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1. Introduction

Differential equations (DEs) are mathematical models used to study phenomena that occur in
nature, where each dependent variable represents a quantity in the modeled phenomenon. Differential
equations made it possible to understand many complex phenomena in our daily lives and play a pivotal
role in many applications in engineering [1–3]. They have become important tools in applied sciences
and technology, used for studying telephone signals, media, conversations, and the statistics of online
purchasing. More traditionally, they were used in astronomy to describe the orbits of planets and the
motion of stars [4–6]. They also have many applications in biology and the medical sciences. By
describing those phenomena with variables that symbolize time and place, differential equations can
provide insights about the phenomena on future.

Due to the huge advantage of neutral differential equations in describing several neutral
phenomena, there is great scientific and academic values theoretically and practically for studying
neutral differential equations [7–9]. Hence, a large amount of research attention has been focused on
the oscillation problem of third-order linear and nonlinear neutral differential equations in recent years;
see, for example [10–12].

Recent years have seen a surge in research on the oscillation and non-oscillation of solutions
to third/fourth-order differential equations [13–15]. For further exploration, readers can refer to the
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references provided [16–18].
The authors in [19–21] discussed several oscillatory properties of higher-order equations in

canonical form, and used different methods to find those properties, such as Riccati transformations.
Moreover, they applied the comparison method to inequalities of different orders that are
oscillatory [22, 23].

The purpose of this work is to investigate the oscillatory and asymptotic behavior of the third-order
neutral delay differential equations

(
r2

(
r1w′

)′)′ (t) +

j∑
i=1

ai(t)x(ςi(t)) = 0 t ≥ t0 > 0, (E)

where w(t) = x(t) + b(t)x(g(t)). We also assume that the following conditions are satisfied:

(H1) ςi, g ∈ C′ ([t0,∞) ,R) , ςi(t) < t, g(t) < t, g′(t) ≥ 0 and limt→∞ g(t) = limt→∞ ςi(t) = ∞, i =

1, 2, .., j;
(H2) b, ai ∈ C ([t0,∞) ,R+) , 0 ≤ b(t) ≤ b0 < ∞ and ai does not vanish identically;
(H3) r1, r2 ∈ C ([t0,∞) , (0,∞)) satisfy∫ ∞

t0

1
r1(t)

dt < ∞ and
∫ ∞

t0

1
r2(t)

dt < ∞, (1.1)

that is, (E) is in noncanonical form;
(H4) g and ςi commute.

By a solution of (E), we mean a function x ∈ C ([Tx,∞) ,R) with Tx > t0, which has the property
Li w ∈ C1 ([Tx,∞) ,R) , i = 0, 1, 2, and satisfies (E)on [Tx,∞) . We only consider those solutions of (E)
which exist on some half-line [Tx,∞) and satisfy the condition sup{|x(t)| : T ≤ t < ∞} > 0 for any
T ≥ Tx. We assume that (E) possesses such a solution. A solution of (E) is said to be oscillatory if
it is neither eventually negative nor eventually positive, and it is called nonoscillatory otherwise. The
equation itself is referred to as oscillatory if all of the solutions are oscillatory.

The main motivation for studying this paper is to contribute to the development of the oscillation
theory for third-order equations by finding sufficient conditions that guarantee that the solutions of this
type of equations are oscillatory.

Chatzarakis et al. [24] established new oscillation criteria for the differential equation

(r2(r1w′)′)′(t) + a(t)x(ς(t)) = 0, (1.2)

in the canonical form. Recently, techniques have been developed to study the oscillatory behavior of
solutions to third-order equations.

Candan [25] established some sufficient conditions for oscillation of the following class of third-
order neutral differential equations

(r2(r1w′)′)′(t) + a(t) f (x(ς(t))) = 0, (1.3)

under conditions ∫ ∞

t0

1
r1(t)

dt =

∫ ∞

t0

1
r2(t)

dt = ∞, (1.4)
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Li et al. [26] also studied the cases∫ ∞

t0

1
r1(t)

dt < ∞ and
∫ ∞

t0

1
r1(t)

dt = ∞, (1.5)

also under conditions ∫ ∞

t0

1
r1(t)

dt = ∞ and
∫ ∞

t0

1
r2(t)

dt < ∞. (1.6)

So during these years, it was found that sufficient criteria were found to ensure that the solutions of (E)
were oscillatory. The first of these findings for (E) was reported in [3], in canonical type under the
conditions 0 6 b(t) 6 b0 < ∞ and ςiog = goςi. Very recently in [4, 5], the authors provided enough
parameters for (E) to oscillate.in the noncanonical or semi-canonical case with an unbounded neutral
coefficient, that is, b(t) ≥ b0 > 1 since in this case one can easily find the relation between x(t) and
w(t). This is generally essential to obtain oscillation criteria for neutral-type differential equations.

Our literature review indicates a scarcity of research on the oscillatory behavior of solutions
to Eq (E) when it takes the semi-canonical form. This paper tackles Eq (E) in its less-studied
semi-canonical form. We begin by transforming it into the more common canonical form.
This transformation allows us to then establish new criteria for determining when solutions to
Eq (E) oscillate.

In the sequel, we use the following notations for a compact presentation of our results:

L0w = w, L1w = r1w′, L2w = r2(L1w)′, L3w = (r2L2w
)′ .

We remark that in the study of the asymptotic behaviour of the positive solutions of (E), there are
four cases:

S 1 : w > 0, L1w < 0, L2w < 0, L3w ≤ 0,
S 2 : w > 0, L1w < 0, L2w > 0, L3w ≤ 0,
S 3 : w > 0, L1w > 0, L2w > 0, L3w ≤ 0,
S 4 : w > 0, L1w > 0, L2w < 0, L3w ≤ 0.

2. Main results

In view of (H3), one can use the following notations:

$ j(t) =

∫ ∞

t

ds
r j(s)

, j = 1, 2, β1(t) = r1(t)$2
1(t),

β2(t) =
r2(t)
$1(t)

, F(t) = min{
j∑

i=1

ai(t),
j∑

i=1

ai(g(t))},

M(t) = F(t)$1(ςi(t)), A(t, u) =

∫ t

u

1
β1 (s)

∫ t

s

ds1

β2 (s1)
ds,

for all t > u ≥ t1 ≥ t0.
From the form of (E), it is enough to consider positive solutions for nonoscillatory solutions of (E).

The following is a standard one and can be found in [1].
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Hence, if we want to derive oscillation conditions for (E), we have to eliminate the above
mentioned four cases. However, if we transform (E) into semi-canonical type, then the number of
cases is reduced to three without making any additional assumptions. Thus, this greatly streamlines
the analysis of (E) oscillation.

Theorem 1. The noncanonical operator L3w has the semi-canonical representation

L(t) =

(
r2

$1

(
r1$

2
1

(
w
$1

)′)′)′
(t). (2.1)

Proof. Direct calculation shows that

r2(t)
$1(t)

(
r1(t)$2

1(t)
(

w(t)
$1(t)

)′)′
=

r2(t)
$1(t) ($1(t)r1(t)w′(t) + w(t))′,

=
r2(t)
$1(t) ($1(t) (r1(t)w′(t)′) ,

that is, (
r2(t)
$1(t)

(
r1(t)$2

1(t)
(

w(t)
$1(t)

)′)′)′
=

(
r2(t)

(
r1(t)w′(t)

)′)′ .
Further note that∫ ∞

t0

dt
r1(t)$2

1(t)
=

∫ ∞

t0
d
(

1
$1(t)

)
= lim

t→∞

1
$1(t)

−
1

$1(t0)
= ∞,

and ∫ ∞

t0

$1(t)
r2(t)

dt = $1 (t0)
∫ ∞

t0

1
r2(t)

dt < ∞.

Hence L3w transformed into semi-canonical form. This ends the proof.
Now it follows from Theorem 2.2 that (E) can be written in the equivalent semi-canonical form(

β2(t)
(
β1(t)

(
w(t)
$1(t)

)′)′)′
+ ai(t)x(ςi(t)) = 0.

By letting γ(t) =
w(t)
$1(t) , the following result is at once.

Theorem 2. Noncanonical equation (E) has a solution x(t) if and only if the semi-canonical Eq (Es)

(β2(v)
(
β1(t)γ′(t)′

)′
+ ai(t)x(ςi(t)) = 0,

has the solution x(t).

Corollary 1. The function x is identified as the ultimate positive solution to (E) if and only if the
semi-canonical Eq (Es) has the same solution x .

Now set

B0γ = γ, B1γ = β1γ
′, B2γ = β2

(
β1γ

′)′ , B3γ =
(
β2

(
β1γ

′)′)′ .
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Corollary 2.4 clearly simplifies the investigation of (E) since for (Es) we deal with only three cases of
positive solutions; see, for example [3, Theorem 2.2], namely

O1 : γ(t) > 0, B1γ(t) < 0, B2γ(t) > 0, B3γ(t) ≤ 0,
O2 : γ(t) > 0, B1γ(t) > 0, B2γ(t) > 0, B3γ(t) ≤ 0,
O3 : γ(t) > 0, B1γ(t) > 0, B2γ(t) < 0, B3γ(t) ≤ 0,

eventually.

Lemma 1. Let x be an eventually positive solution of (E) then the corresponding function satisfies
the inequality

B3γ(t) +
b0

g0
B3γ(g(t)) + M(t)γ(ςi(t)) 6 0, (2.2)

for all t ≥ t1 ≥ t0.

Proof. The function θ is identified as the ultimate positive solution to (E) Let θ be an eventually positive
solution of (E). Then we have that θ(ζ) > 0, θ(τ(ζ)) > 0 and θ(δ(ζ)) > 0 for all t ≥ ζ1. From
Corollary 2.4, the function α(ζ) is a positive solution of (Es) for all ζ ≥ ζ1. Now, from (Es), (H1) and
(H4), we see that

0 =
g0

τ′(ζ)
(D2α(τ(ζ))′ + g0 f (τ(ζ))θ(δ(τ(ζ))),

≥
g0

τ0
(D2α(τ(ζ)))′ + g0 f (τ(ζ))θ(δ(τ(ζ))), (2.3)

=
g0

τ0
(D2α(τ(ζ)))′ + g0 f (τ(ζ))θ(τ(δ(ζ))).

Combining (Es) along with the last inequality, we obtain

0 ≥ D3α(ζ) +
g0
τ0

D3α(τ(ζ)) + f (ζ)θ(δ(ζ)) + g0 f (τ(ζ))θ(τ(δ(ζ))),
≥ D3α(ζ) +

g0
τ0

D3α(τ(ζ)) + F(ζ) (θ(δ(ζ)) + g0θ(τ(δ(ζ))).

Using (H2) in the definition of φ(ζ), we obtain

Ω1(δ(ζ))α(δ(ζ)) = φ(δ(ζ)) = θ(δ(ζ)) + g(δ(ζ))θ(τ(δ(ζ)))
≤ θ(δ(ζ)) + g0θ(τ(δ(ζ))).

In view of the latter, inequality (2.3) becomes

D3α(ζ) +
g0

τ0
D3α(τ(ζ)) + N(ζ)α(δ(ζ)) ≤ 0,

or
(D2α(ζ) +

g0

τ0
D2α(τ(ζ)))′ + N(ζ)α(δ(ζ)) ≤ 0, (2.4)

which proves(2.2). �

Before we state and prove our main results, let us define

G1(t) =

∫ t

t0

1
β1(s)

ds, G(t) =

∫ ∞

t

1
β2(s)

ds,

for all t ≥ t0.

AIMS Mathematics Volume 9, Issue 12, 33649–33661.



33654

Theorem 3. Given that γ constitutes the final positive solution of (Es). If∫ ∞

t0
M(t)G1(t)dt = ∞, (2.5)

then class O2 is empty.

Proof. Assume to the contrary that class O2 is not empty. Then there exists a ζ1 ≥ ζ0 such that α(ζ) > 0,
α(τ(ζ)) > 0, α(δ(ζ)) > 0 for all ζ ≥ ζ1, such that the function α(ζ) in class O2 for all ζ ≥ ζ1. Since
β1(ζ)α′(ζ) > 0 is increasing, we have

β1(ζ)α′(ζ) ≥ β1 (ζ1)α′ (ζ1) = M on [ζ1,∞ ).

Dividing this inequality by β1(ζ), then integrating the resulting inequality, we obtain

α(δ(ζ)) ≥ MB1 (δ(ζ)), ζ ≥ ζ2 > ζ1 . (2.6)

Integrating (Es) from ζ2 to ζ and using (2.6) in the resulting inequality, we obtain

D2α(ζ) +
g0

τ0
D2α(τ(ζ)) = D2α(ζ2) +

g0

τ0
D2α(τ (ζ2)) −

∫ ζ

ζ2

N(s)α(δ(s))ds

≤ D2α (t2) +
g0

τ0
D2α (τ (ζ0)) − M

∫ t

ζ2

N(s)B1(δ(s))ds,

which tends ζ0 → ∞ as ζ → ∞. This contradiction ends the proof. �

Lemma 2. Let γ be an eventually positive increasing solution of (Es). If∫ ∞

t0

1
β2(t)

(∫ t

t0
M(s)G1(ςi(s))ds

)
dt = ∞, (2.7)

then γ satisfies the class O3 for t ≥ t1 for some t1 ≥ t0 and further

γ(t) ≥ G1(t)β1(t)γ′(t) for t ≥ t1. (2.8)

Proof. Since α is a positive increasing solution, so class O1 is empty, and hence, by Theorem 2.6,
α ∈ O2 ∪ O3 for ζ ≥ ζ1, where ζ1 ≥ ζ0 is such that α(δ(ζ)) > 0 and α(τ(ζ)) > 0 for ζ ≥ ζ1. In view of
(H3), we see that (2.7) implies (2.5), and hence α satisfies class O3 for ζ ≥ ζ1. Since D1α is positive
and decreasing, we see that

α(ζ) = α (ζ1) +

∫ ζ

ζ1

β1(s)α′(s)
β1(s)

ds ≥ B1(ζ)β1(ζ)α′(ζ).

This ends the proof. �

Theorem 4. Let γ be an eventually positive solution of (Es). If

lim
t→∞

inf
∫ t

ςi(t)

1
β2(s)

(∫ s

t0
M (s1) G1 (ςi (s1)) ds1

)
ds >

g0 + b0

eg0
, (2.9)

then the classes O2 and O3 are empty.
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Proof. Assume that (2.9) holds but α belongs to classes O2 and O3. Pick ζ1 ≥ ζo such that α(τ(ζ)) > 0
and α(δ(ζ)) > 0 for ζ ≥ ζ1. Clearly, it is necessary for the validity of (2.9) that (2.7) holds. Hence,
by Theorem 2.6 and Lemma 2.7, one can see that α satisfies class O3. Proceeding as in the proof of
Lemma 2.7, we see that (2.8) holds, and so we obtain

α(δ(ζ)) ≥ B1(δ(ζ))β1(δ(ζ))α′(δ(ζ)),

for ζ ≥ ζ2 for some ζ2 ≥ ζ1. From the latter inequality and Eq (Es), we observe that

−

(
D3α(ζ) +

g0

τ0
D3α(τ(ζ))

)
= N(ζ)α(δ(v)) ≥ N(ζ)B1

(
δ(ζ))β1

(
δ(ζ))α′(δ(ζ)

)
.

Integrating from ζ2 to ζ, we obtain

−
(
D2α(ζ) +

g0
τ0

D2α(τ(ζ))
)
≥

∫ ζ

ζ2
N(s)B1 (δ(s))β1(δ(s))α′(δ(s))ds

≥ β1(δ(ζ))α′(δ(ζ))
∫ ζ

ζ2
N(s)B1(δ(s))ds.

(2.10)

Since D2α(ζ) is decreasing and τ(ζ) < ζ, we have D2α(ζ) ≤ D2α(τ(ζ)), and using this in (2.10),
we obtain

−
(
1 +

g0
τ0

)
D2α(ζ) ≥ β1(δ(ζ))α′(δ(ζ))

∫ ζ

ζ2
N(s)B1(δ(s))ds,

− (β1(ζ)α′(ζ))′ ≥
(

τ0
τ0+g0

)
β1(δ(ζ))
β2(ζ) α

′(δ(ζ))
∫ ζ

ζ2
N(s)B1(δ(s))ds.

(2.11)

Let ω(ζ) = β1(ζ)α′(ζ) > 0 is a positive solution of the first-order delay differential inequality

ω′(ζ) +

(
τ0

τ0 + g0

) (
1

β2(ζ)

∫ ζ

ζ2

N(s)B1(δ(s))ds
)
ω(δ(ζ)) ≤ 0. (2.12)

However, by [13, Theorem 2.11], the inequality (2.12) does not have a positive solution. This
contradicts our initial assumption, and the proof is complete. �

Theorem 5. Assume that (2.5) holds. If

lim
t→∞

sup G(t)
∫ t

t0
M(s)G1(ςi(s))ds >

b0 + g0

g0
, (2.13)

then the classes O2 and O3 are empty.

Proof. Assume to the contrary that α satisfies class O2 or O3 for ζ ≥ ζ1. First note that limζ→∞ B(ζ) = 0
holds, which together with (2.13) implies (2.5). So by Lemma 2.7, we conclude that α satisfies O3 and
the asymptotic property (2.8) for all ζ ≥ ζ1 ≥ ζ0. Proceeding as in the proof of Theorem 2.8, we arrive
at (2.11). Now from the monotonicity of D2α(ζ), we obtain

β1(ζ)α′(ζ) ≥ −
∫ ∞

ζ

1
β2(s)

β2(s)
(
β1(s)α′(s)

)′ ds,

≥ −B(ζ)β2(ζ)
(
β1(ζ)α′(ζ)

)′ ,
and using this in (2.11), we obtain

−
(
β1(ζ)α′(ζ)

)′
≥ −

(
τ0

g0 + τ0

)
B(ζ)

(
β1(ζ)α′(ζ)

)′ ∫ ζ

ζ2

N(s)B1(δ(s)ds, (2.14)
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where we have used β1 (δ(ζ)α′(δ(ζ)) ≥ β1(ζ)α′(ζ) . From (2.14) we obtain

g0 + τ0

τ0
≥ B(ζ)

∫ ζ

ζ2

N(s)B1(δ(s))ds.

But the last inequality contradicts (2.13), and the proof is complete.
�

Theorem 6. Let γ be an eventually positive solution of (Es). If ςi(t) < g(g(t)) and

lim
t→∞

sup
∫ t

g(t)
M(s)A(ςi(t), ςi(s))ds >

g0 + b0

g0
, (2.15)

then the class O1 is empty.

Proof. Assume the contrary that (2.15) holds, but α belongs to class O1. Choose ζ1 ≥ ζ0 such that
δ(ζ) ≥ ζ1 for ζ ≥ ζ1. From the monotonicity of D2α(ζ) that for v ≥ u

−β1(u)α′(u) ≥
∫ v

u
β2(s)
β2(s) (β1(s)α′(s))′ ds ≥ β2(v) (β1(v)α′(v))′

∫ v

u
ds
β2(s) .

Dividing by β1(u) and then integrating from u to v ≥ u in u for the resulting inequality, we find

α(u) ≥ β2(v)
(
β1(v)α′(v)

)′ ∫ v

u

1
β1(x)

∫ v

x

ds
β2(s)

dx = β2(v)
(
β1(v)α′(v)

)′ A(v, u). (2.16)

Integrating (2.2) from τ(ζ) to ζ and using (2.16) with u = δ(s) and v = δ(ζ), we obtain

D2α(τ(ζ)) +
g0

τ0
D2α(τ(τ(ζ))) ≥

∫ ζ

τ(ζ)
N(s)α(δ(s))ds,

≥ D2α(δ(ζ))
∫ ζ

τ(ζ)
N(s)A(δ(ζ), δ(s))ds. (2.17)

From δ(ζ) < τ(τ(ζ)) and τ(τ(ζ)) < τ(ζ), we find

D2α(δ(ζ)) ≥ D2α(τ(τ(ζ))) and D2 α(τ(τ(ζ))) ≥ D2α(τ(ζ)),

and using these in (2.17), we obtain(
1 +

g0

τ0

)
≥

∫ ζ

τ(ζ)
N(s)A(δ(ζ), δ(s))ds,

which contradicts (2.15) and the proof is complete. �

Theorem 7. Given that γ constitutes the final positive solution of (Es). If the function σ(t) ∈
C ([t0,∞) , (0,∞)) satisfying ςi(t) < σ(t) < g(t) such that

lim
t→∞

inf
∫ t

g−1(σ(t))
M(s)A(σ(s), ςi(s))ds >

g0 + b0

g0e
, (2.18)

then the class O1 is empty.
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Proof. Let (2.18) holds, but α belongs to class O1. Proceeding as in the prof of Theorem 2.10 we arrive
at (2.10). Setting u = δ(ζ) and v = ξ(ζ), ζ ≥ x ≥ ζ1, in (2.10), we obtain

α(δ(ζ)) ≥ D2α(ξ(ζ))A(ξ(ζ), δ(ζ)). (2.19)

On the other hand, using (2.19) in (2.4) yields

(D2α(ζ) +
g0

τ0
D2α(τ(ζ)))′ + N(ζ)A(ξ(ζ), δ(ζ))D2α(ξ(ζ)) 6 0. (2.20)

Now, let
ω(ζ) = D2α(ζ) +

g0

τ0
D2α(τ(ζ)) > 0.

Using the fact that τ(ζ) < ζ and D2α(ζ) is nonincreasing, we have

ω(ζ) ≤
(
1 +

g0

τ0

)
D2α(τ(ζ)),

or equivalently
D2α(ξ(ζ)) ≥

τ0

g0 + τ0
ωτ−1(ξ(ζ)). (2.21)

From (2.21) and (2.20), we see that w(ζ) is a positive solution of the first-order delay
differential inequality

ω′(ζ) +
τ0

τ0 + g0
N(ζ)A(ξ(ζ), δ(ζ))ω

(
τ−1ξ(ζ)

)
≤ 0. (2.22)

If we apply [13, Theorem 2.11], we obtain that w(t) is not a positive solution to (2.22), and thus
the proof is complete. �

The primary outcome of the study is as follows: oscillation condition for (E).

Theorem 8. Assume that (H1)–(H4) hold. If (2.9) (or (2.13) ) and (2.15) (or (2.18)) satisfied, then
Eq (E) is oscillatory.

Proof. Let θ be a nonoscillatory solution of (E), and without loss of generality, assume that there exists
a ζ1 ≥ ζ0 such that θ(ζ) > 0, θ(τ(ζ)) > 0 and θ(δ(ζ)) > 0 for all ζ ≥ ζ1. Then, by Corollary 2.4, the
function θ(ζ) is also a positive solution of (Es) as well as the related function α(ζ), which satisfies one
of the three classes O1 or O2 or O3 for ζ ≥ ζ1.

In view of Theorem 2.8 (or Theorem 2.9), the classes O2 and O3 are empty. On the other hand
from Theorem 2.10 (or Theorem 2.11), the class O1 is empty. This contradiction implies that the Eq (E)
is oscillatory. This concludes the proof. �

We provide an example at the end of this section to highlight the significance of our
primary findings.

Example 1. Examine the third-order Euler type neutral differential equation(
t2

(
t2 (x(t) + b0x (β1η))′

)′)′
+ a0tx (β2t) = 0, t ≥ 1, (2.23)
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where a0 > 0, b0 > 0, β1 ∈ (0, 1) and β2 ∈ (0, 1). A simple calculation shows that

$1(t) = $2(t) =
1
t
, β1(t) = 1, β2(t) = η3 and g0 = β1.

We apply this data to obtain the transformed equation in semi-canonical form(
t3γ′′(t)

)′
+ a0tx (β2t) = 0,

so, we find

M(t) =
a0β1

β2
,G1(t) ≈ t and G(t) =

1
2t2 .

The condition (2.9) becomes.

lim
t→∞

inf
∫ t

β2η

(
1
s3

∫ s

1

a0β1

β2
β2s1ds1

)
ds =

a0β1

2
ln

1
β2

>
β1 + b0

β1e
,

that is, condition (2.9) satisfied if

a0 >
2 (β1 + b0)
β2

1e ln 1
β2

.

Choose β3 such that β2 < β3 < β1 then the condition (2.18) becomes

lim
t→∞

in f
∫ t

β3t
β1

a0β1

β2

(
1

2β2
−

1
β3

+
β2

2β2
3

)
1
s

ds

=
a0β1

β2

(
1

2β2
−

1
β3

+
β2

2β2
3

)
ln
β1

β3
>
β1 + b0

β1e
,

that is, condition (2.18) is satisfied if

a0

(
1

2β2
−

1
β3

+
β2

2β2
3

)
>
β2 (β1 + b0)

β2
1e ln β1

β3

.

Therefore Eq (2.23) is oscillatory if

a0 >
2 (β1 + b0)
β2

1e ln 1
β2

,

and

a0

(
1

2β2
−

1
β3

+
β2

2β2
3

)
>
β2 (β1 + b0)

β2
1e ln

(
β1
β3

) .
In particular if we assume β1 = 1/2 β2 = 1/4 β3 = 1/3 b0 = 1/2 then we get a0 >

29.033674. So in this case, the Eq (2.23) is oscillatory if a0 > 29.033674.
Take note that none of the outcomes listed in [2–4] can yield this conclusion since b0 < 1 and the

equation is noncanonical.
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3. Conclusions

The aim of this paper is to investigate the oscillatory characteristics inherent in third-order
differential equations featuring a noncanonical term. This investigation is conducted through the
application of integral averaging and comparison techniques, ultimately leading to the derivation of
oscillation criteria. The study culminates in the establishment of a central theorem pertaining to the
oscillation behavior of equations. Additionally, three examples of the effectiveness of these criteria
were discussed. In future work, we will study fractional order delay differential equations in their
non-canonical form to find oscillatory properties that will contribute to enriching oscillation theory.
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