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1. Introduction

Numerous topologies of significant applications have been characterized through the incorporation
of some mathematical structures. For instance, Choquet developed the concept of a grill structure
with topological spaces in [1]. Moreover, several topological concepts were presented, such as the
ideal [2, 3] and the filter [4]. The concept of primal topological space PS was introduced by S.
Acharjee et al. in [5]. Then, several papers discussed the topological properties in PS, such as [6],
which presented definitions of P-regularity, P-Hausdorff, and P-normality. Additionally, Al-Omari
and Alqahtani provided definitions of new closure operators using a primal structure in [7]. Then,
Alghamdi et al. introduced novel operators by leveraging the primal structure in [8]. Additional
primal operators were defined in [9]. Moreover, Al-Saadi and Al-Malki discussed various categories
of open sets within the framework of generalized topological spaces, thereby utilizing the primal
structure [10]. In this paper, we introduce some properties concerning compactness in PS. These
properties are namedP-compactness, stronglyP-compactness, and superP-compactness. We provide
some results and examples which connect these concepts together. Throughout this paper, (T , µ,P)
represents a primal topological space PS such that µ is a topology on T . Moreover, we use the symbol
CL(A) for the closure of a set A ⊂ T and H for an index set. Furthermore, we use the symbol 2T for
the power set of the set T .
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Definition 1.1. ( [5]) For a nonempty set T , we define a primal collection P ⊆ 2T on T as follows:
(1) T < P,
(2) if R ∈ P and T ⊆ R, then T ∈ P,
(3) if R ∩ T ∈ P, then either R ∈ P or T ∈ P.

Corollary 1.1. ( [5]) If T , ∅, then P ⊆ 2T is a primal collection on T if and only if:
(1) T < P,
(2) if T < P and T ⊆ R, then R < P,
(3) if R < P and T < P, then R ∩ T < P.

Definition 1.2. ( [5]) A topological space (T , ν) with a primal collection P on T is called a primal
topological space PS and is denoted by (T , ν,P).

2. P-compact spaces

Definition 2.1. Let (T , ρ,P) be a PS. We say that (T , ρ,P) is a primal compact space (P-compact
space) if for every open cover {Vη}η∈H of T , there exists a finite set H0 ⊆ H with

⋃
η∈H0

Vη < P. Let
N ⊆ T . Then, N is called aP-compact subspace of T if for every open cover {Wη}η∈H of N, there exists
a finite set H0 ⊆ H such that T \ [N \

⋃
η∈H0

Wη] < P.

Theorem 2.1. Let (T , ρ,P) be a PS and B ⊆ T . If B is a compact subspace of T , then B is a
P-compact subspace of T .

Proof. Let {Vη}η∈H be an open cover of B. Then, since B is a compact subspace of T , there exists a
finite set H0 ⊆ H such that B ⊆

⋃
η∈H0

Vη. Hence,

T \

B \⋃
η∈H0

Vη

 = T < P.

Therefore, B is a P-compact subspace of T . �

The converse of Theorem 2.1 is not necessarily true as considered in the following example.

Example 2.1. Let (R, τ1,P1) be defined as follows: U ∈ τ1 if and only if either U = ∅ or 1 ∈ U,
see Example 10 in [11]. Let P1 be defined on R as follows: U ∈ P1 if and only if 1 < U. Then,
(R, τ1,P1) is a PS. Let N be the set of natural numbers and let {Vη}η∈H be any open cover of N such
that Vη , ∅ for every η ∈ H. Let H0 = {Vi}

n
i=1 ⊆ {Vη}η∈H. Then, 1 ∈ R \ [N \

⋃n
i=1 Vi], which means that

R \ [N \
⋃n

i=1 Vi] < P1. Hence, N is a P-compact subspace of T . Note that N is not compact. Indeed,
{ j, 1} j∈N is an open cover of N, which has no finite subcover.

Example 2.2. Let (R,D,P) be a PS defined as follows: U ∈ P if and only if R \ U is an infinite
subset of R. Moreover, V ∈ D if and only if V ⊆ R (the discrete topological space on R, see Example 3
in [11]). Then, Λ = {r}r∈R is an open cover of R. If {V1,V2, ...,Vn} is an arbitrary finite subfamily of Λ,
then

⋃n
i=1 Vi = {r1, ..., rn} ∈ P. Thus, R is not a P-compact space.

Theorem 2.2. P-compactness is hereditarily defined with respect to closed subspaces.
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Proof. Assume that (T , ρ,P) is a P-compact space and M ⊆ T is any closed subspace. Suppose
that Q = {Vη}η∈H is an open cover of M. Then, {Vη}η∈H

⋃
(T \ M) is an open cover of T . Hence,

there exists a finite set H0 = {V1,V2, ...,Vn} ⊆ {T \ M}
⋃
{Vη : η ∈ H} such that

⋃n
i=1 Vi < P. Thus,

T \
[
M \

⋃n
i=1 Vi

]
< P, which implies that M is a P-compact subspace of T . �

The following example shows that if the subspace of T is not closed, then it may not be a P-
compact subspace.

Example 2.3. Let (R,F ,P) be a PS defined as follows:

U ∈ F if and only if either
√

2 ∈ R \ U or R \ U is a finite subset of R, see Example 24 in [11].

LetP be defined as in Example 2.2. Let Q = {Oη}η∈H be an open cover of R. Then, there exists λ ∈ H
such that

√
2 ∈ Oλ. Hence, R \ Oλ is a finite subset of R. Let Q0 = {Oλ} ⊆ Q. Then, since Oλ < P, R

is a P-compact space. Now, consider the subspace R \ {
√

2}. Claim that R \ {
√

2} is not a P-compact
subspace. Indeed, if Q0 is any finite subfamily of Q = {t}t∈R\{ √2}, then

⋃
O∈Q0

O ∈ P. Observe that
R \ {

√
2} is a discrete subspace of R that is not closed.

Theorem 2.3. Let (T , ν,P) be a PS. For a subset K of T , the following properties are equivalent:
(1) K is a P-compact subspace; and
(2) for every family {Lδ}δ∈H of closed sets such that K ∩

(⋂
δ∈H Lδ

)
= ∅, there exists a finite subset H0

of H such that

(T \ K)
⋃⋃

δ∈H0

(T \ Lδ)

 < P.
Proof. (1)⇒ (2): Let {Lδ}δ∈H be a collection of closed sets in T such that K ∩

(⋂
δ∈H Lδ

)
= ∅. Then, we

have the following:

K ⊆

T \⋂
δ∈H

Lδ

 =
⋃
δ∈H

(T \ Lδ) .

Since T \ Lδ is open for each δ ∈ H and K is a P-compact subspace of T , then there exists a finite
subset H0 of H such that

T \

K \
⋃
δ∈H0

(T \ Lδ)


 < P.

Now, we have the following:

(T \ K)
⋃⋃

δ∈H0

(T \ Lδ)

 = T
⋂T \

K \
⋃
δ∈H0

(T \ Lδ)





= T \

K \
⋃
δ∈H0

(T \ Lδ)


 < P.

(2)⇒ (1): Let {Vδ}δ∈H be any cover of K which consists of open sets inT . Then, K∩
(
T \

⋃
δ∈H Vδ

)
=

K ∩
[⋂

δ∈H (T \ Vδ)
]

= ∅.
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Since T \ Vδ is closed for each δ ∈ H, then by (2), there exists a finite subset H0 of H such that

(T \ K)
⋃⋃

δ∈H0

Vδ

 < P.
Therefore, we have the following:

(T \ K)
⋃⋃

δ∈H0

Vδ

 = T \

K \
⋃
δ∈H0

Vδ


 < P.

Hence, K is a P-compact subspace of T . �

Corollary 2.1. If (T , ν,P) is a PS and {Lδ}δ∈H is a family of closed sets in T such that
⋂

δ∈H Lδ =

∅, then (T , ν,P) is a P-compact space if and only if there exists a finite set H0 ⊆

H such that
⋃

δ∈H0
(T \ Lδ) < P.

Theorem 2.4. Let (T , ρ,P) be a PS. If R,T ⊆ T are both P-compact subspaces of T , then R ∪ T is
a P-compact subspace of T .

Proof. Let {Oδ}δ∈H be an open cover of R ∪ T . Since both R and T are P-compact subspaces of
T , then there are two finite subsets of H, namely H0 and H1, such that T \

(
R \

⋃
δ∈H0

Oδ

)
< P and

T \
(
T \

⋃
δ∈H1

Oδ

)
< P. Hence, T \

[
(R ∪ T ) \

⋃
δ∈H0∪H1

Oδ

]
< P. Thus, R ∪ T is a P-compact

subspace of T . �

Theorem 2.5. Let (T , ν,P) be a PS and let R, S be any subsets of T . If R is a P-compact subspace
of T and S is a closed set, then R ∩ S is a P-compact subspace of T .

Proof. Let {Oδ}δ∈H be an open cover of R ∩ S . Then, Q = {Oδ}δ∈H ∪ (T \ S ) is an open cover of
R. Hence, there exists a finite subset of Q, namely Q0, such that T \

[
R \

(⋃
O∈Q0

O
)]
< P. Since

T \
[
R \

(⋃
O∈Q0

O
)]
⊆ T \

[
(R ∩ T ) \

(⋃
O∈Q0

O
)]

, then T \
[
(R ∩ T ) \

(⋃
O∈Q0

O
)]
< P, which implies

that R ∩ T is a P-compact subspace of T . �

Lemma 2.1. Let f : (T , ρ)→ (Y, ν) be a function. Then, the following properties hold:
(1) If f is a bijective function and P is a primal collection on T , then f (P) = { f (V) : V ∈ P} is a

primal collection on Y; and
(2) If f is a bijective function and J is a primal collection on Y, then f −1(J) = { f −1(B) : B ∈ J}

is a primal collection on T .

Proof. (1) Since f is surjective, then f (T ) = Y < f (P). Let W ∈ f (P) and let Q ⊆ W. Since
W ∈ f (P), then ∃M ∈ P such that W = f (M) ⇒ f −1(W) = M. Hence, f −1(Q) ⊆ f −1(W); then,
f −1(Q) ∈ P, which implies that Q ∈ f (P). Now, let W ∩ Q ∈ f (P). Then, there exists R ∈ P such that
W ∩ Q = f (R). Thus, f −1(W ∩ Q) = f −1(W) ∩ f −1(Q) = R. Hence, either f −1(W) ∈ P or f −1(Q) ∈ P.
Then, either W ∈ f (P) or Q ∈ f (P). Therefore, f (P) is a primal collection on Y.

(2) We know that f −1(Y) = T ; since Y < J , then f −1(Y) = T < f −1(J). Let A ∈ f −1(J) and let
B ⊆ A. Then, ∃C ∈ J such that A = f −1(C). Hence, f (A) = f ( f −1(C)) = C. As f (B) ⊆ f (A) = C,
then f (B) ∈ J , which implies that B ∈ f −1(J). Now, suppose that A ∩ C ∈ f −1(J). Then, ∃R ∈ J
such that A ∩ C = f −1(R). Then, f (A ∩ C) = f ( f −1(R)) = R. Thus, f (A) ∩ f (C) = R ∈ J implies that
either f (A) ∈ J or f (C) ∈ J . Therefore, either A ∈ f −1(J) or C ∈ f −1(J). �
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Lemma 2.2. Let (T , ρ,P) be a PS. If f : (T , ρ,P) → (Y, ν) is a function and JP = {B ⊂ Y :
f −1(B) ∈ P}, then the following hold:

(1) JP is a primal collection on Y;
(2) if f is injective, then P ⊆ f −1(JP);
(3) if f is surjective, then JP ⊆ f (P); and
(4) if f is bijective, then JP = f (P).

Proof. (1) We know that f −1(Y) = T < P. Then, Y < JP. Let A ∈ JP and let B ⊆ A. Then,
A ⊂ Y and f −1(A) ∈ P. Since f −1(B) ⊆ f −1(A), then f −1(B) ∈ P; hence B ∈ JP. Now, suppose that
A∩ B ∈ JP. Then, f −1(A∩ B) ∈ P, which implies that f −1(A)∩ f −1(B) ∈ P. Hence, either f −1(A) ∈ P
or f −1(B) ∈ P. Therefore, either A ∈ JP or B ∈ JP.
(2) Let A ∈ P and suppose that f is an injective function. Then, f (A) ⊂ Y and f −1( f (A)) = A ∈ P.
Hence, f (A) ∈ JP, which implies that A ∈ f −1(JP). Then, P ⊆ f −1(JP).
(3) Suppose that A ∈ JP. Then, f −1(A) ∈ P; hence, f ( f −1(A)) = A ∈ f (P).
(4) From (2) and (3), we have JP = f (P). �

Theorem 2.6. If f : (T ,Γ,P)→ (L, ν, f (P)) is a surjective continuous function and W is aP-compact
subspace of T , then f (W) is a P-compact subspace of L.

Proof. Let {Oδ}δ∈H be an open cover of f (W). Since f is a continuous function, then { f −1(Oδ)}δ∈H is an
open cover of f −1( f (W)). As W ⊆ f −1( f (W)), then { f −1(Oδ)}δ∈H is an open cover of W. Since W is a
P-compact space, then there exists a finite set H0 ⊆ H such that T \

[
W \

⋃
δ∈H0

f −1(Oδ)
]
< P. Then,

f (T ) \
[
f (W) \ f ( f −1(

⋃
δ∈H0

Oδ))
]
< f (P). Hence, L \

[
f (W) \

⋃
δ∈H0

Oδ

]
< f (P), since f is a surjective

function. Then, f (W) is a P-compact subspace of L. �

Corollary 2.2. If f : (T ,Γ,P) → (L, ν, f (P)) is a surjective continuous function and (T , ρ,P) is a
P-compact space, then (L, ν, f (P)) is a P-compact space.

Definition 2.2. Let (T , ρ,P) be a PS. A subset A of T is said to be as follows:
(1) Pg-closed if CL(A) ⊆ U whenever T \ (A \ U) = (T \ A) ∪ U < P and U is open; and
(2) g-closed if CL(A) ⊆ U whenever A ⊂ U and U is open.

From the definition above, we have the following remark.

Remark 2.1.
(1) Every closed set is a g-closed set, but the converse is not true in general.
(2) The concept of Pg-closed depends on the definition of the primal space.

To illustrate Remark 2.1, we present the following examples.

Example 2.4. Let T = {r, d, b} and let ρ = {T , ∅, {r}}. Consider the set H = {d}. Then, H ⊆ U ∈ ρ if
and only if U = T ; hence, H is g-closed but it is not a closed set since CL(H) = {d, b} , H.

Example 2.5. Let (T , ρ) and H be defined as in Example 2.4. If P = {∅}, then H is not a Pg-closed
since CL(H) * {r}, although (T \ H) ∪ {r} = {r, b} < P.

Now, let P = 2T \ {T }. Then, H is Pg-closed since (T \ H) ∪ U < P if and only if U = T .
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Theorem 2.7. Let (T , ρ,P) be a PS and let A, B be subsets of T such that A ⊆ B ⊆ CL(A). Then, the
following properties hold:

(1) If A is a P-compact subspace of T and Pg-closed, then B is a compact subspace of T ; and
(2) If B is a P-compact subspace of T and A is g-closed, then A is a P-compact subspace of T .

Proof. (1) Suppose that A is aP-compact subspace of T andPg-closed. Let {Oδ}δ∈H be any open cover
of B. Then, {Oδ}δ∈H is an open cover of A. Since A is a P-compact subspace of T , then there exists
a finite set H0 ⊆ H such that T \

[
A \

⋃
δ∈H0

Oδ

]
< P. Since A is Pg-closed, then CL(A) ⊆

⋃
δ∈H0

Oδ.
Then, B ⊆

⋃
δ∈H0

Oδ. Therefore, B is a compact subspace of T .
(2) Suppose that B is a P-compact subspace of T and A is g-closed. Let {Oδ}δ∈H be any open cover

of A. Now, since B ⊆ CL(A) and A is a g-closed, then B ⊆ CL(A) ⊆
⋃

δ∈HOδ. Hence, there exists a
finite set H0 ⊆ H such that T \

[
B \

⋃
δ∈H0

Oδ

]
< P because B is a P-compact subspace of T . Then,

T \
[
A \

⋃
δ∈H0

Oδ

]
< P since A ⊆ B. Therefore, A is a P-compact subspace of T . �

Corollary 2.3. Let (T , ρ,P) be a PS. If A is Pg-closed and A ⊆ B ⊆ CL(A), then A is a P-compact
subspace of T ⇔ B is a P-compact subspace of T .

3. Strongly P-compact spaces

Definition 3.1. Let (T , ρ,P) be a PS. We say that T is a strongly P-compact space (SP-compact
space) if for every family of open sets {Oδ}δ∈H such that

⋃
δ∈HOδ < P, then there exists a finite set

H0 ⊆ H such that
⋃

δ∈H0
Oδ < P. A subset K of T is said to be an SP-compact subspace of T if for

every family {Oδ}δ∈H of open sets of T such that T \
[
K \

⋃
δ∈HOδ

]
< P, then there exists a finite set

H0 ⊆ H such that T \
[
K \

⋃
δ∈H0

Oδ

]
< P.

Example 3.1. Let (R, τ1,P1) be a PS defined in Example 2.1. Let {Oδ}δ∈H be any family of open
sets. Then,
Case 1. Oδ = ∅ for every δ ∈ H. Then, since R \

[
N \

⋃
δ∈HOδ

]
∈ P1, there is nothing to prove.

Case 2. ∃ λ ∈ H such that Oλ , ∅. Then, R \
[
N \

⋃
δ∈HOδ

]
< P1. Pick a finite set H0 ⊆ H such that

λ ∈ H0. Hence, R \
[
N \

⋃
δ∈H0

Oδ

]
< P1. Thus, N is an SP-compact subspace of R.

From the definition, it is clear that every SP-compact is a P-compact subspace of T . However, this
relation is not reversible, which is proven in next example.

Example 3.2. Let (R,F ,P) be as defined in Example 2.3. Consider the family M = {{x} : x ∈
R and x ,

√
2}. Then,

⋃
x∈R\{

√
2}{x} = R \ {

√
2} < P. Now, let {Mi : i ∈ {1, ..., n}} be an arbitrary

finite subfamily ofM. Then,
⋃n

i=1 Mi ∈ P. Hence, R is not an SP-compact space. Observe that R is a
P-compact space.

Example 3.3. Let H = R × (R+ ∪ {0}). For (n,m) ∈ H and r > 0. Define the set Mr(n,m) as follows:

Mr(n,m) =


Br(n,m) if r ≤ m;

Br(n, r) ∪ {(n, 0)} ∪ Br(0, r), if m = 0.

Let B = {Mr(n,m)} be a base for the topology µ on the set H. Then, (H, µ,P), where P = {∅} is a
PS. Hence,

AIMS Mathematics Volume 9, Issue 11, 32124–32137.
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(1) (H, µ,P) is not a compact subspace of H. To show that, consider the family Q = {M1(n, 0)} ∪
{M1(n,m) : m ≥ 1}. Then, Q is an open cover of H. Since (t, 0) < {M1(n,m) : m ≥ 1} and
(t, 0) ∈ {M1(n, 0)} if and only if n = t, then the above open cover has no finite subcover. Thus, H
is not compact.

(2) (H, µ,P) is an SP-compact subspace of H since P = ∅.

Theorem 3.1. Let (T ,Γ,P) be a PS and let K ⊆ T . Consider the family of closed sets {Cδ}δ∈H such
that (T \K)

⋃[⋃
δ∈H(T \Cδ)

]
< P. Then, K is an SP-compact subspace of T if and only if there exists

a finite set H0 ⊆ H such that (T \ K)
⋃[⋃

δ∈H0
(T \Cδ)

]
< P.

Proof. Suppose that K is an SP-compact subspace of T and let {Cδ}δ∈H be a family of closed sets such
that (T \ K)

⋃[⋃
δ∈H(T \Cδ)

]
< P. Then,

T \

K \⋃
δ∈H

(T \Cδ)

 = T \

K \
T \⋂

δ∈H

Cδ




= T \

K ⋂⋂
δ∈H

Cδ




= (T \ K)
⋃⋃

δ∈H

(T \Cδ)

 < P.
Since T \Cδ is an open set for each δ ∈ H and K is an SP-compact subspace of T , then there exists

a finite set H0 ⊆ H such that

T \

K \⋃
δ∈H0

(T \Cδ)

 < P.
Then,

T \

K \⋃
δ∈H0

(T \Cδ)

 = T \

K \
T \⋂

δ∈H0

Cδ




= (T \ K)
⋃⋃

δ∈H0

(T \Cδ)

 < P.
Now, suppose that the condition in the theorem holds and let {Oδ}δ∈H be a family of open sets such that
T \

[
K \

⋃
δ∈HOδ

]
< P. Then, {(T \ Oδ)}δ∈H is a family of closed sets. Now, we have the following:

T \

K \⋃
δ∈H

Oδ

 = T \

K ⋂T \⋃
δ∈H

Oδ




= T \

K ⋂⋂
δ∈H

(T \ Oδ)


 = (T \ K)

⋃⋃
δ∈H

Oδ

 < P.
AIMS Mathematics Volume 9, Issue 11, 32124–32137.
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Thus, there is a finite set H0 ⊆ H such that

(T \ K)
⋃⋃

δ∈H0

Oδ

 < P.
Therefore, we have the following:

T \

K \⋃
δ∈H0

Oδ

 = T \

K ⋂T \⋃
δ∈H0

Oδ




= T \

K ⋂⋂
δ∈H0

(T \ Oδ)




= (T \ K)
⋃⋃

δ∈H0

Oδ

 < P.
This shows that K is an SP-compact subspace of T . �

Corollary 3.1. Let (T , ρ,P) be a PS and let {Hη}η∈H be a collection of closed sets such that
⋃

η∈H(T \
Hη) < P. Then, (T ,Γ,P) is an SP-compact space if and only if there exists a finite set H0 ⊆ H such
that

⋃
η∈H0

(T \ Hη) < P.

Theorem 3.2. Let (T , ρ,P) be a PS. If A is Pg-closed and A ⊆ B ⊆ CL(A), then A is an SP-compact
subspace of T if and only if B is an SP-compact subspace of T .

Proof. (1) Let A be an SP-compact subspace of T and let {Oδ}δ∈H be a family of open sets such that
T \

[
B \

⋃
δ∈HOδ

]
< P. Then, since A ⊆ B, we have T \

[
A \

⋃
δ∈HOδ

]
< P; then, there exists a

finite set H0 ⊆ H such that T \
[
A \

⋃
δ∈H0

Oδ

]
< P because A is an SP-compact subspace. Now, as

A is Pg-closed, we have CL(A) ⊆
⋃

δ∈H0
Oδ. Then, T \

[
B \

⋃
δ∈H0

Oδ

]
= T < P. Hence, B is an

SP-compact subspace.
(2) Let B be an SP-compact subspace of T and let {Oδ}δ∈H be a family of open sets such that

T \
[
A \

⋃
δ∈HOδ

]
< P. Since A is Pg-closed, then CL(A) ⊆

⋃
δ∈HOδ. As A ⊆ B ⊆ CL(A), then

B ⊆
⋃

δ∈HOδ, which implies that T \
[
B \

⋃
δ∈HOδ

]
< P. Since B is an SP-compact space, then there

exists a finite set H0 ⊆ H such that T \
[
B \

⋃
δ∈H0

Oδ

]
< P. Therefore, T \

[
A \

⋃
δ∈H0

Oδ

]
< P, which

implies that A is an SP-compact subspace of T . �

Theorem 3.3. Let (T ,Γ,P) be a PS. If R,K ⊆ T are both SP-compact subspaces of T , then R∪ K is
an SP-compact subspace of T .

Proof. Let {Oδ}δ∈H be a family of open sets such that

T \

(R ∪ K) \
⋃
δ∈H

Oδ

 < P.
Then, T \

[
R \

⋃
δ∈HOδ

]
< P and T \

[
K \

⋃
δ∈HOδ

]
< P. Since R and K are both SP-compact, then

there exist two finite sets H0 ⊆ H and H1 ⊆ H such thatT \[R\
⋃

δ∈H0
Oδ] < P andT \[K\

⋃
δ∈H1

Oδ] < P,
respectively. Hence, [T \(R\

⋃
δ∈H0

Oδ)]
⋂

[T \(K\
⋃

δ∈H1
Oδ)] < P. Thus, T \

[
(R ∪ K) \

⋃
δ∈H0∪H1

Oδ

]
<

P, which implies that R ∪ T is an SP-compact space. �
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Theorem 3.4. Let (T ,Γ,P) be a PS and R,K be subsets of T . If R is an SP-compact subspace of T
and K is a closed set, then R ∩ K is an SP-compact subspace of T .

Proof. Let {Oδ}δ∈H be a family of open sets such that

T \

(R ∩ K) \
⋃
δ∈H

Oδ

 < P.
Then, [T \ (R \

⋃
δ∈HOδ)]

⋃
[T \ (K \

⋃
δ∈HOδ)] < P. Let G = T \

[
K \

⋃
δ∈HOδ

]
. Then, G is an open

set. Since T \ [R \ (
⋃

δ∈HOδ ∪ G)] < P and R is an SP-compact subspace of T , then there exists a
finite set {Oi}

n
i=1 ⊆ {G,Oδ : δ ∈ H} such that T \ [R \

⋃n
i=1 Oi] < P. Now, since T \ [R \

⋃n
i=1 Oi] ⊆

T \ [(R ∩ K) \
⋃n

i=1 Oi], then T \ [(R ∩ K) \
⋃n

i=1 Oi] < P, which implies that R ∩ K is an SP-compact
subspace of T . �

Corollary 3.2. Let (T ,Γ,P) be an SP-compact space and B be a closed set. Then, B is an SP-compact
subspace of T .

Theorem 3.5. If h : (T ,Γ,P)→ (L, ν, h(P)) is a bijective continuous function and Q is an SP-compact
subspace of T , then h(Q) is an SP-compact subspace of L.

Proof. Suppose that {Wη}η∈H is a family of open sets such that

L \

h(Q) \
⋃
η∈H

Wη

 < h(P).

Then, h−1(L) \ [h−1(h(Q)) \
⋃

η∈H h−1(Wη)] < P. Hence, T \ [Q \
⋃

η∈H h−1(Wη)] < P, and {h−1(Wη)}η∈H is
a family of open sets in T since h is a continuous function. Therefore, there exists a finite set H0 ⊆ H

such that T \ [Q \
⋃

η∈H0
h−1(Wη)] < P, which implies that L \ [h(Q) \

⋃
η∈H0

Wη] < h(P). Hence, h(Q)
is an SP-compact subspace of L. �

Corollary 3.3. If d : (T ,Γ,P) → (L, ν, d(P)) is a bijective continuous function and T is an SP-
compact space, then (L, ν, d(P)) is an SP-compact space.

Theorem 3.6. If ~ : (T ,Γ,P)→ (L, ν,JP) is a continuous bijective function and Q is an SP-compact
subspace of T , then ~(Q) is an SP-compact subspace of L.

Proof. Let {Oδ}δ∈H be a family of open sets such that

L \

~(Q) \
⋃
δ∈H

Oδ

 < JP.
Then, ~−1

(
L \

[
~(Q) \

⋃
δ∈HOδ

])
< P. Therefore, T \[Q\

⋃
δ∈H ~

−1(Oδ)] < P. Since Q is an SP-compact
subspace, then there exists a finite set H0 ⊆ H such that T \ [Q \

⋃
δ∈H0
~−1(Oδ)] < P. Hence,

L \

~(Q) \
⋃
δ∈H0

Oδ

 < JP.
�

Corollary 3.4. If ~ : (T ,Γ,P)→ (R, ν,JP) is a bijective continuous function and T is an SP-compact
space, then (R, ν,JP) is an SP-compact space.
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4. Super P-compact spaces

Definition 4.1. Let (T , ρ,P) be a PS. We say that (T , ρ,P) is a super P-compact space (SUP-
compact space) if for every family of open sets {Vη}η∈H such that

⋃
η∈H Vη < P, then there exists a finite

set H0 ⊆ H such that T ⊆
⋃

η∈H0
Vη. Let A ⊆ T . Then, A is an SUP-compact subspace of T if for every

family of open sets {Vη}η∈H such that T \
[
A \

⋃
η∈H Vη

]
< P, then there exists a finite set H0 ⊆ H such

that A ⊆
⋃

η∈H0
Vη.

Example 4.1. Let (R,ΓP,P), where P is the set of irrational numbers, be defined as follows:
U ∈ ΓP if and only if either U ∩ P = ∅ or U = R and U ∈ P if and only if

√
2 < U. Let {Wη}η∈H be any

family of open sets such that
⋃

η∈HWη < P. Then,
√

2 ∈
⋃

η∈HWη, which implies that ∃ γ ∈ H such that
Wγ = R. Therefore, (R,ΓP,P) is an SUP-compact space.

Remark 4.1. From the Definition 4.1, it is obvious that every SUP-compact subspace of T is a
compact subspace. Indeed, let (T , ρ,P) be a PS and let A ⊆ T be an SUP-compact subspace of
T . Assume that {Wη}η∈H is an open cover of A ⊆ T . Then, T \ [A \

⋃
η∈HWη] = T < P. Hence, there

exists a finite set H0 ⊆ H such that A ⊆
⋃

η∈H0
Wη.

The following example shows that not every compact space is an SUP-compact space.

Example 4.2. Let (R, ρ0,P) be defined as follows:
U ∈ ρ0 if and only if either 0 < U or U = R, and let P be defined as in Example 2.2. Then,
V = {{x} : x ∈ R and x , 0} is a family of open sets such that

⋃
x∈R\{0}{x} = R \ {0} < P. However,

if V0 is any finite subfamily of V, then R *
⋃

V∈V0
V. Hence, (R, ρ0,P) is an example of a compact

space that is not an SUP-compact space.

On the other hand, every SUP-compact space is an SP-compact space. However, not every SP-
compact space is an SUP-compact space, as shown in the following example.

Example 4.3. Consider (R, τ1,P1) that is defined in Example 2.1. In Example 3.1, we proved that
(R, τ1,P1) is an SP-compact space. Consider the family of open sets V = {Vt = {1, t} : t ∈ N}. Let
V0 be any finite subfamily of V. Then,

⋃
V∈V0

V = {1, t1, t2, ..., tk} for some k ∈ N and N *
⋃

V∈V0
V.

Hence, N is not an SUP-compact space.

Theorem 4.1. Let (T , ρ,P) be a PS and let K ⊆ T . Suppose that {Eη}η∈H is a collection of closed sets
such that (T \ K)

⋃[⋃
η∈H(T \ Eη)

]
< P. Then, K is an SUP-compact subspace of T if and only if

there exists a finite subset H0 ⊆ H such that K ∩
[⋂

η∈H0
Eη

]
= ∅.

Proof. First: Suppose that K is an SUP-compact space. Let {Eη}η∈H be a collection of closed sets of T
such that

[T \ K]
⋃⋃

η∈H

(T \ Eη)

 < P.
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T \

K \⋃
η∈H

(T \ Eη)

 = T \

K \
T \⋂

η∈H

Eη




= T \

K ⋂⋂
η∈H

Eη




= (T \ K)
⋃⋃

η∈H

(
T \ Eη

) < P.
Since K is an SUP-compact subspace and {T \Eη}η∈H is a family of open sets, then K ⊆

⋃
η∈H0

(
T \ Eη

)
.

Hence, K ∩
(⋂

η∈H0
Eη

)
= ∅.

Second: Suppose that the condition in the theorem holds and let {Wη}η∈H be a family of open sets
such that T \

[
K \

⋃
η∈HWη

]
< P. Then, {T \Wη}η∈H is a family of closed sets; hence,

T \

K \⋃
η∈H

Wη

 = (T \ K)
⋃⋃

η∈H

Wη

 < P.
Thus, there exists a finite set H0 ⊆ H such that

K ∩

⋂
η∈H0

(T \Wη)

 = ∅.

Hence, K ⊆
⋃

η∈H0
Wη. This shows that (T , ρ,P) is an SUP-compact space. �

Corollary 4.1. Let (T , ρ,P) be aPS and {Eη}η∈H be a collection of closed sets such that
⋃

η∈H(T \Eη) <
P. Then, (T , ρ,P) is an SUP-compact space if and only if there exists a finite subset H0 ⊆ H such that⋂

η∈H0
Eη = ∅.

Theorem 4.2. Let (T , ρ,P) be a PS and A, B ⊆ T such that A ⊆ B ⊆ CL(A). Then, the following
properties hold:

(1) If A is an SUP-compact subspace and g-closed, then B is an SUP-compact subspace.
(2) If A is an SP-compact subspace and Pg-closed, then B is an SUP-compact subspace.
(3) If B is a compact subspace and A is Pg-closed, then A is an SUP-compact subspace.

Proof. (1) Suppose that A is an SUP-compact subspace of T and g-closed. Let {Vη}η∈H be a family of
open sets such that T \

[
B \

⋃
η∈H Vη

]
< P. Then, T \

[
A \

⋃
η∈H Vη

]
< P. Since A is an SUP-compact

subspace of T , then there exists a finite subset H0 ⊆ H such that A ⊆
⋃

η∈H0
Vη. Since A is g-closed,

then CL(A) ⊆
⋃

η∈H0
Vη. Hence, B ⊆

⋃
η∈H0

Vη. Therefore, B is an SUP-compact subspace of T .
(2) Suppose that A is an SP-compact subspace of T and Pg-closed. Let {Vη}η∈H be a family of

open sets such that T \
[
B \

⋃
η∈H Vη

]
< P. Then, T \

[
A \

⋃
η∈H Vη

]
< P. Since A is an SP-compact

subspace of T , then there exists a finite set H0 ⊆ H such that T \
[
A \

⋃
η∈H0

Vη

]
< P. Therefore,

CL(A) ⊆
⋃

η∈H0
Vη because A is Pg-closed. Thus, B ⊆

⋃
η∈H0

Vη. Hence, B is an SUP-compact
subspace of T .
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(3) Suppose that B is a compact subspace of T and A is Pg-closed. Let {Vη}η∈H be any family of
open sets such that T \

[
A \

⋃
η∈H Vη

]
< P. Since A is Pg-closed, then we have B ⊆ CL(A) ⊆

⋃
η∈H Vη.

Hence, there exists a finite set H0 ⊆ H such that B ⊆
⋃

η∈H0
Vη. Then, A ⊆

⋃
η∈H0

Vη, which implies that
A is an SUP-compact subspace of T . �

Corollary 4.2. Let (T , ρ,P) be a PS and let A be Pg-closed such that A ⊆ B ⊆ CL(A). Then, A is an
SUP-compact subspace of T if and only if B is an SUP-compact subspace of T .

Theorem 4.3. Let (T , ρ,P) be a PS and let A, B ⊆ T both be SUP-compact subspaces of T . Then,
A ∪ B is an SUP-compact subspace of T .

Proof. Let {Oη}η∈H be any family of open sets such that

T \

(A ∪ B) \
⋃
η∈H

Oη

 < P.
Then, T \

[
A \

⋃
η∈HOη

]
< P and T \

[
B \

⋃
η∈HOη

]
< P. Since A and B are both SUP-compact

subspaces of T , then there exist finite subsets of H, namely HA and HB, such that A ⊆
⋃

η∈HA
Oη and B ⊆⋃

η∈HB
Oη. Hence, A∪B ⊆

⋃
η∈HA∪HB

Oη. This shows that A∪B is an SUP-compact subspace of T . �

Theorem 4.4. Let (T , ρ,P) be a PS and let A, B ⊆ T . If A is an SUP-compact subspace of T and B
is closed, then A ∩ B is an SUP-compact subspace of T .

Proof. Let {Wδ}δ∈H be a family of open sets such that

T \

(A ∩ B) \
⋃
δ∈H

Wδ

 < P.
Then, {Wδ}δ∈H ∪ {T \ B} is a family of open sets such that

T \

A \
(T \ B)

⋃⋃
δ∈H

Wδ



 < P.

Since A is an SUP-compact subspace of T , then there exists a finite subfamilyW = {Wi}
n
i=1 ⊆ {Wδ :

δ ∈ H}∪{T \B} such that A ⊆
⋃n

i=1 Wi. Then, A∩B ⊆
⋃n

i=1 Wi. This shows that A∩B is an SUP-compact
subspace of T . �

Corollary 4.3. If (T , ρ,P) is an SUP-compact space and B ⊆ T is closed, then B is an SUP-compact
subspace of T .

Theorem 4.5. If ~ : (T ,Λ,P) → (L,Γ, ~(P)) is a bijective continuous function and Q is an SUP-
compact subspace of T , then ~(Q) is an SUP-compact subspace of L.

Proof. Let {Vλ}λ∈H be a family of open sets such that

L \

~(Q) \
⋃
λ∈H

Vλ

 < ~(P).

Then, T \ [Q \
⋃

λ∈H ~
−1(Vλ)] < P. Hence, Q ⊆

⋃
λ∈H0
~−1(Vλ) for a finite set H0 ⊆ H. Thus, ~(Q) ⊆⋃

λ∈H0
Vλ, which implies that ~(Q) is an SUP-compact subspace of L. �
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Corollary 4.4. If ~ : (T ,Λ,P) → (L,Γ, ~(P)) is a bijective continuous function and (T ,Λ,P) is an
SUP-compact space, then (L,Γ, ~(P)) is an SUP-compact space.

Theorem 4.6. If ~ : (T ,Λ,P) → (L,Γ,JP) is a surjective continuous function and Q is an SUP-
compact subspace of T , then ~(Q) is an SUP-compact subspace of L.

Proof. Suppose that {Vδ}δ∈H is a family of open sets such that

L \

~(Q) \
⋃
δ∈H

Vδ

 < JP.
Then, T \ [Q \

⋃
δ∈H ~

−1(Vδ)] < P. Hence, Q ⊆
⋃

δ∈H0
~−1(Vδ) for a finite set H0 ⊆ H. Therefore,

~(Q) ⊆
⋃

δ∈H0
Vδ, which implies that ~(Q) is an SUP-compact subspace. �

Corollary 4.5. If f : (T , ρ,P) → (L, ν,JP) is a surjective continuous function and (T , ρ,P) is an
SUP-compact space, then (L, ν,JP) is an SUP-compact space.

Example 4.4. Let (R,U,P) be defined as follows:

T ∈ P if and only if 0 < T,

W ∈ U if and only if W = ∅ or ∀ r ∈ W ∃ (a, b) such that r ∈ (a, b) ⊆ W,

see Example 28 [11]. If {Vδ}δ∈H is a family of open sets, then we have the following two cases:
Case 1. 0 < Vδ for every δ ∈ H. Then, there is nothing to prove since

⋃
δ∈H Vδ ∈ P.

Case 2. There exists λ ∈ H such that 0 ∈ Vλ. Then, Vλ < P. Hence, (R,U,P) is an SP-compact space,
which implies that (R,U,P) is a P-compact space.

Consider the familyV = {Vn = (−n, n) : n ∈ N}. Then,
⋃

n∈N Vn = R < P. LetV0 = {Vk = (−k, k) :
k ≤ m, k ∈ N} ⊆ V for some m ∈ N. Then, since R *

⋃
k≤m Vk, (R,U,P) is not an SUP-compact space.

Remark 4.2. We have the following relationships:

SUP-compact space⇒ SP-compact space
⇓ ⇓

compact space⇒ P-compact space

5. Conclusions

In this work, we introduced new notions using a primal structure. We started by providing a
definition of P-compactness. Then, we proposed a definition of another concept called strongly P-
compactness (SP-compactness) and observed that every SP-compact space is a P-compact space. A
counterexample was discussed to show the converse of that relation is not necessary true. Furthermore,
we defined super P-compact spaces (SUP-compact spaces). Additionally, more counterexamples
and results were presented to illustrate the relations between SUP-compactness, SP-compactness,
P-compactness, and compactness. It is worth noting that the primal structure was considered
in both fuzzy and soft theories, as discussed in [12, 13]. In future work, we aim to define the
concepts ofP-compactness, SP-compactness, and SUP-compactness within the framework of a fuzzy
primal structure.
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