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Abstract: Many researchers have proposed iterative algorithms for nonlinear equations and systems
of nonlinear equations; similarly, in this paper, we developed two two-step algorithms of the predictor-
corrector type. A combination of Taylor’s series and the composition approach was used. One of the
algorithms had an eighth order of convergence and a high-efficiency index of approximately 1.5157,
which was higher than that of some existing algorithms, while the other possessed fourth-order
convergence. The convergence analysis was carried out in both senses, that is, local and semi-local
convergence. Various complex polynomials of different degrees were considered for visual analysis
via the basins of attraction. We analyzed and compared the proposed algorithms with other existing
algorithms having the same features. The visual results showed that the modified algorithms had
a higher convergence rate compared to existing algorithms. Real-life systems related to chemistry,
astronomy, and neurology were used in the numerical simulations. The numerical simulations of the
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test problems revealed that the proposed algorithms surpassed similar existing algorithms established
in the literature.

Keywords: local convergence; zeros; efficiency index; Newton’s algorithm; polynomiography;
system of non-linear equations
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1. Introduction

In the field of applied mathematics, solving algebraic and non-algebraic nonlinear equations is an
open challenge for mathematicians and scientists. The exact solution of many nonlinear equations
is nearly impossible. Therefore, it is important to develop new algorithms for dealing with such
equations. Hence, researchers always keep searching for new numerical algorithms for getting the
approximate solution of the nonlinear equations of the following type (if taken in univariate case):

ψ(x) = 0, (1.1)

where ψ is a Fréchet-differentiable operator defined on a nonempty, open convex subset S of a Banach
space B with values in a Banach space B′. Similarly, if taken into the multivariate case (a system of n
nonlinear equations in n unknowns) then one will have the following structure in its vector form:

ψ(x) = 0, (1.2)

where ψ : Rn → Rn.
The Newton-Raphson (NR) algorithm is a common iterative algorithm for finding approximate

solutions to nonlinear equations with variables that have real values [1]. The fundamental notion of this
concept is centered on the use of linear approximations. When presented with an initial estimate for the
root of a function, denoted as ψ(x) = 0, it is possible to create a linear approximation of the function
in the vicinity of this estimate by employing the Taylor series. This approximation facilitates the
formulation of the subsequent estimate for the root, which is then iteratively revised to approximate the
solution. The algorithm commences by establishing an initial approximation and thereafter iteratively
enhances it through the evaluation of the function and its derivative. The aforementioned approach
is notable for its expeditious convergence in close proximity to the true root, its simplicity, and its
wide-ranging applicability across functions.

Nevertheless, the NR approach does have its limitations. It is worth noting that the convergence of
the algorithm is not always assured and is strongly dependent on the initial estimate. The computational
demand or complexity of computing the derivative at each iteration can be significant for certain
functions. Moreover, it is worth noting that the procedure may encounter difficulties or deviate from
its intended path when launched in proximity to an inflection point or when the derivative approaches
zero. When confronted with a function that has numerous roots, the outcome of the approach can
differ, as it may converge to any of these roots depending on the initial approximation. To enhance
its effectiveness, it is crucial to carefully choose the initial estimate and be aware of the potential
constraints of the procedure. Adjustments, like introducing a damping factor, can also be incorporated
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to enhance its robustness. The classical Newton’s technique to find the approximate solution of the
non-linear equation (1.1) is given as:

x j+1 = x j −
ψ(x j)
ψ′(x j)

, j = 1, 2, . . . . (1.3)

This second-order one-step approach has two function evaluations per iteration. The theoretical limit
of the one-point techniques is beaten by the multi-step iterative approaches of both higher convergence
order and better efficiency index. The formula for the efficiency index is κ = r1/p, where r is the
order of the algorithm and p is the number of function evaluations per iteration. The authors proposed
solving a system of two equations to solve a scalar problem in [2]. So, the linked system’s solutions on
the identity line solve the problem. In problematic circumstances where the scalar Newton approach
fails, this strategy succeeds. The authors in [3], proposed an alternate algorithm for solving nonlinear
equation systems when Newton’s algorithm fails. Based on the paper [2], the proposed technique
extends systems. The theory behind Newton’s algorithm is used to solve an associated system to
approximate a system of equations. Many such iterative algorithms have been published.

Researchers have focused on improving the convergence order and reducing function evaluations,
leading to the development of multi-step iterative algorithms. The authors introduced a three-step
iterative nonlinear approach for nonlinear equations and systems in the paper [4]. Iterations of the
proposed technique need three function evaluations and two first-order derivative checks. The theory
proves the proposed strategy is sixth-order convergent. The suggested algorithm is compared to others
based on error distributions, computational efficiency, and CPU times. Qureshi et al. in [5] combined
existing algorithms to create an optimal fourth-order algorithm for solving scalar and vector forms of
problems. A new root-finding algorithm [6] that combines forward and finite-difference methods, is
efficient, derivative-free, and cheaper per iteration. Quantitative and graphical studies reveal that the
approach is quintic-order convergent and outperforms previous algorithms. An eighth-order three-step
algorithm after merging second-order NR with an existing fourth-order algorithm has been devised
in [7] that is later proven to be efficient while solving single-variable nonlinear physical models. In a
research study [8], a twelfth-order numerical algorithm was proposed to solve the nonlinear equations
of the type (1.1), however, the algorithm was four-step and thus required seven function evaluations
per iteration. Algorithms for solving nonlinear algebraic equations are also needed while discretizing
ordinary and partial differential equations [9–12].

The following are some of the well-known iterative algorithms having fourth- and eighth-order
convergence selected for comparison with algorithms developed in this research work. For example,
Hueso et al. in [13] proposed an iterative fourth-order algorithm, i.e., Jarratt’s method. Newton’s step
is used as a predictor of the following form and abbreviated as PJNM:

y j = x j −
2
3
ψ(x j)
ψ′(x j)

,

x j+1 = x j −
ψ(x j)
ψ′(x j)

·
3ψ′(y j) + ψ′(x j)

6ψ′(y j) − 2ψ′(x j)
,

(1.4)

where j = 1, 2, . . ..
Behl in 2015 [14] constructed an optimal algorithm of fourth-order convergence of the following
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form and abbreviated as KTNM:

y j = x j −
ψ(x j)
ψ′(x j)

,

x j+1 = y j −
ψ(y j)
ψ′(x j)

·
ψ(x j) + 2ψ(y j)

ψ(x j)
,

(1.5)

where j = 1, 2, . . ..
Similarly, Özban and Kaya in [15] proposed two iterative fourth-order algorithms of the following

form and abbreviated as CNM1 and CNM2:

y j = x j −
2ψ(x j)
3ψ′(x j)

,

x j+1 = x j −
16ψ′(y j)2

−9ψ′(x j)2 + 22ψ′(x j)ψ′(y j) + 3ψ′(y j)2 ·
ψ(x j)
ψ′(y j)

,

(1.6)

and

y j = x j −
2ψ(x j)
3ψ′(x j)

,

x j+1 = x j −
5ψ′(x j)2 − 12ψ′(x j)ψ′(y j) + 15ψ′(y j)2

8ψ′(y j)2 ·
ψ(x j)
ψ′(y j)

,

(1.7)

where j = 1, 2, . . ..
In 2021, Kong-ied proposed a new eight-order algorithm [16], abbreviated as ONM:

y j = x j −
ψ(x j)
ψ′(x j)

,

z j = y j −
ψ(x j)2ψ(y j)

ψ(x j)2ψ′(x j) − 2ψ(x j)ψ′(x j)ψ(y j) + ψ′(x j)ψ(y j)2 ,

x j+1 = z j −
ψ(z j)
ψ′(z j)

,

(1.8)

where j = 1, 2, . . ..
Motivated by the current studies in this direction, we attempt to propose two algorithms having

eighth- and fourth-order convergence for solving nonlinear models of the type (1.1). The development
of the algorithms was extensively supported by alternating Taylor’s series expansion and the classical
Halley algorithm. Moreover, the developed algorithms are equally applicable to both univariate and
multivariate cases.

This article is structured as follows: In Section 2, we present the basic construction of both
algorithms including their local convergence analysis based on Taylor’s expansion, while Section 3
presents the local and semilocal convergence analysis for the proposed algorithms under consideration.
A detailed visual analysis via the polynomiography of the algorithms is presented in Section 4. To
prove the better performance of the proposed algorithms, some numerical experiments (single-variable
and system), including both academic and real-life situations, are conducted in Section 5, whereas the
concluding remarks with some future directions are described in Section 6.
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2. Derivation of the proposed algorithms

In this section, we present the construction of the proposed two algorithms. Moreover, we perform
the convergence analysis of the algorithms via Taylor’s expansion.

2.1. Construction of the eighth-order algorithm

Suppose that ψ is a real function defined on the interval W ⊂ R. Let ξ ∈ W be an exact simple zero
for the non-linear equation ψ(x) = 0 and further let x j be an initial guess close to the exact root of the
nonlinear equation. By the Taylor series expansion, the function ψ is expanded to three terms around
the point x j as follows:

ψ(x) = ψ(x j) + (x − x j)ψ′(x j) +
(x − x j)2

2!
ψ′′(x j) + O(x − x j)3. (2.1)

For getting the next approximation x j+1 for the root of ψ(x) = 0 in Eq (2.1), we assume that ψ(x j+1) = 0.
Hence, we get

ψ(x j) + (x j+1 − x j)ψ′(x j) +
(x j+1 − x j)2

2!
ψ′′(x j) = 0. (2.2)

After simplification, we get

x j+1 = x j −
ψ(x j)
ψ′(x j)

−
(x j+1 − x j)2

2
ψ′′(x j)
ψ′(x j)

. (2.3)

From [17], we have

x j+1 − x j = −
2ψ(x j)ψ′(x j)

2ψ′2(x j) − ψ(x j)ψ′′(x j)
. (2.4)

Substituting Eq (2.4) into Eq (2.3), we get

x j+1 = x j −
ψ(x j)
ψ′(x j)

−

(
−

2ψ(x j)ψ′(x j)
2ψ′2(x j) − ψ(x j)ψ′′(x j)

)2

2
·
ψ′′(x j)
ψ′(x j)

. (2.5)

After simplification, we get

x j+1 = x j −

[ ψ(x j)
ψ′(x j)

+
2ψ2(x j)ψ′(x j)ψ′′(x j)

[2ψ′2(x j) − ψ(x j)ψ′′(x j)]2

]
. (2.6)

Using the second-order Newton-Raphson algorithm as a predictor and the Eq (2.6) as a corrector, we
develop a predictor-corrector (PC) type algorithm as given below:

y j = x j −
ψ(x j)
ψ′(x j)

,

x j+1 = y j −

[
ψ(y j)
ψ′(y j)

+
2ψ2(y j)ψ′(y j)ψ′′(y j)

[2ψ′2(y j) − ψ(y j)ψ′′(y j)]2

]
,

(2.7)

where j = 1, 2, . . .. The new PC numerical algorithm given by (2.7) has an eighth-order of
convergence and is denoted as PCNM8. The proposed PCNM8 algorithm has five function evaluations
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(two evaluations of functions, two first-order derivatives, and one second-order derivative), and the
efficiency index of this algorithm is r1/5 ≈ 1.5157, where r stands for the order of the algorithm. It may
be noted that the efficiency index of the proposed eighth-order algorithm is higher than the classical
NR algorithm.

2.2. Construction of the fourth-order algorithm

In several research studies, researchers have employed different strategies, including finite
differences, weight functions, regularization, and the secant algorithm, among others; to get rid of
higher-order derivatives. Following the same approach, we attempt to use several possible approaches
to remove the second-order derivative in the above-developed eighth-order algorithm in Eq (2.7). For
this purpose, the following structure:

ψ′′(y j) =
3
2
·
ψ′(x j) − ψ′(y j)

ψ′(x j)
. (2.8)

for the second derivative taken from [18] is chosen due to its simplicity and better simulation results.
Substituting Eq (2.8) into Eq (2.7), we get

y j = x j −
ψ(x j)
ψ′(x j)

,

x j+1 = y j −

 ψ(y j)
ψ′(y j)

−
12ψ2(y j)ψ′(y j)ψ′(x j)(ψ′(y j) − ψ′(x j))(

4ψ′2(y j)ψ′(x j) + 3ψ(y j)ψ′(y j) − 3ψ(y j)ψ′(x j)
)2

 .
(2.9)

Hence, the algorithm (2.9) is a modified algorithm that is now free from the second derivative and
abbreviated as PCNM4.

2.3. Convergence analysis of proposed algorithms via Taylor expansion

Theorem 1. Let ξ ∈ W be a simple root of a differential function ψ : W ⊂ R→ R, where W is an open
interval. If x0 is an initial guess considerably near ξ, then the modified algorithm defined by (2.7) has
eighth-order convergence and satisfies the following error equation:

e j+1 =
3ψ′′(ξ)7

64ψ′(ξ)7 e8
j + O(e9

j), (2.10)

where e j = x j − ξ.

Proof. Since ξ is a root of ψ and e j = x j − ξ is the error at jth iteration, we can expand ψ(x j) in power
of e j by Taylor’s series expansion as follows:

ψ(x j) = ψ′(ξ)e j +
1
2
ψ′′(ξ)e2

j + O(e j)3. (2.11)

By Taylor’s series for 1
ψ′(x j)

about ξ, we obtain

1
ψ′(x j)

=
1

ψ′(ξ)
−
ψ′′(ξ)e j

ψ′(ξ)2 + O(e j)2. (2.12)
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Multiplying (2.11) and (2.12), we get

ψ(x j)
ψ′(x j)

= e j −
1

ψ′(ξ)
−
ψ′′(ξ)e2

j

2ψ′(ξ)
−
ψ′′(ξ)2e3

j

2ψ′(ξ)2 + O(e j)4. (2.13)

Using (2.13) in the first step of (2.7), we get

σ j =
ψ′′(ξ)e2

j

2ψ′(ξ)
+
ψ′′(ξ)2e3

j

2ψ′(ξ)2 + O(e j)4, (2.14)

where σ j = y j − ξ. By Taylor’s series for ψ(y j) about ξ, we obtain

ψ(y j) = ψ′(ξ)σ j +
1
2
ψ′′(ξ)σ2

j + O(σ j)3. (2.15)

By Taylor’s series for 1
ψ′(y j)

about ξ, we obtain

1
ψ′(y j)

=
1

ψ′(ξ)
−
ψ′′(ξ)σ j

ψ′(ξ)2 + O(σ j)2. (2.16)

Multiplying (2.15) and (2.16), we get

ψ(y j)
ψ′(y j)

= σ j −
1

ψ′(ξ)
−
ψ′′(ξ)σ2

j

2ψ′(ξ)
−
ψ′′(ξ)2σ3

j

2ψ′(ξ)2 + O(σ j)4. (2.17)

By Taylor’s series for ψ′(y j) about ξ, we obtain

ψ′(y j) = ψ′(ξ) + ψ′′(ξ)σ j + O(σ j)2. (2.18)

By Taylor’s series for ψ′′(y j) about ξ, we obtain

ψ′′(y j) = ψ′′(ξ) + ψ′′(ξ)σ j + O(σ j)2. (2.19)

Squaring (2.15), we have

ψ2(y j) = ψ′(ξ)2σ2
j + ψ′(ξ)ψ′′(ξ)σ3

j +
ψ′′(ξ)2σ4

j

4
+ O(σ j)5. (2.20)

Squaring (2.18), we have

ψ′2(y j) = ψ′(ξ)2 + 2ψ′(ξ)ψ′′(ξ)σ j + ψ′′(ξ)2σ2
j + O(σ j)3. (2.21)

Using the values of ψ2(y j), ψ′(y j) and ψ′′(y j) in numerator, i.e., 2ψ2(y j)ψ′(y j)ψ′′(y j) of the second step
of (2.7), we get

2σ2
jψ
′(ξ)3ψ′′(ξ) + 4σ3

jψ
′(ξ)2ψ′′(ξ)2 +

5
2
σ4

jψ
′(ξ)ψ′′(ξ)3 + O(σ j)5. (2.22)

Using the values of ψ(y j), ψ′2(y j) and ψ′′(y j) in denominator, i.e., [2ψ′2(y j)−ψ(y j)ψ′′(y j)]2 of the second
step of (2.7), we get

2ψ′(ξ)2 + 2σ jψ
′(ξ)ψ′′(ξ) +

3
2
σ2

jψ
′′(ξ)2 + σ2

jψ
′(ξ)ψ′′′(ξ) + O(σ j)3. (2.23)
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Finally, by using (2.18), (2.22) and (2.23) in the second step of Eq (2.7), we get

x j+1 = ξ −
3σ4

jψ
′′(ξ)3

4ψ′(ξ)3 −
σ5

jψ
′′(ξ)4

8ψ′(ξ)4 +
123σ6

jψ
′′(ξ)5

32ψ′(ξ)5 + O(σ j)7. (2.24)

By substituting σ j =
ψ′′(ξ)e2

j

2ψ′(ξ) +
ψ′′(ξ)2e3

j

2ψ′(ξ)2 + O(e j)4 in (2.24), we get

e j+1 =
3ψ′′(ξ)7

64ψ′(ξ)7 e8
j + O(e j)9. (2.25)

Hence, Eq (2.25) shows that the proposed algorithm (2.7) has eighth-order of convergence. �

As the convergence analysis carried out for the proposed eighth-order algorithm (2.7), the
convergence analysis for the proposed fourth-order algorithm is addressed in the same way.

Theorem 2. Let ξ ∈ W be a simple root of a differential function ψ : W ⊂ R→ R, where W is an open
interval. Let x0 be an initial guess considerably near to the exact root ξ. Then, the modified algorithm
defined by (2.9) has fourth-order convergence and satisfies the following error equation:

e j+1 =
ψ′′(ξ)3

8ψ′(ξ)3 e4
j + O(e j)5. (2.26)

Proof. Since ξ is a root of ψ and e j = x j − ξ is the error at jth iteration, we can expand ψ(x j) in power
of e j by Taylor’s series expansion as follows:

ψ(x j) = ψ′(ξ)e j +
1
2
ψ′′(ξ)e2

j + O(e j)3. (2.27)

By Taylor’s series for 1
ψ′(x j)

about ξ, we obtain

1
ψ′(x j)

=
1

ψ′(ξ)
−
ψ′′(ξ)e j

ψ′(ξ)2 + O(e j)2. (2.28)

Multiplying (2.27) and (2.28), we get

ψ(x j)
ψ′(x j)

= e j −
1

ψ′(ξ)
−
ψ′′(ξ)e2

j

2ψ′(ξ)
−
ψ′′(ξ)2e3

j

2ψ′(ξ)2 + O(e j)4. (2.29)

Using (2.29) in the first step of (2.9), we get

σ j =
ψ′′(ξ)e2

j

2ψ′(ξ)
+
ψ′′(ξ)2e3

j

2ψ′(ξ)2 + O(e j)4. (2.30)

By Taylor’s series for ψ(y j) about ξ, we obtain

ψ(y j) = ψ′(ξ)σ j +
1
2
ψ′′(ξ)σ2

j + O(σ j)3. (2.31)
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By finding the derivative of ψ(x j) and ψ(y j) respectively, we have

ψ′(x j) = ψ′(ξ) + ψ′′(ξ)e j + O(e j)2, (2.32)
ψ′(y j) = ψ′(ξ) + ψ′′(ξ)σ j + O(σ j)2. (2.33)

By Taylor’s series for 1
ψ′(y j)

about ξ, we obtain

1
ψ′(y j)

=
1

ψ′(ξ)
−
ψ′′(ξ)σ j

ψ′(ξ)2 + O(σ j)2. (2.34)

Multiplying (2.31) and (2.34), we get

ψ(y j)
ψ′(y j)

= σ j −
1

ψ′(ξ)
−
ψ′′(ξ)σ2

j

2ψ′(ξ)
−
ψ′′(ξ)2σ3

j

2ψ′(ξ)2 + O(σ j)4. (2.35)

By putting all the above equations into second step of (2.9), we get

e j+1 =
ψ′′(ξ)3

8ψ′(ξ)3 e4
j + O(e j)5. (2.36)

The error equation (2.36) shows that the proposed algorithm (2.9) has fourth-order convergence. �

The flowchart of the proposed two-step iterative algorithms is shown in Figure 1.

Start

Read
ψ, ψ′, ψ′′, x0, ε

y = x0 −
ψ(x0)
ψ′(x0)

x = second step
of algorithms
(2.7) or (2.9)

|x − x0| < ε Print x

x0 = x

Stop

YesNo

Figure 1. Flowchart of the proposed predictor–corrector algorithms.
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3. Local and semi-local convergence

There are certain limitations with the local convergence analysis performed in Section 2 for the
algorithm (2.7).

(L1) The algorithm (2.7) can be also used to solve equations on the real line.
(L2) The existence of at least fourth derivative is required to show convergence, and the solution has

to be simple. Consider the example, for W = [−1.5, 1.5], and function ψ defined on W by ψ(x) =

x4 log(x) + x5 − x4 for x , 0, and ψ(0) = 0. Then, clearly ζ = 1 solves the equation ψ(x) = 0, but
ψ(4) does not exist at x = 0. Consequently, the results of Section 2 cannot guarantee convergence
to ζ although algorithm converges for say x0 = 1 ∈ W.

(L3) There are no commutable error bounds on the distances ||x j − ζ ||. That is, we do not know a priori
how many iterates are needed to reach a certain error tolerance.

(L4) There are no uniqueness of the solution results.
(L5) The more interesting semi-local convergence is not considered in Section 2.
(L6) There is no radius of convergence. Thus, we do not know how to pick the initial point x0.

We positively address the limitations as follows:

(L1)′ The convergence is given for Banach space valued equations.
(L2)′ The convergence conditions involve only the operators on the algorithm (3.1), i.e., F, F′ and F′′.
(L3)′ Computable error bounds on ||x j − ζ || are provided. Hence, we know in advance the number of

iterations to be executed to obtain a certain accuracy.
(L4)′ A certain region is specified containing only one solution of the equation Q(x) = 0.
(L5)′ The semi local convergence analysis of algorithm (2.7) is developed using majorizing sequences.
(L6)′ The radius of convergence is specified. This is how we extend the applicability of the

algorithm (2.7).

The algorithm (2.7) in a Banach space setting is given for starter x0 ∈ D, and each j = 0, 1, 2, . . . by

y j = x j − Q′(x j)−1Q(x j),
z j = y j − Q′(y j)−1Q(y j),

A j = Q′(y j)2 −
1
2

Q′′(y j)Q(y j),

x j+1 = z j −
1
2

A−1
j Q′(y j)A−1

j Q′′(y j)Q(y j)Q(y j),

(3.1)

where the operators Q′ and Q′′ denote the first and the second Fréchet derivative of Q, respectively, to
solve the equation Q(x) = 0, where Q : D ⊂ W1 → W2 is a twice Fréchet differentiable operator, D is
open and convex set and W1,W2 are Banach spaces.
Notice that Q′ is linear and Q′′ is a bilinear operator [19].
It is worth noting that (2.9) cannot be written in Banach space, since the long denominator is not a
linear operator.

3.1. Local analysis

The local convergence analysis is based on some conditions.
Suppose:
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(C1) There exists a function κ0 : [0,+∞) → R which is continuous and also non-decreasing (CFND)
such that the equation κ0(t) − 1 = 0 has a smallest solution which is positive (SSP). Denote such
solution by R0. Set T0 = [0,R0).

(C2) There exists CFND κ : T0 → R such that for h1 : T0 → R defined by

h1(t) =

∫ 1

0
κ((1 − θ)t)dθ

1 − κ0(t)
,

the equation h1(t) − 1 = 0 has a SSP. Denote such solution by t1.

(C3) The equation κ0(h1(t)) − 1 = 0 has a SSP in the interval T0. Denote such solution by R1. Set
T1 = [0,R1).

(C4) For h2 : T1 → R defined by

h2(t) =
h1(t)

∫ 1

0
κ((1 − θ)h1(t)t)dθ

1 − κ0(th1(t))
,

the equation h2(t) − 1 = 0 has a SSP. Denote such solution by t2.
(C5) Let α, β > 0 be given constants, and κ2 : T1 → R be an CFND. For p : T1 → R defined by

p(t) = (κ2
0(th1(t)) + 2ακ0β(th1(t)) +

β

2
κ2(th1(t)))

(
α +

1
β

∫ 1

0
κ0(θth1(t))dθ

)
h1(t),

the equation p(t) − 1 = 0 has SSP. Denote such solution by R2.
Set T2 = [0,R2). Consider function q : T2 → R defined by

q(t) =
β2

1 − p(t)
.

(C6) The equation κ0(th2(t)) − 1 = 0 has an SSP. Denote such solution by R2. Set T3 = [0,R3).
(C7) Let κ1 : T3 → R and define functions κ̄ : T3 → R and h3 : T3 → R

κ̄(t) =


κ1(t)
or

α + κ0(t)

and

h3(t) =
h2(t)

∫ 1

0
κ((1 − θ)th2(t))dθ

1 − κ0(th2(t))
+

1
2β2 q2(t)κ̄(th1(t))κ2(th1(t))

(
α +

1
β

∫ 1

0
κ0(θth1(t))dθ

)2

th2
1(t).

The equation h3(t) − 1 = 0 has an SSP. Denote such solution by t3.
Set

t0 = min{tm}, m = 1, 2, 3

and T = [0, t0). Then it follows by these conditions that for each t ∈ T
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0 ≤ κ0(t) < 1, (3.2)
0 ≤ κ0(t)th1(t) < 1, (3.3)
0 ≤ κ0(t)th2(t) < 1, (3.4)

0 ≤ p(t) < 1, (3.5)
0 ≤ q(t), (3.6)

and
0 ≤ hm(t) < 1. (3.7)

The constant t0 is proven to be a radius of convergence for the algorithm (3.1) in Theorem 1. First,
we relate the developed functions κ, κ0, κ1 and κ2 to the operators on the algorithm (3.1).

(C8) There exists a solution ζ ∈ D of the Eq (3.1), an invertible linear operator M such that ||M|| ≤ α
and ||M−1|| ≤ β.

(C9) ||Q′(x) − M|| ≤ 1
β
κ0(||x − ζ ||) for each x ∈ D. Define the region D0 = D ∩ S (ζ,R0), where S (ζ,R0)

stands for a ball that is open having center ζ and radius R0 > 0. It follows by this condition and
(C1) that for x = ζ

||M−1|| ||Q′(x) − M|| ≤ κ0||x − ζ || < 1.

Thus, from the standard lemma by Banach on linear, and invertible operators [20, 21] Q′(x) is
invertible, and

||Q′(x)−1|| ≤
β

1 − κ0(||x − ζ)||)
. (3.8)

(C10) ||Q′(x) − Q′(y)|| ≤ 1
β
κ(||x − y||) for each x, y ∈ D0.

Set D1 = D ∩ S (ζ,R3).
(C11) ||Q′(x)|| ≤ 1

β
κ1(||x − ζ ||) and ||Q′′(x)|| ≤ 1

β
κ2(||x − ζ ||) for each x ∈ D1.

(C12) S [ζ, t0] ⊂ D, where S [ζ, t0] stands for the closure of S (ζ, t0).
Notice that the first condition in (C11) can be dropped, since

||Q′(x)|| ≤ ||Q′(x) − M + M|| ≤ ||M|| + ||Q′(x) − M|| ≤ α +
1
β
κ0(||x − ζ ||).

Hence, the function κ1 can be defined by κ1(t) = α + 1
β
κ0(t). Moreover, the function κ̄ given in

the condition (C7) is chosen in particular to be the smallest of the functions κ1 and α + 1
β
κ0(t).

The developed notation and the conditions (C1)–(C12) shall be used in the local analysis of
convergence for the algorithm (3.1).

Theorem 3. Suppose that the conditions (C1)–(C12) are satisfied, and x0 ∈ S 0 = S (ζ, t0) \ {ζ}. Then,
the following assertions hold for each j = 0, 1, 2, . . .

{x j} ⊂ S (ζ, t0), (3.9)
||y j − ζ || ≤ h1(||x j − ζ ||)||x j − ζ || ≤ ||x j − ζ || < t0, (3.10)
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||z j − ζ || ≤ h2(||x j − ζ ||)||x j − ζ || ≤ ||x j − ζ ||, (3.11)
||x j+1 − ζ || ≤ h3(||x j − ζ ||)||x j − ζ || ≤ ||x j − ζ ||, (3.12)

and the sequence {x j} is convergent to ζ.

Proof. By assuming x0 ∈ S 0, the assertion (3.9) is satisfied for j = 0. Let x ∈ S (ζ, t0). Then, by the
condition (C1), Q′(x) is invertible, and the estimate (3.8) holds. In particular, for x = x0 the linear
operator Q′(x0) is invertible, since x0 ∈ S 0. Thus, the iterate y0 is well defined. Then, we can write by
the first substep of the algorithm (3.1) for j = 0:

y0 − ζ = x0 − ζ − Q′(x0)−1Q(x0) = Q′(x0)−1[Q′(ζ + θ(x0 − ζ)) − Q′(x0)]dθ(x0 − ζ). (3.13)

By (3.8), the condition (3.9), the definition of the function h1, (3.7), and (3.13), we have in turn

||y0 − ζ || ≤
β

1 − κ0(||x0 − ζ ||)
·

∫ 1

0
κ((1 − θ)||x0 − ζ ||)dθ

β
||x0 − ζ ||

≤ h1(||x0 − ζ ||)||x0 − ζ || ≤ ||x0 − ζ || < t0,

(3.14)

so the assertion (3.10) is satisfied, the iterate y0 ∈ S (ζ, t0), and consequently (3.8) holds if x = y0. Thus,
the iterate z0 is well defined. By the second substep of the algorithm (3.1) for j = 0:

z0 − ζ = y0 − ζ − Q′(y0)−1Q(y0) = Q′(y0)−1[Q′(ζ + θ(y0 − ζ)) − Q′(y0)]dθ(y0 − ζ), (3.15)

leading as in (3.13) and (3.14) to

||z0 − ζ || ≤ h2(||x0 − ζ ||)||x0 − ζ || ≤ ||x0 − ζ ||, (3.16)

showing the assertion (3.11), the iterate z0 ∈ S (ζ, t0), and the estimate (3.8) holds for x = z0. We shall
show the invertability of the operator A0, which implies the existence of the iterate x1. Consider the
identity

A0 − M2 = (Q′(y0) − M + M)2 −
1
2

Q′′(y0)Q(y0) − M2

= (Q′(y0) − M)2 + (Q′(y0) − M)M + M(Q′(y0) − M) + M2 −
1
2

Q′′(y0)Q(y0) − M2

= (Q′(y0) − M)2 + (Q′(y0) − M)M + M(′Q(y0) − M) −
1
2

Q′′(y0)Q(y0).

(3.17)

In view of (C7), the second condition in (C11), (C5), (3.5)–(3.7), and (3.17), we get

||M−2|| ||A0 − M2|| ≤ β2
[κ2

0(||y0 − ζ ||)
β2 + 2

α

β
κ0(||y0 − ζ ||) +

1
2
κ2(||y0 − ζ ||)

β

(α +
1
β

∫ 1

0
κ0(θ||y0 − ζ ||)dθ)||y0 − ζ ||

]
= p0 < 1,

(3.18)

where we also use S 0||A−1
0 || ≤ q0, (3.8)

||Q(y0)|| = Q(y0) − Q(ζ) =

∫ 1

0
Q′(ζ + θ(y0 − ζ))dθ||y0 − ζ ||. (3.19)
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Thus,

||Q(y0)|| ≤ ||
∫ 1

0
Q′(ζ + θ(y0 − ζ))dθ − N + M||

≤ α +
1
β

∫ 1

0
κ0(θ||y0 − ζ ||)dθ.

Then, we can write by the third substep of algorithm (3.1)

x1 − ζ = z0 − ζ −
1
2

A−1
0 Q′(y0)A−1

0 Q′′(y0)Q(y0)Q(y0). (3.20)

It follows by (C8)–(C11), (3.7) (for j = 3), (3.14), (3.15), (3.19), and (3.20) that

||x1 − ζ || ≤ ||z0 − ζ | +
1
2
||A−1

0 ||
2||Q′(y0)|| ||Q′′(y0)|| ||Q(y0)||2

≤

∫ 1

0
κ((1 − θ)||z0 − ζ ||)dθ||z0 − ζ ||

1 − κ0(||z0 − ζ ||)
+

1
2

q2
0
κ̄

β2 (||y0 − ζ ||)κ2(||y0 − ζ ||)(α

+
1
β

∫ 1

0
κ0(θ||y0 − ζ ||)dθ)2||y0 − ζ ||

2

≤ h3(||x0 − ζ ||)||x0 − ζ || ≤ ||x0 − ζ ||,

(3.21)

showing the assertion (3.12) and x1 ∈ S (ζ, t0). Simply switch x0, y0, z0, x1 by xk, yk, zk, xk+1 in the
preceding calculations to complete the induction for the assertions (3.9)–(3.12). Then, from the
estimation

||xk+1 − ζ || ≤ ||xk − ζ || < t0,

we deduce that xk+1 ∈ S (ζ, t0) and
lim

k→+∞
xk = ζ.

�

Next, a neighborhood of ζ is determined that contains no other solution.

Proposition 1. Suppose there exists a solution ζ ∈ S (ζ, t4) ⊂ D of the equation Q(x) = 0, such that the
condition (C9) holds on S (ζ, t4), and there exists t5 ≥ t4 so that

1
β

∫ 1

0
κ0(θt5)dθ < 1. (3.22)

Define the region D2 = D ∩ S [ζ, t5]. Then, the only solution of the Eq (1.1) in the region D2 is ζ.

Proof. Let E =
∫ 1

0
Q′(ζ + θ(u − ζ))dθ for some u ∈ D2 with Q(u) = 0. By applying the condition (C9),

and the assumption (3.22), we obtain in turn

||M−1|| ||E − M|| ≤
∫ 1

0
κ0(θ(u − ζ))dθ ≤

∫ 1

0
κ0(θt5)dθ < 1,
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so E is invertible. Then, from the identity

u − ζ = E−1(Q(u) − Q(ζ)) = E−1(0) = 0,

we deduce that u = ζ. �

3.2. Semi-local analysis

This analysis is based on majorizing sequences. The role of x0 and the κ function is replaced by ζ
and the ϑ.

Suppose:

(H1) There exists CFND ϑ0 : [0,+∞) → R such that equ ation ϑ0(t) − 1 = 0 has an SSP. Denote such
solution by δ0.

(H2) There exist CFND ϑ, ϑ1, ϑ2 : [0, δ0) → R. Define the sequences {a j}, {b j}, {c j} for a0 = 0, some
b0 ≥ 0, and each j = 0, 1, . . ., by

s j =
1
β

∫ 1

0
v((1 − θ))dθ(b j − a j),

c j = b j +
s j

1 − ϑ0(b j)

λ j = ϑ2
0(b j) + 2αβϑ0(b j) +

β

2
ϑ2(b j)s j,

µ j =
β2

1 − λ j
,

ϑ̄ =


ϑ1(b j)
or

α +
ϑ0(b j)
β

,

a j+1 = c j +
1
2
µ2

n

¯ϑ(b j)
β

ϑ2(b j)
β

s2
j ,

βγ j+1 =

∫ 1

0
ϑ((1 − θ)(a j+1 − a j))dθ(a j+1 − a j)

+ (α +
1
β
ϑ0(a j))(a j+1 − b j),

b j+1 = a j+1 +
γ j+1

1 − ϑ0(a j+1)
.

(3.23)

These scalar sequences are shown to be majorizing for the algorithm (3.1) in Theorem 2.
However, a convergence condition for these sequences is needed.

(H3) There exists δ ∈ [0, δ0) such that for each j = 0, 1, 2, . . .

ϑ0(a j) < 1, ϑ0(b j) < 1, λ j < 1, and a j ≥ δ.
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It follows by this definition and (3.23) that 0 ≤ a j ≤ b j ≤ c j ≤ a j+1 ≤ δ, and there exists a∗ ∈ [0, δ]
such that

lim
j→+∞

a j = a∗.

The functions ϑ relate to the operator on the algorithm.
(H4) There exist constants α, β > 0, and an invertiable operator M.
(H5) For some x0 ∈ D, and each x ∈ D

||Q′(x) − M|| ≤
1
β
ϑ0(||x − x0||).

Set D3 = D ∩ S (x0, δ0).
Notice that if x = x0, we get ||M−1|| ||Q′(x0) − M|| ≤ ϑ0(0) < 1, by the definition of δ0. Thus, the
linear operator Q′(x0) is invertible. Set ||Q′(x0)−1Q(x0)|| ≤ b0.

(H6) For each x, y ∈ D3

||Q′(x) − Q′(y)|| ≤
1
β
ϑ(||x − y||),

||Q′(x)|| ≤
1
β
ϑ1(||x − x0||),

||Q′′(x)|| ≤
1
β
ϑ2(||x − x0||).

(H7) S [x0, a∗] ⊂ D.

Next, the semilocal analysis of convergence for the algorithm (3.1) is developed under the
conditions (H1)–(H7).

Theorem 4. Suppose that the conditions (H1)–(H7) hold. Then, the sequence {x j} generated by the
algorithm (3.1), exists in S (x0, a∗), stays in S (x0, a∗) for each j = 0, 1, 2, . . ., and is convergent to a
solution ζ ∈ S [x0, a∗] of the equation Q(x) = 0, such that for each j = 0, 1, 2, . . .

||ζ − x j|| ≤ a∗ − a j. (3.24)

Proof. Mathematical induction is utilized to show the assertions

||y j − x j|| ≤ b j − a j, (3.25)
||z j − y j|| ≤ c j − b j, (3.26)
||x j+1 − z j|| ≤ a j+1 − c j. (3.27)

The assertion (3.26) holds if j = 0, since by the first substep of algorithm (3.1), and the definition of
b0:

||y0 − x0|| = ||Q′(x0)−1Q(x0)|| ≤ b0 = b0 − a0 < a∗.
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Thus, the iterate y0 ∈ S (x0, a∗). We can write by the first substep of (3.1) that

Q(y0) = Q(y0) − Q(x0) − Q′(x0)(y0 − x0) = [Q′(x0 + θ(y0 − x0)) − Q′(x0)]dθ(y0 − x0). (3.28)

Using the first condition in (H6)

||Q(y0)|| ≤
1
β

∫ 1

0
ϑ((1 − θ)||y0 − x0||)dθ||y0 − x0||

≤
1
β

∫ 1

0
ϑ((1 − θ)(b0 − a0))dθ(b0 − a0) = δ0.

(3.29)

By the condition (H4) for x = y0

||M−1|| ||Q′(y0) − M|| ≤ ϑ0(||y0 − x0||) ≤ ϑ0(b0) < 1,

Thus, Q(y0) is invertible, and

||Q′(y0)−1|| ≤
β

1 − κ0(b0)
, (3.30)

and the iterate z0 is well defined by the second substep of (3.1). Then, we can also write

z0 − y0 = Q′(y0)−1Q(y0). (3.31)

In view of (3.23) and (3.29)–(3.31), we get

||z0 − y0|| ≤
δ0

1 − ϑ0(b j)
= c0 − b0,

and

||z0 − x0|| ≤ ||z0 − y0|| + ||y0 − x0|| ≤ c0 − b0 + b0 − a0 = c0 < a∗.

Hence, the assertion (3.29) holds if j = 0, and z0 ∈ S (x0, a∗).
As in the local case:

||M−2|| ||A0 − M2|| ≤ β2
[ϑ2

0(||y j − x0||)
β2 + 2

α

β
ϑ0(||y j − x0||) +

1
2β
ϑ2(||y j − x0||)δ j

]
≤ β2

[ϑ2
0(b j)
β2 +

2α
β
ϑ0(b j) +

1
2β
ϑ0(b j) +

1
2β
ϑ2(b j)δ j

]
= λ j < 1,

so, A0 is invertible, and
||A−1

0 || ≤ µ0. (3.32)

Notice, also that Q′(z0) is invertible, so the iterate x1 is well defined by the third substep of (3.1). Then,
we have by (3.1)

x1 − z0 = −
1
2

A−1
0 Q′(y0)A−1

0 Q′′(y0)Q(y0)Q(y0),
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leading to

||x1 − z0|| ≤
1
2
µ2

0
ϑ̄(b0)
β

ϑ2(b0)
β

δ2
0 = a1 − c0,

and

||x1 − z0|| ≤ ||x1 − z0|| ≤ +||z0 − x0|| ≤ a1 − c0 + c0 − a0 = a1 < a∗.

Thus, the assertion (3.30) holds for j = 0, and the iterate x1 ∈ S (z0, a∗). We can write

Q(xm+1) = Q(xm+1) − Q(xm) − Q′(xm)(xm+1 − xm) + Q′(xm)(ym − xm),

leading to

||Q(xm+1)|| ≤
1
β

∫ 1

0
ϑ((1 − θ)||xm+1 − xm||)dθ||xm+1 − xm|| + (α +

1
β
ϑ0(||xm − x0||))||xm+1 − ym||

≤
1
β

∫ 1

0
ϑ((1 − θ)(am+1 − am))dθ(am+1 − am) + (α +

1
β
ϑ0(am))(am+1 − bm) = γm+1,

(3.33)

so

||ym+1 − xm+1|| ≤ ||Q′(xm+1)−1|| ||Q(xm+1)||

≤
γm+1

1 − ϑ0(||xm+1 − x0||)
≤

γm+1

1 − ϑ0(am+1)
= bm+1 − am+1,

(3.34)

and

||ym+1 − x0|| ≤ ||ym+1 − xm+1|| + ||xm+1 − x0|| ≤ bm+1 − am+1 + am+1 − a0 = bm+1 < a∗.

The induction for the assertions (3.25)–(3.27) is completed if x0, y0, z0, x1 are replaced by xm, ym, zm,
xm+1, respectively. Then, we have

||xm+1 − xm|| ≤ ||xm+1 − ym|| + ||ym − xm|| ≤ am+1 − bm + bm − am = am+1 − am.

Consequently, the sequence {xm} is Cauchy in a Banach space and such it is convergent to some ζ ∈
S [x0, a∗]. By letting m→ +∞ in (3.33) we get Q(ζ) = 0. Moreover, by the estimate

||x j+k − x j|| ≤ a j+k − a j, (3.35)

we obtain (3.24) by letting k → +∞ in (3.34). �

As in the local case a neighborhood of x0 is special containing only one solution in the next result.

Proposition 2. Suppose there exists a solution y∗ ∈ S (x0, t7) of the Eq (3.1).
The condition (H5) holds in ball S (x0, t7), and there exists t8 ≥ t7 such that

β

∫ 1

0
ϑ0(θt7 + (1 − θ)t8)dθ < 1. (3.36)

Define the region D4 = D ∩ S [x0, t8].
Then, the only solution of the equation Q(x) = 0 in the region D4 is y∗.
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Proof. Let E1 =
∫ 1

0
Q′(y∗+θ(z∗−y∗)dθ for some z∗ ∈ D4 with Q(z∗) = 0. It follows by the condition (H5)

and (3.36)

||M−1|| ||E1 − M|| ≤ β
∫ 1

0
ϑ0(θ||y∗ − x0|| + (1 − θ)||z∗ − x0||)dθ ≤ β

∫ 1

0
ϑ0(θt7 + (1 − θ)t8)dθ < 1.

Therefore, the operator E1 is invertible. Then, from the identity

z∗ − y∗ = E−1
1 (Q(z∗) − Q(y∗)) = E−1(0) = 0,

we deduce that z∗ = y∗. �

Remark 1. (i) Popular choices for M = Q′(ζ) (local case) and M = Q′(x0) (semilocal case).
However, these choices are not the necessary the most flexible. Other choices exist [22, 23].

(ii) Note that not all the conditions (H1)–(H7) are assumed in Proposition 1. However, if they are, we
can take y∗ = ζ, and t7 = a∗.

(iii) The constant δ0 can replace the limit point a∗ is the condition (H7).

4. Visual analysis via polynomiography

The analysis of stability and speed of convergence is an essential aspect of analyzing every
root-finding algorithm. The standard way of performing such an analysis is the use of visual
approach via the so-called polynomiography [24,25]. In polynomiography, we generate images called
polynomiographs using a general algorithm presented in Algorithm 1. Depending on the coloring
algorithm in the last step of the algorithm, we can visualize various aspects of the root-finding
algorithm.

Algorithm 1: Generation of a polynomiograph.
Input: p ∈ C[Z], deg p ≥ 2 – polynomial; R – root finding algorithm; A ⊂ C – area; N – the

maximum number of iterations; ε – accuracy; colors – color map.
Output: Polynomiograph for the complex-valued polynomial p within the area A.

1 for z0 ∈ A do
2 n = 0
3 while n < N do
4 zn+1 = R(zn, p)
5 if |p(zn+1)| < ε then
6 break

7 n = n + 1

8 Determine the color for z0 and assign the color using color map colors

In this section, we use a coloring algorithm that shows basins of attraction and speed of convergence
in the same polynomiograph [26]. In this algorithm, each root of the considered polynomial gets a
distinct color. We also need an additional color to depict the non-convergent points (we use the black
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color for this aim). Now, to color the given starting point z0, we first check whether the root-finding
algorithm has converged to any of the roots, i.e., if n < N, where n is the number of the last iterate. If
the algorithm has converged, then, for the found root, we find the closest root of the polynomial and
use its color to color z0, else we use the additional color. In this way, we show basins of attraction.
To add the information on the speed of convergence, we change the shade of the color based on the
number of performed iteration. In this way, a light color will show a small number of iterations and a
dark color a large number of iterations.

Based on polynomiographs, we can compute some numerical measures that will allow the analysis
to be broadened. The three most widely used measures are: The average number of iterations
(ANI) [27], convergence area index (CAI) [27], and the computations time [28]. To compute
the average number of iterations, we take the information on the speed of convergence in the
polynomiograph because it contains the number of iterations needed to find the root for all points
in the considered area A. CAI is the ratio of the number of starting points that converged to any root
to the number of all points in the considered area A. The CAI value is a real number between 0 and 1,
and it gives us information on the percentage of points in A that have converged to roots.

The polynomiographs used for the analysis presented in this section were generated for the
following common parameters: N = 30, ε = 0.001, and polynomiograph resolution 1000 × 1000
pixels. In our analysis, we use three polynomials:

• p3(z) = z3 − 1, roots: 1, −0.5 +
√

3
2 i, −0.5 −

√
3

2 i, the area A = [−2, 2]2,
• p4(z) = z4 − 10z2 + 9, roots: −3, −1, 1, 3, the area A = [−4, 4]2,
• p5(z) = z5 − z, roots: 0, −1, 1, −i, i, the area A = [−2, 2]2.

The program for generating polynomiographs was implemented in Mathematica 13.2 using the
parallelization option of the Compile command. Moreover, the polynomiographs were generated
on the computer with the specifications: Intel i5-9600K (@3.70 GHz), 32 GB DDR4 RAM, and
Windows 10 (64 bit). Apart from the two proposed algorithms, PCNM8 and PCNM4, we generated
polynomiographs for the PJNM, KTNM, CNM1, CNM2, and ONM algorithms for comparison
purposes.

The obtained results for the p3 polynomial are presented in Figure 2 (the polynomiographs) and
in Table 1 (the numerical measures). From the polynomiographs, we see that each algorithm has
different basins of attraction. However, in each case, we see three characteristic braids. The degree
of interweaving of the basins tells us about the stability of the algorithm (the less the interweaving,
the better the stability of the algorithm). Based on the polynomiographs, we see that the best stability
is obtained by the PJNM algorithm, followed by the PCNM8 and ONM algorithms. For the CNM1
algorithm, we also see a low degree of interweaving, but there are also non-convergent points (the
black areas) which are not visible in the three algorithms mentioned. This is confirmed by the CAI
measure presented in Table 1. The PJNM, PCNM8 and ONM algorithms all obtained values equal
to 1.0, whereas for the CNM1 algorithm, the CAI value is less than 1.0, namely it is equal to 0.967.
The lowest value of CAI was obtained by the CNM2 algorithm (0.946). When it comes to the speed
of convergence, we see that the lightest colors are visible in the polynomiographs for the PCNM8
and ONM algorithms, followed by the PCNM4 and CNM1 algorithms. Again, we can confirm this
observation by looking at the values of ANI gathered in Table 1. The lowest value of ANI was obtained
by the PCNM8 algorithm (1.496), and the second lowest value equal to 1.624 was obtained by the ONM
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algorithm. Now, if we look at the generation time of polynomiographs, we see that the fastest algorithm
is the CNM1 algorithm (0.762 s). The two best algorithms in terms of ANI, i.e., the PCNM8 and ONM,
obtained slightly slower times equal to 0.778 and 0.775 s, respectively. The slowest algorithm is the
KTNM algorithm (0.914 s).

(a) PCNM8 (b) PCNM4 (c) PJNM (d) KTNM

(e) CNM1 (f) CNM2 (g) ONM

Figure 2. Polynomiographs for the complex polynomial p3 generated using various root-
finding algorithms.

Table 1. Numerical measures obtained from the polynomiographs generated for p3

(Figure 2).

Algorithm ANI CAI Time [s]
PCNM8 1.496 1.0 0.778
PCNM4 2.320 1.0 0.774
PJNM 5.562 1.0 0.832
KTNM 5.358 0.973 0.914
CNM1 2.642 0.967 0.762
CNM2 3.840 0.946 0.808
ONM 1.624 1.0 0.775

In the next example, we present and analyze the results obtained for the p4 polynomial. In Figure 3,
we see the polynomiographs for this polynomial, whereas in Table 2, we gather the values of numerical
measures. In the polynomiographs, we see four basins of attraction. The most significant difference
in those basins is visible at the boundaries, where the interweaving of the basins appears. The lowest
degree of interweaving can be observed for the PCNM4, PJNM, and CNM1 algorithms. Thus, these
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three algorithms obtained the best stability among the analyzed algorithms. However, for the CNM1
algorithm, we can also observe some non-convergent points in the polynomiograph, which causes
the CAI value to be equal to 0.999. The other two algorithms obtained a CAI value of 1.0. There
are also two other algorithms with full convergence (CAI value equal to 1.0), namely the PCNM8
and ONM algorithms. In terms of speed of convergence, the best results are obtained by the ONM
and PCNM8 algorithms, for which the ANI value is equal to 1.566 and 1.660, respectively. We can
observe this in the polynomiographs because these two algorithms have the biggest light areas. On the
other extreme, the worst speed of convergence can be observed for the PJNM algorithm (the darkest
colors and the value of ANI equal to 7.561). If we look at the generation times, which reflect the real
time of computations, we see that the fastest algorithm was the PCNM8 algorithm, followed by the
CNM1 algorithm. These two algorithms obtained the times equal to 0.781 and 0.840 s, respectively.
The slowest algorithm among the analyzed algorithms was the PJNM algorithm, which obtained a time
equal to 1.085 s.

(a) PCNM8 (b) PCNM4 (c) PJNM (d) KTNM

(e) CNM1 (f) CNM2 (g) ONM

Figure 3. Polynomiographs for the complex polynomial p4 generated using various root-
finding algorithms.
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Table 2. Numerical measures obtained from the polynomiographs generated for p4

(Figure 3).

Algorithm ANI CAI Time [s]
PCNM8 1.660 1.0 0.781
PCNM4 2.212 1.0 0.901
PJNM 7.561 1.0 1.085
KTNM 3.948 0.993 0.892
CNM1 2.201 0.999 0.840
CNM2 2.593 0.998 0.858
ONM 1.566 1.0 0.844

In the last example, we visually analyze the results obtained for the p5 polynomial. The
polynomiographs generated for this polynomial are presented in Figure 4, and the calculated numerical
measures are in Table 3. The best stability is observed for the PJNM algorithm, followed by the CNM1
algorithm. For these two algorithms, the interweaving of the basins is the smallest. However, for the
CNM1 algorithm, we can observe areas of non-convergent points, whereas, for the PJNM algorithm,
we do not see any such points. The values of CAI gathered in Table 3 confirm this observation, where
the PJNM and CNM1 algorithms obtained values of 1.0 and 0.997, respectively. The highest value of
CAI (1.0) is also obtained by three other analyzed algorithms, namely by the PCNM8, PCNM4, and
ONM algorithms. The lowest value of 0.982 is obtained by the KTNM algorithm, which is clearly
visible in the polynomiograph, where we see many black areas. Now, if we analyze the speed of
convergence, then we notice that the fastest algorithms are the ONM and PCNM8 algorithms, for
which we see the lightest shades of the basins’ colors. Consequently, these two algorithms obtained
the lowest values of ANI, equal to 1.556 and 2.013, respectively. The worst speed of convergence is
visible for the PJNM algorithm. Moreover, this algorithm also obtained the highest ANI value, which
was equal to 5.678. When it comes to the generation times, like for the p3 polynomial, the shortest
time of 0.834 s was obtained by the CNM1 algorithm. The second best algorithm with a time equal to
0.838 s is the PCNM8 algorithm.

Table 3. Numerical measures obtained from the polynomiographs generated for p5

(Figure 4).

Algorithm ANI CAI Time [s]
PCNM8 2.013 1.0 0.838
PCNM4 2.413 1.0 0.930
PJNM 5.678 1.0 0.994
KTNM 4.378 0.982 0.931
CNM1 2.321 0.997 0.834
CNM2 2.758 0.994 0.878
ONM 1.556 1.0 0.859
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(a) PCNM8 (b) PCNM4 (c) PJNM (d) KTNM

(e) CNM1 (f) CNM2 (g) ONM

Figure 4. Polynomiographs for the complex polynomial p5 generated using various root-
finding algorithms.

5. Numerical results

In this section, we investigate the effectiveness of newly proposed fourth- and eighth-order
algorithms for solving several nonlinear real-world application problems including single and multi-
variables. Several parameters have been specified to compare the proposed algorithms with some
of the existing ones having similar order of convergence. The parameters include the number of
iterations (NI), the number of function evaluations (NFE), the absolute error at the final iteration
(|η| = |xN− xN−1|), the absolute value of the nonlinear function (|ψ(xN)|), and the CPU time (in seconds).
As the stopping criterion, we use the following tolerance:

|η| = |xN − xN−1| ≤ 10−300.

Problem 1. For the first nonlinear model, we consider a path traversed by an electron in the air gap
between two parallel plates considering the multi-factor effect, which is given by [29]

µ(x) = µ0 +

(
v0 + c0

E0

mω
sinωx0 + σ

)
(x − x0) + c0

E0

mω2 (cos(ωx + σ) + sin(ωx + σ)), (5.1)

where µ0 and v0 are the position and velocity of the electron at time x, m and c0 are the mass and
the charge of the electron at rest, respectively, and E0 sin(ωx + σ) is the radio frequency electric field
between the plates.

If particular parameters are chosen, Eq (5.1) can be simplified as

ψ1(x) = x − 0.5 cos x +
π

4
= 0. (5.2)
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The results of numerical simulations of an engineering application Problem 1 carried out for a fixed
number of iterations, that is, when NI = 7 and x0 = 10.5 are presented in Table 4. It is observed that the
proposed fourth-order PCNM4 algorithm produces, at the final iteration, the smallest absolute error and
the smallest absolute value of the function itself when compared to the other existing algorithms. This
proposed fourth-order algorithm has the advantage of less CPU time consumption in comparison to
other fourth-order existing algorithms. Similarly, in Table 5, it is observed that the existing algorithm
of eight-order convergence (ONM) takes the fewest number of iterations (NI) in comparison to the
other algorithms, while the proposed eight-order PCNM8 algorithm produces the smallest absolute
error when compared to the other algorithms. In Table 5, we observe that the existing algorithms of
order four PJNM, KTNM, CNM1, and CNM2 produce the smallest absolute errors when compared to
the proposed fourth-order PCNM4, while the PCNM4 algorithm takes a fewer number of iterations in
comparison to the other fourth-order existing algorithms.

Table 4. Numerical simulations for Problem 1 for initial guess (x0 = 10.5) and number of
iterations (NI= 7).

Algorithm |η| |ψ1(xN)| CPU Time [s]
PCNM4 2.5741e-505 8.2489e-2021 4.88e-01
PJNM 2.9844e-268 7.5068e-1073 9.68e-01
KTNM 1.2395e-135 2.0495e-541 9.06e-01
CNM1 8.5050e-47 5.7423e-94 7.35e-01
CNM2 8.5050e-47 5.7423e-94 5.78e-01

Table 5. Numerical simulations for Problem 1: ψ1(x) = 0.

Algorithm NI NFE |η| |ψ1(xN)| CPU Time [s]
PCNM4 6 24 2.957e-343 1.437e-1372 3.047e+00
PCNM8 6 30 1.003e-1186 5.724e-7120 2.484e+00
PJNM 7 21 3.185e-992 9.742e-3969 2.281e+00
KTNM 7 21 7.745e-454 3.124e-1814 2.156e+00
CNM1 10 30 8.112e-385 5.224e-770 3.093e+00
CNM2 10 30 8.112e-385 5.224e-770 3.219e+00
ONM 5 25 1.260e-732 1.890e-5859 2.719e+00

Problem 2. NASA’s “Wind” Satellite’s Orbit. NASA intends to launch a spacecraft named Wind that
will remain in a fixed position along a line from the earth to the sun so that the solar wind will travel by
the satellite on its approach to the earth [30]. We devise the following equation based on the relevant
physical laws:

ψ2(r) = r3(R − r)2ω2 −GMs(R − r)2 + GMer2, (5.3)

where, G = 6.67 × 10−11 [Nm2/kg2], Ms = 1.98 × 1030[kg], Me = 5.98 × 1024[kg], m = the mass of
satellite [kg], R = 1.49 × 1011[m], T = 3.15576 × 107[s] and ω = 2π

T . The required solution to the
non-linear real-world problem ψ2(r) = 0 is r∗ = 1.4761775009615046593 × 1011.

The numerical simulations of the real-life application problem carried out in Table 6 take a fixed
number of iterations, meaning NI = 11 and x0 = 7.6. It is observed that the existing fourth-order
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PJNM algorithm produces, at the final iteration, the smallest absolute error and the smallest absolute
value of the function itself when compared to the other algorithms. However, the proposed fourth-
order algorithm PCNM4 has the advantage of less CPU time consumption in comparison to other
fourth-order existing algorithms. Similarly, by fixing an initial guess of x0 = 5.5, the numerical
results are presented in Table 7. It is observed that the proposed PCNM8 and existing algorithm
ONM (both having eighth-order convergence) take the fewest number of iterations in comparison to the
other algorithms, whereas the existing eight-order ONM algorithm produces the smallest absolute error
when compared to the other algorithms. We further observe that the PCNM4 and PJNM fourth-order
algorithms takes the fewest number iteration (NI) in comparison to the other fourth-order algorithms
KJNM, CNM1, and CNM2.

Table 6. Numerical simulations for Problem 2 for initial guess (x0 = 7.6) and number of
iterations (NI= 11).

Algorithm |η| |ψ2(rN)| CPU Time [s]
PCNM4 1.3454e-810 1.6763e-3239 1.37e-01
PJNM 9.2337e-997 2.4946e-3984 1.88e-01
KTNM 1.7197e-155 2.0906e-618 1.56e-01
CNM1 4.1304e-35 6.6419e-51 1.40e-01
CNM2 4.1304e-35 6.6419e-51 1.40e-01

Table 7. Numerical simulations for Problem 2: ψ2(r) = 0.

Algorithm NI NFE |η| |ψ2(rN)| CPU Time [s]
PCNM4 11 44 1.345e-810 1.676e-324 2.578e+00
PCNM8 8 40 8.254e-727 2.333e-4375 8.430e-01
PJNM 11 33 9.234e-997 2.495e-3984 9.070e-01
KTNM 12 36 1.185e-646 4.701e-2583 9.540e-01
CNM1 14 42 2.156e-343 1.801e-667 7.820e-01
CNM2 14 42 2.156e-343 1.801e-667 7.810e-01
ONM 8 40 1.02e-1078 3.290e-8660 1.047e+00

Problem 3. The system of nonlinear equations from [31] is:

x1 + exp(x2) − cos(x2) = 0,
3x1 − x2 − sin(x1) = 0.

(5.4)

The numerical simulations for solving the system numerical result carried out in Table 8 take a fixed
number of iterations, that is NI = 9, and initial guess for two by two non linear system are x1 = 0.1 and
x2 = 0.2. It is observed that the proposed algorithm PCNM4 produces the smallest absolute error when
compared to the other algorithms. The proposed fourth-order algorithm PCNM4 has the advantage of
less CPU time consumption in comparison to other fourth-order existing algorithms.
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Table 8. Numerical simulations for Problem 3.

Algorithm ||xn − xn−1||∞ [x1, x2]T CPU Time [s]
PCNM4 2.00e-24002 6.77e-12003, 1.35e-12002 1.50e-02
PJNM 2.0354e-2313 -6.9050e-4627, -1.3810e-4626 3.12e-01
KTNM 1.7120e-4255 1.1777e-8510, 1.2507e-8510 2.97e-01
CNM1 8.6509e-1102 -5.2950e-2203 ,-1.0602e-2202 3.43e-01
CNM2 2.9729e-1084 -6.6197e-2168, -1.3258e-2167 3.44e-01

Problem 4. The system of three nonlinear equations is [32]:

15x1 + x2
2 − 4x3 − 13 = 0,

x2
1 + 10x2 − exp(−x3) − 11 = 0,

x2
2 − 25x3 + 22 = 0.

(5.5)

The numerical simulations for solving the system (5.5) carried out in Table 9 take a fixed number
of iterations, that is NI = 6, and the initial guesses for the three-by-three nonlinear system are chosen
to be x1 = 0.8, x2 = 1.0, x3 = 0.8. Although all the algorithms converge, we observe that the proposed
algorithm PCNM4 produces the smallest absolute error when compared to the other algorithms.
The proposed fourth-order algorithm PCNM4 has the advantage of less CPU time consumption in
comparison to other fourth-order existing algorithms.

Table 9. Numerical simulations for Problem 4.

Algorithm ||xn − xn−1||∞ [x1, x2, x3]T CPU Time[s]
PCNM4 1.91e-1754 1.04e+00 ,1.0300e+00,9.2300e-01 1.72e-01
PJNM 2.5908e-08 1.0418e+00 ,1.0312e+00 ,9.2254e-01 2.35e-01
KTNM 1.2176e-52 1.0418e+00, 1.0312e+00, 9.2254e-01 1.88e-01
CNM1 2.3203e-08 1.0418e+00, 1.0312e+00, 9.2254e-01 2.66e-01
CNM2 2.2706e-08 1.0418e+00, 1.0312e+00, 9.2254e-01 2.34e-01

Problem 5. Neurophysiology application [33]:
The nonlinear model consists of the following six equations:

x2
1 + x2

3 = 1,
x2

2 + x2
4 = 1,

x5x3
3 + x6x3

4 = c1,

x5x3
1 + x6x3

2 = c2,

x5x1x2
3 + x6x2

4x2 = c3,

x5x2
1x3 + x6x2

2x4 = c4.

(5.6)

The constants ci in (5.6) can be randomly chosen. In our experiment, we considered ci = 0 for i =

1, . . . , 4.

The numerical simulations for solving the real-life application system used in medical science
(Neurophysiology) are carried out in Table 10. Neurophysiology is the branch of physiology that
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focuses on the study of the nervous system, including the brain, spinal cord, and peripheral nerves.
The numerical simulations carried out in Table 10 take a fixed number of iterations, that is NI = 7,
and the initial guesses for the system given in (5.6) are chosen to be x1 = 0.9, x2 = 0.8, x3 = 0.7,
x4 = 0.5, x5 = 0.3, x6 = 0.1. It is observed that the proposed algorithm, PCNM4, produces the smallest
absolute error when compared to the other algorithms. The existing fourth-order algorithms taken for
comparison, namely; PJNM, CNM1, and CNM2 diverge from the exact solution, while the algorithm
KTNM converges but is comparatively slower than the proposed one. Hence, the performance of the
proposed fourth-order algorithm for the nonlinear model (5.6) is far better than some of the existing
approaches.

Table 10. Numerical simulations for Problem 5.
Algorithm ||xn − xn−1||∞ [x1, x2, x3, . . . , x6]T

PCNM4 1.54e-4839 7.89e-01, 8.48e-01, 6.14e-01, 5.30e-01, 3.06e-19384, 9.00e-21684
PJNM 7.4364e+05 7.88e-01 ,8.48e-01, 6.13e-01, 5.30e-01, -2.53e+05 ,-8.29e+05
KTNM 5.021e-30 7.99e-01, 8.63e-01, 6.01e-01 5.05e-01, -5.19e-59, 7.56e-60
CNM1 4.30e+12 5.75e+08, 4.99e+08, 5.66e+09 ,-4.51e+08 ,4.38e+12 ,-2.68e+12
CNM2 1.07e+4129 -8.4e+4121,3.1e+4123 ,1.0e+4122, -4.9e+4123,-1.4e+4128 ,1.0e+4129

6. Conclusions and future remarks

We introduce two predictor-corrector algorithms, amalgamating Taylor’s series and the composition
approach. One of these algorithms demonstrates eighth-order convergence alongside a high-efficiency
index of approximately 1.5157, surpassing certain established techniques. The other algorithm
achieves fourth-order convergence. Our comprehensive convergence analyses encompass both local
and semilocal aspects. We use a number of complex polynomials and polynomiographs that show how
much faster the modified algorithms converge, which is especially clear when we compare basins of
attraction to other algorithms. Real-world applications in chemistry, astronomy, and neurology validate
our simulations, where the proposed algorithms consistently outperform their numerical counterparts.
It is intended to return to the proposed approach in the future to make any necessary adjustments to
attain the best potential algorithm.
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