 of Appendix B. In Step 5,
w1, Wy, and ws are obtained, which are listed in Table 3, then the C can be obtained and listed in Table
17 of Appendix B. By the matrix operation of s;E + C in Step 6, D, can be generated. It is easy to
check that D = (D, Dy) is an MCD (144, 12°22,3), which is provided in Table 18.

Table 3. Matrix B, vectors u; and w; in Example 2, where i = 1, 2, 3.

Run B Uy Uy uz wy; wr, wi| Run B Uy Uy uz wy; wr, wi3| Run B Uy Uy Uz Wy Wy ws
1 11 0 1 1 0 2 0 511 4 4 4 4 4 8 9 01 8 8 8 8§ 8 4
2 00 1 0 O 1 3 1 6 00 5 5 5 5 5 9 10 10 9 9 9 9 9 5
3 00 2 2 2 2 0 2 7 01 6 6 6 6 6 10 1 10 10 10 10 10 10 6
4 11 3 3 3 3 1 3 8 10 7 7 17 7 7 11 2 01 11 11 11 11 11 7

Algorithm 1 can produce some MCDs based on the above Theorem 1, as shown in Table 4.

Table 4. Some MCDs from Algorithm 1.

D, D, MCDs
0A(16,4°22,2) LHD (16,214121) MCD(16,4%2%,214121)
0A(36,6!22,2 LHD (36,316!2!) MCD(36,6'22,31612!
OA (64,8722,2 LHD (64,418121) MCD (64, 8722,4!8!2!;
0A(36,6!33,2 LHD (36,216!3!) MCD(36,6'3%,21613!)
0A 81,9733,23 LHD (81,319131) MCD(81,973%,319131)

0A (144, 12133, 2)
OA (64,874*,2)
0A (144,12'4%2)
0A (256,16'°4*,2)

LHD (144,4112!13!)

LHD (64,2!8141)

LHD (144,3112141)
LHD (256,4!16!41)

MCD(144,12133,4!12z3!)

MCD (64, 8744, 2!8!4!)

MCD (144, 12144, 3!12!4!)
MCD (256, 161544, 4!16!4!)

AIMS Mathematics
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To employ Algorithm 1, we need several CROAs. Theorem 3 of He et al. [13] gives four types of
CROAs, as shown in Lemma 4.

Lemma 4 ( [13]). For a prime h and three positive integers k, t (t > 2), and w, if s = h¥, the following
four CROAs exist: (i) CROA(s',s*"',2); (i) CROA (2", s*"",2); (iii) CROA (4, s*"",2); and (iv)

CROA (thz, s,2).

According to Theorem 1 and Lemma 4, we can obtain a wealth of MCDs for mixed-level qualitative
factors as follows.

Corollary 1. For a prime h and three positive integers k, t (t > 2), and w, let s = h, then by Algorithm
1,
(i) if an OA (s”, (sHk1+2, 2) exists, an MCD (sz’ L (sHk(s)™, p) can be obtained;

(i1) if an OA (4s2’, (2sHk1+2, 2) exists, an MCD (4s2t, (25" )1 (s)>", p) can be obtained;
(iii) if an OA (16s2’, (4sk+2, 2) exists, an MCD ( 1652, (45" )1 (s)*"™, p) can be obtained;
(iv) if an OA (hzws“, (hvs?)ki+2, 2) exists, an MCD (hzws“, (h" s>y (s)""s, p) can be obtained.
If there exists a small initial MCD for mixed-level qualitative factors, then a series of large MCDs

for mixed-level qualitative factors can be constructed by Construction 3 of Deng et al. [12], as shown
in Lemma 5.

Lemma 5 ( [12]). Let D(O) = (®,Y¥) and D(O) be an OA (n sk1 5152, 2) and an LHD(n, p), respectively,
where ® and Y are an OA (n sl‘,2) and an OA (n 55 k2 2) respectively. For some u, there are
two difference schemes D (u,ry, s;) and D (u,r,, s,) (of strength 2), denoted by D(i) for i = 1,2,
respectively. Let C = (cij) be an u X f matrix with ¢;j = 1 and H be an LHD (u, pf). Construct

= (D()®®,D2)®¥) and D, = C® DY + nH ® 1,. If D = (DY, DY) is an MCD, then

D = (Dq,D) is also an MCD, where D, and D, are an OA (nu s]f'r‘ k2r2,2) and an LHD (nu, pf),
respectively.

The key to constructing MCDs, D = (D, D;), using Lemma 5 is the existence of the initial MCD
DO = (D(IO), D(ZO) ) However, the construction method of D@ = (D(IO), D(ZO)) is not mentioned in [12].
Excitingly, the MCDs obtained by Theorem 1 can be used as the initial MCDs. Based on Lemma 5,
a large number of MCDs with more columns can be constructed from the initial MCDs obtained by
Theorem 1 as follows.

Corollary 2. For D = (Di,D,) constructed by Algorithm 1 and Theorem 1, if there exist two
difference schemes D (u,ry, s\) and D (u,r,, s;) ( of strength 2) for some u, then for any integer f,
an MCD (us%, (s (sp)ke72, pf) can be obtained by Lemma 5.

Based on Algorithm 1, Theorem 1 and Corollary 2 can generate a series of MCDs with D; being an
OA (n s s2 , 2) with s; = Bs,, but they can be criticized for the s; = Bs, restriction. However, when
S| # ﬁsz, an MCD also exists, as in the following example.

Example 3. Given D, is an OA (6,2'3',2) and D, is an LHD (6,6) as listed in Table 5, it is easy to
verify that D = (Dy, D,) is an MCD (6, 2131 6) according to Lemma 3.

AIMS Mathematics Volume 9, Issue 12, 33731-33755.
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Table 5. D = (D,, D,) in Example 3.

Run MCD(D,, D,) Run MCD(D,, D,)
D1 D2 D1 D2
1 0 0O 0 2 2 4 4 4 1 5 33 1 1
2 0 1 2 4 0 4 0 2 5 1 1 3 1 1 5 3
3 0 4 2 4 0 2 O 6 1 1 5 3 5

Obviously, the MCD (6, 2131, 6) listed in Table 5 cannot be constructed by Algorithm 1. Next, we

propose a new algorithm for constructing MCDs (2s, 215t s!).

Algorithm 2 Construction of MCDs based on OA (2s, 20s!, 2)

Step 1. Let Ly = (0,1)®1,and L, = 1, ® e, where e = (0, 1,...,s—1)". Obtain a (2s) X 2 matrix
Dy = (Ly, Ly).

Step2. For 1 < i < s!,d; = (Qu)T,((2s — 1)1, — 2u;)")T, where u; is a random permutation of
0,1,2,...,s= DT, let D, = d,,da, . ..,dy).

Step 3. The resulting design is D = (D, D).

Theorem 2. The design D = (D, D,) constructed by Algorithm 2 is an MCD (2s, ARLS s!), where D
is an OA (2s, 21!, 2) and D, is an LHD (2s, s!).

If p < s!, there can be as many as (s!)/(p!(s — p)!) different MCDs from Algorithm 2. Similar
to Algorithm 1, an optimal D, under the maximin distance criterion or the centered L,-discrepancy
criterion can be obtained Hickernell [19,20]. Next, we provide an example to illustrate Algorithm 2
and Theorem 2.

Example 4. Let s = 4, and an 8 X 2 matrix Dy = (L, L,) is obtained from Step 1, as shown in Table
6. For1 <i<24,D, =(d,d,- - ,d») is constructed according to Step 2, as shown in Table 6. It is
easy to verify that D = (D, D,) is an MCD (8, 2141 24) from Lemma 3, which is provided in Table 6.

Table 6. D = (D, D,) in Example 4.

o MCD(D;, D,)
D, D,
1 00 000000222222 44444466262666
2 01 2244660044660 02266002244
3 02 462624460604 260602240402
4 03 646242646040626020424020
5 10 77777755555533333311111°1
6 11 5533117733117755117755233
7 12 3151533171735 17175537375
8 13 13153513173715175735375717

Algorithm 2 can produce some MCDs based on the above Theorem 2, as shown in Table 7.

AIMS Mathematics Volume 9, Issue 12, 33731-33755.
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Table 7. Some MCDs from Algorithm 2.

D; D, MCDs
0A(6,2'31,2) LHD (6,3 MCD(6,2'3,31)
OA(8,2'41,2) LHD (8,4) MCD(8,2'41,41)
0A(10,2'5',2) LHD (10,5!) McD(10,2'5',51)
0A(12,2'6',2) LHD (12,6!) MCD(12,2'6',6!
0A(14,2'7',2) LHD (14,71 MCD (14, 2171,73
0A(16,2'8!,2) LHD (16, 8!) MCD(16,2'8!,81)
0A(18,2'9',2) LHD (18,9!) MCD(18,2'9',9!)
0A(20,2'10',2) LHD (20, 10!) MCD(20,2'10',101)
0A(22,2'11',2) LHD (22,11 MCD(22,2'11',111)

In Lemma 5, the MCDs constructed by Theorem 2 can also be used as the initial MCDs
for Construction 3 of [12]. Based on Lemma 5, a large number of MCDs with D; being an
OA (2us, 2" s™,2) can be obtained from the initial MCDs constructed by Theorem 2 as follows.

Corollary 3. For D = (D, D,) constructed by Algorithm 2 and Theorem 2, if there exist two
difference schemes D (u,ry,2) and D (u,r,, s) ( of strength 2) for some u, then for any integer f, an
MCD QQus,2" s, pf) can be obtained by Lemma 5.

In the MCD (D;, D) constructed by Algorithm 2 and Theorem 2, the D, has only two columns.
In order to construct D; that can accommodate more qualitative factors, we present Algorithm 3 as
follows.

Algorithm 3 Construction of MCDs via MCD (n, s™, p)

Step 1. Given an OA (n, s™,2) and LHD (n, p), denoted as D(IO) and D(ZO), respectively.

Step 2. Let Ly = (0,1)" ® 1, and L, = 1, ® D\”. Obtain a (21) x (m + 1) matrix D; = (L, L,).
T

Step 3. Construct a (2n) X p matrix D, as D, = ((ZD(ZO))T , ((2n -D1, - 2D(20))T) .

Step 4. The resulting design is D = (D, D).

Theorem 3. For D(10) and D(20) in Algorithm 3, if DY = (D(lo), D(ZO)) isan MCD (n, s™, p), then the design

D = (D, D) constructed by Algorithm 3 is an MCD (2n, 215’",p), where D is an OA (2n, 21sm, 2),
and D, is an LHD (2n, p).

Remark 1. Note that Algorithm 2 and Algorithm 3 can construct MCDs with D, being an
OA (N, 215k, 2), s =20, or s # 2f3, but the values of N in the two Algorithms are different. Algorithm 2
works for k = 1 and N = 2s, while Algorithm 3 works for k > 2 and N = 2As%, where A is a positive
integer. Thus, Algorithm 3 is able to construct MCDs with more columns in D, than Algorithm 2, and
Algorithm 2 is not a special case of Algorithm 3. For example, for s = 3, Algorithm 2 constructs an
MCD (6,2131,6) , where Dy and D, are an OA (6, 2131,2) and an LHD (6,6), respectively, while

Algorithm 3 constructs an MCD(18,2132, 2), where D; and D, are an 0A(18, 2132,2) and an
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LHD (18, 2), respectively. This shows that Algorithm 2 and Algorithm 3 cannot be replaced by each
other.

Next, we provide an example to illustrate Algorithm 3 and Theorem 3.

Example 5. Table 8 gives an MCD (9,3%,2) DO = (D", DY) , where D{” is an OA (9,3?,2) and D"
isan LHD (9,2). Then, an 18 x 3 matrix D; = (L;, L,) is obtained by the operations L; = (0,1)" ®1,,
and , =1, ® D(IO) in Step 2, as shown in Table 9. An 18 X 2 matrix D, is obtained by the operations

0N oY . . . .
D, = (2D2 ) , ((2n - D1, -2D, ) in Step 3, as shown in Table 9. It is easy to verify that D =
(D, D,) is an MCD (18, 2132, 2) from Lemma 3, which is provided in Table 9.

Table 8. D = (D{”, D") in Example 5.

McD(DY, DY) mcDp(DP, DY) mcD(DP, DY)

Run Run Run
D D, D, D, D, D,
1 0 O 0o 2 4 1 4 4 7 2 0 8 7
2 0 1 3 8 5 1 1 7 0 8 2 1 2
3 0o 2 6 5 6 1 1 6 9 2 2 5 1
Table 9. D = (Dy, D,) in Example 5.
Run MCD(D,, D,) Run MCD(D,, D,) Run MCD(D,, D,)
D D, D D, D D,
1 0 00 0O 4 7 020 16 14 13 110 9 9
2 0 01 6 16 8 0 21 4 6 14 1 11 3 17
3 0 0 2 12 10 9 02 2 10 2 15 1 1 2 15 5
4 010 8 8 10 1 00 17 13 16 1 20 1 3
5 011 14 0 11 1 01 11 1 17 1 21 13 11
6 01 2 2 12 12 1 0 2 5 7 18 1 2 2 7 15

Algorithm 3 can produce some MCDs based on the above Theorem 3, as shown in Table 10.

Table 10. Some MCDs from Algorithm 3.

MCD (D1<°>, Dz<°>) MCD (D, D»)
Source D D,® D, D, MCDs
Table5  OA (9 32, 2) LHD (9,2) 0A(18 21322 ) LHD(18,2) MCD(18 21322 )
0A(27,3°.2) LHD(27.4) 0A(54,2'3°,2) LHD(54,4) MCD(54,2'3°.4)
OA(32,4%,2) LHD(32,7) OA(64,2'4%,2) LHD(64,7) MCD(64,2'4%,7)
Table B1
(32 43 2 ) LHD (32,7) (64,2 48, ) LHD (64,7) MCD (64 2148 7 )
(100 5202 ) LHD (200, 19) 0A(100,2152°,2) LHD (200, 19) MCD (200 21520, 19)
OA(49.7°,2) LHD(49.3) 0A(98,2'7°.2) LHD(98,3) MCD(98,2'7°,3)
Example 2 OA(64,87,2) LHD(64,2) 0A(128,2'87,2) LHD(128,2) MCD(128,2'87.2)
(

OA(81,9%,2) LHD(81,2) 0A(162,2'9%,2) LHD(162,2) MCD(162,2'9%,2)
! Table 5, Table B1 and Example 2 come from [15], [13] and [12], respectively.
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Similar to Corollary 2 and Corollary 3, we can obtain the following Corollary 4 for the initial MCDs
constructed by Algorithm 3 and Theorem 3.

Corollary 4. For D = (Di,D,) constructed by Algorithm 3 and Theorem 3, if there exist two
difference schemes D (u,ry,2) and D (u, r;, s) (of strength 2) for some u, then for any integer f, an
MCD (Qun,2" s™™, pf) can be obtained by Lemma 5.

Table 11 presents some designs D; for mixed-level qualitative factors in MCDs constructed via
Algorithms 1, 2, and 3. In the fourth column of Table 11, the D,;’s are obtained by Construction 3 of
Deng et al. [12] from the initial designs listed in the first three columns.

Table 11. Some designs D; constructed by different algorithms.

Algorithm 1 Algorithm 2 Algorithm 3 Corollaries
D, D, D, D, source
0A (16,4322,2) OA(6,2‘3‘,2; 0A(18,2!33,2) OA (64,41228,2)  corollary 2
0A (36,6'22,2) OA(8.2'4!,2 0A (32,2'4%,2) 0A(512,8%216,2)  corollary 2
OA (64,8722,2) OA(]O 2!51,2) 0A(50,2'5°,2) OA 729,963315,2; corollary 2
0A (36,6'3°,2) 0A(12,2'6',2) 0A(72,2'6,2) 0A (36,223%,2) corollary 3
OA (81,973%,2 0A (14,2!7',2) 0A (98,2!77,2) 0A (32,24%,2) corollary 3
0A(144,12'3%,2)  0A(16,2'8!,2) OA (128,2'8%,2) OA (64,2844,2) corollary 3

OA (64,874%,2) 0A(18,2!9',2) 0A (162,2'9°,2) 0A(108,223%,2)  corollary 4
OA (144,12144,2) 0A(20,2‘101,2; 0A (200,2'10%,2) 0A(128,24416,2; corollary 4

OA(256,16'54%,2)  0A(22,2'11',2)  0A(242,2'11'',2)  0A(500,225%,2 corollary 4

For the MCD( %, sk’ 55, p) constructed by Algorithm 1, the relation s; = fs, is indispensable.

When s = 28, the MCD(s 2257, p), MCD(25,2's', s1), and MCD (215%,2's", p) (A > 1) can be
constructed by Algorithms 1, 2, and 3, respectively. Clearly, the three MCDs have different numbers
of run sizes. For s # 283, the MCD (2s, 21!, s!) and MCD (2/1s2, 21sm, p) (1 > 1) can also be obtained
using Algorithms 2 and 3, respectively. Algorithm 2 is not a special case of Algorithm 3 due to the
different number of run sizes for the constructed MCDs.

3.2. Construction of MCDs for D, being an OA( 2 sk‘ sﬁz, 2) with s; = s% and D, with the better
space-filling property

In the MCDs (D, D,) constructed by the above three algorithms, the space-filling property of D, is
not considered. The space-filling property is very important for the quantitative factor design D,. In
this section, we introduce another algorithm to construct MCDs D = (D,, D,) for D, with the better
space-filling property.

Theorem 4. For s; = s%, Dy, and D, obtained in Algorithm 4, we have

(1) D, is an OA( 51,81 1szz, 2);

(ii) Dy is an LHD (53, 2k), where if 5, is odd, k = (s + 1)/2; if 5 is even, k = 5/2;
(iii) (Dy, D,) is an MCD (sl .81 lszz, Zk);

(iv) any two distinct columns of D, achieve s, X s, grids stratification.
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Algorithm 4 Construction of MCDs with the better space-filling property

Step 1. For s; = s2, given an OA (s%, s{‘+1,2) F and an OA (s%, s;2+1,2) H. Divide F as F = (Fy, fi, ),
where F is the first s; — 1 columns of F and f; and f, are the s;th column and the (s; + 1)th
column of F, respectively.

Step 2. Obtain an s7 X (s, + 1) matrix U by replacing the levels 0,1, ..., (s; — 1) of the f; with the Ist,
2nd, ..., and the s,th row of the H, respectively. Then partition U as U = (U, uy, u,), where U,
is the first s, — 1 columns of U and u; and u, are the s,th column and the (s, + 1)th column of U,
respectively.

Step 3. If s, is odd, let H* = H and k = (s, + 1)/2. If s, is even, let H* be the first s, columns of H,
k = s,/2. Then, H" is an OA (53, s%,2).

Step 4. Obtain an s% X (2k) matrix V by replacing the levels 0, 1, ..., (s; — 1) of the f, with the 1st, 2nd,
..., and the s th row of the H", respectively. Denote V as V = (vy,v,,...,vy), where v; is the ith
columnof Vfori=1,2,...,2k.

Step 5. Construct Dy as D| = (Fy, Uy, uy).

Step 6. Let Wy = V, Wy = (v, Vi, V4, V3, ..o, Vo Var—1), Wi = (up, g, ... un), Wa = (uy,uy, ..., up).
Construct D, as D, = Sng + S%Wz + 5, W5 + Wy,

Theorem 4 (iv) tells us that D, has two-dimensional projection property without considering D;.
For each level of any factor in Dy, and for each level combination of any two factors in some columns
of Dy, the corresponding rows in D, can also achieve the two-dimensional space-filling property, as
stated in the following corollary.

Corollary 5. For D = (Dy,D,) (D, = (Fy, Uy, uy)) constructed by Algorithm 4 and Theorem 4, we

have

(1) the rows in D, corresponding to each level of any factor in Dy can achieve stratification on the
§o X §p grids in any two-dimensional projection;

(i1) the rows in D, corresponding to each level combination of any two factors in (Uy, u) can achieve
stratification on the s, X s, grids in any two-dimensional projection.

Next, we provide an example to illustrate Algorithm 4 and Theorem 4 .

Example 6. Consider the case s; = 4 and 5, = 2. An OA (16, 45,2) F and an OA (4, 23, 2) H are
obtained from the Rao-Hamming construction. Divide F as F = (Fy, fi, f>) listed in Table 12. For the
H listed in Table 12, we obtain an 16 x 3 matrix U by replacing the levels 0, 1, 2, 3 of the f; with the 1st,
2nd, 3rd, and the 4th row of the H, respectively. Then partition U as U = (Uy, u;, u,) listed in Table
12. In Step 3 and Step 4, H* is the first 2 columns of H and k = 5,/2 = 1, after replacing the levels
0,1,2,3 of the f> by the 1st, 2nd, 3rd, and the 4th row of the H*, respectively. Then, V is obtained, and
denote V as V = (v, 1,) listed in Table 12.

From Step 5, D, = (Fy, Uy, u;), and it is easy to check that D, is an OA (16, 4322, 2). In Step 6, let
Wi =V, W, = (va,v1), W3 = (up, ur), Wi = (uy, uy), then by matrix operation of s;W; + s3W, + s: W5 +
W, D, can be generated. It is easy to verify that (D;, D,) is an MCD (16, 4322, 2), which is provided
in Table 13.
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Table 12. Matrices H, F, U, and V in Example 6.

F U \% F U \%
Run Run

H Fi i Upuuy vi vy Fio fi o Uyuuy viwy
1 000 0000 O O OO OO 9 02312 011 120
2 o011 1171110 O11 OO 10 13202 O 0O 1O
3 101 22220 1 01 OO0 11 20132 1 10 12P0
4 110 33330 110 OO 12 3102 2 1 01 10
5 01231 1 1 0 01 13 0312 3 1 01 11
6 103 2 1 1 01 01 14 1203 3 1 1 0 11
7 23011 011 O1 15 21303 0 00 11
8 32101 0 00O 01 16 30213 011 11

Table 13. D = (D, D;) in Example 6.
Run MCD(D,, D,) Run MCD(Dy, Dy)
D D, D D,

1 o 0 0 0 O 0 0 9 0o 2 3 0 1 11 7
2 1 1 1 0 1 3 3 10 1 3 2 0 O 8 4
3 2 2 2 1 0 2 2 11 2 0 1 1 1 9 5
4 3 3 3 1 1 1 1 12 3 1 0 1 0 10 6
5 0 1 2 1 1 5 9 13 0 3 1 1 0 14 14
6 1 0 3 1 0 6 10 14 1 2 0 1 1 13 13
7 2 3 0 0 1 7 11 15 2 1 30 O 12 12
8 3 2 1 0 0 4 8 16 30 2 0 1 15 15

Next, let D, = (d,d,). It is easy to see that d; and d, achieve stratification on 2 X 2 grids, as shown
in Figure 1.

d,
@

Figure 1. Stratification on 2 X 2 grids.

Algorithm 4 can produce some MCDs based on the above Theorem 4, as shown in Table 14.
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Table 14. Some MCDs from Algorithm 4.

D, D, MCDs
OA (16, 4322, 2) LHD (6,2) MCD (6, 4322, 2)
0OA (81,9833,2) LHD (8,4) MCD (8, 9833,4)
0A (256, 16'54%,2) LHD (10,4) MCD (10,16'54%, 4)
OA (625, 25%5°,2) LHD (12,6) MCD(12,25%5%,6
OA (1296, 36356°, 2) LHD (14, 6) MCD (14,36%6°,6

Next, we introduce the following algorithm to generate MCDs by modifying Algorithm 4, that is,
we rearrange the columns of F in Algorithm 4 and apply the idea of Step 4 in Algorithm 4 twice.

Algorithm 5 Modifying construction of MCDs

Step 1. For two OAs F and H in Algorithm 4, divide F as F = (Fy", fo, f1, f>), where F," is the first
s1 — 2 columns of F, and fy, fi, f> are the (s; — 1)th column, the s;th column and the (s; + 1)th
column of F, respectively.

Step 2. Let U as U = (Uy, uy,uy), H*, and V be obtained by Algorithm 4.
Step 3. Let Dy as Dy = (Fo*, Ug, uy).

Step 4. Obtain an s% X (2k) matrix Z by replacing the levels 0, 1, ..., (s; — 1) of the f; with the 1st, 2nd,
..., and the s;th row of the H*, respectively. Denote Z as Z = (z1, 22, - - - , 20¢), Where z; is the ith
columnof Zfori=1,2,...,2k.

Step 5. Let Wy, W,, W3, W, be obtained by Algorithm 4. Let X; = Z, X5 = (22, 21,24, 235 - - - » 22k 22k—1)-
Construct two s7 X 2k matrices Dy and Dy, as Dy = s3W + s5Wa + 52Ws + Wy and Dy, =
S;Xl + S%Xz + 5, W3 + Wy,

Step 6. Let D2 = (D21’ D22).

Theorem 5. For s| = s%, D, and D, obtained in Algorithm 5, we have

(i) D, is an OA (s%, sf‘_zsgz, 2);

(i1) D, isan LHD (sf, 4k), where if sy is odd, k = (5o + 1)/2; if 55 is even, k = s55/2;

(iii) (D1, Dy) is an MCD (s%, 5} 7532, 4k).

Theorem 6. For D, and D, constructed by Algorithm 5 and Theorem 5, D, can be partitioned into

two disjoint groups of 2k columns, i.e., Dy = (Da1,Dy). Fori = 1,2,...,2k, let d| and d} be the ith
columns of Dy and Dy, respectively. Then,

(1) any two distinct columns of D, achieve s, X s, grids stratification;

(i1) any two columns from different groups, d{ and dé, achieve s% X s% grids stratification, where
Lj =12,k

(ii1) any three columns from two different groups, d{ , d., and df’ achieve s5X sy X s, grids stratification,
wherei,i’ = 1,2, i+ 1, jt,h=1,2,....2k t #h;
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. . Jj t jh . . . .
(iv) any four columns from ,two different groups, d;, d;, d;, d;;, achieve s,X s,X s, X s, grids stratification,
where i,i' = 1,2, i #1i, jr,t,h=1,2,...,2k, ,j#r,andt + h.

According to Theorem 6, there are 4k* two-column groups achieving stratifications on s X 53 grids,
2k*(2k — 1) three-column groups achieving stratifications on 53 X s, X s, grids, and k*(2k — 1)? four-
column groups achieving stratifications on s, X s X §, X 5, grids, respectively. Theorem 6 shows that
a large number of columns in D, have good two-, three-, or four-dimensional projections. Next, we
provide an example to illustrate Algorithm 5, Theorem 5, and Theorem 6.

Example 7. Consider the case s; = 9 and s, = 3. An an OA (9, 34, 2) H listed in Table 19 of Appendix

B and an OA (81, 910, 2) F listed in Table 20 of Appendix B are obtained from the library of orthogonal
arrays maintained by Sloane (http://neilsloane.com/oadir/index.html). Divide F as F' = (Fy", fo, f1, f>)
listed in Table 20 of Appendix B. For the H, obtain an 81 X 4 matrix U by replacing the levels
0,1,...,8 of the f; with the Ist, 2nd, 3rd, ..., the 9th row of the H according to Step 2 of Algorithm
4, respectively. Then, partition U as U = (U, u;, u,) listed in Table 20 of Appendix B. In Step 3
and Step 4 of Algorithm 4, due to s, = 3, let H* = H and k = (s, + 1)/2 = 2, after replacing
the levels 0, 1,...,8 of the f; by the 1st, 2nd, 3rd, ..., the 9th row of the H*, respectively. Then,
V is obtained, and denote V as V = (vi,v,,v3,v4) listed in Table 20 of Appendix B. From Step 3,
D, = (Fy*, Uy, uy), and it is easy to check that D; is an OA (81,9733, 2). In Step 4, obtain an 81 x 4
matrix Z by replacing the levels O, 1,. .., 8 of the f; with the 1st, 2nd, 3rd, ..., the 9th row of the H",
respectively. Then, Z is obtained, and denote Z as Z = (zy, 22, 23, Z4) listed in Table 20 of Appendix B.
In Step 5, let W] = V, W2 = (Vz, Vi, V4, V3), W3 = (I/tz, U, Uy, I/tz), W4 = (l/l], u,up, I/l]) according to Step 6
of Algorithm 4 and let X; = Z, X, = (2, 21, 24, 23), then by matrix operation of s; W, + s3 W+ s; W5+ W,
and $3X; + 55X, + 52W5 + Wa, Dy and Dy, can be generated, respectively. Then, D, = (Dy;, Dy,). It
is easy to verify that (D, D,) is an MCD (81, 9733, 8) listed in Table 21 of Appendix B. Next, let the
first two columns of D, be d; and d,, and the first two columns of Dy, be ds, d,. After collapsing the
levels of dy, d», ds, dy, it is easy to see that the dy, d», d3, d, satisfies the stratifications of (i) and (ii) in
Theorem 6, as shown in Figure 2 and Figure 3.

e L - ng : .
o4 .ttt . o
= P = . '. = ] -
2 - .o ., .
Iy .
dy d, d,
() (c) (e)
- ee*? -
-+ -
- = -+
-+ - we =
= e - -
. e
L & . b .
d, dy d,
(b) (d) ()

Figure 2. Stratification on 3 X 3 grids.
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3
dy
d;
dy

dy d, d, . . d,
(a) (b) (c) (d)

Figure 3. Stratification on 9 X 9 grids.

Inspired by Corollary 5, Corollary 6 is given as follows.

Corollary 6. For D = (D, D,) (D, = (Fy", Uy, uy), Dy = (D31, D)) constructed by Algorithm 5 and
Theorem 5, we have

(1) the rows in D»;, i = 1,2, corresponding to each level of any factor in Dy can achieve stratification
on the s, X s, grids in any two-dimensional projection;

(i1) the rows in Dy;, i = 1,2, corresponding to each level combination of any two factors in (Uy, u;)
can achieve stratification on the s, X s, grids in any two-dimensional projection.

Algorithm 5 can produce some MCDs based on the above Theorem 35, as shown in Table 15.

Table 15. Some MCDs from Algorithm 5.

D, D, MCDs
0A(16,4222,2) LHD (6,4) MCD(6,4%2%,4)
OA(81,973%,2) LHD (8,8) MCD (8,9°3%,8)

0A (256,16'44*,2) LHD(10,8) MCD(10,16'94%,38)

0A (625,255, 2) LHD (12,12) MCD (12,2545, 12)

OA (1296, 36336°, 2) LHD (14,12) MCD (14, 36356, 12)

4. Conclusions

Many researchers have constructed MCDs for equal-level qualitative factors. However, there has
been less research on MCDs when the qualitative factors are mixed-level. Construction 3 of Deng et
al. [12] generates large MCDs for mixed-level qualitative factors from small initial MCDs for mixed-
level qualitative factors. Obviously, such a construction is not valid when the initial MCD does not
exist. The key to Construction 3 of Deng et al. [12] is how to obtain a small initial MCD. However,
they did not answer the question. Fortunately, the constructed MCDs in this paper can be considered
as the initial MCDs for Construction 3 of [12].

In this paper, we propose five algorithms to construct MCDs where the designs for the qualitative
factors are mixed-level. The construction of the first algorithm is characterized by the fact that it is
based on an OA (s%, s]1“+2, 2) and a CROA (sl, slf, 2) with s; = Bs;. Clearly, its constructed MCD is
limited by s; = Bs,. To break this limitation, Algorithms 2 and 3 employ a mirror-symmetric structure
to construct D,. Moreover, the D; constructed by Algorithm 3 can accommodate more columns than
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the one constructed by Algorithm 2, and the two algorithms construct different numbers of run sizes.
The fourth and fifth algorithms construct the MCD using the level replacement method and the rotation
method, where D, has stratification in two- or higher-dimensional projection. Finally, Table 16 lists
some types and features of MCDs that can be constructed using our five algorithms. Obviously,
compared to the MCDs constructed by Construction 3 of Deng et al. [12], our constructed MCDs
have more flexible run sizes, and the more flexible fixed level D; -D; is an OA (n, sll<1 slf, 2), s1 = Bs2,
or 51 # Bs,. Moreover, in contrast to Construction 3 of Deng et al. [12] , which does not consider the
space-filling property of D,, Algorithm 4 and Algorithm 5 construct D, with the space-filling property.

For future work, a direction is to introduce methods that can produce MCDs with three or more
mixed-level qualitative factors, which deserves further investigation.

Table 16. Some of the MCDs (D, D,) results.

Constraints
— 2 ki+2
s1 = Bs2, an OA (sl, s ,2) and

a CROA (s, 55,2) exist.

Source D

Theorem 1 OA(s2, 5\ s, 2)

OA (s, (s (), 2)

Corollary 1 o
1657, (45" ()", 2)

OA (h?s*, (h" 5?1 (5", 2)

an OA (sz’, (shy+2, 2) exists.

an OA (45, (25')1%2,2) exists.

an OA (16s2’, (452, 2) exists.
an OA (?'s*, (h”s2)1+2,2) exists.

(

< _
0OA (4s2’, (25" )1(5)>", 2)

(

(

(

Corollary 2 OA

ki rok }
us?, s S5, 2) s1 = B2, D(u, ry, s1) and D(u, r», s,) exist.

Theorem 2 OA (2s, 21s!, 2) s> 2.
Corollary 3 OA (2su,2"s™,2) s >2,D(u,r,2) and D(u, r,, s) exist.
Theorem 3 OA(2n,2's",2) 5> 2.
Corollary 4 OA nu, 2" s™2™,2) s >2,D(u, r,2) and D(u, r,, s) exist.
Theorems 4 OA (s%, si"_l S5, 2) s1 = 53, 57 i$ a prime or prime power.
Theorems 5 OA (s%, sil_zsiz, 2) S| = 53, 5, is a prime or prime power.
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Appendix A. PROOFS

Proof of Lemma 3. From the definition of an MCD, it is clear that D = (D;,D,) is an
MCD (n, s,* 55, p) if, and only if, (2, D2) and (A, Dy) are an MCD (n, s,**, p) and an MCD (n, 552, p),
respectively. Let d; be the ith column of D,, for i = 1,...,p. From Lemma 1, we have (i)
(Q, D,) is an MCD (n 51, p) if, and only if, (Q, f (d;, 1)) is an OA (n, s, (n/sy), 2) (i) (A, Dy) is

an MCD (n, 55, p) if, and only if, (A, f (d. 5)) is an OA (n, 5,°(n/s,),2) fori = 1,...., p. O

Proof of Theorem 1. (i) In the design ([, A, B*), the levels O, 1, ..., s;—1 of the [, correspond to the 1st,
2nd, ..., sith rows of the B, respectively, where B* = 1, ® B. Thus, D; = (A, B*) is an OA ( s’l‘1 s];z, 2)
with S = ﬂSz.

(ii) From Steps 4 and 5 of Algorithm 1, it is clear that (e;, ¢;) is an OA (s%, 52, 2) fori=1,2,...,p,
where s; = Bs,. Thus, D, is an LHD (s% p) from Step 6 of Algorithm 1.

(ii1) Let a, b, and d be any columns of A, B*, and D,, respectively. From Steps 3, 4, 5, and 6,
let e and ¢ be the columns corresponding to d in E and C, respectively. From Step 6 and Equation
(2.1), (a, f(D,,5)) = (a,e), thus (a, f(D,,s;)) is an OA (s%,sf,Z). From Steps 4, 5, and 6 of
Algorithm 1, it is clear that f (D,, s;) = Be + ¢*, where ¢* = 1;, ® w, w is a random permutation of

T o .
(i )T () s+ L (ip)T) with ¢}, = (j — D1,,. Since (b,e,c*) is an OA (s2, ss8',3), (b, f (D2, 5))
is an OA (s%, sy(Bs1)', 2). Thus, D = (Dy, D,) is an MCD( 53, s s2 , p) from Lemma 3. ]

Proof of Theorem 2. From Steps 1 and 2 of Algorithm 2, it is easy to check that D, is an OA (2s, 21!, 2)

and D, is an LHD (2s, s!). By Step 2, we can see that d; is the ith column of D, fori = 1,2,...,s!

Since f (d;, 2)=((up), (s = D1, - u,»)T)T, (L1, f(d:,2)) is an OA(25,2's',2), where u; is a random

permutation of (0,1,2,...,s—=1)7,i=1,2,...,s!. For1 <i < s!,let& = 2u;and & = (2s—1)1,—2u;,
then

e & (&1, 9)

(Far ) = ( e & f&s) )

where e = (0,1, ..., s — 1)T. Obviously, the elements of f(&;, s) and f(&,, s) are all taken from {0, 1}.
Since f(&.5) = 1, = f(£1,9), (Lo, f(d;, 5)) is an OA (2s,5'2',2), i = 1,2,..., . From Lemma 3, the

design D = (D, Dy) is an MCD (2s,2's', 51) O

)and (Lo, f(d;,5)) = ( .

Proof of Theorem 3. The proof of Theorem 3 is similar to that of Theorem 2 and is therefore omitted
here. |

Proof of Theorem 4. For i = 1,2,...,s;1 =1, j = 1,2,...,5 — 1, let fi; and ug; be the ith and jth
columns of F and U, respectively.

(i) Since F = (Fo, fi. f2) is an OA (52, 5}'"',2), U = (Uo, ur, up) is an OA (53, s3™',2), (for. uo;) is an
OA(s2, s!s).2), and(fol,ul)lsanOA(sl,s s3.2)i=1,2,...,5-1,j=12,....,5— 1, thus Dy is an
OA(s2,577"s3.2).

(i1) Accordmg to Proposition 1 of [24], we can obtain that (v;, v;, u;, u») is an OA ( 75 sz, 4), where

S; = sz, i#j,i,j=1,2,...,2k. Thus, D, is an LHD (s],2k), where if 5, is odd, k = (s, + 1)/2; if 5,
iseven, k = s,/2.

AIMS Mathematics Volume 9, Issue 12, 33731-33755.



33751

(i) Forh = 1,2,...,k, let dy,— and dy;, be the (2h — 1)th and 2Ath columns of D,, respectively, then
dgh_l = S;"Zh—l + S%Vz;, + Sour + Uy and d2h = S%Vy, + S%Vz[z_l + Souyr+Uq. ObViOllSly, fori=1,2,..., s1—1,
J=L2,...,0-1,h=12,...k (foi, f(dan-1, 51)) = (Joi» $2v2n-1 + van), (foir f(don, $1)) = (foir S2van +
Van-1)s (o, f(dan-1,51)) = (Uojs S5van-1 + Savan + wa), (uojs f(dan, $1)) = (oj, S3van + Savano1 + a),
(u1, f(donor, $1)) = (U1, S3van-t + Savon + wo), and (uy, f(dan, 51)) = (uo;, S5V + S2Vap-1 + ), wWhere
s; = s%. According to Proposition 1 of [24], for s, = s%, it is easy to obtain that (fy;, Van_1, van)
is an OA (s% 5183, 3), and both (uy, uz, vay-1, vap) and (ua, ugj, Vap-1, vai) are OA (s‘z*, s‘z‘,4)’s, where i =
1, 2, N 1, ] = 1, 2, e, 82— 1, h= 1,2, . ,k. Therefore, both (fOi,f(th—la S])) and (f(),',f(dgh, S]))
are OA (S%, S1s 2)’5, and (uo;, f(don-1, 52)), (Uoj, f(dons 52)), (U1, f(don-1, 52)), and (uy, f(dap, 52)) are all
OA(s3,53(sD)".2)’s, where s, = 53, i = 1,2,...,sy = 1, j = 1.2,...,so = 1, h = 1,2,... k. From
Lemma 3, the design (D, D,) is an MCD (s%, sfl_lsgz, 2k>.

(iv) Since f (Dz, s23) = W, and W, is an OA (s%, 53, 2) with s; = 5,2, thus any two distinct columns
of D, achieve s, X s, grids stratification. O

Proof of Theorem 5. The proof of Theorem 5 is similar to that of Theorem 4 and is therefore omitted
here. O

Proof of Theorem 6. (i) Since f(Da, s3) = (W1, X;) and (W;, X,) is an OA(s2, 53,2}, thus Theorem 6
(1) is true.

(i) For j, j/ = 1,2,...,2k, it is easy to see that f(dj, s% = S$oVpj-1 + Vo) OF f(d{, s% = Sovaj + Vojoi
,and f(d’, §3) = $2205-1 + 2oy OF @, 53) = $2227 + 2271 - According to Proposition 1 of [24], it is
easy to obtain that (v2j_1, V2, 22j-1, 227) is an OA (s‘z‘, 53, 4). Thus, Theorem 6 (ii) is true.

(iii-iv) From Proposition 1 of [24], it is known that any two columns of V in Algorithm 4 and any
two columns of Z in Algorithm 5 form an OA (s‘l*, 53, 4) with s; = s,2. Similar to the proof of (ii), thus

(i11) and (iv) are true. O

Appendix B. Tables
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Table 19. Matrix H in Example 7.

Run

Run

Run

Table 20. Matrices F, U, V, and Z in Example 7.

Run

Run

Uo uy uy vivav3vy 212223 %4

fo i /o

Fy*

Up uy uy vi va v3 V4 21 22 23 24

o i /o

Fo*
1 00000000000000 0000 0000 424563207158 1202 2210 0112

2 0112345678 2101

1202
2210

2210 2022 434632071586 2210 2022

1011

44 47207158 6 3 202 2

30223456781 2210 0112 2101
4 0334567812 0112 0221

5 0445678123 0221

2022

0221

2210 454807158632 1011

1202
2101

1202

1011

0112 46 5055555555 1202

1120 0221

1011

47 5108261743 1120

6 0556781234 1011
70667812345

1120
1011
0000

0000

1

48 5282617430 101

1

1

0

1

1202

1120

1120 495326174308 0000 2210

8 0778123456 1202 2022

1202 505461743082 2210 0221

9 0881234567 2022 2101

101011111111

2022 2210

12 51 5517430826 0221

0112 0112 01

1120 525674308261 2022 0112 0221

11 1153870462 2022 0221

12 12387046 25 0221

2022

1202 2022 535743082617 0112 2101

1011

1120 0112

54 5830826174 2101

0221

131387046253 120 2

1202 56066666666 2022 2022 2022

2210

14 1470462538 1011

1202 0221
1120 2210

56 6140137285 2210

1011

151504625387 2210 2101

16 1646253870 2101

0000 2210 576201372854 120 2

1120 2101

1202
1120
0000
0112

58 6313728540 1120 0000

17 17625387 04 0000

18 1825387046 1120 2022 0000 59 6437285401 0000 0112

192022222222 0221

20213641805 7

1011

60 6572854013 011 2

0221

0221

2101
0221

1

101
1202 626785401372 2101

0000 61 66285401 3 7

1202 2101

1011

1011

21 22641805 73 2101

2022 2101 636854013728 0221 2210 2101
2101

1120

22 2341805736 101 1

2101

64 7077777777 2101

1011

2324180573 64 202 2

24 25805736 4 1

0112 2210

1120 0112 2022 657165024831 1011

1011

1120 66 7250248316 0112 2022

252605736418 0112 2210

1202 0112

262757364180 2210 0000 0112 677302483165 202 2

27 2873641805 0000

1202 2210 687424831650 1202 0000 2022

69 7548316502 0000 0221 1202

293184752106 0000 2022 0112 707683165024 0221

303247521068 2022 2210 0000 71 77316502 4 8

31 33752106 84 221 0

1011

1011

283033333333 1011

1120 0000

1120 2210 0221

1120

1011

1120 2022 727816502483 2210

2210 738088888888 2210 22102210

323452106847 1120 2101

3335210684 75 2101

1202
0112

1120

1120 748127603514 0112

2101

1202

75 8276035142 1120 0221

343610684752 1202 0221

353706847521 0221

1120

1202 768360351427 0221 2101

0112

2022 0221

77 8403514276 2101

36 38684752 100112 0000 0221

120 788535142760 2022 0000 2101

11201

0000

1120

37 40444444 4 4

2022

79 86514276 03 0000 1011

1011

0221
0112 0000 8 88427603 51

1202 2101

384171586320 0221

1202 0000

80 8714276035 101 1

3904215863207 0000 2101

1011

1 2

1202 01

1

210
41 4486320715 0112

40 43586320 7 1
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Table 21. D = (D, D;) in Example 7.

MCD(D,, D) MCD(D,, D)

Run Dl D2 Run Dl D2
1 0000000000 O O O O O O O O 42 4563207120 78 78 33 15 15 33 51 69
2 0112345210 7575301257217575 43 4632071221 5519 73 73 46 64 19 55
3 0223456221 1028466464 461028 44 4720715202 3517 44 44 80 80 35 17
4 0334567011 2561705279793416 45 4807158101 225867 49 58 22 76 76
5 0445678022 32144141 14325068 46 5055555120 5169 2460 51 69 24 60
6 0556781101 4040582222586749 47 5108261112 29 11 38 38 6547 11 29
7 0667812112 4765205629 113838 48 5282617101 4 4 4 4 40 40 58 22
8 0778123120 602478 7842426024 49 5326174000 727227 9 27 9 36 36
9 0881234202 7153173553712662 50 5461743221 19564461 1 1 1
101111111011 1634527016345270 51 5517430022 592377777777 3214
11 1153870202 266271 5344446226 52 5674308202 17 355371 26 62 71 53
12 1238704022 5068 235959237777 53 5743082011 705216 34612579 79
13 1387046120 33154242246069 51 54 5830826210 39395721 12 30 48 66
14 1470462101 767631 1349672258 55 6066666202 622680 80 62 26 80 80
15 1504625221 6446102828 103737 56 6140137221 46 64 19 55 19 55 64 46
16 1646253210 3 3 3 375753012 57 6201372120 4242 60 24 78 78 33 15
17 1762538000 363654186345 9 27 58 6313728112 2 2 2 2 47 65 20 56
18 1825387112 56207474 2 2 2 2 59 6437285000 9 27 45 63 36 36 54 18
19 2022222022 2359685023596850 60 6572854011 34164343 7 7 7 7
20 2136418120 69511533 6 6 6 6 61 6628540101 6749 13 31 13 31 49 67
21 2264180210 3012393948 6621 57 62 6785401210 21 57 66 48 30 12 39 39
22 2341805101 582276766749 1331 63 6854013022 7777 3214 68 50 14 32
23 2418057202 4444622635174444 64 7077777210 6648 12 30 66 48 12 30
24 2580573112 1129476556207474 65 7165024101 13 3149 67 76 76 31 13
25 2605736011 7979341643436125 66 7250248011 61257979 34 16 43 43
26 2757364221 1 1 1 110284664 67 7302483202 5371266217 355371
27 2873641000 4563 1854727227 9 68 7424831120 6 6 6 6 60247878
28 3033333101 3113404031 134040 69 7548316000 18 54 63 45 45 63 18 54
29 3184752000 54187272 9 274563 70 7683165022 41415923 5 5 5 5
30 3247521202 8083517 8 8 8 8 71 7731650112 747429 11 20 56 65 47
31 3375210221 3737551955197373 72 7816502221 2810 37 37 37 37 5519
32 3452106112 6547 112974742911 73 8088888221 737328 1073 73 28 10
33 3521068210 486621 5739395721 74 8127603011 43 43 61 2552 70 25 61
34 3610684120 2460695169511533 75 8276035112 20566547 11 29 47 65
35 3706847022 14325068 50682359 76 8360351022 685014 32 41 41 59 23
36 3868475011 7 7 7 725617052 77 8403514210 572175752157 6648
37 4044444112 3838562038385620 78 8535142202 8 8 8 8 715317 35
3834171586022 5 5 5 532144141 79 8651427000 27 9 36365418 7272
304215863000 6345 9 2718546345 80 8714276101 49 672258 4 4 4 4
40 4358632210 12304866 3 3 3 3 81 8842760120 15335169 33 1542 42
41 4486320011 52702561 7052 16 34
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