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Abstract: In this paper, we investigated a stochastic SIRS epidemic infectious disease model that
accounted for environmentally driven infection and incorporated multiparameter perturbations. In
addition to establishing the existence and uniqueness of the global positive solution of the model,
we derived the threshold conditions for the extinction and persistence of the disease using the
comparison theorem and Itô’s formula of stochastic differential equations. Subsequently, we obtained
the asymptotic stability of both the disease-free equilibrium and the endemic equilibrium of the
deterministic model corresponding to the stochastic model through stochastic stability theory. The
results indicated that high-intensity noise perturbation can inhibit the spread of the disease, and the
dynamic behavior of the disease transitioned from persistence to extinction as noise intensity increased.
Our study also demonstrated that, compared to perturbations in the indirect infection rate, changes
in noise intensity that affect the direct infection rate will have a more significant impact on disease
transmission.
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1. Introduction

Epidemic dynamics is a crucial method for the quantitative study of infectious diseases,
developing mathematical models that represent the process of disease progression and the principles
of transmission. Mathematical research has achieved significant advances in both theory and
application, leading to several well-known models of infectious disease dynamics [1–4].

Numerous researchers have explored mathematical models concerning population-level
transmission dynamics, such as SIR model that susceptible-infected-recovered-infectious disease
model and SIRS model is based on the SIR model with the addition of the process of loss of
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immunity, among others [1]. These models have been studied and analyzed from various perspectives,
including incidence, treatment functions, and age structure. Many reliable conclusions have emerged,
contributing to the advancement of infectious disease dynamics [3–6]. For example, Li et al. [5]
investigated epidemic models of the SIR and SIRS types with a general contact rate and constant
immigration, particularly emphasizing the impact of the influx of infectious individuals. The model
complexity and greater stochastic volatility of multiparameter stochastic perturbations have resulted
in relatively little relevant research. The purpose of this study is to investigate the extinction and
persistence of stochastic SIRSW model solutions under multiparameter stochastic perturbations, the
propagation laws of infectious disease dynamics, and the effects of different parameters on disease
spread. Among these, the SIRSW model is based on the SIRS model, adding the environmental
pathogen infection process.

In recent years, due to environmental degradation and varying degrees of contamination of water
and food, people have faced numerous infectious diseases stemming from environmental issues [7].
Infectious diseases such as cholera, tuberculosis, and COVID-19 exhibit spatial-temporal and multi-
scale characteristics, including direct transmission between humans at the macroscale population level
and indirect transmission between humans and environmental pathogens at the microscale [8–11]. In
the environmental transmission of certain infectious diseases, the excretion of pathogens and their
transmission are two major processes. Additionally, between-host disease transmission and within-
host viral load are interdependent [12]. To investigate the effects of individual movement and pathogen
dispersal in space on disease transmission, Xiao et al. [13] developed a coupled model that considers
direct infection resulting from random human movements and indirect infection following pathogen
shedding in the environment, which took the following form



dS (t)
dt = −βS I − vS W,

dI(t)
dt = βS I + νS W − γI,

dR(t)
dt = γI,

dW(t)
dt = ηI − (µ + νN)W(t),

(1.1)

where N denotes the total population, S , I,R are the number of susceptible, infected, and recovered
individuals, W(t) is the pathogen concentration in the environment at time t, respectively, β is the
direct transmission rate, ν is the indirect transmission rate, η is the environmental virus shedding rate,
µ is the natural mortality rate, and γ is the rate of recovery of infected individuals. Xiao et al.
performed a numerical simulation analysis from a data-driven perspective and reached many
interesting conclusions, but no theoretical analysis was performed. In the following section, refining
the theoretical analyses of the corresponding models is also an important research objective of this
paper.

Deterministic modeling of viral infections has been studied by some researchers [14–16].
Edoardo [14] proposes a mathematical model of the marine bacteriophage infection and analyzes its
basic mathematical features. Ivo et al. [15] extended the Beretta-Kuang model to allow the estimation
of virus growth parameters under model-specific parameterizations. Depending on the characteristics
of the infection, the recovering person loses immunity after a period of time and becomes susceptible
to infection again, which is called SIRS infection [17]. On this basis, by considering birth and death
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rates, the following deterministic model is obtained:
dS = (Λ − βS I − νS W − µS + ζR)dt,

dI = (βS I + νS W − γI − µI)dt,

dR = (γI − (µ + ζ)R)dt,

dW = (ηI − cW)dt,

(1.2)

where Λ is the input rate of susceptible individuals, ζ denotes the rate of immune loss, and c denotes
the rate of viral failure. The environmental pathogen concentration level is denoted by W. Denote

Rn
+ = {x ∈ R

n|xi > 0, 1 ≤ i ≤ n}.

By calculation, model (1.2) has a disease-free equilibrium

E0 = (S 0, I0,R0,W0) = (
Λ

µ
, 0, 0, 0)

and exists an endemic equilibrium

E∗ = (S ∗, I∗,R∗,W∗)

=

(
c(µ + γ)
(βc + νη)

,
Λ(µ + ζ)
µ(µ + ζ + γ)

(1 −
1
R0

),
Λγ

µ(µ + ζ + γ)
(1 −

1
R0

),
Λη(µ + ζ)
µc(µ + ζ + γ)

(1 −
1
R0

)
)
.

The basic reproduction number

R0 =
Λ(βc + νη)
µc(µ + γ)

is obtained by using the next generation matrix method. Further, if R0 < 1, E0 is globally
asymptotically stable in D (in Remark 1). If R0 > 1, E∗ is globally asymptotically stable in D.

In the realm of infectious diseases transmission, the coefficients governing this process are
frequently affected by stochastic environmental disturbances [18,19]. This environmental interference
can be mathematically characterized as standard Brownian motion. Relying solely on deterministic
models to describe and predict the evolution of disease dynamics and transmission mechanisms is
often inadequate. Hence, there is an increasing recognition of the practical significance of
investigating infectious disease models that incorporate stochastic factors, leading to a growing
scholarly focus on these stochastic frameworks in recent years [20–22]. For instance, Ji et al. [23, 24]
explored the threshold behavior of the SIR infection model in the presence of stochastic noise
perturbations, examining both the persistence and extinction dynamics of the SIR model under
various stochastic perturbation patterns. They derived threshold conditions for disease extinction and
persistence utilizing Itô’s formula and the stochastic comparison theorem. In another study, Zhao
et al. [25] investigated a class of stochastic SIRS models characterized by saturated incidence, taking
into account the dynamics of recovered individuals who lose immunity and revert to susceptibility
after a period. They established conditions for disease extinction and persistence through the
stochastic comparison theorem, supported by numerical simulations that corroborated their theoretical
findings. Yang et al. [26] developed a stochastic multi-scale COVID-19 model that integrates both
within-host and between-host dynamics, employing interval parameters. This model was derived
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through fast-slow decoupling via singular perturbation theory, distinguishing between a rapid
within-host model and a slower between-host stochastic model. Rihan et al. [27, 28] developed a
stochastic epidemiological SIRC model to study the transmission of COVID-19 with cross-immunity
classes and time-delayed transmission terms. Which the SIRC model is a new partition added to the
SIR model, cross immunity (C). Echoing the insights of Mao et al. [29], this paper posits that
fluctuations in the environment predominantly manifest as variations in the transmission coefficient

β→ β + σ1B1(t), ν→ ν + σ2B2(t),

where Bi(t) is a standard Brownian motion and σi > 0 indicates the white noise intensity, i = 1, 2.
Then we have 

dS = (Λ − βS I − νS W − µS + ζR)dt − σ1S IdB1(t) − σ2S WdB2(t),
dI = (βS I + νS W − γI − µI)dt + σ1S IdB1(t) + σ2S WdB2(t),
dR = (γI − (µ + ζ)R)dt,

dW = (ηI − cW)dt.

(1.3)

Our model considers the loss of immunity rate and the effects of random disturbances based on Xiao
et al. [13], investigating a stochastic SIRSW model that accounts for environmentally driven infection
and incorporates multiparameter perturbations. It innovatively examines the impacts of both direct
and indirect transmission rates on the spread of the disease through multiparameter perturbations.
This model is more comprehensive and aligns more closely with real-world situations. However, as a
multi-scale model that integrates macro and micro perspectives, it is challenging to unify the data
across temporal and spatial scales. The numerical simulation remains relatively idealized, and there is
still a significant gap between the results and the actual inter-evolutionary outcomes. It considers
environmental pathogen infections with stochastic perturbations in two key parameters: direct and
indirect transmission rates. We conclude that, compared to perturbations in the indirect infection rate,
changes in noise intensity affecting the direct infection rate have a more significant impact on disease
transmission. Additionally, we find that the direct transmission rate notably influences the threshold
of Rs

0. These parameters are crucial for analyzing the impact of environmental fluctuations on disease
dynamics.

The structure of the paper is delineated as follows: In Sections 1 and 2, we present the foundational
concepts, along with relevant notations and lemmas essential for our analysis. Section 3 is devoted to
establishing the existence and uniqueness of global positive solutions for the SIRS infectious disease
system under consideration. In Sections 4 and 5, we explore the sufficient conditions that govern
the persistence and extinction of the stochastic SIRS infectious disease model. Section 6 focuses on
analyzing the asymptotic stability of the disease-free equilibrium, as well as the endemic equilibrium
of the deterministic counterpart to the stochastic model. To conclude, we provide a series of numerical
simulations accompanied by a summary of our principal findings, aimed at elucidating the theoretical
results presented throughout the paper.

2. Preliminaries

In this paper, unless otherwise stated, let (Ω,F , {F}t≥0,P) denote the complete probability space
of the filtration Ft≥0 that satisfies the regularity condition. Let Bi(t)(i = 1, 2) denote the independent
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standard Brownian motions defined on this complete probability space. For any a, b ∈ R, note that

a ∨ b = max{a, b}.

For convenience, the following symbols have been introduced,

⟨x(t)⟩ =
1
t

∫ t

0
x(r)dr.

Lemma 1. [30] (Strong law of large number) Let

M = {Mt}t≥0

be a real-valued continuous local martingale, and

M(0) = 0.

Then,

lim
t→∞
⟨M,M⟩t = ∞, a.s. ⇒ lim

t→∞

Mt

⟨M,M⟩t
= 0 a.s.

and
lim sup

t→∞

⟨M,M⟩t
t

< ∞, a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.

Lemma 2. [23] Suppose f ∈ C [Ω × [0,+∞),R+] if there exists a positive ordinal λ, λ0, such that

ln f (t) ≥ λt − λ0

∫ t

0
f (s)ds + F(t), a.s.

Then, for any t ≥ 0, there are F ∈ C [Ω × [0,+∞), (−∞,+∞)] and

lim
t→∞

F(t)
t
= 0

a.s., such that

lim inf
t→∞

1
t
·

∫ t

0
f (s)ds ≥

λ

λ0
a.s.

Lemma 3. Suppose f ∈ C [Ω × [0,+∞),R+] if there exists a positive ordinal λ, λ0, such that

ln f (t) ≤ λt − λ0

∫ t

0
f (s)ds + F(t), a.s.

Then, for any t ≥ 0, there are F ∈ C [Ω × [0,+∞), (−∞,+∞)] and

lim
t→∞

F(t)
t
= 0

a.s., such that

lim sup
t→∞

1
t
·

∫ t

0
f (s)ds ≤

λ

λ0
a.s.

Remark 1. For the model (1.3), we have

d[S (t) + I(t) + R(t)] ≤ [Λ − µ(S (t) + I(t) + R(t))]dt,

and we assume the initial values (S 0, I0,R0,W0) ∈ D, which shows that the positive invariant set of the
model is

D = {(S , I,R,W)T ∈ R4
+|0 ≤ S (t) + I(t) + R(t) ≤

Λ

µ
, 0 ≤ W(t) ≤

ηΛ

cµ
}.
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3. Existence and uniqueness of the global positive solution

The following theorem will show the existence and uniqueness of global positive solutions of
system (1.3).

Theorem 1. For any initial value (S (0), I(0),R(0),W(0)) ∈ R4
+, there exists a positive salutation

(S (t), I(t),R(t),W(t)) of the stochastic model (1.3) for t ≥ 0, and the solution will hold in R4
+ with

probability one.

Proof. Since the coefficients of the model (1.3) satisfy the local Lipschits condition, for any
S (0), I(0),R(0),W(0)) ∈ R4

+, there exists a locally unique solution (S (t), I(t),R(t), W(t)) on t ∈ [0, τε),
where τe denotes the moment of explosion. It is sufficient to show that

τε = +∞ a.s.

Let k0 ≥ 1 denote a sufficiently large constant, and we have that S (0), I(0),R(0),W(0) are all in the
interval

[
1
k0
, k0

]
. For any constant k > k0, define the stopping time,

τk = inf{t ∈ [0, τε) : min [S (t), I(t),R(t),W(t)] ≤
1
k

or

max [S (t), I(t),R(t),W(t)] ≥ k}.

Let
inf ∅ = ∞,

usually,∞ denotes the empty set. Clearly, {τk}k≥k0 is a monotonically increasing function. If

τ∞ = lim
k→∞
τk,

then τ∞ ≤ τe a.s. If
τ∞ = ∞ a.s.,

then for any t ≥ 0, τe = ∞, and (S (t), I(t),R(t),W(t)) ∈ R4
+ a.s. Assuming that τ∞ , ∞, there exist a

constant T ≥ 0 and ε ∈ (0, 1) such that

P {τ∞ ≤ T } > ε

where, for any k ≥ k0, there exists a constant k1 ≥ k0 such that, when all the k ≥ k1, there is

P {τk ≤ T } > ε. (3.1)

Define a C2-equation V: R4
+ → R+ as follows:

V(S , I,R,W) = (S + I + R +W)2 +
1
S
.
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Apply the Itô’s formula

dV(S , I,R,W) = LV(S , I,R,W) dt +
1
S
σ1I dB1(t) +

1
S
σ2W dB2(t), (3.2)

where,

LV(S , I,R,W) =2(S + I + R +W)(Λ + ηI − cW − µS − µI − µR)

−
1

S 2 (Λ − βS I − νS W + ζR − µS ) + (2S 2 +
1
S

)(σ2
1I2 + σ2

2W2). (3.3)

Because of the mean value theorem, we can obtain

LV(S , I,R,W) ≤Λ2 + (S + I + R +W)2 + 2ηI(S + I + R +W)

+
1
S

(βI + νW + µ) + (2S 2 +
1
S

)(σ2
1I2 + σ2

2W2)

=Λ2 + S 2(1 + σ2
1I2 + σ2

2W2) + 2(S R + S W +WR)
+ I2(1 + 2η) + R2 +W2 + (S I + RI +WI)(2 + 2η)

+
1
S

(βI + νW + µ + σ2
1I2 + σ2

2W2)

≤Λ2 + S 2(1 +
σ2

1Λ
2

µ2 +
σ2

2Λ
2η2

c2µ2 ) + 2(S R + S W +WR)

+ I2(1 + 2η) + R2 +W2 + (S I + RI +WI)(2 + 2η)

+
1
S

(
βΛ

µ
+
νηΛ

cµ
+ µ +

σ2
1Λ

2

µ2 +
σ2

2Λ
2η2

c2µ2 )

≤Λ2 + H1(S + I + R +W)2

+
1
S

(
βΛ

µ
+
νηΛ

cµ
+ µ +

σ2
1Λ

2

µ2 +
σ2

2Λ
2η2

c2µ2 )

≤Λ2 + H2[(S + I + R +W)2 +
1
S

]

≤H(1 + V), (3.4)

where,

H1 = Max
{

1, 1 + 2η, 1 +
σ2

1Λ
2

µ2 +
σ2

2Λ
2η2

c2µ2

}
,

H2 = Max
{

H1,
βΛ

µ
+
νηΛ

cµ
+ µ +

σ2
1Λ

2

µ2 +
σ2

2Λ
2η2

c2µ2

}
,

H = Max
{
H1,H2,Λ

2
}
. (3.5)

H is a positive constant which is independent of S (t), I(t),R(t),W(t), t. Integrate both sides of the
Eq (3.2) from 0 to

T ∧ τk = min {T, τk} ,
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and then take the expectation as follows:

EV (S (T ∧ τk) , I (T ∧ τk) ,R (T ∧ τk) ,W (T ∧ τk))

≤ E

∫ T∧τk

0
LV(s)dt + V (S (0), I(0),R(0),W(0))

≤ H
∫ T

0
EV (S (T ∧ τk) , I (T ∧ τk) ,R (T ∧ τk) ,W (T ∧ τk)) dt

+ V(S (0), I(0),R(0),W(0)) + HT. (3.6)

By using Gronwall inequality [31], we have

EV (S (T ∧ τk) , I (T ∧ τk) ,R (T ∧ τk) ,W (T ∧ τk)) ≤ (V(S (0), I(0),R(0),W(0)) + HT ) eHT . (3.7)

Let
Ωk = {τk ≤ T } ,

and by the inequality (3.1), it is known that

P{Ωk} ≥ ε.

For any ω ∈ Ωk, S (τk, ω) , I (τk, ω) ,R (τk, ω) ,W (τk, ω), at least one of them equals 1
k or k, therefore,

V (S (τk, ω) , I (τk, ω) ,R (τk, ω) ,W (τk, ω)) ≥
(
16
k2 + k

)
∧

(
16k2 +

1
k

)
. (3.8)

Combined with the above Eqs (3.2) and (3.8), we can get

(V(S (0), I(0),R(0),W(0)) + HT )eHT ≥ E
[
IΩk(ω)V (S (τk, ω) , I (τk, ω) ,R (τk, ω) ,W (τk, ω))

]
≥ ε

[(
16
k2 + k

)
∧

(
16k2 +

1
k

)]
.

Here IΩk(ω) is the indicator function for Ωk. When k → +∞, there are

+∞ > (V(S (0), I(0),R(0),W(0)) + HT )eHT = +∞.

This is a clear contradiction, and it is proved that

τ∞ = +∞

a.s. Thus, the theorem can be proved. □

4. Extinction of disease

As a stochastic infectious disease model, when diseases become extinct it is a major concern. In
this section, we study the conditions for disease extinction and give a better condition for when a
phenomenon like disease extinction will occur. Denote

RS
0 = R0 −

Λ2(σ2
1c2 + σ2

2η
2)

2µ2c2(µ + γ)
, Rs = σ

2
1 +
σ2

2η
2

c2 −
µ(βc + νη)

cΛ
. (4.1)
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Theorem 2. Let (S (t), I(t),R(t),W(t)) be the solution of the model (1.3) with initial values
(S (0), I(0),R(0),W(0)) ∈ R4

+. If

(σ2
1 +
σ2

2η
2

c2 ) > max{
µ(βc + νη)

cΛ
,

(β + νηc )2

2(µ + γ)
} (4.2)

or

Rs
0 < 1 and Rs ≤ 0, (4.3)

then we have
lim sup

t→∞

ln I(t)
t
< 0 a.s.

It can be shown that the I(t) index tends to 0, the disease will become die out with probability one, and
there are

lim
t→∞

S (t) =
Λ

µ
, lim

t→∞
I(t) = 0, lim

t→∞
R(t) = 0, lim

t→∞
W(t) = 0 a.s.

Proof. Integration of the model (1.3) is obtained,

S (t) − S (0)
t

= Λ − µ⟨S (t)⟩ − β⟨S (t)I(t)⟩ − ν⟨S (t)W(t)⟩ + ζ⟨R(t)⟩

−
σ1

t

∫ t

0
S (r)I(r)dB1(r) −

σ2

t

∫ t

0
S (r)W(r)dB2(r),

I(t) − I(0)
t

= β⟨S (t)I(t)⟩ + ν⟨S (t)W(t)⟩ − (µ + γ)⟨I(t)⟩

+
σ1

t

∫ t

0
S (r)I(r)dB1(r) +

σ2

t

∫ t

0
S (r)W(r)dB2(r),

R(t) − R(0)
t

= γ⟨I(t)⟩ − (µ + ζ)⟨R(t)⟩,

W(t) −W(0)
t

= η⟨I(t)⟩ − c⟨W(t)⟩.

(4.4)

According to Eq (4.4), it can be obtained that

S (t) − S (0)
t

+
I(t) − I(0)

t
+
ζ

µ + ζ

R(t) − R(0)
t

= Λ − µ⟨S (t)⟩ −
(
µ +

µγ

µ + ζ

)
⟨I(t)⟩. (4.5)

From Eqs (4.4) and (4.5), we can get

⟨S (t)⟩ =
1
t

∫ t

0
S (s)ds =

Λ

µ
−

(
µ + γ + ζ

µ + ζ

)
⟨I(t)⟩ − φ(t),

⟨W(t)⟩ =
1
t

∫ t

0
W(s)ds =

η

c
⟨I(t)⟩ − ϕ(t), (4.6)

where

φ(t) =
1
µt

[
S (t) − S (0) + I(t) − I(0) +

ζ

µ + ζ
(R(t) − R(0))

]
,

ϕ(t) =
1
ct

[W(t) −W(0)] . (4.7)
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Obviously,

lim
t→∞
φ(t) = 0, lim

t→∞
ϕ(t) = 0. (4.8)

Applying Itô’s formula to the second equation of model (1.3) and integrating from 0 to t leads to

ln I(t) − ln I(0) =β
∫ t

0
S (s)ds + ν

∫ t

0

S (s)W(s)
I(s)

ds −
σ2

1

2

∫ t

0
S 2(s)ds

−
σ2

2

2

∫ t

0

S 2(s)W2(s)
I2(s)

ds + σ1

∫ t

0
S (s)dB(s)

− (µ + γ)t + σ2

∫ t

0

S (s)W(s)
I(s)

dB(s)

⩽β

∫ t

0
S (s)ds + ν

∫ t

0

S (s)W(s)
I(s)

ds −
σ2

1

2

(∫ t

0
S (s)ds

)2

−
σ2

2

2

(∫ t

0

S (s)W(s)
I(s)

ds
)2

− (µ + γ)t + M1(t) + M2(t), (4.9)

where

M1(t) = σ1

∫ t

0
S (s)dB(s), M2(t) = σ2

∫ t

0

S (s)W(s)
I(s)

dB(s).

Note that M1(t) and M2(t) are a real-valued continuous local martingale vanishing at time zero and

lim sup
t→∞

⟨M1,M1⟩t

t
⩽
σ2

1Λ
2

µ2 < ∞, lim sup
t→∞

⟨M2,M2⟩t

t
⩽
σ2

2η
2Λ2

c2µ2 < ∞, (4.10)

then by Lemma 1, it leads to

lim
t→∞

M1(t)
t
= lim

t→∞

σ1

t

∫ t

0
S (s)dB(s) = 0 a.s.,

lim
t→∞

M2(t)
t
= lim

t→∞

σ2

t

∫ t

0

S (s)W(s)
I(s)

dB(s) = 0 a.s. (4.11)

Bringing Eq (4.6) into the above Eq (4.9), we have

ln I(t) − ln I(0)
t

=

[
Λ

µ
−

(
µ + γ + ζ

µ + ζ

)
⟨I(t)⟩ − φ(t)

]
(β +

νη

c
−
νϕ(t)
⟨I(t)⟩

)

−
σ2

2

2

[
Λ

µ
−

(
µ + γ + ζ

µ + ζ

)
⟨I(t)⟩ − φ(t)

]2 [
η

c
−
ϕ(t)
⟨I(t)⟩

]2

−
σ2

1

2

[
Λ

µ
−

(
µ + γ + ζ

µ + ζ

)
⟨I(t)⟩ − φ(t)

]2

− (µ + γ) +
M1(t)

t
+

M2(t)
t

=
βΛ

µ
− (µ + γ) −

σ2
1Λ

2

2µ2 − (
σ2

1

2
+
σ2

2η
2

2c2 )
(
µ + γ + ζ

µ + ζ

)2

⟨I(t)⟩2
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+

(
µ + γ + ζ

µ + ζ

) (
σ2

1Λ

µ
+
σ2

2Λη
2

µc2 −
νη

c
− β

)
⟨I(t)⟩ +

νΛη

µc
−
σ2

2Λ
2η2

2µ2c2 + Ψ(t), (4.12)

where

Ψ(t) =
[
σ2

1Λ

µ
+
σ2

2Λη
2

µc2 − β −
νη

c
− (σ2

1 +
σ2

2η
2

c2 )
(
(µ + γ + ζ)
µ + ζ

)
⟨I(t)⟩

]
φ(t)

−
σ2

2

2

[
Λ

µ
−

(
µ + γ + ζ

µ + ζ

)
⟨I(t)⟩ − φ(t)

]2 [
(
ϕ(t)
⟨I(t)⟩

)2 −
2η
c
ϕ(t)
⟨I(t)⟩

]
+ ν

[
µ + γ + ζ

µ + ζ
−
Λ

µ⟨I(t)⟩
+
φ(t)
⟨I(t)⟩

]
ϕ(t) +

M1(t)
t
+

M2(t)
t
. (4.13)

From Eqs (4.8) and (4.11), we obtain

lim
t→∞
Ψ(t) = 0 a.s. (4.14)

Case 1. Assume that Rs
0 < 1 and Rs ≤ 0, then the above Eq (4.12) gets

ln I(t) − ln I(0)
t

⩽
βΛ

µ
− (µ + γ) −

σ2
1Λ

2

2µ2 −
σ2

2Λ
2η2

2µ2c2 +
νΛη

µc
+ Ψ(t), (4.15)

and combining (4.14), it can be obtained that

lim sup
t→∞

ln I(t)
t
⩽
βΛ

µ
− (µ + γ) −

σ2
1Λ

2

2µ2 −
σ2

2Λ
2η2

2µ2c2 +
νΛη

µc

= (µ + γ)
(
R̄s

0 − 1
)
< 0 a.s. (4.16)

Case 2. Assume that

(σ2
1 + σ

2
2
η2

c2 ) > max{
µ(βc + νη)

cΛ
,

(β + νηc )2

2(µ + γ)
},

since

h(x) = − (
σ2

1

2
+
σ2

2η
2

2c2 )
(
µ + γ + ζ

µ + ζ

)2

x2 +

(
µ + γ + ζ

µ + ζ

) (
σ2

1Λ

µ
+
σ2

2Λη
2

µc2 −
νη

c
− β

)
x

≤

(
σ2

1Λ

µ
+
σ2

2Λη
2

µc2 −
νη

c − β
)2

2
(
σ2

1 +
σ2

2η
2

c2

) . (4.17)

Therefore, from Eqs (4.12) and (4.17), we have

ln I(t) − ln I(0)
t

⩽
βΛ

µ
− (µ + γ) −

σ2
1Λ

2

2µ2 −
σ2

2Λ
2η2

2µ2c2 +
νΛη

µc
+

(
σ2

1Λ

µ
+
σ2

2Λη
2

µc2 −
νη

c − β
)2

2
(
σ2

1 +
σ2

2η
2

c2

) + Ψ(t)

=
(β + νηc )2

2(σ2
1 +

σ2
2η

2

c2 )
− (µ + γ) + Ψ(t), (4.18)

AIMS Mathematics Volume 9, Issue 12, 33467–33492.



33478

and combining (4.14), it can be obtained that

lim sup
t→∞

ln I(t)
t
⩽

(β + νηc )2

2(σ2
1 +

σ2
2η

2

c2 )
− (µ + γ) < 0 a.s. (4.19)

From the proofs of Cases 1 and 2, it can be shown that the I(t) index tends to 0 and the disease will
become die out with probability one, then we have

lim
t→∞

I(t) = 0 a.s. (4.20)

Let
Ωi = {ω ∈ Ω : lim

t→∞
I(t, ω) = 0},

Accroding to (4.20), we have
P(Ωi) = 1.

For any θ > 0 and ω ∈ Ωi, there exists

Ti = Ti (ω, θ) > 0,

such that for any t ≥ Ti, there exists
I(t, ω) ≤ θ.

Substituting it into the third equation of model (1.3), and according to the comparison theorem for
stochastic differential equations, we obtain

lim sup
t→∞

R(t, ω) ≤
γθ

µ + ζ
, ω ∈ Ωi, t ≥ Ti. (4.21)

For all ω ∈ Ωi and t > 0, such that R(t, ω), since the arbitrariness of θ, we can get

lim
t→∞

R(t, ω) = 0, ω ∈ Ωi, t ≥ Ti. (4.22)

It follows from
P(Ωi) = 1

that, consequently,

lim
t→∞

R(t) = 0 a.s. (4.23)

Similarly, we have

lim
t→∞

W(t) = 0 a.s. (4.24)

Through model (1.3), we can obtain
d(S (t) + I(t) + R(t))

dt
= Λ − µ(S + I + R),

therefore,

lim
t→∞

[S (t) + I(t) + R(t)] =
Λ

µ
a.s.,

which, together with Eqs (4.20) and (4.23), yields

lim
t→∞

S (t) =
Λ

µ
a.s. (4.25)

This completes the proof. □
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5. Persistence of disease

Disease persistence is an important characteristic of infectious disease dynamics, meaning that the
disease persists in the population. Theorem 3 will show the persistence of disease.

Theorem 3. If RS
0 > 1,Rs ≤ 0, let (S (t), I(t),R(t),W(t)) be the solution of the model (1.3) with initial

values (S (0), I(0),R(0),W(0)) ∈ Ω. It has the following properties:

lim sup
t→∞

1
t

∫ t

0
I(s)ds ⩽

(µ + γ)(Rs
0 − 1)(

µ+γ+ζ

µ+ζ

) (
νη

c + β −
σ2

1Λ

µ
−
σ2

2Λη
2

µc2

) ,
lim inf

t→∞

1
t

∫ t

0
I(s)ds ⩾

(µ + γ)(Rs
0 − 1)(

1 + ηc
) (
µ+γ+ζ

µ+ζ

) a.s.

Proof. From the above Eq (4.12), we get:

ln I(t) − ln I(0)
t

≤
βΛ

µ
− (µ + γ) −

σ2
1Λ

2

2µ2 +
νΛη

µc
−
σ2

2Λ
2η2

2µ2c2 + Ψ(t)

− (
σ2

1

2
+
σ2

2η
2

2c2 )
(
µ + γ + ζ

µ + ζ

)2

(
1
t

∫ t

0
I(s)ds)2

+

(
µ + γ + ζ

µ + ζ

) (
σ2

1Λ

µ
+
σ2

2Λη
2

µc2 −
νη

c
− β

)
1
t

∫ t

0
I(s)ds. (5.1)

Therefore,

ln I(t)
t
= −

(
µ + γ + ζ

µ + ζ

) (
νη

c
+ β −

σ2
1Λ

µ
−
σ2

2Λη
2

µc2

)
1
t

∫ t

0
I(s)ds

+ (µ + γ)(Rs
0 − 1) +

ln I(0)
t
+ Ψ(t). (5.2)

By Eq (4.14) and Lemma 3, we have

lim sup
t→∞

1
t

∫ t

0
I(s)ds ⩽

(µ + γ)(Rs
0 − 1)(

µ+γ+ζ

µ+ζ

) (
νη

c + β −
σ2

1Λ

µ
−
σ2

2Λη
2

µc2

) a.s.

Bring Eq (4.24) to Eq (4.9), and by Remark 1, we have

ln I(t) − ln I(0)
t

= β⟨S (t)⟩ +
ν⟨S (t)⟩⟨W(t)⟩
⟨I(t)⟩

− (µ + γ) −
σ2

1Λ
2

2µ2 −
σ2

2Λ
2η2

2µ2c2 +
M1(t)

t
+

M2(t)
t
. (5.3)

Bringing Eq (4.6) into the above Eq (5.3), we have

ln I(t) − ln I(0)
t

=
βΛ

µ
+
νΛη

µc
− (µ + γ) −

σ2
1Λ

2

2µ2 −
σ2

2Λ
2η2

2µ2c2

−

(
1 +
η

c

) (
µ + γ + ζ

µ + ζ

) ∫ t

0
I(s)ds + Φ(t). (5.4)
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Therefore, it is possible to get

ln I(t)
t
= (µ + γ)(Rs

0 − 1) −
(
1 +
η

c

) (
µ + γ + ζ

µ + ζ

) ∫ t

0
I(s)ds +

ln I(0)
t
+ Φ(t), (5.5)

where

Φ(t) =νϕ(t)
[
φ(t)
⟨I(t)⟩

−
Λ

µ⟨I(t)⟩
+
µ + γ + ζ

µ + ζ

]
− (
η

c
+ β)φ(t) +

M1(t)
t
+

M2(t)
t
. (5.6)

From Eqs (4.8) and (4.11), we can get
lim
t→∞
Φ(t) = 0.

By Lemma 2 and Eq (5.5), one obtains

lim inf
t→∞

1
t

∫ t

0
I(s)ds ⩾

(µ + γ)(Rs
0 − 1)(

1 + ηc
) (
µ+γ+ζ

µ+ζ

) .
The proof is complete. □

6. Asymptotic

In epidemiology, stability is of high practical importance. This section discusses the asymptotical
stability of the disease-free equilibrium and the endemic equilibrium of the deterministic model
corresponding to the stochastic model.

6.1. Asymptotic property for the disease-free equilibrium of the deterministic model

The basic reproduction number plays an important role in the study of infectious disease dynamics
and determines whether a disease becomes extinct or not. We know that the basic reproduction number
of a deterministic system

R0 =
Λ(βc + νη)
µc(µ + γ)

,

and the disease-free equilibrium of the deterministic model is E0(Λ
µ
, 0, 0).

Theorem 4. Let (S (t), I(t),R(t),W(t)) be the solution of the model (1.3) with initial values
(S (0), I(0),R(0),W(0)) ∈ Ω. If R0 < 1 and σ1, σ2 are small enough, then

lim
t→∞

1
t
E

∫ t

0
(µ(S −

Λ

µ
)2 + (1 − R0)(γ + µ)I +

Λν

µ
W +

(Λ + µ)ζ
µ

R)ds

≤
Λ2

µ2 (
βΛ

µ
+

(Λ + µ)µη
µc

+ ζ) +
ζγΛ

(µ + ζ)µ
+
Λ2

2µ2 (σ2
1 +
σ2

2η
2

c2 ) a.s.

Proof. Define a Lyapunov function V: R4
+ → R+ as follows:

V1(S , I) =
1
2

(S −
Λ

µ
)2 + I,
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V2(R,W) =
Λν

µc
W +

ζ

µ + ζ
R,

V3(S , I,R,W) = V1(S , I) + V2(R,W). (6.1)

Applying Itô’s formula, we have

LV1 =(S −
Λ

µ
)(Λ − βS I − νS W − µS + ζR) + (βS I + νS W − γI − µI) +

1
2
σ2

1S 2I2 +
1
2
σ2

2S 2W2

= − µ(S −
Λ

µ
)2 − S (βS I + νS W) +

Λ

µ
(βS I + νS W) + (S −

Λ

µ
)ζR

+ (βS I + νS W − γI − µI) +
1
2
σ2

1S 2I2 +
1
2
σ2

2S 2W2

≤ − µ(S −
Λ

µ
)2 +
Λ

µ
(βS I + νS W) + ζS R −

Λζ

µ
R +
Λβ

µ
I

+ νS W − (γ + µ)I +
1
2
σ2

1S 2I2 +
1
2
σ2

2S 2W2,

LV2 =
Λν

µc
(ηI − cW) +

ζ

µ + ζ
(γI − µR − ζR)

≤
Λνη

µc
I −
Λν

µ
W +

ζγ

µ + ζ
I − ζR.

Therefore,

LV3 ≤ − µ(S −
Λ

µ
)2 +
Λνη

µc
I +
βΛ

µ
I − (γ + µ)I −

Λν

µ
W

− (
Λζ

µ
+ ζ)R +

Λ

µ
(βS I + νS W) + ζS R + νS W

+
ζγ

µ + ζ
I +

1
2
σ2

1S 2I2 +
1
2
σ2

2S 2W2,

≤ − µ(S −
Λ

µ
)2 + (R0 − 1)(γ + µ)I −

Λν

µ
W

−
(Λ + µ)ζ
µ

R +
βΛ3

µ3 +
(Λ + µ)µηΛ2

µ3c

+
ζΛ2

µ2 +
ζγΛ

(µ + ζ)µ
+
σ2

1Λ
2

2µ2 +
σ2

2Λ
2η2

2µ2c2 .

Due to

dV3(S , I,R,W) = ( LV3)dt + (1 +
Λ

µ
− S )(σ1S IdB1(t) + σ2S WdB2(t)), (6.2)

integrating both sides of the above Eq (6.2) from 0 to t, and then taking the expectation as follows:

0 ≤EV3(t) − V3(0) = E
∫ t

0
LV3(s)ds

≤ − E

∫ t

0
[µ(S (s) −

Λ

µ
)2 + (1 − R0)(γ + µ)I(s) +

(Λ + µ)ζ
µ

R(s) +
Λν

µ
W(s)]ds
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+

(
Λ2

µ2 (
βΛ

µ
+

(Λ + µ)µη
µc

+ ζ) +
ζγΛ

(µ + ζ)µ
+
Λ2

2µ2 (σ2
1 +
σ2

2η
2

c2 )
)

t. (6.3)

Therefore,

lim
t→∞

1
t
E

∫ t

0
(µ(S −

Λ

µ
)2 + (1 − R0)(γ + µ)I +

Λν

µ
W +

(Λ + µ)ζ
µ

R)ds

≤
Λ2

µ2 (
βΛ

µ
+

(Λ + µ)µη
µc

+ ζ) +
ζγΛ

(µ + ζ)µ
+
Λ2

2µ2 (σ2
1 +
σ2

2η
2

c2 ).

The proof is complete. □

6.2. Asymptotic properties around endemic equilibrium

In studying epidemic dynamics, the stochastic infectious disease model has no endemic equilibrium,
but it is obtained from a deterministic model in which the infectious rate is subjected to a random
perturbation. Therefore, the asymptotic behavior of the solution of the stochastic model in the region
around E∗(S ∗, I∗,R∗,W∗) is studied. The expressions E∗ is as follows:

E∗ =
(

c(µ + γ)
(βc + νη)

,
Λ(µ + ζ)
µ(µ + ζ + γ)

(1 −
1
R0

),
Λγ

µ(µ + ζ + γ)
(1 −

1
R0

),
Λη(µ + ζ)
µc(µ + ζ + γ)

(1 −
1
R0

)
)
.

Theorem 5. Let (S (t), I(t),R(t),W(t)) be the solution of the model (1.3) with initial values
(S (0), I(0),R(0),W(0)) ∈ Ω. If R0 > 1,

µ >
ϵ

2
ζ, γ + µ > ϵη + ϵγ +

ϵ

2
ζ, 2
γI∗

R∗
>
γ + ζ

ϵ
, 2
ηI∗

W∗
>
η

ϵ
.

Then,

lim
t→∞

1
t
E

∫ t

0
[(µ −

ϵ

2
ζ)(S − S ∗)2 + (γ + µ − ϵη − ϵγ −

ϵ

2
ζ)(I − I∗)2

+ (2
γI∗

R∗
−
γ + ζ

ϵ
)(R − R∗)2 + (2

ηI∗

W∗
−
η

ϵ
)(W −W∗)2]ds

≤
Λ

µ
(γ + 2µ)(S ∗ + I∗) +

σ2
1Λ

4

µ4 +
σ2

2Λ
4η2

µ4c2 .

Proof. The deterministic system obeys the following relationship at the endemic equilibrium:

Λ = βS ∗I∗ + νS ∗W∗ + µS ∗ − ζR∗,

βS ∗I∗ + νS ∗W∗ = (γ + µ)I∗,
γI∗ = (µ + ζ)R∗,
ηI∗ = cW∗.

(6.4)

Define a Lyapunov function V: R4
+ → R+ as follows:

V4(S , I) =
1
2

((S − S ∗) + (I − I∗))2 ,

V5(R,W) = (R − R∗)2 + (W −W∗)2,

V6(S , I,R,W) = V4 + V5.

(6.5)
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Applying Itô’s formula, we have

LV4 =(S − S ∗ + I − I∗)(Λ − µS + ζR − γI − µI) + σ2
1S 2I2 + σ2

2S 2W2

= − µ(S − S ∗)2 − (γ + µ)(I − I∗)2 − (γ + 2µ)(S − S ∗)(I − I∗)
+ ζ(R − R∗)(S − S ∗) + ζ(R − R∗)(I − I∗) + σ2

1S 2I2 + σ2
2S 2W2,

LV5 =2(R − R∗)(γI − µR − ζR) + 2(W −W∗)(ηI − cW)

=2(R − R∗)γI∗(
I
I∗
−

I∗

I∗
+

R∗

R∗
−

R
R∗

) + 2(W −W∗)ηI∗(
I
I∗
−

I∗

I∗
+

W∗

W∗
−

W
W∗

)

=2γ(R − R∗)(I − I∗) − 2
γI∗

R∗
(R − R∗)2 + 2η(W −W∗)(I − I∗) − 2

ηI∗

W∗
(W −W∗)2.

Therefore,

LV6 = − µ(S − S ∗)2 − (γ + µ)(I − I∗)2 − 2
γI∗

R∗
(R − R∗)2 − 2

ηI∗

W∗
(W −W∗)2

− (γ + 2µ)(S I − S ∗I − S I∗ + S ∗I∗) + (2γ + ζ)(R − R∗)(I − I∗)
+ ζ(R − R∗)(S − S ∗) + 2η(W −W∗)(I − I∗) + σ2

1S 2I2 + σ2
2S 2W2,

and because a ≤ |a|, we can get

LV6 ≤ − µ(S − S ∗)2 − (γ + µ)(I − I∗)2 − 2
γI∗

R∗
(R − R∗)2

− 2
ηI∗

W∗
(W −W∗)2 + (γ + 2µ)(S ∗I + S I∗)

+ |(2γ + ζ)||(R − R∗)||(I − I∗)| + |ζ ||(R − R∗)||(S − S ∗)|
+ |2η||(W −W∗)||(I − I∗)| + σ2

1S 2I2 + σ2
2S 2W2.

Take a positive number ϵ, such that

2ab ≤ ϵa2 +
b2

ϵ
,

and from Remark 1, we have

LV6 ≤ − µ(S − S ∗)2 − (γ + µ)(I − I∗)2 − 2
γI∗

R∗
(R − R∗)2 − 2

ηI∗

W∗
(W −W∗)2

+
Λ

µ
(γ + 2µ)(S ∗ + I∗) +

1
2ϵ
ζ(R − R∗)2 +

ϵ

2
ζ(S − S ∗)2

+
1
2ϵ

(2γ + ζ)(R − R∗)2 +
ϵ

2
(2γ + ζ)(I − I∗)2 +

η

ϵ
(W −W∗)2

+ ϵη(I − I∗)2 + σ2
1S 2I2 + σ2

2S 2W2

≤(
ϵ

2
ζ − µ)(S − S ∗)2 − (γ + µ − ϵη − ϵγ −

ϵ

2
ζ)(I − I∗)2

− (2
γI∗

R∗
−
γ + ζ

ϵ
)(R − R∗)2 − (2

ηI∗

W∗
−
η

ϵ
)(W −W∗)2

+
Λ

µ
(γ + 2µ)(S ∗ + I∗) +

σ2
1Λ

4

µ4 +
σ2

2Λ
4η2

µ4c2 .
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Due to

dV6(S , I,R,W) =( LV4 + LV5)dt + (S − S ∗ + I − I∗)(−σ1S IdB1(t) − σ2S WdB2(t))
+ (S − S ∗ + I − I∗)(σ1S IdB1(t) + σ2S WdB2(t)), (6.6)

integrating both sides of the above Eq (6.6) from 0 to t, and then taking the expectation as follows,

E

∫ t

0
LV6(s)ds =EV6(t) − V6(0)

≤ − E

∫ t

0
[(µ −

ϵ

2
ζ)(S − S ∗)2 + (γ + µ − ϵη − ϵγ −

ϵ

2
ζ)(I − I∗)2

+ (2
γI∗

R∗
−
γ + ζ

ϵ
)(R − R∗)2 + (2

ηI∗

W∗
−
η

ϵ
)(W −W∗)2]ds

+

(
Λ

µ
(γ + 2µ)(S ∗ + I∗) +

σ2
1Λ

4

µ4 +
σ2

2Λ
4η2

µ4c2

)
t.

(6.7)

Because of

E

∫ t

0
LV6(s)ds ≥ 0,

we obtain

lim
t→∞

1
t
E

∫ t

0
[(µ −

ϵ

2
ζ)(S − S ∗)2 + (γ + µ − ϵη − ϵγ −

ϵ

2
ζ)(I − I∗)2

+ (2
γI∗

R∗
−
γ + ζ

ϵ
)(R − R∗)2 + (2

ηI∗

W∗
−
η

ϵ
)(W −W∗)2]ds

≤
Λ

µ
(γ + 2µ)(S ∗ + I∗) +

σ2
1Λ

4

µ4 +
σ2

2Λ
4η2

µ4c2 .

The proof is complete. □

7. Simulations

Numerical simulations are presented below to illustrate the theoretical results of this chapter. We
provide some numerical examples to support our results. The numerical simulations of epidemic
dynamics are carried out for academic purposes, using arbitrary parameter values that do not
correspond to any specific epidemic and only demonstrate the theoretical properties of the numerical
solutions of the models considered. We present our results using the Milstein’s higher order method
developed in [32]. The discrete form of the model (1.3) is as follows:

S i+1 = S i + (Λ − βS iIi − νS iWi − µS i + ζRi)∆t − σ1S iIiξ1,i
√
∆t

−
σ2

1
2 S iIi(ξ2

1,i − 1)∆t − σ2S iWiξ2,i
√
∆t − σ

2
2

2 S iWi(ξ2
2,i − 1)∆t,

Ii+1 = Ii + (βS iIi + νS iWi − µIi − γIi)∆t + σ1S iIiξ1,i
√
∆t

+
σ2

1
2 S iIi(ξ2

1,i − 1)∆t + σ2S iWiξ2,i
√
∆t + σ

2
2

2 S iWi(ξ2
2,i − 1)∆t,

Ri+1 = Ri + (γIi − µRi − ζRi)∆t,

Wi+1 = Wi + (ηIi − cWi)∆t,

(7.1)
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where ξ j,i j = 1, 2 are Gaussian random variables following the standard normal distribution N(0, 1)
and the time increment

∆t = 0.01.

Let

Λ = 0.9, µ = 0.36, ζ = 0.3, Γ = 0.1, η = 0.3, c = 0.5,
(S (0), I(0),R(0),W(0)) = (1.2, 1.2, 0.1, 0.5).

(7.2)

In different examples, parameters β, ν, σ1, and σ2 will take different values.

Example 1. To start, we choose

β = 0.15, ν = 0.16, σ1 = 0.55, σ2 = 0.11,

such that

(σ2
1 +
σ2

2η
2

c2 ) − max{
µ(βc + νη)

cΛ
,

(β + νηc )2

2(µ + γ)
} = 0.2411 > 0,

then from Theorem 2, the disease of model (1.3) will become extinct; see Figure 1.
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Figure 1. Simulation of the path S (t), I(t) for the stochastic model (1.3) and the
corresponding deterministic model with R0 = 1.3370 > 1.

Let
β = 0.14, ν = 0.1, σ1 = 0.12, σ2 = 0.32,

and the other parameters are shown in (7.2) such that

RS
0 = R0 −

Λ2(σ2
1c2 + σ2

2η
2)

2µ2c2(µ + γ)
= 0.7387 < 1

and

(σ2
1 +
σ2

2η
2

c2 ) −
µ(βc + νη)

cΛ
= −0.0287 < 0.
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According to Theorem 2, the disease of model (1.3) will be extinct; see Figure 2.
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Figure 2. Simulation of the path S (t), I(t) for the stochastic model (1.3) and the
corresponding deterministic model with R0 = 1.0870 > 1.

In order to verify Theorem 2, numerical simulations were carried out with the parameters selected
above. The results are shown in Figures 1 and 2. From the Figures 1b and 2b, it can be concluded that
the disease I(t) in stochastic model (1.3) will die out with probability one, and compared to
deterministic model (1.2), white noise accelerates disease extinction and inhibits disease transmission.

Example 2. To begin, we choose

β = 0.1, ν = 0.1, σ1 = 0.05, σ2 = 0.05,

and the other parameters are shown in (7.2) such that

RS
0 = R0 −

Λ2(σ2
1c2 + σ2

2η
2)

2µ2c2(µ + γ)
= 1.1618 > 1

and

(σ2
1 +
σ2

2η
2

c2 ) −
µ(βc + νη)

cΛ
= −0.0499 < 0.

According to Theorem 3, the disease of model (1.3) will be persist. Figure 3 supports the result.

AIMS Mathematics Volume 9, Issue 12, 33467–33492.



33487

0 10 20 30 40 50 60 70 80

  Time

0

0.5

1

1.5

2

2.5

3

3.5

S
u
s
c
e
p
ti
b
le

deterministic model

stochastic model

(a)

0 10 20 30 40 50 60 70 80

  Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

In
fe

c
te

d

deterministic model

stochastic model

(b)

Figure 3. Simulation of the path S (t), I(t) for the stochastic model (1.3) and the
corresponding deterministic model with R0 = 1.2000 > 1.

In order to verify Theorem 3, numerical simulations were carried out with the parameters selected
above. The results are shown in Figure 3. From the Figure 3b, it can be concluded that the disease
I(t) in stochastic model (1.3) will be permanent in the time mean. This suggests that the disease will
persist.

Example 3. Take

β = 0.1, ν = 0.1, and ϵ = 0.4,

and the other parameters are shown in (7.2) such that

R0 = 1.2000 > 1, E∗ = (2.4995, 0.4290, 0.0715, 0.2575),

and

µ −
ϵ

2
ζ = 0.24 > 0, γ + µ − ϵη + ϵγ +

ϵ

2
ζ = 0.18 > 0,

2
γI∗

R∗
−
γ + ζ

ϵ
= 0.2 > 0, 2

ηI∗

W∗
−
η

ϵ
= 0.8320 > 0.

According to Theorem 5, solutions of stochastic model (1.3) fluctuate in time average around endemic
equilibrium E∗ of the deterministic model, which can be verified by using Figure 4, and the oscillation
amplitude increases with white noise intensity.
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Figure 4. Simulation of the path S (t), I(t) for deterministic model and the stochastic model
(1.3) for different σ1, σ2 with β = 0.1 and ν = 0.1.

Example 4. Take
β = 0.15, ν = 0.16

and the other parameters are shown in (7.2) such that

R0 = 1.3370 > 1.

Figure 5 shows that σ1 and σ2 have a significant impact on both extinction and persistence of disease.
With the intensity of σ1, σ2, the disease of model (1.3) will accelerate extinction.
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Figure 5. Simulation of the path I(t) of the stochastic model (1.3) for different σ1, σ2.

The results show that large amounts of white noise can lead to disease extinction, while even small
amounts of white noise were found to inhibit disease outbreaks. We conclude that changes in noise
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intensity affecting direct transmission rates have a more pronounced effect on disease spread than
perturbations in indirect infection rates. This tells us that in the prevention and control of infectious
diseases, as well as in public health practice, cutting off direct sources of infection and reducing the
rate of direct infection are very useful measures.

Example 5. Take σ1 = 0.25, σ2 = 0.1, and the other parameters are shown in (7.2). Figure 6a shows
how threshold Rs

0 varies with β and ν, as well as shows the positive correlation. Figure 6b shows
how threshold Rs

0 varies with white noise intensity σ1 and σ2, and as the noise intensity increases, Rs
0

becomes smaller and smaller.

(a) (b)

Figure 6. Plot(a) of the Rs
0 versus direct transmission rate β and indirect transmission rate ν.

Plot(b) of the Rs
0 versus white noise intensity σ1 and σ2.

8. Conclusions and discussion

In this paper, we investigate a stochastic SIRS epidemic model that incorporates environmentally
driven transmission dynamics alongside multiparameter perturbations. The purpose of this study is to
investigate the extinction and persistence of stochastic SIRW model solutions under multiparameter
stochastic perturbations, the propagation laws of infectious disease dynamics, and the effects of
different parameters on disease spread. We commence our study by establishing the existence and
uniqueness of the global positive solution for the model presented in Eq (1.3). Subsequently, we
derive the threshold conditions necessary for disease extinction and persistence, employing the
comparison theorem in conjunction with Itô’s formula for stochastic differential equations. The
theoretical findings are substantiated through a series of numerical simulations, as depicted in
Figures 1–3. These simulations show that large amounts of white noise can lead to disease extinction,
whereas even small amounts of white noise can suppress disease outbreaks, with the dynamics
transitioning from persistence to extinction as the noise intensity increases. Furthermore, we analyze
the asymptotic stability of both the disease-free equilibrium and the endemic equilibrium of the
deterministic model corresponding to our stochastic framework, utilizing principles from stochastic
stability theory. Our results demonstrate that the solutions of the stochastic model (1.3) exhibit
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fluctuations around the endemic equilibrium E∗ of the deterministic counterpart, with the oscillation
amplitude increasing in response to higher levels of white noise intensity, as shown in Figure 4.
Additionally, we observe that variations in noise intensity affecting the direct transmission rate exert a
more pronounced influence on disease transmission compared to perturbations in the indirect
infection rate, as illustrated in Figure 5. Finally, we find that the direct transmission rate plays a
critical role in determining the threshold Rs

0, as highlighted in Figure 6. This suggests that disruption
of direct source links and isolation controls to reduce the rate of direct infection are very useful
measures in the prevention and control of infectious diseases and in public health practice.

In the future, we will consider the dynamics of infectious disease processes across different temporal
scales. It is also interesting to incorporate the immunological processes occurring within the host into
system (1.2), and we will leave this for future research.
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