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Abstract: In this paper, we represented the optimal control and dynamics of a stochastic SEIR
epidemic model with nonlinear incidence and treatment rate. By using the Lyapunov function method,
the existence and uniqueness of the global positive solution of the model were proved. The dynamic
analysis of the stochastic model was studied and we found that the model has an ergodic stationary
distribution when Rs

0 > 1. The disease was extinct when Re
0 < 1. The optimal solution of the disease

was obtained by using the stochastic control theory. The numerical simulation of our conclusion was
carried out. The results showed that the disease decreased with the increase of the control variables.
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1. Introduction

Mathematical models are very effective tools in studying the dynamical behavior of infectious
diseases [1–5]. When there is no way to eradicate diseases completely, researchers are always
looking for and developing the best methods to control the spread of diseases. A lot of mathematical
models have been presented for control effects of infectious diseases [6–8]. Disease control is mainly
considered from two aspects: vaccine and treatment. Some researchers have considered vaccine
control, such as [9–11], while others considered treatment control. Among them, in order to measure
the effect of delayed treatment of the infected, Zhang and Liu [12] proposed the form of saturated
treatment function T (I), T (I) =

γI
1+αI , where γ > 0, α > 0. A treatment function containing both the

control and the infected is proposed and is defined as T (u, I) =
φuI

1+αuI in [13], which better reflects the
characteristics of natural epidemics.

Many human epidemics, such as measles, smallpox, epidemics, and dengue fever, are represented
by the SEIR model [14,15]. In particular, the literature [15] takes into account the Crowley-Martin-type
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incidence rate and Holling type II treatment rate, and proposes the following model:

dS =
[
Λ − µS −

β1S I
(1 + α1S )(1 + γI)

]
dt,

dE =
[ β1S I
(1 + α1S )(1 + γI)

− (µ + ϕ)E
]
dt,

dI =
[
ϕE −

β2I
1 + α2I

−
auI

1 + buI
− (µ + ν)I

]
dt,

dR =
[ β2I
1 + α2I

+
auI

1 + buI
− µR

]
dt,

(1.1)

where the total population N is divided into four parts: the susceptible(S ), exposed(E), infected(I), and
recovered(R), β1S I

(1+α1S )(1+γI) represents the transmission population of disease from S to I by the Crowley-
Martin incidence rate, β2I

1+α2I represents the treatment rate of the infected population, and auI
1+buI is the

saturated treatment function of infected population where u is treatment control. Other parameters and
their definition are shown in Table 1. b is a nonnegative quantity, and other parameter are all positive.
Neglecting the fourth equation, they considered an equivalent model where the basic reproduction
number was described as

R0 =
Λβ1ϕ

(Λα1 + µ)(µ + ϕ)(β2 + µ + au + υ)
.

They have performed the stability and bifurcation analysis of the model system. If R0 < 1, then
symtem (1.1) has a unique disease-free equilibrium P0(Λ

µ
, 0, 0), which is locally asymptotically stable.

Conversely, if R0 > 1, then system (1.1) has two equilibrium points: one disease-free equilibrium P0

that is unstable, and another endemic equilibrium P∗(S ∗, E∗, I∗) that is locally asymptotically stable,
where (S ∗, I∗) is presented numerically, E∗ =

β1S ∗I∗

(µ+ϕ)(1+α1S ∗)(1+γI∗) .

Table 1. Parameters and their definition.

Symbol Definition
Λ Total recruitment
β1 Disease transmission rate
ϕ Transition rate from E to I
α1 Inhibition effect due to susceptible population
γ Inhibition effect due to infected population
µ Natural death rate
ν Death rate due to disease

In real life, the spread of diseases is inevitably affected by environmental white noise, as it is an
integral part of nature, therefore, considering deterministic models no longer fits the actual needs.
Some scholars have studied the dynamical behaviors of epidemic models affected by white noise,
such as [16–19]. Hence, we incorporate white noise perturbations into model (1.1). We propose the
following stochastic SEIR epidemic model with nonlinear incidence and treatment.
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dS =
[
Λ − µS −

β1S I
(1 + α1S )(1 + γI)

]
dt + σ1S dB1(t),

dE =
[ β1S I
(1 + α1S )(1 + γI)

− (µ + ϕ)E
]
dt + σ2EdB2(t),

dI =
[
ϕE −

β2I
1 + α2I

−
auI

1 + buI
− (µ + ν)I

]
dt + σ3IdB3(t),

dR =
[ β2I
1 + α2I

+
auI

1 + buI
− µR

]
dt + σ4RdB4(t),

(1.2)

where independent standard Brownian motions are expressed as Bi(t) (i=1, 2, 3, 4), andσi (i = 1, 2, 3, 4)
are positive constants that represent the intensity of the environment white noise, respectively.

This paper is organized as follows: In Section 2, we prove that the proposed model has a unique
positive solution and the solution is global. In Sections 3 and 4, we study the dynamical behaviors of
the proposed model in terms of the existence of stationary distribution and the extinction of the disease,
respectively. In Section 5, we discuss the optimal control problem of the proposed model. In Section 6,
we give a series of numerical simulations. Finally, in Section 7, conclusions are given.

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 that satisfies the usual
conditions (i.e., it is increasing and right continuous while F0 contains all P-null sets).

Consider the stochastic differential equation (SDE) of n-dimensional of the form

dX(t) = F(t, X(t))dt + G(t, X(t))dB(t), (1.3)

where F(t, X) : R+ × R
n → Rn and G(t, X) : R+ × R

n → Rn×m are measurable functions and B(t) is
Rm-valued standard Brownian motion. Given V(X, t) ∈ C2,1(Rn × R+,R+), we define the operator LV
corresponding to the SDE (1.3) by

LV = Vt(X, t) + Vx(X, t)F(X, t) +
1
2

trace[GT (X, t)Vxx(X, t)G(X, t)], (1.4)

where

Vt(X, t) =
∂V(X, t)
∂t

,Vx(X, t) =
( ∂V
∂x1

,
∂V
∂x2

, · · · ,
∂V
∂xn

)
,Vxx(X, t) =

( ∂2V
∂xix j

)
n×n
.

Then, the Itô formula is obtained:

dV(X, t) = LV(X, t)dt + Vx(X, t)G(X, t)dB(t).

2. Existence and uniqueness of the global positive solution

In this section, using the Lyapunov analysis method [20], we first show that the system (1.2) has a
unique local positive solution, then we show that this solution is global.

Theorem 1. If (S (0), E(0), I(0),R(0)) ∈ R4
+ is any initial value to (1.2), then (S (t), E(t), I(t),R(t)) is a

unique existing positive solution to (1.2) for t ≥ 0 and the solution remains in R4
+ with probability 1.

Proof. Since the local Lipschitz condition is satisfied by system (1.2), for any initial value
(S (0), E(0), I(0),R(0)) ∈ R4

+, there exists a unique local solution (S (t), E(t), I(t),R(t)) for t ∈ [0, τe),
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where τe denotes the explosion time [21]. To prove that the solution is global, we only need to prove
τe = +∞ a.s. To this end, let k0 ≥ 1 be a sufficiently large constant such that S (0), E(0), I(0), and R(0)
lie within the interval [ 1

k0
, k0]. For k ≥ k0, we define the stopping time as follows:

τk = inf
{
t ∈ [0, τe) : min{S (t), E(t), I(t),R(t)} ≤

1
k
, or max{S (t), E(t), I(t),R(t)} ≥ k

}
.

Clearly, τ∞ ≤ τk a.s. If τ∞ = +∞ a.s., then we have τe = +∞ a.s., and (S (t), E(t), I(t),R(t)) ∈ R4
+ a.s. If

this is false, then there exists a pair of constants T > 0 and ε ∈ (0, 1) such that P{τ∞≤T } > ε. Therefore,
there is an integer k1 ≥ k0 satisfying

P{τ∞≤T } ≥ ε,∀k ≥ k1. (2.1)

Define the C2-function V1 : R4
+ → R

4
+:

V1(S , E, I,R) = (S − 1 − ln S ) + (E − 1 − ln E) + (I − 1 − ln I) + (R − 1 − ln R). (2.2)

Applying the Itô formula, we obtain

LV1 =
S − 1

S

[
Λ − µS −

β1S I
(1 + α1S )(1 + γI)

]
+

E − 1
E

[ β1S I
(1 + α1S )(1 + γI)

− (µ + ϕ)E
]

+
I − 1

I

[
ϕE −

β2I
1 + α2I

−
auI

1 + buI
− (µ + ν)I

]
+

R − 1
R

( β2I
1 + α2I

+
auI

1 + buI
− µR

)
+
σ2

1 + σ2
2 + σ2

3 + σ2
4

2

=Λ + 4µ + ϕ + ν +
β1I

(1 + α1S )(1 + γI)
+

β2

1 + α2I
+

au
1 + buI

− µ(S + E + I + R) −
Λ

S

− νI −
β1S I

E(1 + α1S )(1 + γI)
−
ϕE
I
−

β2I
R(1 + α2I)

−
auI

R(1 + buI)
+
σ2

1 + σ2
2 + σ2

3 + σ2
4

2

≤Λ + 4µ + ϕ + ν +
β1

γ
+ au + β2 +

σ2
1 + σ2

2 + σ2
3 + σ2

4

2
= K, (2.3)

where K is a positive constant.
The following proofs are similar to references [22]. �

3. Stationary distribution

The unique stationary distribution of the stochastic SEIR model indicates that the persistence of
the disease in the future under certain conditions, that is, the stochastic model fluctuates around the
endemic equilibrium of the corresponding deterministic model.

Let X(t) be a regular time-homogeneous Markov process described by the following stochastic
differential equation in Rd:

dX(t) = b(X) +

k∑
r=1

hr(X)dBr(t).

The diffusion matrix of the process X(t) is defined as follows:

A(X) = (ai j(x)), ai j(x) =

k∑
r=1

hi
rh

j
r.
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Lemma 1. [23] If there is a bounded open domain D ⊂ Ed with regular boundary Γ, it has the
following properties:

(i) The diffusion matrix A(x) is strictly positive definite for all x ∈ D;
(ii) For any x ∈ Ed\D, it has a nonnegative C2 function V such that LV is negative.

Then there exists a unique ergodic stationary distribution π(·) for the Markov process X(t).

Theorem 2. For any initial value (S (0), E(0), I(0),R(0)) ∈ R4
+, the system (1.2) admits a unique ergodic

stationary distribution π(·), if

Rs
0 =

4Λβ1ϕµ(µ + ν)

α1γ(µ +
σ2

1
2 )(µ + ϕ +

σ2
2

2 )(µ + ν + au + β2 +
σ2

3
2 )(Λ +

µ

α1
+

µ+ν

γ
)2
> 1.

Proof. In order to prove the theorem, we first verify that condition (i) in Lemma 1 holds. From (1.2),
we obtain that the diffusion matrix of system (1.2) is

A =


σ2

1S 2 0 0 0
0 σ2

2E2 0 0
0 0 σ2

3I2 0
0 0 0 σ2

4R2

 .
It is easy to see that the matrix A is positive definite for any compact subset of R4

+. Therefore,
condition (i) of Lemma 1 is satisfied.

Next, we verify that the condition (ii) in Theorem 2 also holds. Define C2 functions V1 : R4
+ → R:

V1 = −c1 ln S − c2 ln E − c3 ln I + c4(S + E + I + R),

where

c1 =
Λβ1ϕµ

µ+ν

α1γ

(µ +
σ2

1
2 )2(µ + ϕ +

σ2
2

2 )(µ + ν + au + β2 +
σ2

3
2 )
,

c2 =
Λβ1ϕµ

µ+ν

α1γ

(µ +
σ2

1
2 )(µ + ϕ +

σ2
2

2 )2(µ + ν + au + β2 +
σ2

3
2 )
,

c3 =
Λβ1ϕµ

µ+ν

α1γ

(µ +
σ2

1
2 )(µ + ϕ +

σ2
2

2 )(µ + ν + au + β2 +
σ2

3
2 )2

,

c2
4 =

Λβ1ϕµ
µ+ν

α1γ

(µ +
σ2

1
2 )(µ + ϕ +

σ2
2

2 )(µ + ν + au + β2 +
σ2

3
2 )
.

Making use of the Itô formula, we obtain

LV1 = −
c1Λ

S
−

c2β1S I
E(1 + α1S )(1 + γI)

−
c3ϕE

I
+

c1β1I
(1 + α1S )(1 + γI)

+
c3β2

1 + α2I

+
c3au

1 + buI
+ c1

(
µ +

σ2
1

2

)
+ c2

(
µ + ϕ +

σ2
2

2

)
+ c3

(
µ + ν +

σ2
3

2

)
+ c4[Λ − µ(S + E + I + R) − νI]
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= −
c1Λ

S
−

c2β1S I
E(1 + α1S )(1 + γI)

−
c3ϕE

I
−

c4(µ + ν)(1 + γI)
γ

−
c4µ(1 + α1S )

α1

− c4µ(E + R) +
c1β1I

(1 + α1S )(1 + γI)
+

c3β2

1 + α2I
+

c3au
1 + buI

+ c1

(
µ +

σ2
1

2

)
+ c2

(
µ + ϕ +

σ2
2

2

)
+ c3

(
µ + ν +

σ2
3

2

)
+ c4

(
Λ +

µ

α1
+
µ + ν

γ

)
≤ − 5

(
c1c2c3c2

4Λµβ1ϕ
µ + ν

α1γ

) 1
5

+ c1

(
µ +

σ2
1

2

)
+ c2

(
µ + ϕ +

σ2
2

2

)
+ c3

(
µ + ν + au + β2 +

σ2
3

2

)
+ c4

(
Λ +

µ

α1
+
µ + ν

γ

)
+

c1β1I
(1 + α1S )(1 + γI)

= −
2Λβ1ϕµ(µ + ν)

α1γ(µ +
σ2

1
2 )(µ + ϕ +

σ2
2

2 )(µ + ν + au + β2 +
σ2

3
2 )

+ c4

(
Λ +

µ

α1
+
µ + ν

γ

)
+

c1β1I
(1 + α1S )(1 + γI)

= − c4

(
Λ +

µ

α1
+
µ + ν

γ

)
(
√

Rs
0 − 1) +

c1β1I
(1 + α1S )(1 + γI)

. (3.1)

Set V2(S , E,R) = − ln S − ln E − ln R. Then, we have

LV2 = −
1
S

[
Λ − µS −

β1S I
(1 + α1S )(1 + γI)

]
−

1
E

[ β1S I
(1 + α1S )(1 + γI)

− (µ + ϕ)E
]

−
1
R

( β2I
1 + α2I

+
auI

1 + buI
− µR

)
+
σ2

1 + σ2
2 + σ2

4

2

= −
Λ

S
+

β1I
(1 + α1S )(1 + γI)

−
β1S I

E(1 + α1S )(1 + γI)
−

β2I
R(1 + α2I)

−
auI

R(1 + buI)

+ 3µ + ϕ +
σ2

1 + σ2
2 + σ2

4

2
. (3.2)

Define
V3(S , E, I,R) = S + E + I + R,

V4(S , E, I,R) =
1

θ + 1
(S + E + I + R)θ+1.

Then, we have

LV3 = Λ − µ(S + E + I + R) − νI, (3.3)

LV4 ≤(S + E + I + R)θ[Λ − µ(S + E + I + R)] +
θ

2
(S + E + I + R)θ+1(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)

= −
[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
(S + E + I + R)θ+1 + Λ(S + E + I + R)θ

≤G −
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
(S θ+1 + Eθ+1 + Iθ+1 + Rθ+1), (3.4)

where

G = sup
(S ,E,I,R)∈R4

+

{
Λ(S + E + I + R)θ −

1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
(S + E + I + R)θ+1

}
< ∞.
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Define a C2 function Q : R4
+ → R in the following form:

Q(S , E, I,R) = MV1(S , E, I,R) + V2(S , E,R) + V3(S , E, I,R) + V4(S , E, I,R),

where M > 0 is sufficiently large and satisfies the condition

−Mc4

(
Λ +

µ

α1
+
µ + ν

γ

)
(
√

Rs
0 − 1) + B ≤ −2, (3.5)

where

B = sup
(S ,E,I,R)∈R4

+

{
3µ + Λ + ϕ +

µ(α1 + γ)
α1γ

+
σ2

1 + σ2
2 + σ2

4

2
+ G

−
1
2

(S θ+1 + Eθ+1 + Iθ+1 + Rθ+1)
[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]}
< ∞.

In addition, Q(S , E, I,R) is continuous, and (S 0, E0, I0,R0) is a minimum value point of Q(S , E, I,R)
in R4

+. Therefore, define a C2 function

V(S , E, I,R) = Q(S , E, I,R) − Q(S 0, E0, I0,R0).

Clearly, V is nonnegative. By the Itô formula and combining (3.2)–(3.4), we get

LV ≤ − Mc4

(
Λ +

µ

α1
+
µ + ν

γ

)
(
√

Rs
0 − 1) +

(Mc1 + 1)β1I
(1 + α1S )(1 + γI)

− µ(S + E + I + R) − νI

−
β1S I

E(1 + α1S )(1 + γI)
−

Λ

S
−

β2I
R(1 + α2I)

−
auI

R(1 + buI)
+
σ2

1 + σ2
2 + σ2

4

2
+ 3µ + Λ

+ ϕ + G −
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
(S θ+1 + Eθ+1 + Iθ+1 + Rθ+1)

≤ − Mc4

(
Λ +

µ

α1
+
µ + ν

γ

)
(
√

Rs
0 − 1) +

(Mc1 + 1)β1I
(1 + α1S )(1 + γI)

− 3
(β1µ

2S I
Eα1γ

) 1
3
−

Λ

S

− µ(E + R) − νI −
β2I

R(1 + α2I)
−

auI
R(1 + buI)

+
µ(α1 + γ)
α1γ

+
σ2

1 + σ2
2 + σ2

4

2
+ 3µ

+ Λ + ϕ + G −
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
(S θ+1 + Eθ+1 + Iθ+1 + Rθ+1). (3.6)

The tectonic compact set is

D =
{
(S , E, I,R) ∈ R4

+ : ε1 ≤ S ≤
1
ε1
, ε2 ≤ E ≤

1
ε2
, ε3 ≤ I ≤

1
ε3
, ε4 ≤ R ≤

1
ε4

}
.

For the sake of discussion, let’s divide R4
+\D into eight regions:

D1 =
{
(S , E, I,R) ∈ R4

+ : 0 < S < ε1

}
,

D2 =
{
(S , E, I,R) ∈ R4

+ : ε1 ≤ S , 0 < E < ε2, ε3 ≤ I
}
,

D3 =
{
(S , E, I,R) ∈ R4

+ : ε1 ≤ S , 0 < I < ε3

}
,
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D4 =
{
(S , E, I,R) ∈ R4

+ : ε3 ≤ I, 0 < R < ε4

}
,

D5 =
{
(S , E, I,R) ∈ R4

+ : S >
1
ε1

}
,D6 =

{
(S , E, I,R) ∈ R4

+ : I >
1
ε3

}
,

D7 =
{
(S , E, I,R) ∈ R4

+ : E >
1
ε2

}
,D8 =

{
(S , E, I,R) ∈ R4

+ : R >
1
ε4

}
,

where εi(0 < εi < 1, i = 1, 2, 3, 4) are positive numbers small enough to satisfy that the following
conditions hold

ε2 = ε4
1, ε3 = ε2

1, ε4 = ε3
1, (3.7)

−
Λ

ε1
+ F < −1, (3.8)

−3
( β1µ

2

α1γε1

) 1
3

+ F < −1, (3.9)

−Mc4

(
Λ +

µ

α1
+
µ + ν

γ

)
(
√

Rs
0 − 1) +

(Mc1 + 1)β1ε1

α1
+ B < −1, (3.10)

−
β1

ε1(1 + α2ε
2
1)
−

au
ε1(1 + buε2

1)
+ F < −1, (3.11)

−
1

2εθ+1
1

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]

+ K < −1, (3.12)

−
1

2ε2(θ+1)
1

[µ −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)] + K < −1, (3.13)

−
1

2ε4(θ+1)
1

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]

+ K < −1, (3.14)

−
1

2ε3(θ+1)
1

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]

+ K < −1, (3.15)

where

F = sup
(S ,E,I,R)∈R4

+

{ (Mc1 + 1)β1I
(1 + α1S )(1 + γI)

+ 3µ + Λ + ϕ +
µ(α1 + γ)
α1γ

+
σ2

1 + σ2
2 + σ2

4

2
+ G

−
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
(S θ+1 + Eθ+1 + Iθ+1 + Rθ+1)

}
< ∞,
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K = sup
(S ,E,I,R)∈R4

+

{ (Mc1 + 1)β1I
(1 + α1S )(1 + γI)

+ 3µ + Λ + ϕ +
µ(α1 + γ)
α1γ

+
σ2

1 + σ2
2 + σ2

4

2
+ G

}
< ∞.

In the following, we prove that the eight regions have LV(S , E, I,R) ≤ −1 for any (S , E, I,R) ∈ Dc.
Case 1. For any (S , E, I,R) ∈ D1, by (3.8), we have

LV ≤ −
Λ

S
+

(Mc1 + 1)β1I
(1 + α1S )(1 + γI)

+
µ(α1 + γ)
α1γ

+
σ2

1 + σ2
2 + σ2

4

2
+ 3µ + Λ + ϕ + G

−
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
(S θ+1 + Eθ+1 + Iθ+1 + Rθ+1)

≤ −
Λ

S
+ F ≤ −

Λ

ε1
+ F < −1.

Case 2. On D2, by (3.7) and (3.9), we have

LV ≤ −3
(β1µ

2S I
Eα1γ

) 1
3

+ F ≤ −3
(β1µ

2ε1ε3

ε2α1γ

) 1
3

+ F = −3
( β1µ

2

α1γε1

) 1
3

+ F < −1.

Case 3. When (S , E, I,R) ∈ D3, by (3.7) and (3.10), we obtain

LV ≤ − Mc4

(
Λ +

µ

α1
+
µ + ν

γ

)
(
√

Rs
0 − 1) +

(Mc1 + 1)β1I
α1S

+ B

≤ − Mc4

(
Λ +

µ

α1
+
µ + ν

γ

)
(
√

Rs
0 − 1) +

(Mc1 + 1)β1ε1

α1
+ B

< − 1.

Case 4. On D4, by (3.7) and (3.11), we get

LV ≤ −
β2I

R(1 + α2I)
−

auI
R(1 + buI)

+ F ≤ −
β2ε3

ε4(1 + α2ε3)
−

auε3

ε4(1 + buε3)
+ F < −1.

Case 5. For any (S , E, I,R) ∈ D5, by (3.7) and (3.12), we have

LV ≤
(Mc1 + 1)β1I

(1 + α1S )(1 + γI)
+
µ(α1 + γ)
α1γ

+
σ2

1 + σ2
2 + σ2

4

2
+ 3µ + Λ + ϕ + G

−
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
(S θ+1 + Eθ+1 + Iθ+1 + Rθ+1)

≤ −
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
] 1
S θ+1 + K

≤ −
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
] 1
εθ+1

1

+ K

< − 1.

Case 6. On D6, by (3.7) and (3.13), we have

LV ≤ −
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
Iθ+1 + K
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≤ −
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
] 1

ε2(θ+1)
1

+ K

< − 1.

Case 7. When (S , E, I,R) ∈ D7, by (3.7) and (3.14), we obtain

LV ≤ −
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
Eθ+1 + K

≤ −
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
] 1

ε4(θ+1)
1

+ K

< − 1.

Case 8. On D8, by (3.7) and (3.15), we get

LV ≤ −
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
Rθ+1 + K

≤ −
1
2

[
µ −

θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
] 1

ε3(θ+1)
1

+ K

< − 1.

Thus, for sufficiently small positive numbers εi(i = 1, 2, 3, 4), we obtain

LV ≤ −1, ∀(S , E, I,R) ∈ R4
+\D.

Consequently, Theorem 2 holds. �

4. Extinction of disease

In this section, we will demonstrate that under certain assumptions, the disease will become extinct.
Define a parameter

Re
0 =

ϕβ1 + α1(µ + ϕ)(β2 + au)
α1(µ + ϕ)(µ + ν + β2 + au)

−

σ2
3

2 ∧ (−σ
2
2

2 +

√
σ2

2
2
σ2

3
2 +

σ2
2

4 )

µ + υ + β2 + au
.

Theorem 3. Let (S (t), E(t), I(t),R(t)) be the solution of system (1.1) with any given initial value
(S (0), E(0), I(0),R(0)) ∈ R4

+. If Re
0 < 1, then

lim
t→+∞

sup
ln[ϕE(t) + (µ + ϕ)I(t)]

t
< 0, a.s.,

lim
t→+∞

R(t) = 0, a.s.,

that is to say, (E(t), I(t),R(t)) exponentially converges to (0, 0, 0) a.s.
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Proof. Let p(t) = ϕE(t) + (µ + ϕ)I(t). By the Itô formula, we obtain

d ln p(t) = L ln p(t) +
1

ϕE + (µ + ϕ)I

[
ϕσ2EdB2(t) + (µ + ϕ)σ3IdB3(t)

]
, (4.1)

where

L ln p(t) =
1

ϕE + (µ + ϕ)I

{ ϕβ1S I
(1 + α1S )(1 + γI)

− (µ + ϕ)
[ β2

1 + α2I
+

au
1 + buI

+ (µ + ν)
]
I
}

−
ϕ2 σ

2
2

2 E2

(ϕE + (µ + ϕ)I)2 −
(µ + ϕ)2 σ

2
3

2 I2

(ϕE + (µ + ϕ)I)2

≤
1

ϕE + (µ + ϕ)I

{[ ϕβ1

α1(µ + ϕ)
+ β2 + au

]
[(µ + ϕ)I + ϕE] −

[ ϕβ1

α(µ + ϕ)
+ β2 + au

]
ϕE

− (µ + ϕ)(µ + υ + β2 + au)I
}
−

ϕ2 σ
2
2

2 E2

(ϕE + (µ + ϕ)I)2 −
(µ + ϕ)2 σ

2
3

2 I2

(ϕE + (µ + ϕ)I)2

=
ϕβ1

α1(µ + ϕ)
+ β2 + au −

ϕE
ϕE + (µ + ϕ)I

[ ϕβ1

α1(µ + ϕ)
+ β2 + au

]
−

(µ + ϕ)(µ + ν + β2 + au)I
ϕE + (µ + ϕ)I

−
ϕ2 σ

2
2

2 E2

(ϕE + (µ + ϕ)I)2 −
(µ + ϕ)2 σ

2
3

2 I2

(ϕE + (µ + ϕ)I)2

=
ϕβ1

α1(µ + ϕ)
+ β2 + au −

[
ϕβ1

α1(µ+ϕ) + β2 + au +
σ2

2
2 − η

]
ϕ2E2

(ϕE + (µ + ϕ)I)2

−
ϕ(µ + ϕ)[ ϕβ1

α1(µ+ϕ) + β2 + au + µ + ν + β2 + au]EI

(ϕE + (µ + ϕ)I)2

−
(µ + ϕ)2

(
µ + ν + β2 + au +

σ2
3

2 − η
)
I2

(ϕE + (µ + ϕ)I)2 −
η[ϕ2E2 + (µ + ϕ)2I2]

(ϕE + (µ + ϕ)I)2 . (4.2)

By Re
0 < 1, we get

ϕβ1 + α1(µ + ϕ)(β2 + au)
α1(µ + ϕ)

<
σ2

3

2
∧ (−

σ2
2

2
+

√
σ2

2

2
σ2

3

2
+
σ2

2

4
).

There is 0 < η < min{σ
2
2

2 ,
σ2

3
2 }. Setting σ̄2

2
2 =

σ2
2

2 − η, σ̄
2
3

2 =
σ2

3
2 − η, we can get

ϕβ1

α1(µ + ϕ)
≤
σ̄2

3

2
+ µ + ν, (4.3)

ϕβ1

α1(µ + ϕ)
≤ −σ̄2

2 +

√
σ̄2

2σ̄
2
3 + σ̄4

2 + µ + ν. (4.4)

Combining (4.3) and (4.4), we obtain

σ̄2
2

2
ϕ2E2 + (µ + ϕ)2

[σ̄2
3

2
−

( ϕβ1

α1(µ + ϕ)
+ β2 + au

)
+ µ + ν + β2 + au

]
I2
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≥ 2ϕ(µ + ϕ)

√
σ̄2

2

2

[σ̄2
3

2
−

( ϕβ1

α1(µ + ϕ)
+ β2 + au

)
+ µ + ν + β2 + au

]
EI

≥ ϕ(µ + ϕ)
[ ϕβ1

α1(µ + ϕ)
+ β2 + au − (µ + ν + β2 + au)

]
EI. (4.5)

By (4.1), (4.2), and (4.5), we get

d ln p(t) ≤ −
η[ϕ2E2 + (µ + ϕ)2I2]

(ϕE + (µ + ϕ)I)2 dt +
ϕσ2EdB2(t) + (µ + ϕ)σ3IdB3(t)

ϕE(t) + (µ + ϕ)I(t)
. (4.6)

Integrating both sides of (4.6) from 0 to t and dividing by t, we get

ln p(t) − ln P(0)
t

≤ −
η

2
+

1
t

∫ t

0

ϕσ2E(s)dB2(s)
ϕE(s) + (µ + ϕ)I(s)

+
1
t

∫ t

0

(µ + ϕ)σ3I(s)dB3(s)
ϕE(s) + (µ + ϕ)I(s)

. (4.7)

According to (4.7), we have

lim
t→+∞

sup
ln[E(t) +

µ+ϕ

ϕ
(I(t) + R(t))]

t
≤ −

η

2
< 0, a.s.

The upper formula indicates that

lim
t→∞

E(t) = 0, a.s. lim
t→∞

I(t) = 0, a.s.

According to (1.2), we get lim
t→∞

R(t) = 0 a.s. That shows that (E(t), I(t),R(t)) exponentially converges
to (0, 0, 0) a.s. We complete the proof of Theorem 3. �

5. Stochastic optimal control

If sustained control is implemented, the processing level will remain at a relatively high level over
time. From the previous sections, we conclude that the cost eradicating the disease may be too high.
In order to eliminate the disease within a limited time, time-dependent control should be considered.

As in previous studies [24], using the stochastic maximum principle as in [25], we find the
characteristics of optimal control problem of model (1.3). Our objective is to minimize both the number
of infectious individuals and the cost of treatment control; thus, we establish the following objective
function.

J(U) = min
u∈Γ

∫ t1

0
(AE(t) + BI(t) + Cu(t))dt,

where A, B, and C, respectively, represent the weights of the relationship between the state variables
E, I, and u. The control set is given by Γ = {u is measurable and 0 ≤ u(t) ≤ 1, for t ∈ [0, t1]}. According
to the stochastic control theory in the book [26] of ∅ksendal, we need to find an optimal control variable
u∗(t) that minimizes the objective functional when the initial state is x0. We define the expectation of
the initial state x0 as

E0,x0

[ ∫ t1

0
(AE(t) + BI(t) + Cu(t))dt

]
. (5.1)
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Let’s assume that there is a fixed constant ū(t) in the deterministic problem that ū(t) ≤ 1 with u(t) ≤
ū(t) a.s. The class of admissible control laws is

Π = {u(t) : u is adapted and 0 ≤ u(t) ≤ 1, a.s.}. (5.2)

In order to obtain a solution of stochastic control, we define the expectation of the system at time t and
a fixed value of x as follows:

Js(t, x, u) = Et,x

[ ∫ t1

0
(AE(t) + BI(t) + Cu(t))dt

]
. (5.3)

Now, let’s define the value function to be

V(t, x) = inf
u(·)∈Π

Js(t, x, u) = Js(t, x, u∗).

We now define the control law of minimizing the expected value of Js : Π → R+ given by (5.3). The
present solution formulated is the solution of the stochastic analogue we now describe for the optimal
control problem.

Given the system (1.2) and Π as in (5.2) with Js as in (5.3), find the value of the function

U(t, x) = inf
u(·)∈Π

Js(t, x, u), (5.4)

and an objective function
u∗ = arg inf

u(·)∈Π
Js(x, u(t)) ∈ Π.

By the following theorem, the optimal control u∗(t) is obtained.

Theorem 4. A solution to the optimal control problem presented in problem (5.2) is of the form

u∗ = min
{
1,max

{ 1
bI

(√ (UI − UR)aI
C

− 1
)
, 0

}}
. (5.5)

Proof. We calculate LU(t):

LU(t) =
[
Λ − µS −

β1S I
(1 + α1S )(1 + γI)

]
US (t) +

[ β1S I
(1 + α1S )(1 + γI)

− (µ + ϕ)E
]
UE(t)

+
[
ϕE −

β2I
1 + α2I

−
auI

1 + buI
− (µ + ν)I

]
UI(t) +

( β2I
1 + α2I

+
auI

1 + buI
− µR

)
UR(t)

+
σ2

1S 2

2
US S (t) +

σ2
2E2

2
UEE(t) +

σ2
3I2

2
UII(t) +

σ2
4R2

2
URR(t) +

σ1σ2S E
2

US E(t)

+
σ1σ3S I

2
US I(t) +

σ1σ4S R
2

US R(t) +
σ2σ3EI

2
UEI(t) +

σ2σ4ER
2

UER(t)

+
σ3σ4IR

2
UIR(t). (5.6)

Applying the Hamilton-Jacobi-Bellman theory [26], the minimum of (5.4) can be obtained as

inf
u(·)∈Π

[AE + BI + Cu +LU].
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In order to obtain the optimal control solution, consider the following expression:

AE(t) + BI(t) + Cu(t) +LU(t). (5.7)

Take the partial derivative of (5.7) with respect to u and set it equal to 0. Thus, the equation is obtained,

C −UI
aI

(1 + buI)2 +UR
aI

(1 + buI)2 = 0. (5.8)

Considering the bounds of u, we can get an expression for u∗(t). �

6. Numerical simulations

In this section, we illustrate the theoretical results with example. By using Milstein’s method [27],
the discrete equations of system (1.3) are described by



S k+1 =S k +
(
Λ − µS k −

β1S kIk

(1 + α1S k)(1 + γIk)

)
∆t + σ1S kξ1k

√
∆t +

σ2
1S k

2
(ξ2

1k − 1)∆t,

Ek+1 =Ek +
( β1S kIk

(1 + α1S k)(1 + γIk)
− (µ + ϕ)Ek

)
∆t + σ2Ekξ2k

√
∆t +

σ2
2Ek

2
(ξ2

2k − 1)∆t,

Ik+1 =Ik +
(
ϕEk −

β2Ik

1 + α2Ik
−

auIk

1 + buIk
− (µ + ν)Ik

)
∆t + σ3Ikξ2k

√
∆t +

σ2
3Ik

2
(ξ2

2k − 1)∆t,

Rk+1 =Rk +
( β2Ik

1 + α2Ik
+

auIk

1 + buIk
− µR

)
∆t + σ4Rkξ2k

√
∆t +

σ2
4Rk

2
(ξ2

2k − 1)∆t,

where ξ1k, ξ2k, ξ3k, and ξ4k(k = 1, 2, · · · ) are independent Gaussian random variables subject to N(0, 1),
and σi(i = 1, 2, 3, 4) is the intensity of white noise.

We choose Λ = 1.2, µ = 0.004, β1 = 0.0134, β2 = 0.025, α1 = 0.09, α2 = 0.02, γ = 0.015,
ϕ = 0.019, ν = 0.02, a = 0.052, b = 0.01, the initial value S (0) = 58, E(0) = 15, I(0) = 20,R(0) = 20,
and the step size ∆t = 0.01.

In Figure 1, we choose u = 0.66, σ1 = σ2 = 0.05, σ3 = 0.04, σ4 = 0.1 to get that Rs
0 = 1.0029 > 1,

satisfying the condition of Theorem 2. The result of the graph is consistent with our conclusion in
Theorem 2.

Figure 2 shows the stochastic epidemic system (1.2) with u = 0.66, σ1 = 0.3, σ2 = 0.49, σ3 = 0.49,
σ4 = 0.3, and we get that Re

0 = 0.9945 < 1, which satisfies the conditions of Theorem 3; this is
consistent with our conclusion in Theorem 3. When the intensities of white noises are sufficiently
large, the disease of the stochastic epidemic system (1.2) is extinct.

Figure 3(a) shows the extinction image when u takes the variable and the other parameters take the
same values as in Figure 2, while Figure 3(b) shows the corresponding trend of u varies with time t.
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Figure 1. The solution S (t), E(t), I(t),R(t) of the model and its density function diagram.
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Figure 2. The extinction of the solution E(t), I(t),R(t) of the model as u = 0.66.
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Figure 3. The extinction of the solution E(t), I(t),R(t) for varying the treatment control u
and the trend of u changing with time t.

7. Conclusions

The dynamic behaviors of a class of SEIR epidemic models are studied. First, we prove the
existence and uniqueness of a global positive solution for the stochastic model. Second, we explore
that the positive solution of the model has a stationary distribution, and we investigate the sufficient
conditions for the extinction of the stochastic SEIR epidemic system. Furthermore, we aimed to
minimize the total cost of infection and treatment expenses by studying optimal control strategies. The
existence of optimal solutions is proved by using the stochastic maximum principle, and the dynamic
behavior of the model affected by u is studied. It can be found through experiments that the disease
becomes extinct faster when u takes variable values than when it takes constant values, and the number
of infections has significantly decreased. In addition, we present the trend of u over time t when the
disease is extinct. Based on the changing trends, the public health system can dynamically adjust
treatment strategies.

It is shown by detailed theoretical analysis that environmental white noise can control the spread of
diseases to some extent, and different proportions of control therapies can be used at different times to
achieve the purpose of controlling infectious diseases with the least cost. This provides a theoretical
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basis for the actual control of infectious diseases.
Although we have studied the optimal treatment control of infectious diseases and can implement

different proportions of treatment control according to different time periods. It is very difficult to
find the optimal control measures because the dynamics of disease transmission are very complex and
influenced by many factors. In addition, in practice, measures to control epidemics cannot be singular,
and multiple measures should be considered to jointly control the spread of diseases. Therefore,
the control effect of implementing multiple measures together should be studied in combination with
reality.
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