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Abstract: One useful descriptive metric for measuring variability in applied statistics is the coefficient
of variation (CV) of a distribution. However, it is uncommon to report conclusions about the CV
of non-normal distributions. This study develops a method for estimating the CV for the inverse
power Lomax (IPL) distribution using adaptive Type-II progressive censored data. The experiment is
a well-liked plan for gathering data, particularly for a very dependable product. The point and interval
estimate of CV are formulated under the classical approach (maximum likelihood and bootstrap) and
the Bayesian approach with respect to the symmetric loss function. For the unknown parameters, the
joint prior density is calculated using the Bayesian technique as a product of three independent gamma
densities. Additionally, it is recommended to use the Markov Chain Monte Carlo (MCMC) method to
calculate the Bayes estimate and generate posterior distributions. A simulation study and a numerical
example are given to assess the performance of the maximum likelihood and Bayes estimations.
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1. Introduction

In a number of fields of study, including engineering, telecommunications, chemistry, physics,
finance, and medical sciences, the CV has long been extensively utilized as both a descriptive and
inferential measure. It is frequently employed in chemical studies as a scale for measurement precision.
The CV is an essential measure for characterizing the variance. It offers a substitute index in place
of the most widely used measurements of variation, such as variance or standard deviation, which are
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problematic when comparing variations across populations with dissimilar units of measurement. Take,
for instance, the variability between newborn weights (measured in grams) and adult sizes (measured
in centimeters). Whatever the unit of measurement applied to the numbers, the CV calculates the
variability of a set of numbers. The CV can be utilized as a relative risk indicator in the finance
industry; see Bhoj and Ahsanullah [1] and Reh and Scheffler [2]. The homogeneity of bone samples
can be tested in physiological research using the CV (Hamer et al. [3]). It has been applied to the
assessment of ceramic strength and the uncertainty analysis of fault trees; see Ahn [4] and Gong and
Li [5]. Several writers have employed many methods to derive the CV estimator; for more information,
see Pang et al. [6, 7] and Mohie El-Din et al. [8].

According to Lomax [9], the Pareto Type-II distribution, also referred to as the Lomax model, is an
essential structure for lifetime analysis. The Lomax distribution finds widespread use in various fields,
including life testing, biological sciences, modeling business failure data, and analysis of wealth and
income data (see [10–14], among others). One specific example of the generalized beta distribution of
the second sort is the inverse Lomax distribution. Among the important lifetime models in statistical
applications is this one. Additionally, as mentioned by Kleiber and Kotz [15], it has applications in
actuarial sciences, economics, stochastic modeling, and life testing.

The IPL distribution, a three-parameter lifetime distribution, was first presented by Hassan and
Abd-Allah [16]. It has the following probability density function (PDF)

f (x;α, η, γ) =
αηx−η−1

γ

(
1 +

x−η
γ

)−α−1

, α, η, γ > 0, x ≥ 0, (1.1)

where the scale parameter is γ and the shape parameters are α and η. Figure 1 shows plots of the PDF
for a few chosen shape parameter values.

Figure 1. The PDF of the IPL for different value, of α, η when γ = 0.5.
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The IPL distribution’s survival (reliability) function is provided by

S (x;α, η, γ) = 1 −
(
1 +

x−η

γ

)−α
, α, η, γ > 0, x ≥ 0. (1.2)

When studying situations with a realized non-monotonic failure rate, the IPL is incredibly adaptable.
As a result, [16] discussed how the IPL model can be used for various real-world data modeling
and analytic applications. [16] investigated several statistical features for the IPL distribution in
order to aid engineering applications. A comparison study in [16] showed that the IPL model fits
essential data better than other models, such as the Lomax, power Lomax, and inverse Lomax models,
inverse Weibull, generalized inverse Weibull, and exponentiated Lomax models. Despite its obvious
advantages, the IPL distribution has some drawbacks, such as the lack of versatility of its left tail,
which prevents the capture of some characteristics for small values in data, and the low diversity of
shapes of its hazard rate function, which prevents optimal modeling of some phenomena with complex
attributes.

Researchers often struggle when studying a complete sample of data because waiting for the entire
sample to fail is expensive and time-consuming. Therefore, researchers obtain an incomplete data
set through the censoring system. There are several sorts of censored tests: Type-I censoring, which
ends the life-testing experiment at a certain time τ. Type-II censoring, which ends the experiment
on the rth failure in life testing. However, the flexibility to delete units at sites other than the
experiment’s endpoint is a limitation of typical Type-I and Type-II censoring approaches. This lack of
adaptability led to the development of a more generic censoring method known as progressive Type-II
right censoring; for in-depth analyses of the literature on progressive censoring, see Balakrishnan and
Aggarwala [17]. Let n units be used in an experiment and let r be the predetermined number of failed
units, in order to discuss the mechanism of this technique. Let the timing of the ith failure be indicated
by Xi:r:n, i = 1, 2, · · · , r. The leftover units at X1:r;n are then randomly removed from their R1 units.
Once more units at X2:r:n, are randomly selected to eliminate R2 units, and so on. All of the leftover
n − r −

∑r−1
i=1 Ri units are withdrawn at Xr:r:n.

In order to assure the number of failures, Ng et al. [18] propose an adaptive Type-II progressive
censoring. It is a mixture of Type-I censoring and Type-II progressive censoring schemes. In this
censoring, a properly planned adaptive progressively censored life testing experiment can save both
the total test time and the cost induced by failure of the units and increase the efficiency of statistical
analysis. With this censoring, a well-designed adaptive progressively censored life testing experiment
can reduce the general test time and the cost associated with unit failure while also improving the
effectiveness of statistical analysis. Prior to commencing the experiment, let r be predetermined. Then,
let the test to run τ using a progressive censoring strategy R = (R1,R2, · · · ,Rr), whose values are
predetermined but available to change during the duration of the test. Employing the adaptive Type-
II progressive censoring scheme, if the rth failure happens before τ (i.e., Xr:r:n < τ ), the experiment
stops at Xr:r:n. Otherwise, if Xs:r;n < τ < Xs+1:r:n, where s + 1 < r and Xs:r:n represent the failure time
seen before to τ, we would want to terminate the experiment as soon as possible, the researcher sets
Rs+1 = · · · = Rr−1 = 0 to ensure that no live units are removed from the experiment, Rr = n−r−

∑s
i=1 Ri.

Control of the experiment is ensured by this procedure once the required number of failures, r, is
acquired. Let {x,R} = {(X1:r:n,R1), (X2:r:n,R2), · · · , (Xs:r:n,Rs), τ, (Xs+1:r:n, 0), · · · , (Xr−1:r:n, 0), (Xs:r:n,Rr)}
be an adaptive Type-II progressive censoring sample from a continuous population with PDF. The
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value of τ plays an important role in the determination of the values of R and also as a compromise
between a shorter experimental time and a higher chance to observe extreme failures. One case is when
τ→ ∞, which means time is not the main consideration for the experimenter, then we will have a usual
progressive Type-II censoring scheme with the pre-fixed progressive censored scheme R. Another case
can occur when τ = 0, which means we always want to end the experiment as soon as possible. Then
we will have R1 = · · · = Rr = 0 and Rr = n − r, which results in the conventional Type-II censoring
scheme.

By setting Xi = Xi:r:n, i = 1, · · · , r, for the purpose of simplicity, the adaptive Type-II progressive
censored data’s probability function can be written as

ℓ(x;ΩΩΩ) = cs

r∏
i=1

f (xi;ΩΩΩ)
s∏

i=1

[S (xi;ΩΩΩ)]Ri [S (xr;ΩΩΩ)]R∗r , (1.3)

where cs =
∏r

i=1(n − i + 1 −
∑min(i−1,s)

k=1 Rk) and the vector representing the unknown parameters is ΩΩΩ.
Numerous studies using adaptive Type-II progressive censoring have been carried out; see [19–25] and
the references cited therein.

Therefore, under consideration of the latent failure time following two parameters, IPL is partially
observed. Our aim is to develop the statistical inferences of CV of IPL under adaptive Type-II
progressive censoring. Therefore, the point estimate discusses different methods of estimation such
as MLE, bootstrapping and Bayesian estimations. Also, the approximate interval estimate is discussed
with respected ML, bootstrapping, and Bayes approaches. The developed results are assessed through
numerical computations under the formulation of the Monte Carlo simulation study and data analysis.

The remaining sections of the paper are arranged as follows: Section 2 presents the model and its
basic presumptions. In Section 2, we were able to obtain the maximum likelihood estimation (MLE)
and the Bayesian analysis with squared error loss (SEL) function. These two methods also cover
interval estimation; the results include the bootstrap interval, the highest posterior density (HPD)
credible interval, and approximate confidence intervals (ACIs) based on the MLEs. In Section 3, we
simulate a data set, look at real data, and conduct a simulation study to show the methods of estimation
covered in this paper. The final remarks are contained in Section 4.

2. Methodology

The model considered here has an IPL distribution for the unit lifetime. The MLE and Bayesian
techniques are used to formulate the point estimates of the model parameters. Additionally, interval
estimators are developed using the HPD credible intervals, bootstrap methods, and the asymptotic
property of MLEs.

2.1. Modeling

The following relation provides the kth moments for the three-parameter IPL distribution

µ′k = E(Xk) =
α

γ
k
η

B
(
1 −

k
η
, α +

k
η

)
, k ≤ η. (2.1)

The CV is defined as

CV =
√

Var(X)
E(X)

, E(X) , 0.
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From (2.1), for k = 1, 2, the first two moments are as follows:

E(X) =
αΓ(1 − 1

η
)Γ(α + 1

η
)

γ
1
ηΓ(α + 1)

, η > 1,

E(X2) =
αΓ(1 − 2

η
)Γ(α + 2

η
)

γ
2
ηΓ(α + 1)

, η > 2.

Then the theoretical CV for the IPL distribution is

CV =

√√√
Γ(1 − 2

η
)Γ(α + 2

η
)Γ(α + 1)

αΓ2(1 − 1
η
)Γ2(α + 1

η
)
− 1 = H(α, η), η > 2. (2.2)

2.2. Point estimation

2.2.1. Maximum likelihood estimation

To determine the point estimation, let xxx = (x1:r;n, x2:r:n < · · · < xr:r:n) be adaptive Type-II progressive
censored order statistics using censored scheme R from the IPL distribution. From Eqs (1.1)–(1.3), by
setting ℓ(α, η, γ|xxx) = ℓ(ΩΩΩ), the likelihood function without normalized constant given by

ℓ(ΩΩΩ) =
r∏

i=1

(
αηγ−1xi

−η−1
(
1 + γ−1xi

−η
)−α−1

) s∏
i=1

(
1 −

(
1 + γ−1xi

−η
)−α)Ri (

1 − (1 + γ−1xr
−η)−α

)R∗r
, (2.3)

where,

R∗r = n − r −
s∑

i=1

Ri.

The log-likelihood function is

L(ΩΩΩ) = −r log(γ) + r log(α) + r log(η) − (η + 1)
r∑

i=1

log(xi) − (α + 1)
r∑

i=1

log
(
1 + γ−1xi

−η
)

+

s∑
i=1

Ri log
(
1 −

(
1 + γ−1xi

−η
)−α)
+ R∗r log

(
1 − (1 + γ−1xr

−η)−α
)
. (2.4)

Calculating the normal equations, ∂L
∂Ωi
= 0, ΩΩΩ = (α, η, γ) as follows:

∂L
∂α

=
r
α
−

r∑
i=1

log
(
1 + γ−1x−ηi

)
+

s∑
i=1

Ri log
(
1 + γ−1x−ηi

)
(
1 + γ−1x−ηi

)α
− 1
+

R∗r log
(
1 + γ−1xr

−η
)

(
1 + γ−1xr

−η
)α
− 1

= 0, (2.5)

∂L
∂η
=

r
η
−

r∑
i=1

log(xi) + (α + 1)
r∑

i=1

x−ηi γ
−1 log(xi)

1 + x−ηi γ
−1
−

s∑
i=1

Riαγ
−1

(
1 + x−ηi γ

−1
)−1

x−ηi log(xi)(
1 + x−ηi γ

−1
)α
− 1

−
αγ−1R∗r

(
1 + γ−1xr

−η
)−1

xr
−η log(xr)(

1 + γ−1xr
−η

)α
− 1

= 0, (2.6)
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33428

∂L
∂γ

=
−r
γ
+ (α + 1)γ−2

r∑
i=1

x−ηi

1 + x−ηi γ
−1
− αγ−2

s∑
i=1

Rix
−η
i

(
1 + x−ηi γ

−1
)−1(

1 + x−ηi γ
−1

)α
− 1

−

R∗rαγ
−2xr

−η
(
1 + γ−1xr

−η
)−1(

1 + γ−1xr
−η

)α
− 1

= 0. (2.7)

The MLEs, α̂, η̂, and γ̂ of the parameters can be obtained by solving the three nonlinear Eqs (2.5)–
(2.7). It is possible to use some numerical techniques, such as Newton’s method. Consequently, the
MLE of CV is

ĈV = H (α̂, η̂) ,

where H(α̂, η̂) as given in Eq (2.2) after replacing α and η by α̂ and η̂, respectively.

2.2.2. Bayes estimations

In this part, we explain the process of deriving the Bayes estimators for parameters α,η, and γ in the
case where neither is known. Non-informative prior distribution is a useful instrument in cases where
we lack sufficient prior information. This especially applies to the research we did. After that, the joint
posterior density will match the likelihood function in proportion; see [26–29].

Prior assumptions

For the parameter vectorΩΩΩ = (α, η, γ), independent gamma priors characterize the prior information
ΩΩΩ = (α, η, γ). As a result, the joint prior of vectorΩΩΩ is as follows:

π∗(ΩΩΩ) ∝
3∏

i=1

Ω
ai−1
i exp(−biΩi), Ωi > 0, (2.8)

where ai, bi are the hyperparameters for Ωi, i = 1, 2, 3.

Posterior analysis

Given the data, the joint posterior density ofΩΩΩ = (α, η, γ) is

π(ΩΩΩ|xxx) =
π∗(ΩΩΩ)ℓ(ΩΩΩ|xxx)#

ΩΩΩ
π∗(ΩΩΩ)ℓ(ΩΩΩ|xxx)dΩ1dΩ2dΩ3

. (2.9)

From Eqs (2.3) and (2.8), the posterior distribution has the following form:

π(α, η, γ|xxx) ∝ αa1+r−1ηa2+r−1γa3−r−1 exp {−b1α − b2η − b3γ}

r∏
i=1

xi
−η

(
1 + γ−1x−ηi

)−α−1
×

s∏
i=1

(
1 −

(
1 + γ−1x−ηi

)−α)Ri
(
1 −

(
1 + γ−1xr

−η
)−α)R∗r

. (2.10)

The model parameters’ Bayes estimators are dependent on the loss function selection. As several loss
functions can be applied, we take into consideration the SEL function without losing generality. The
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theoretical structure of Bayes estimators for any function ΩΩΩ = (α, η, γ) under the SEL function is
defined by

Ω̂iMCMC =

∫
Ωi

Ωiπ(Ωi|xxx)dΩi. (2.11)

In general, especially in a high-dimensional cause, the integration shown by Eqs (2.9) and (2.11) is
harder and does not provide closed form formulations. As a result, approximation techniques like
computational integration and Lindely approximation can be used. However, an important method
like MCMC depends on building the empirical posterior distribution, which can be done by using the
posterior distribution to simulate a large sample, as stated in [30]. A variety of techniques, including
the more general Metropolis–Hastings (MH) algorithm within Gibbs sampling, or Gibbs sampling
algorithms alone, can be utilized. Furthermore, the significance sampling method.

Bayesian estimation using MCMC

A popular method for simulating stochastic events with probability densities known up to a constant
of proportionality is MCMC, which uses the MH-within-Gibbs sampler algorithm; see [31–34].

Metropolis et al. [35] made the initial introduction of the MH algorithm. It can be used to calculate
the estimated results from Eq (2.10), which can then be utilized to construct the association credible
interval and get the Bayesian estimator. It is possible to write the posterior distribution provided by
Eq (2.11) as

π(α, η, γ|xxx) ∝ πα(α|η, γ, xxx)πη(η|α, γ, xxx)πγ(γ|α, η, xxx), (2.12)

where,

πα(α|η, γ, xxx) ∝ αa1+r−1 exp (−αb1)
r∏

i=1

(
1 + γ−1x−ηi

)−α
×

s∏
i=1

(
1 −

(
1 + γ−1xi

−η
)−α)Ri

(
1 −

(
1 + γ−1xr

−η
)−α)R∗r

,

πη(η|α, γ, xxx) ∝ ηa2+r−1 exp (−ηb2)
r∏

i=1

xi
−η

(
1 + γ−1xi

−η
)−α−1

×

s∏
i=1

(
1 −

(
1 + γ−1xi

−η
)−α)Ri

(
1 −

(
1 + γ−1xr

−η
)−α)R∗r

,

and

πγ(γ|α, η, xxx) ∝ γa3−r−1 exp (−b3γ)
r∏

i=1

(
1 + γ−1x−ηi

)−α−1
×

s∏
i=1

(
1 −

(
1 + γ−1xi

−η
)−α)Ri

(
1 −

(
1 + γ−1xr

−η
)−α)R∗r

.

Algorithm (1):

1) Select an arbitrary beginning point α0 = α̂, η0 = η̂ and γ0 = γ̂.
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2) Generate α1 from πα(α|η, γ, x) using the MH algorithm.
3) Generate η1 from πη(η|α, γ, x) using the MH algorithm.
4) Generate γ1 from πγ(γ|α, η, x) using the MH algorithm.
5) Compute CV1 = H(α1, η1)
6) Repeat steps 2 and 5, N times to obtain CV1,CV2, · · · ,CVN .
7) Using the SEL function as an example, find the Bayes estimate of CV as

CVMCMC =

N∑
i=M+1

CVi

N − M
.

Consequently, the posterior variance of CV is calculated by

Var(CVMCMC) =

N∑
i=M+1

(CVi −CVMCMC)2

N − M
.

2.2.3. Interval estimation

(1) Asymptotic confidence intervals

The asymptotic normality of MLE is used to construct the ACIs of the parameters. In terms of
model parameters, the Fisher information matrix defines the negative expectation of second derivatives
of the log-likelihood function. In general, the expectation of the second derivative is more serious
in more situations. Next, an appropriate approximation is shown by the observed Fisher information
matrix, which may be utilized to build interval estimation in the manner described below

I0(ΩΩΩ) =


− ∂

2L
∂α2 − ∂2L

∂α∂η
− ∂2L
∂α∂γ

− ∂2L
∂η∂α

−∂
2L
∂η2 − ∂2L

∂η∂γ

− ∂2L
∂γ∂α

− ∂2L
∂γ∂η

− ∂
2L
∂α2

 , (2.13)

where

∂2L
∂α2 = −

r
α2 −

s∑
i=1

Ri

(
1 + γ−1x−ηi

)−α
log2

(
1 + γ−1x−ηi

)
[
1 −

(
1 + γ−1x−ηi

)−α]2 −
R∗r

(
1 + γ−1xr

−η
)−α

log2
(
1 + γ−1xr

−η
)

[
1 −

(
1 + γ−1xr

−η
)−α]2

∂2L
∂α∂η

=

r∑
i=1

γ−1x
−η

i log(xi)

1 + γ−1x−ηi

−

s∑
i=1

Riγ
−1x−ηi

(
1 + γ−1x−ηi

)−α−1
log(xi)[

1 −
(
1 + γ−1x−ηi

)−α]2

[
1 −

(
1 + γ−1x−ηi

)−α
− α log

(
1 + γ−1x−ηi

)]

−
R∗rγ

−1xr
−η

(
1 + γ−1xr

−η
)−α−1

log(xr)[
1 −

(
1 + γ−1xr

−η
)−α]2

[
1 −

(
1 + γ−1xr

−η
)−α
− α log

(
1 + γ−1xr

−η
)]
,

∂2L
∂α∂γ

=

r∑
i=1

γ−2x−ηi

1 + γ−1x−ηi

−
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s∑
i=1

Riγ
−2x−ηi

(
1 + γ−1x−ηi

)−α−1[
1 −

(
1 + γ−1x−ηi

)−α]2

[
1 −

(
1 + γ−1x−ηi

)−α
− α log

(
1 + γ−1x−ηi

)]

−
R∗rγ

−2xr
−η

(
1 + γ−1xr

−η
)−α−1[

1 −
(
1 + γ−1xr

−η
)−α]2

[
1 −

(
1 + γ−1xr

−η
)−α
− α log

(
1 + γ−1xr

−η
)]
,

∂2L
∂η2 = −

r
η2 − (α + 1)

r∑
i=1

γ−1x−ηi log2(xi)(
1 + γ−1x−ηi

)2 +

s∑
i=1

Riαγ
−1x−ηi

(
1 + γ−1x−ηi

)−α−1
log2(xi)[

1 −
(
1 + γ−1x−ηi

)−α]2 ×

[
1 − (α + 1) γ−1x−ηi

(
1 + γ−1x−ηi

)−1
+

(
1 + γ−1x−ηi

)−α−1
]
+

αR∗rγ
−1xr

−η
(
1 + γ−1xr

−η
)−α−1

log2(xr)[
1 −

(
1 + γ−1xr

−η
)−α]2

[
1 − (α + 1)γ−1xr

−η
(
1 + γ−1xr

−η
)−1
−

(
1 + γ−1xr

−η
)−α−1

]
∂2L
∂η∂γ

= −(α + 1)
r∑

i=1

γ−2x−ηi log(xi)(
1 + γ−1x−ηi

)2 +

s∑
i=1

αRiγ
−2x−ηi

(
1 + γ−1x−ηi

)−α−2
log(xi)[

1 −
(
1 + γ−1x−ηi

)−α]2

[
1 −

(
1 + γ−1x−ηi

)−α
− αγ−1x−ηi

]
+

αR∗rγ
−2xr

−η
(
1 + γ−1xr

−η
)−α−2

log(xr)[
1 −

(
1 + γ−1xr

−η
)−α]2

[
1 −

(
1 + γ−1xr

−η
)−α
− αγ−1xr

−η
]
.

∂2L
∂γ2 =

r
γ2 − (α + 1)

r∑
i=1

γ−3x−ηi

(
2 + γ−1x−ηi

)
(
1 + γ−1x−ηi

)2 +

s∑
i=1

αRiγ
−3x−ηi

(
1 + γ−1x−ηi

)−α−1[
1 −

(
1 + γ−1x−ηi

)−α]2 ×

[
2 − (α + 1)γ−1x−ηi

(
1 + γ−1x−ηi

)−1
−

(
1 + γ−1x−ηi

)−α−1 (
2γ−1x−ηi

)]
+

αR∗rγ
−3xr

−η
(
1 + γ−1xr

−η
)−α−1[

1 −
(
1 + γ−1xr

−η
)−α]2

[
2 − (α + 1)γ−1xr

−η
(
1 + γ−1xr

−η
)−1
−

(
1 + γ−1xr

−η
)−α−1 (

2 + γ−1xr
−η

)]
.

The asymptotic distribution theory of MLE indicates that Ω̂ΩΩ = (α̂, η̂, γ̂) may be distributed as
a multivariate normal distribution with mean ΩΩΩ = (α, η, γ) given conventional regularity rules and
variance covariance matrix I−1

0 (Ω̂ΩΩ) presented by Ω̂ΩΩ→ N(ΩΩΩ, I−1
0 (Ω̂ΩΩ)).

See Greene [36] for an estimated method of estimating the variance of ĈV using the delta approach.
Let

H1 =

(
∂CV
∂α

,
∂CV
∂η

,
∂CV
∂γ

)
, (2.14)
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where ∂CV
∂α
, ∂CV
∂η

and ∂CV
∂γ

are the first derivatives of the CV with respect to α,η and γ.

∂CV
∂α

=

(
CV2 + 1

2α
√

CV

) [
−1 + αψ(α + 1) + αψ

(
α +

2
η

)
− 2αψ

(
α +

1
η

)]
,

∂CV
∂η

=

(
CV2 + 1

η2
√

CV

) [
ψ

(
α +

1
η

)
+ ψ

(
1 −

2
η

)
− ψ

(
α +

2
η

)
− ψ

(
1 −

1
η

)]
,

∂CV
∂γ

= 0,

where ψ(x) = d
dx log (Γ(x)) = Γ

′(x)
Γ(x) .

The approximate asymptotic variance of ĈV is given by

Var((ĈV)→
[
H1I−1

0 HT
1

]
(α̂,η̂,γ̂)

,

where HT
1 is the transpose of H1.

The asymptotic distribution of the MLE (ĈV) of CV satisfies:

ĈV −CV√
Var(ĈV)

∼ N(0, 1).

This implies that the asymptotic 100(1 − ν)% confidence interval for CV is given by

ĈV ± Zν/2

√
Var(ĈV).

(2) Bootstrap confidence intervals

This section derives confidence intervals for the unknown parameters α, η, γ, and CV using the
parametric bootstrap approach and the percentile interval; for further information, refer to Efron [37].
The algorithm that follows is designed to produce a bootstrap sample.
Algorithm (2):

1) Starting with the first two samples, {x1, x2, · · · , xn} compute MLEs α̂, η̂, γ̂ and ĈV .
2) Generating a bootstrap sample {x∗1, x

∗
2, · · · , x

∗
n} and computing the bootstrap estimate of α̃, η̃, γ̃ and

C̃V using α̂, η̂, γ̂ and ĈV .
3) For obtaining the bootstrap samples, repeat steps (1) through (2), N , arranging each estimate in

ascending order {ĈV M+1, ĈV M+2, · · · , ĈVN−M}.(
ĈVBoot i(N−M) ν2 , ĈVBoot i(N−M)(1− ν2 )

)
provides the estimated confidence interval for (ĈV) and i =

M + 1, · · · ,N.
4)

(
ĈVBoot i(N−M) ν2 , ĈVBoot i(N−M)(1− ν2 )

)
provides the estimated 100(1−ν)% confidence interval for (ĈV).

(3) MCMC credible confidence intervals

A 100(1−ν)% posterior interval for a random quantity in the Bayesian credible theory is the interval
with the posterior probability that Ωi is within the interval, is denoted by Ωi lies in the interval, ΩΩΩ =
(α, η, γ). The procedure that follows is used to produce credible CV confidence intervals.
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Algorithm (3):

1) In Algorithm (1), repeat steps (1) through (5).
2) Then, using the resulting MCMC samples, the Bayesian credible interval for the CV is calculated

using the algorithm suggested by Chen and Shao [38]. The posterior sample is arranged as
CVM+1,CVM+2, · · · ,CVN−M. This yields the 100(1 − ν)% HPD credible intervals for CV.

where ν presents the standard normal values with probability-tailed ν.

3. Data analysis and simulation study

3.1. Applications to real life data set

To illustrate our approach, we examined data on the survival times (in days) of 72 guinea pigs
infected with virulent tubercle bacilli. The data set is as follows: {0.1, 0.33, 0.44, 0.56, 0.59, 0.59,
0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16,
1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72,
1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54,
2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55}.

This dataset was previously analyzed and reported by Bjerkedal [39]. Based on this data, the fitted
survival functions and empirical survival functions are presented for IPL and Weibull distributions, as
seen in Figures 2 and 3.

Figure 2. Fitted and empirical survival functions for IPL distribution.
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Figure 3. Fitted and empirical survival functions for Weibull distributions.

Table 1 contains the Kolmogorov–Smirnov (K-S) test and p-values.

Table 1. The K-S test and p-values on the new data.

Distribution K-S p-value
IPL 0.07710 0.7855
Weibull 0.1065 0.3877

Based on Figures 2, 3, and Table 1, the IPL distribution is the best fit for this data.
In this case we take r = 49, τ = 0.92 and R = {07, 6, 07, 6, 07, 6, 07, 5, 017}, the adaptive progressive

censored sample is {0.33, 0.44, 0.56, 0.59, 0.92, 0.93, 0.96, 1, 1.02, 1.05, 1.07, 1.08, 1.08, 1.08, 1.09,
1.12, 1.13, 1.15, 1.16, 1.21, 1.22, 1.22, 1.3, 1.34, 1.46, 1.59, 1.63, 1.63, 1.68, 1.72, 1.76, 1.95, 1.96,
1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.4, 2.45, 2.51, 2.53, 2.78, 3.27, 3.42, 4.58, 5.55}.

We compute the estimate of the MLE and the Bayes estimate using MCMC methods with MCMC
samples in light of this assumption using the adaptive Type-II progressive censoring data, and we
ignore the first values as ‘burn-in’. When computing the Bayes estimate, we use the assumption that the
unknown parameters have non-informative gamma priors because we don’t know anything about them
beforehand. The non-informative gamma priors of the unknown parameters (ai = bi = 0, i = 1, 2, 3)
and the final results for this example are presented in Table 2.

Table 2. The point and 95% interval estimation of CV.

MLE MCMC

ĈVMLE Interval Length ĈVMCMC Interval Length

0.7062 (0.6249,0.8508) 0.2259 0.7105 (0.6607,0.8617) 0.2010

The MCMC method produces an empirical posterior distribution that approaches convergence, as
seen by the plots of the data’s histogram and list-line plot from Figures 4 and 5.
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Figure 4. CV histogram produced using MCMC.

Figure 5. CV list-line produced by MCMC.

3.2. Numerical explorations

Comparing the performance of the methods theoretically impossible, we carry out a Monte Carlo
simulation study in this section to compare the performance of the various estimating methods. In
terms of mean-squared errors (MSE), we compare Bayes and MLEs under the SEL function with
informative and non-informative priors. We analyze multiple confidence intervals, depending on length
and coverage probability, such as asymptotic, bootstrap, and HPD credible intervals. To investigate and
assess the proposed Bayes estimate in relation to the MLE, Monte Carlo simulation research utilizing
the IPL distribution and the value of parameters (α, η, γ) = (1.5, 3, 0.5) is run.

Using the hyper-parameters ai = bi = 0.0001, i = 1, 2, 3, prior 0 for non-informative priors and
prior 1 for informative priors. In the case of prior 1, the hyper-parameters are set up so that the real
values of the parameters and the prior means are precisely identical to the real values of the parameters.
We examine three sets of true values of parameters (α, η, γ) = (1.5, 3, 0.5) and related informative
hyper-parameters a1 = 1.5, b1 = 1, a2 = 3, b2 = 1, a3 = 0.5, b3 = 1. Also, we consider τ = 0.9, 2.7,
effective sample sizes r, (n, r) = (30, 15), (30, 20), (40, 20), and three different progressive-censoring
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schemes (CS):

• I: R1 = n − r, Ri = 0 for i , 1.
• II: R r+1

2
= n − r, Ri = 0 for i , r+1

2 ; if r odd, and R r
2
= n − r, Ri = 0 for i , r

2 if r even.
• III: Rr = n − r, Ri = 0 for i , r.

All calculations are performed using Mathematica 10. Table 3 shows the averages mean and MSEs
of the estimates in parenthesis. The coverage percentages (CP) and average length (AL) of the 95%
asymptotic, bootstrap confidence intervals, and HPD credible interval of CV are presented in Table 4.
For the MCMC approach, we choose N = 11000 with a burn-in time period M = 1000.

Table 3. Average mean and MSEs of the MLE and MCMC of CV =0.7640.

ĈVMLE ĈVMCMC

Prior 1 Prior 0

(n, r) CS Mean MSE Mean MSE Mean MSE

τ = 0.9

(30,15) I 0.7348 0.0224 0.7574 0.0214 0.7654 0.0223

II 0.7214 0.0228 0.7468 0.0219 0.7458 0.0227

III 0.7242 0.0265 0.7661 0.0224 0.7323 0.0231

(30,20) I 0.7708 0.0220 0.7419 0.0210 0.7504 0.0219

II 0.7572 0.0224 0.7520 0.0216 0.7621 0.0220

III 0.7550 0.0255 0.7628 0.0223 0.7517 0.0234

(40,20) I 0.7672 0.0219 0.7620 0.0215 0.7548 0.0214

II 0.7620 0.0228 0.7591 0.0214 0.7335 0.0225

III 0.7310 0.0245 0.7453 0.0223 0.7508 0.0239

τ = 2.7

(30,15) I 0.7421 0.0213 0.7348 0.0201 0.7520 0.0211

II 0.7623 0.0216 0.7511 0.0198 0.7632 0.0213

III 0.7593 0.0254 0.7480 0.0210 0.7581 0.0241

(30,20) I 0.7670 0.0211 0.7541 0.0200 0.7504 0.0200

II 0.7420 0.0213 0.7488 0.0199 0.7524 0.0202

III 0.7633 0.0210 0.7570 0.0200 0.7533 0.0210

(40,20) I 0.7350 0.0212 0.7607 0.0201 0.7648 0.0202

II 0.7499 0.0214 0.7580 0.0198 0.7574 0.0200

III 0.7570 0.0245 0.7402 0.0201 0.7331 0.0216
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Table 4. AL and CP of 95% asymptotic, bootstrap confidence, and HPD credible intervals
of CV =0.7640.

ĈVMLE ĈVBoot ĈVMCMC

Prior 1 Prior 0

(n, r) CS AL CP AL CP AL CP AL CP

τ = 0.9

(30,15) I 0.2209 0.9420 0.2135 0.9520 0.2033 0.9560 0.2211 0.9480

II 0.2230 0.9420 0.2220 0.9420 0.2086 0.9540 0.2241 0.9420

III 0.2260 0.9180 0.2225 0.9380 0.2100 0.9380 0.2248 0.9380

(30,20) I 0.2200 0.9580 0.2120 0.9600 0.1928 0.9580 0.2195 0.9580

II 0.2203 0.9420 0.2190 0.9480 0.1997 0.9520 0.2199 0.9500

III 0.2225 0.9380 0.2321 0.9420 0.2019 0.9500 0.2210 0.9420

(40,20) I 0.2240 0.9520 0.2117 0.9620 0.2058 0.9700 0.2150 0.9600

II 0.2280 0.9420 0.2165 0.9520 0.2101 0.9540 0.2192 0.9520

III 0.2311 0.9380 0.2203 0.9380 0.2103 0.9580 0.2200 0.9380

τ = 2.7

(30,15) I 0.2100 0.9580 0.1991 0.9600 0.2100 0.9520 0.2101 0.9600

II 0.2103 0.9500 0.2100 0.9520 0.2021 0.9380 0.2101 0.9520

III 0.2160 0.9180 0.2152 0.9380 0.2034 0.9560 0.2152 0.9480

(30,20) I 0.2100 0.9600 0.2100 0.9620 0.1987 0.9540 0.2100 0.9600

II 0.2103 0.9500 0.2100 0.9600 0.1990 0.9500 0.2101 0.9520

III 0.2190 0.9420 0.2150 0.9480 0.2018 0.9640 0.2130 0.9500

(40,20) I 0.2210 0.9580 0.2102 0.9600 0.2100 0.9740 0.2201 0.9580

II 0.2260 0.9580 0.2250 0.9500 0.2128 0.9620 0.2230 0.9600

III 0.2301 0.9480 0.2291 0.9480 0.2193 0.9520 0.2228 0.9380

4. Concluding Remarks

The theoretical sampling distribution of the CV is not easily derived analytically within the
frequentist framework, which makes making inferences about the CV challenging in many situations.
We developed a method for estimating the CV for IPL distribution using adaptive Type-II progressive
censored data. We discussed the MLEs, as well as the Bootstrap and Bayes estimates of the CV. Given
that explicit Bayes estimates are not possible, the MCMC approach was taken into consideration. We
utilize the SEL function in the Bayesian technique. To evaluate the performance of the suggested
approaches, we undertake a Monte Carlo simulation study and analyze a real data set. Based on the
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numerical outcome, we can see from the numerical result that Bayes estimates and MLEs yield results
that are comparable. Compared to non-informative and informative prior, the Bayes estimates perform
better. The estimates produced using the MCMC approach perform well in terms of MSEs and average
widths for every combination of sample size and affected sample size. Tables 3 and 4 demonstrate how
effectively the suggested Bayes estimates work for various n, r and censoring schemes R. The results
that are displayed in Tables 3 and 4 more clearly show the superiority of the Bayesian techniques over
traditional methods in cases where appropriate prior information does become accessible. Tables 3
and 4 present the simulation research findings. These tables make these ideas obvious:

1) In terms of MSE, the Bayes estimate of the CV performs better than the MLE for non-informative
priors and is superior when using informative priors.

2) As the sample size r increases, the MSEs decrease for both ML and Bayes estimation approaches.
3) The AL of asymptotic, bootstrap confidence, and HPD credible intervals decrease with increasing

failure proportion (r/n).
4) For AL and CP, boot confidence intervals outperformed asymptotic confidence intervals.
5) HPD credible intervals perform better than any other confidence intervals, even when there are

informative priors.
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