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Abstract: In this paper, we explore the bifurcation, chaos, and local stability of a discrete Hepatitis
C virus infection model. More precisely, we studied the local stability at fixed points of a discrete
Hepatitis C virus model. We proved that at a partial infection fixed point, the discrete HCV
model undergoes Neimark-Sacker bifurcation, but no other local bifurcation exists at this fixed point.
Moreover, it was also proved that period-doubling bifurcation does not occur at liver-free, disease-free,
and total infection fixed points. Furthermore, we also examined chaos control in the understudied
discrete HCV model. Finally, obtained theoretical results were confirmed numerically.
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1. Introduction

Chronic Hepatitis C virus (HCV) infection is a significant global health concern, affecting an
estimated 71 million individuals worldwide. This bloodborne infection, primarily targeting the liver,
led to approximately 399, 000 deaths in 2016 due to severe complications such as liver cirrhosis and
hepatocellular carcinoma. A large proportion (60%–80%) of those infected with HCV develop
chronic infection, with 15%–30% of these individuals at risk of progressing to liver cirrhosis over
time. The primary modes of transmission include unscreened blood transfusions, injection drug use,
and the use of improperly sterilized medical equipment, making it a preventable yet persistent health
issue in many parts of the world. Despite the recent advancements in antiviral treatments, particularly
with the introduction of direct-acting antivirals (DAAs), which have significantly improved cure rates,
interferon-alpha IFN-α therapy has long played a central role in managing HCV infection.
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Traditionally administered either alone or in combination with ribavirin, IFN-α has been instrumental
in achieving sustained virologic response (SVR) in chronic HCV patients, thereby preventing disease
progression. However, the precise mechanisms through which IFN-α exerts its therapeutic effects,
especially in terms of HCV dynamics within the host, remain not fully understood. HCV infection
triggers a complex interplay of biological processes within the liver. Once the virus enters
hepatocytes, it initiates viral replication, leading to an immune response from the host. At the same
time, the liver’s natural regenerative capacity attempts to maintain homeostasis by proliferating
healthy hepatocytes. This dynamic interaction between viral replication, immune activation, and
hepatocellular proliferation presents a challenging scenario for effective treatment. The availability of
uninfected hepatocytes, the rate of hepatocyte proliferation, and the overall homeostatic balance of the
liver become critical factors in determining the progression of the infection and the host’s ability to
control it. To better understand these intricate processes, mathematical modeling has become a crucial
tool in studying HCV dynamics. Mathematical models allow researchers to simulate the spread of the
virus within the liver, analyze how the infection interacts with treatment protocols like IFN-α and
DAAs, and explore the role of immune response and hepatocyte regeneration. These models not only
provide insights into the transmission dynamics of HCV but also help to refine treatment strategies by
identifying key factors influencing viral clearance or persistence. Through such modeling, it becomes
possible to investigate the intricate balance between viral proliferation, host immune defense, and the
liver’s regenerative capabilities, offering valuable perspectives on both disease progression and
therapeutic intervention. To illustrate, Pan and Chakrabarty [1] explored the Hopf bifurcation of the
HCV model

Ṫ = λ − β1TV − d1T − β2T I + αI,

İ = β1TV − αI − d2I + β2T I,

V̇ = kI − pVZ − d3V,

Ż = cZ(t − τ)V(t − τ) − d4Z,

(1.1)

where T , V , I, and Z respectively denote the densities of uninfected hepatocytes, virions, actively
infected hepatocytes, and humoral immunity. Mojaver and Kheiri [2] explored the behavior of a class
of HCV infection models with application of optimal control. Gümüş and Türk [3] examined the
dynamical analysis of a HBV model. Kong et al. [4] examined the Hopf bifurcation of the HCV model

Ṫ = s − βTV − d1T,

İ = βTV − d2I,

V̇ = kI − uV,

(1.2)

where T and I respectively denote uninfected and infected cells, while V is free virus. Furthermore,
cells T are generated, die, and are infected at rates s, d1T , and βTV , cells I emerge and die at rates
βTV and bI, and finally, free virus are released and decay at rates kI and uV . Jiang et al. [5] examined
the bifurcation, chaos, and circuit realisation of a four-dimensional memristor system. Chen et al. [6]
explored the bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks.
On the other hand, many authors have performed theoretical and mathematical analysis of the
mathematical models [7–9]. Furthermore, different mathematicians [10–12] have first analyzed the
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continuous-time HCV model

Ṫ = s + rT
(
1 −

T + I
Tmax

)
− dT − (1 − η)βVT,

İ = (1 − η)βVT + rT
(
1 −

T + I
Tmax

)
− δI,

V̇ = (1 − ε)pI − cV,

(1.3)

and then showed that it takes the following form after decomposing the viral dynamics to two distinct
time scales

u̇ = u(1 − u − v) − gu − (1 − α)buv,

v̇ = v(1 − u − v) − ζu + (1 − α)buv.
(1.4)

It is worthwhile to mention here that discrete-time models for Hepatitis C virus (HCV) dynamics are
often preferred over continuous-time models due to several practical advantages. One of the primary
reasons is their compatibility with the nature of clinical data collection. In practice, data such as viral
load measurements, liver enzyme levels, and patient responses to treatments are typically recorded at
discrete time intervals, such as daily, weekly, or monthly. Discrete-time models naturally align with
these sampling intervals, allowing for direct integration of empirical data without the need for
interpolation or extrapolation, which can introduce errors and complicate model validation.
Furthermore, discrete-time models tend to be computationally more efficient. Solving
continuous-time models involves complex numerical methods and often requires fine time
discretization to ensure accuracy, which increases computational costs. In contrast, discrete-time
models can achieve accurate results with simpler algorithms and larger time steps, making them more
practical for large-scale simulations or real-time applications. This efficiency is particularly beneficial
when modeling the long-term progression of HCV or evaluating various treatment strategies over
extended periods. The flexibility of discrete-time models is another significant advantage. They can
more easily incorporate complex biological processes and treatment protocols. For instance, antiviral
drug effects, immune responses, and patient adherence to therapy, which often change at specific time
points (e.g., weekly dosing schedules), can be modeled more intuitively in a discrete framework. This
capability is crucial for accurately reflecting the real-world dynamics of HCV and its treatment, where
interventions are frequently time-dependent. From an implementation perspective, discrete-time
models are generally easier to understand and use. Researchers and clinicians can work with models
that update state variables at each time step based on straightforward recurrence relations. This
simplicity facilitates broader adoption of the models in both clinical and research settings, promoting
better communication and collaboration among multidisciplinary teams. The ease of implementation
also lowers the barrier for developing and testing new hypotheses or treatment strategies, accelerating
progress in HCV research. Lastly, discrete-time models offer greater robustness to uncertainties and
variabilities inherent to biological systems and clinical data. They can handle irregular sampling
intervals and missing data more effectively, which is critical in real-world scenarios where ideal,
continuous data collection is rarely feasible. This robustness ensures that the models remain reliable
and useful even when the data is imperfect, enhancing their applicability and trustworthiness in
guiding clinical decisions and policy-making. In summary, while continuous-time models have their
theoretical advantages, the practical benefits of discrete-time models such as data compatibility,
computational efficiency, flexibility, ease of implementation, and robustness to uncertainties make
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them a preferable choice for modeling HCV dynamics in many contexts. Due to the aforementioned
facts, our aim in this paper is to explore the dynamics of a discrete-time HCV model instead of
continuous-time HCV model, which is depicted in (1.4), where the discrete version is obtained by a
non-standard finite difference scheme. The dynamics of a HCV infection model can vary depending
on whether it is a discrete-time model or a continuous-time model. Below, we shall highlight the key
differences in their dynamical behaviors, focusing on stability, bifurcations, and chaotic behaviors. In
a continuous-time model, the system evolves continuously over time, with changes happening
smoothly at every instant; in a discrete-time model, the system evolves at specific time intervals, and
changes happen at discrete points. Discrete systems are prone to phenomena like Neimark-Sacker and
period-doubling bifurcations, which can lead to quasi-periodic behavior and chaos more readily than
in continuous models. Numerically, continuous models are often simulated using methods like Euler
or Runge-Kutta, requiring fine time steps to approximate smooth dynamics. Discrete models,
however, are simpler to implement and can reveal complex behaviors with fewer time steps. The
contrast between the smooth progression of continuous models and the stepwise, often abrupt
behavior of discrete models highlights how the mathematical formulation influences the biological
insights derived from HCV infection dynamics. In order to derive the discrete version, we replace u̇
by ut+1−ut

h , v̇ by vt+1−vt
h , u2 by utut+1, v2 by vtvt+1, u by ut, and v by vt, and so continuous HCV (1.4)

becomes
ut+1 − ut

h
= ut − utut+1 − utvt − gut − (1 − α)butvt,

vt+1 − vt

h
= vt − utvt − vtvt+1 − ζut + (1 − α)butvt,

(1.5)

with h being the integral step size. Furthermore, after simplification, (1.5) takes the form

ut+1 =
(1 + h(1 − g))ut − h(1 + (1 − α)b)utvt

1 + hut
,

vt+1 =
(1 + h(1 − ζ))vt − h(1 − (1 − α)b)utvt

1 + hvt
.

(1.6)

More precisely, our main findings in this paper include:

• Existence of fixed points of a discrete model (1.6).
• Dynamics at fixed points of a discrete model (1.6).
• Identification of bifurcation sets for fixed points.
• Bifurcation analysis of a discrete model (1.6).
• Study of chaos.
• Numerical validation of theoretical results.

The rest of the paper is organized as follows: Existence of fixed points are given in Section 2. Section 3
regards the local behavior at fixed points of the model (1.6). Bifurcation analysis is given in Section 4,
whereas in Section 5 chaos control is studied. The numerical simulation of obtained results is given in
Section 6, while the conclusions are given in Section 7.
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2. Existence of fixed points

In this section, we will study the existence of fixed points of the discrete model (1.6). If (û, v̂) is a
fixed point of model (1.6), then

û =
(1 + h(1 − g))û − h(1 + (1 − α)b)ûv̂

1 + hû
,

v̂ =
(1 + h(1 − ζ))v̂ − h(1 − (1 − α)b)ûv̂

1 + hv̂
.

(2.1)

Since system (2.1) is obviously satisfied if (û, v̂) = (0, 0), (1 − g, 0) , (0, 1 − ζ). Therefore, ∀ b, α,
g, ζ, h, discrete HCV model (1.6) has liver-free fixed point (LFFP), disease-free fixed point (DFFP)
(1 − g, 0) if 0 < g < 1, and total infection fixed point (TIFP) (0, 1 − ζ) if 0 < ζ < 1. In order to find the
partial-infection fixed point (PIFP), from (2.1), one has

−û + (−1 − (1 − α)b)v̂ + 1 − g = 0,
−v̂ + (−1 + (1 − α)b)û + 1 − ζ = 0.

(2.2)

From the first equation of (2.2), one gets

v̂ =
−û + 1 − g

1 + (1 − α)b
. (2.3)

Using (2.3) into the second equation of (2.2), we get

û =
ζ − g − (1 − α)(1 − ζ)b

(1 − α)2b2 . (2.4)

Finally, using (2.4) into (2.3), one gets

v̂ =
g − ζ + (1 − α)(1 − g)b

(1 − α)2b2 . (2.5)

Equations (2.4) and (2.5) imply that if ζ−g
(1−α)(1−g) < b < ζ−g

(1−α)(1−ζ) , then HCV model (1.6) has PIFP(
ζ−g−(1−α)(1−ζ)b

(1−α)2b2 , g−ζ+(1−α)(1−g)b
(1−α)2b2

)
.

3. Local stability

In this section, the local stability at fixed points of the HCV model (1.6) is analyzed using linear
stability theory [13, 14]. Specifically, we explore local stability by evaluating the eigenvalues of the
Jacobian matrix at fixed points. This approach allows us to assess whether perturbations around the
fixed points are stable or unstable. For this, we first compute the Jacobian matrix at fixed points, and
then eigenvalues will be determined in order to apply linear stability theory [15,16]. So, Jacobian J|(û,v̂)

evaluated at (û, v̂) under the map (g1, g2) 7→ (ut+1, vt+1) is

J|(û,v̂) :=
 1−h(−1+g+(1+b(1−α))v̂)

(1+hû)2
−h(1+b(1−α))û

1+hû
−h(1−b(1−α))v̂

1+hv̂
1−h(−1+ζ+(1−b(1−α))û)

(1+hv̂)2

 , (3.1)
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where
g1 =

(1 + h(1 − g))ut − h(1 + (1 − α)b)utvt

1 + hut
,

g2 =
(1 + h(1 − ζ))vt − h(1 − (1 − α)b)utvt

1 + hvt
.

(3.2)

Now, at LFFP, (3.1) becomes

J|LFFP :=
(

1 + h − gh 0
0 1 + h − hζ

)
, (3.3)

with
λ1 = 1 + h − gh, λ2 = 1 + h − hζ. (3.4)

From (3.4), it is easy to see that LFFP is a saddle if 2
ζ−1 < h < 2

g−1 or 2
g−1 < h < 2

ζ−1 , a source if

0 < h < min
{

2
g−1 ,

2
ζ−1

}
, a sink if h > max

{
2

g−1 ,
2
ζ−1

}
, and finally, non-hyperbolic if

h =
2

g − 1
, (3.5)

or
h =

2
ζ − 1

. (3.6)

At DFFP, (3.1) becomes

J|DFFP :=
( 1

1+h(1−g)
h(−1−(1−α)b)(1−g)

1+h(1−g)

0 1 + h(g − ζ + (1 − α)(1 − g)b)

)
, (3.7)

with
λ1 =

1
1 + h − hg

, λ2 = 1 + h(g − ζ + (1 − α)(1 − g)b). (3.8)

From (3.8), one can also obtain that DFFP is a saddle if 2
g−1 < h < 2

−g+ζ−(1−g)(1−α)b or 2
−g+ζ−(1−g)(1−α)b <

h < 2
g−1 , a source if 0 < h < min

{
2

g−1 ,
2

−g+ζ−(1−g)(1−α)b

}
, a sink if h > max

{
2

g−1 ,
2

−g+ζ−(1−g)(1−α)b

}
, and

non-hyperbolic if

h =
2

g − 1
, (3.9)

or
h =

2
−g + ζ − (1 − α)(1 − g)b

. (3.10)

Furthermore, at TIFP, (3.1) becomes

J|TIFP :=
(

1 + h(ζ − g − (1 − α)(1 − ζ)b) 0
h(−1+(1−α)b)(1−ζ)

1+h(1−ζ)
1

1+h(1−ζ)

)
, (3.11)

with
λ1 = 1 + h(ζ − g) − h(1 − α)(1 − ζ)b, λ2 =

1
1 + h(1 − ζ)

, (3.12)
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from which it is easy to prove that TIFP is a saddle if 2
ζ−1 < h < 2

−ζ+g+(1−α)(1−ζ)b or 2
−ζ+g+(1−α)(1−ζ)b <

h < 2
ζ−1 , a source if 0 < h < min

{
2
ζ−1 ,

2
−ζ+g+(1−α)(1−ζ)b

}
, a sink if h > max

{
2
ζ−1 ,

2
−ζ+g+(1−α)(1−ζ)b

}
, and

non-hyperbolic if

h =
2

ζ − 1
, (3.13)

or
h =

2
−ζ + g + (1 − α)(1 − ζ)b

. (3.14)

Finally, at PIFP, (3.1) becomes

J|PIFP :=

 (1−α)2b2

b2(1−α)2−h(g−ζ)−hb(1−α)(1−ζ)
h(b(1−α)+1)(g+b(1−α)(1−ζ)−ζ)
(1−α)2b2−h(g−ζ)−hb(1−α)(1−ζ)

h(b(1−α)−1)(g+b(1−α)(1−g)−ζ)
(1−α)2b2+h(g−ζ)+hb(1−α)(1−g)

(1−α)2b2

(1−α)2b2+h(g−ζ)+hb(1−α)(1−g)

 , (3.15)

with
λ2 − %1λ + %2 = 0, (3.16)

where

%1 =
b3(1 − α)3(2b(1 − α) − h(g − ζ))

((1 − α)2b2 − h(g − ζ) − hb(1 − α)(1 − ζ))((1 − α)2b2 + h(g − ζ) + hb(1 − α)(1 − g))
,

%2 =
b4(1 − α)4 + h2(1 − b2(1 − α)2)(g + b(1 − g)(1 − α) − ζ)(g + b(1 − ζ)(1 − α) − ζ)

((1 − α)2b2 − h(g − ζ) − hb(1 − α)(1 − ζ))((1 − α)2b2 + h(g − ζ) + hb(1 − α)(1 − g))
.

(3.17)

The J|PIFP has characteristics roots

λ1,2 =
%1±
√

∆

2 , (3.18)

where

∆ =%2
1 − 4%2

=


b3(1 − α)3(2b(1 − α) − h(g − ζ)){

((1 − α)2b2 − h(g − ζ) − hb(1 − ζ)(1 − α))×
((1 − α)2b2 + h(g − ζ) + hb(1 − α)(1 − g))

}


2

−

4


{

b4(1 − α)4 + h2(1 − b2(1 − α)2)(g + b(1 − g)(1 − α) − ζ)×
(g + b(1 − α)(1 − ζ) − ζ)

}
{

((1 − α)2b2 − h(g − ζ) − hb(1 − α)(1 − ζ))×
(b2(1 − α)2 + h(g − ζ) + hb(1 − α)(1 − g))

}
 .

(3.19)

If ∆ < 0, then PIFP is an unstable focus if h > (1−α)3(ζ−g)b3

(2−(1−α)2b2)(g+b(1−g)(1−α)−ζ)(g+b(1−ζ)(1−α)−ζ) , a stable focus if

0 < h < (1−α)3(ζ−g)b3

(2−(1−α)2b2)(g+b(1−g)(1−α)−ζ)(g+b(1−ζ)(1−α)−ζ) , and non-hyperbolic if

h =
(1 − α)3(ζ − g)b3

(2 − (1 − α)2b2)(g + b(1 − g)(1 − α) − ζ)(g + b(1 − ζ)(1 − α) − ζ)
. (3.20)
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In addition, if ∆ > 0, then PIFP is an unstable node if

h > max


4b (1 − α)

g − ζ −

√{
5 (g − ζ)2 + 4b2 (1 − α)2 (1 − g) (1 − ζ)−

4b (1 − α) (g − ζ) (−2 + g + ζ)

} ,

4b (1 − α)

g − ζ +

√{
5 (g − ζ)2 + 4b2 (1 − α)2 (1 − g) (1 − ζ)−

4b (1 − α) (g − ζ) (−2 + g + ζ)

}

,

a stable node if

0 < h < min


4b (1 − α)

g − ζ −

√{
5 (g − ζ)2 + 4b2 (1 − α)2 (1 − g) (1 − ζ)−

4b (1 − α)2 (g − ζ) (−2 + g + ζ)

} ,

4b (1 − α)

g − ζ +

√{
5 (g − ζ)2 + 4b2 (1 − α)2 (1 − g) (1 − ζ)−

4b (1 − α) (g − ζ) (−2 + g + ζ)

}

,

and non-hyperbolic if

h =
4b(1 − α)

g − ζ −

√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)(g − ζ)(−2 + g + ζ)

} , (3.21)

or

h =
4b(1 − α)

g − ζ +

√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)(g − ζ)(−2 + g + ζ)

} . (3.22)

Example 1. If b = 12.3, g = 0.0006, ζ = 4.5, then at PIFP, the dynamics of the discrete HCV
model (1.6) are given in Figure 1.
Example 2. If b = 0.5, g = 0.09, ζ = 0.55, then at PIFP, the dynamics of the discrete HCV model (1.6)
are given in Figure 2.
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Figure 1. Dynamics of PIFP with α ∈ (0, 0.5) and h ∈ (0, 0.9).

Figure 2. Dynamics of PIFP with α ∈ (0, 1.8) and h ∈ (0, 2.9).

4. Bifurcation analysis

In this section, detailed bifurcation analysis is given based on bifurcation theory [17–19]. Before
detailed bifurcation analysis, we first give the existence of possible bifurcation sets for fixed points as
follows:

(a) If (3.5) holds, then roots of J|LFFP satisfying λ1|(3.5) = −1 but λ2|(3.5) =
g−1+2(1−ζ)

g−1 , 1 or − 1. So,

AIMS Mathematics Volume 9, Issue 11, 31985–32013.
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period-doubling bifurcation may take place if (b, α, g, ζ, h) = L crosses through the curve

F |LFFP =

{
L : h =

2
g − 1

}
; (4.1)

(b) if (3.6) holds, then roots of J|LFFP satisfying λ1|(3.6) =
1−2g+ζ

ζ−1 , 1 or − 1 but λ2|(3.6) = −1. So,
period-doubling bifurcation may take place if L crosses through the curve

F |LFSS =

{
L : h =

2
ζ − 1

}
; (4.2)

(c) if (3.9) holds, then roots of J|DFFP satisfying λ1|(3.9) = −1 but λ2|(3.9) = 1+
2(g−ζ+b(1−α)(1−g))

g−1 , 1 or −1.
So, period-doubling bifurcation may take place if L crosses through the curve

F |DFFP =

{
L : h =

2
g − 1

}
; (4.3)

(d) if (3.10) holds, then roots of J|DFFP satisfying λ1|(3.10) =
−g+ζ−b(1−α)(1−g)

2−3g−b(1−α)(1−g)+ζ , 1 or − 1 but λ2|(3.10) =

−1. So, period-doubling bifurcation may take place if L crosses through the curve

F |DFFP =

{
L : h =

2
−g + ζ − (1 − α)(1 − g)b

}
; (4.4)

(e) if (3.13) holds, then roots of J|TIFP satisfying λ1|(3.13) = 1 + 2
ζ−1 (ζ − g− b(1− α)(1− ζ)) , 1 or − 1

but λ2|(3.13) = −1. So, period-doubling bifurcation may take place if L crosses through the curve

F |TIFP =

{
L : h =

2
ζ − 1

}
; (4.5)

(f) if (3.14) holds, then roots of J|TIFP satisfying λ1|(3.14) = −1 but λ2|(3.14) =
g−ζ+b(1−α)(1−ζ)

2−3ζ+b(1−α)(1−ζ)+g . So,
period-doubling bifurcation may take place if L crosses through the curve

F |TIFP =

{
L : h =

2
−ζ + g + (1 − ζ)(1 − α)b

}
; (4.6)

(g) if (3.20) holds, then a pair of complex roots of J|PIFP satisfying
∣∣∣λ1,2

∣∣∣
(3.20)

= 1. So, Neimark-Sacker
bifurcation may take place if L crosses through the curve

N|PIFP =

L : ∆ < 0 and h =
(1 − α)3b3(ζ − g){

(2 − b2(1 − α)2)(g + b(1 − g)(1 − α) − ζ)
(g + b(1 − ζ)(1 − α) − ζ)

}
 ; (4.7)

(h) if (3.21) is a true, then the value of λ1,2 at (3.21) has been calculated and is depicted in (A.1). This
implies that no period-doubling bifurcation takes place if L crosses through the curve

F |PIFP =


L : ∆ > 0 and h =

4b(1 − α)

g − ζ −

√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)(g − ζ)(−2 + g + ζ)

}


; (4.8)
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(i) if (3.22) holds, then the value of λ1,2 at (3.22) has been calculated and is depicted in (A.2). This
implies that no period-doubling bifurcation takes place if L crosses through the curve

F |PIFP =


L : ∆ > 0 and h =

4b(1 − α)

g − ζ +

√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)(g − ζ)(−2 + g + ζ)

}

. (4.9)

Now we will study detailed bifurcation analysis at fixed points based on the bifurcation sets. It is
mentioned that no period-doubling bifurcation occurs at LFFP if (4.1) and (4.2) hold, and therefore,
LFFP is degenerate. Now, we examine bifurcation analysis at DFFP, TIFP, and PIFP of HCV
model (1.6) if (4.3)–(4.9) hold.

Lemma 4.1. The discrete HCV model (1.6) does not undergo period-doubling at respective fixed points
if (4.3)–(4.6) hold.

Proof. The HCV model (1.6), takes the following form after being restricted to v = 0,

ut+1 =
(1 + h(1 − g))ut

1 + hut
. (4.10)

From (4.10), we define

g1 :=
(1 + h(1 − g))u

1 + hu
. (4.11)

Now, if h = ĥ = 2
g−1 and u = û = 1 − g, then from (4.11), we get

∂g1

∂u

∣∣∣∣∣
u=û=1−g, h=ĥ= 2

g−1

= −1, (4.12)

∂2g1

∂u2

∣∣∣∣∣
u=û=1−g, h=ĥ= 2

g−1

=
−4

g − 1
, (4.13)

and
∂g1

∂h

∣∣∣∣∣
u=û=1−g, h=ĥ= 2

g−1

= 0. (4.14)

So, from (4.14), no period-doubling bifurcation occurs at DFFP if (4.3) holds. Similarly, it is also easy
to obtain that no period-doubling exists at the respective fixed points if (4.4)–(4.6) hold. �

Remark 4.2. In order to study the Neimark-Sacker bifurcation at PIFP of the HCV model (1.6), first it
is imperative to highlight the seminal work of Rahman and Blackmore [20]. This paper presented
significant advancements in understanding the complex behavior exhibited by discrete dynamical
systems. The study meticulously examined the onset of chaos through Neimark-Sacker bifurcations,
providing crucial insights into the mechanisms that drive such phenomena. Rahman and
Blackmore [20] contributions to this research are particularly noteworthy for their depth and clarity in
elucidating the mathematical underpinnings of chaotic behavior in these systems. In the broader
context of modern dynamical systems analysis, Rahman and Blackmore’s work has consistently
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demonstrated a pioneering spirit. Their investigations into the stability and bifurcation of nonlinear
systems have laid a foundational framework that subsequent researchers have built upon. By
systematically exploring the conditions under which chaotic dynamics emerge, Rahman and
Blackmore have advanced our understanding of the intricate balance between order and disorder in
mathematical models of physical phenomena. The meticulous approach adopted in their study
underscores the critical role that rigorous mathematical analysis plays in unveiling the complexities of
dynamical systems. Moreover, the implications of Rahman and Blackmore’s research extend beyond
theoretical exploration, influencing practical applications in various fields where understanding
chaotic behavior is essential. From engineering to biological systems, the insights derived from their
work on Neimark-Sacker bifurcations have provided valuable tools for predicting and managing
chaotic dynamics. This integration of theoretical rigor with practical relevance is a hallmark of
Rahman and Blackmore’s legacy in the field, reflecting the profound impact on both the academic
community and applied sciences. In conclusion, the work of Rahman and Blackmore on the study of
Neimark-Sacker bifurcations and chaotic behavior stands as a testament to their pioneering
contributions to dynamical systems analysis. By bridging the gap between abstract mathematical
theory and real-world applications, Rahman and Blackmore left an indelible mark on the field,
inspiring future generations of researchers to explore the rich and intricate world of nonlinear
dynamics. This legacy continues to influence contemporary studies and will undoubtedly remain a
cornerstone of dynamical systems research for years to come.

Theorem 4.3. If (4.7) holds, then the HCV model (1.6) undergoes a Neimark-Sacker bifurcation with
h being a bifurcation parameter.

Proof. By considering h as a bifurcation parameter, the discrete HCV model (1.6) becomes

ut+1 =
(1 + (h∗ + ε)(1 − g))ut − (h∗ + ε)(1 + (1 − α)b)utvt

1 + (h∗ + ε)ut
,

vt+1 =
(1 + (h∗ + ε)(1 − ζ))vt − (h∗ + ε)(1 − (1 − α)b)utvt

1 + (h∗ + ε)vt
,

(4.15)

where ε << 1, and the characteristic roots of J|PIFP at PIFP of ε-dependence HCV model (4.15) are

λ1,2 =
%1(ε) ± ι

√
4%2(ε) − %2

1(ε)

2
, (4.16)

where

%1(ε) =
b3(1 − α)3(2b(1 − α) − (h∗ + ε)(g − ζ)){

((1 − α)2b2 − (h∗ + ε)(g − ζ) − (h∗ + ε)b(1 − α)(1 − ζ))
((1 − α)2b2 + (h∗ + ε)(g − ζ) + (h∗ + ε)b(1 − α)(1 − g))

} ,

%2(ε) =

{
b4(1 − α)4 + (h∗ + ε)2(1 − b2(1 − α)2)

(g + b(1 − g)(1 − α) − ζ)(g + b(1 − ζ)(1 − α) − ζ)

}
{

((1 − α)2b2 − (h∗ + ε)(g − ζ) − (h∗ + ε)b(1 − α)(1 − ζ))
((1 − α)2b2 + (h∗ + ε)(g − ζ) + (h∗ + ε)b(1 − α)(1 − g))

} .
(4.17)
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From (4.16) and (4.17), one has

d|λ1,2|

dε

∣∣∣∣∣
ε=0

=

{
−b4h(1 − α)4(g + b(1 − α)(1 − ζ) − ζ)(−2g − b(1 − α)×

(2 − g − b(1 − α)(g + b(1 − g)(1 − α) − ζ) − ζ) + 2ζ)

}


(
b4(1 − α)4 − h2(g − ζ)2 − 2bh2(1 − α)(g − ζ)(1 − ζ)−

b2h2(1 − α)2(1 − ζ)2

)3/2

×√{
b4(1 − α)4 − h2(−1 + (1 − α)2b2)(g + b(1 − α)(1 − g) − ζ)

(g + (1 − α)b(1 − ζ) − ζ)

}


, 0.

(4.18)

Now, (4.15) becomes

It+1 =
(1 + (h∗ + ε)(1 − g)) (It + û) − (h∗ + ε)(1 + (1 − α)b)(It + û)(S t + v̂)

1 + (h∗ + ε)(It + û)
− û,

S t+1 =
(1 + (h∗ + ε)(1 − ζ)) (S t + v̂) − (h∗ + ε)(1 − (1 − α)b)(It + û)(S t + v̂)

1 + (h∗ + ε)(S t + v̂)
− v̂,

(4.19)

by

It =ut − û,

S t =vt − v̂,
(4.20)

where û =
ζ−g−(1−α)(1−ζ)b

(1−α)2b2 and v̂ =
g−ζ+(1−α)(1−g)b

(1−α)2b2 . Hereafter, following Kuznetsov’s argument for a
Neimark-Sacker bifurcation involves a detailed analysis of the model’s dynamics as it undergoes this
type of bifurcation, which is characterized by the emergence of a closed invariant curve from a fixed
point as parameters are varied. The first step in this analysis is to bring the system into a normal form
that simplifies the bifurcation process. This normal form representation allows for the computation
of the first Lyapunov coefficients, which are essential in determining the stability and nature of the
bifurcating solutions. The first Lyapunov coefficient, in particular, indicates whether the bifurcation
will lead to stable or unstable quasiperiodic orbits. By computing these coefficients, one can predict
the onset of chaotic dynamics and the subsequent behavior of the system. Kuznetsov’s methodology
provides a robust framework for analyzing the local behavior near the bifurcation point, ensuring a
thorough understanding of the system’s transition to chaos. This approach is crucial for identifying the
critical parameters and conditions that govern the complex behavior in nonlinear dynamical systems.
For more detail, we also refer the reader to the existing theory [17, 18, 20]. Now, in order to study the
normal form of the HCV model (4.19) if ε = 0, the Taylor’s series expansion at (0, 0) yields

It+1 =l11It + l12S t + l13I2
t + l14ItS t,

S t+1 =l21It + l22S t + l23ItS t + l24S 2
t ,

(4.21)
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where

l11 =
1 + h(1 − g) − h(1 + (1 − α)b)v̂

(1 + hû)2 ,

l12 =
−h(1 + (1 − α)b)û

1 + hû
,

l13 =
−2h(1 + h(1 − g) − h(1 + (1 − α)b)v̂)

(1 + hû)3 ,

l14 =
h(−1 − (1 − α)b)

(1 + hû)2 ,

l21 =
h(−1 + (1 − α)b)v̂

1 + hv̂
,

l22 =
1 + h(1 − ζ) − h(1 − (1 − α)b)û

(1 + hv̂)2 ,

l23 =
h(−1 + (1 − α)b)

(1 + hv̂)2 ,

l24 =
−2h(1 + h(1 − ζ) − h(1 − (1 − α)b)û)

(1 + hv̂)3 .

(4.22)

Now, if (
It

S t

)
:=

(
l12 0

η − l11 −ρ

) (
ut

vt

)
, (4.23)

then (4.21) becomes

(
ut+1

vt+1

)
:=

(
η −ρ

ρ η

) (
ut

vt

)
+

(
Υ1(ut, vt)
Υ2(ut, vt)

)
, (4.24)

where

η =
b3(1 − α)3(2b(1 − α) − h(g − ζ))

2((1 − α)2b2 − h(g − ζ) − hb(1 − α)(1 − ζ))((1 − α)2b2 + h(g − ζ) + hb(1 − α)(1 − g))
,

ρ =

√√√√√√√√√√√√

−b6(1 − α)6(−2(1 − α)b + h(g − ζ))2 + 4((1 − α)2b2 + h(g+

b(1 − α)(1 − g) − ζ))(b4(1 − α)4 − h2(−1 + b2(1 − α)2)×
(g + b(1 − g)(1 − α) − ζ)(g + b(1 − α)(1 − ζ)−

ζ))(b2(1 − α)2 + ζ))


2((1 − α)2b2 − h(g − ζ) − hb(1 − ζ)(1 − α))((1 − α)2b2 + h(g − ζ) + hb(1 − α)(1 − g))

,

(4.25)

and

Υ1 = σ11u2
t + σ12utvt,

Υ2 = σ21u2
t + σ22utvt + σ23v2

t ,
(4.26)
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with
σ11 = l13l12 + l14η − l14l11,

σ12 = −ρl14,

σ21 =
(η − l11)l12

ρ
(l13 − l23) +

(η − l11)2

ρ
(l14 − l24) ,

σ22 = l23l12 + (η − l11)(2l24 − l14),
σ23 = −l24ρ.

(4.27)

From (4.26), we get

∂2Υ1

∂u2
t

∣∣∣∣∣
(0,0)

= 2σ11,
∂2Υ1

∂ut∂vt

∣∣∣∣∣
(0,0)

= σ12,

∂2Υ1

∂v2
t

∣∣∣∣∣
(0,0)

=
∂3Υ1

∂u3
t

∣∣∣∣∣
(0,0)

=
∂3Υ1

∂u2
t ∂vt

∣∣∣∣∣
(0,0)

=
∂3Υ1

∂ut∂v2
t

∣∣∣∣∣
(0,0)

=
∂3Υ

∂v3
t

∣∣∣∣∣
(0,0)

= 0,

∂2Υ2

∂u2
t

∣∣∣∣∣
(0,0)

= 2σ21,
∂2Υ2

∂ut∂vt

∣∣∣∣∣
(0,0)

= σ22,
∂2Υ2

∂v2
t

∣∣∣∣∣
(0,0)

= 2σ23,

∂3Υ2

∂u3
t

∣∣∣∣∣
(0,0)

=
∂3Υ2

∂u2
t ∂vt

∣∣∣∣∣
(0,0)

=
∂3Υ2

∂ut∂v2
t

∣∣∣∣∣
(0,0)

=
∂3Υ2

∂v3
t

∣∣∣∣∣
(0,0)

= 0.

(4.28)

Now, by the existing theory [21–23]. the map (4.24) undergoes Neimark-Sacker bifurcation if ψ , 0,
that is,

ψ = −<

(
(1 − 2λ̄)λ̄2

1 − λ
ρ11ρ20

)
−

1
2
‖ρ11‖

2 − ‖ρ02‖
2 +<

(
λ̄ρ21

)
, (4.29)

where

ρ02 =
1
8

(
∂2Υ1

∂u2
t
−
∂2Υ1

∂v2
t

+ 2
∂2Υ2

∂ut∂vt
+ ι

(
∂2Υ2

∂u2
t
−
∂2Υ2

∂v2
t

+ 2
∂2Υ1

∂ut∂vt

))∣∣∣∣∣
(0,0)

,

ρ11 =
1
4

(
∂2Υ1

∂u2
t

+
∂2Υ1

∂v2
t

+ ι

(
∂2Υ2

∂u2
t

+
∂2Υ2

∂v2
t

))∣∣∣∣∣
(0,0)

,

ρ20 =
1
8

(
∂2Υ1

∂u2
t
−
∂2Υ1

∂v2
t

+ 2
∂2Υ2

∂ut∂vt
+ ι

(
∂2Υ2

∂u2
t
−
∂2Υ2

∂v2
t
− 2

∂2Υ1

∂ut∂vt

))∣∣∣∣∣
(0,0)

,

ρ21 =
1

16

(
∂3Υ1

∂u3
t

+
∂3Υ1

∂v3
t

+
∂3Υ2

∂u2
t ∂vt

+
∂3Υ2

∂v3
t

+

ι

(
∂3Υ2

∂u3
t

+
∂3Υ2

∂ut∂v2
t
−

∂3Υ1

∂u2
t ∂vt
−
∂3Υ1

∂v3
t

))∣∣∣∣∣
(0,0)

.

(4.30)

After calculation, one gets

ρ02 =
1
4

(σ11 + σ22 + ι(σ21 − σ23 + σ12)) ,

ρ11 =
1
2

(σ11 + ι(σ21 + σ23)) ,

ρ20 =
1
4

(σ11 + σ22 + ι(σ21 − σ12 − σ23)) ,

ρ21 = 0.

(4.31)
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Using (4.31) along with (4.25) in (4.29) if one obtains ψ , 0, then at PIFP, the HCV model (1.6)
undergoes N-S bifurcation. Additionally, it also requires that λm

1,2 , 1, m = 1, · · · , 4 if ε = 0 that

corresponds to %1(0) , −2, 0, 1, 2. But if h =
(1−α)3b3(ζ−g)

(2−b2(1−α)2)(g+b(1−g)(1−α)−ζ)(g+b(1−ζ)(1−α)−ζ) holds, then
from (4.17), we get %2(0) = 1, and so %1(0) , −2, 2. Therefore, it is only required that %1(0) , 0, 1,
i.e.,

g ,

{
8b(−1 + α) + 8b3(1 − α)3 − 2b5(1 − α)5 − b6(1 − α)6(−1 + ζ) + 8ζ + b4(1 − α)4

(−4 + 5ζ) − 2b2(−1 + α)2(−2 + 5ζ) ±
√

b6(−2 + b2(1 − α)2)3(1 − α)6(1 − ζ)2

}
8 − 8b(1 − α) − 6b2(1 − α)2 + 8b3(1 − α)3 + b4(1 − α)4 − 2b5(1 − α)5 .

(4.32)

On the other hand, also by existing theory [24–27], the Neimark-Sacker bifurcation at PIFP is also
supercritical (resp. subcritical) if ψ < 0 (resp. ψ > 0). �

Remark 4.4. It is important to note that no period-doubling bifurcation occurs if (4.8) and (4.9) hold.
In conclusion, at PIFP, no other bifurcations occur except the Neimark-sacker bifurcation.

5. Chaos control

In this section, the OGY method, which was proposed by Ott et al. [28], is utilized for the HCV
model (1.6). For this, one writes the HCV model (1.6) as follows

ut+1 =
(1 + h(1 − g))ut − h(1 + (1 − α)b)utvt

1 + hut
= g1(ut, vt, ζ),

vt+1 =
(1 + h(1 − ζ))vt − h(1 − (1 − α)b)utvt

1 + hvt
= g2(ut, vt, ζ),

(5.1)

where the control parameter is ζ to acquire the desired chaos control by small perturbations. Due to
this, we restrict it where ζ ∈ (ζ0 − σ, ζ0 + σ) with σ > 0, and ζ0 indicates small value corresponding
to chaotic region. The trajectory is moved in the direction of the target orbit using the stabilizing
feedback control strategy. Assuming that PIFP is an unstable point in the chaotic region created by the
occurrence of N-S bifurcation, then the following map can be used to approximate the model (5.1)(

ut+1 − û
vt+1 − v̂

)
≈ J(û,v̂,ζ0)

(
ut − û
vt − v̂

)
+ P(ζ − ζ0), (5.2)

where

J(û,v̂,ζ0) =

 (1−α)2b2

(1−α)2b2+h(ζ0−g)+hb(1−α)(ζ0−1)
h(1+b(1−α))(g+b(1−α)(1−ζ0)−ζ0)
(1−α)2b2+h(ζ0−g)+hb(1−α)(ζ0−1)

h(−1+b(1−α))(g+b(1−α)(1−g)−ζ0)
(1−α)2b2+h(g−ζ0)+hb(1−α)(1−g)

(1−α)2b2

(1−α)2b2+h(g−ζ0)+hb(1−α)(1−g)

 , (5.3)

and

P =

 ∂g1(û,v̂,ζ0)
∂ζ

∂g2(û,v̂,ζ0)
∂ζ

 =

(
0

h(−g+ζ0−(1−g)(1−α)b)
(1−α)2b2+h(g−ζ0+(1−g)(1−α)b)

)
. (5.4)
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Moreover, the HCV model (5.1) is controlled provided that the following matrix

C =
(

P : J(û,v̂,ζ0)P
)

=


0

h(−g+ζ0−(1−α)(1−g)b)
b2(1−α)2+h(g−ζ0+(1−g)(1−α)b)

h2(g−ζ0+b(1−ζ0)(1−α))(g−ζ0+(1−α)(1−g)b)(−1−b(1−α))
((1−α)2b2+h(ζ0−g)+hb(1−ζ0)(1−α))((1−α)2b2+h(g−ζ0)+hb(1−α)(1−g))

hb2(1−α)2(−g+ζ0−(1−α)(1−g)b)
((1−α)2b2+h(g−ζ0+(1−α)(1−g)b))2

 ,
(5.5)

is of rank 2. So, to apply the OGY method for the HCV model (1.6), we choose ζ as a control parameter.

Now, if ζ − ζ0 = −T
(

ut − û
vt − v̂

)
, where T = (k̂1 k̂2), then model (5.2) can be written as(

ut+1 − û
vt+1 − v̂

)
≈

(
J(û,v̂,ζ0) − PT

) ( ut − û
vt − v̂

)
. (5.6)

Thus, the corresponding controlled model of (1.6) is given by

ut+1 =
(1 + h(1 − g))ut − h(1 + (1 − α)b)utvt

1 + hut
,

vt+1 =
(1 + h(1 − (ζ0 − k̂1(ut − û) − k̂2(vt − v̂))))vt − h(1 − (1 − α)b)utvt

1 + hvt
.

(5.7)

By the theory of stability, PIFP is a sink iff roots of J(û,v̂,ζ0)−PT satisfying |λ1,2| < 1 where its Jacobian is

J(û,v̂,ζ0) − PT =


(1−α)2b2

(1−α)2b2+h(ζ0−g)+hb(1−α)(ζ0−1)

−h(g+b(1−α)(1−g)−ζ0)(−k̂1+1−b(1−α))
(1−α)2b2+h(g−ζ0)+hb(1−α)(1−g)

h(1+b(1−α))(g+b(1−α)(1−ζ0)−ζ0)
(1−α)2b2+h(ζ0−g)+hb(1−α)(ζ0−1)

(1−α)2b2+h(g−ζ0+b(1−α)(1−g))k̂2
(1−α)2b2+h(g−ζ0)+hb(1−α)(1−g)

 .
(5.8)

J(û,v̂,ζ0) − PT has the following characteristic equation

λ2 −

{
(1 − α)3b3(2b(1 − α) − h(g − ζ)) + h(g + (1 − α)b(1 − g) − ζ0)((1 − α)2b2

+ h(ζ0 − g) + hb(1 − α)(ζ0 − 1))k̂2

}
{

((1 − α)2b2 + h(ζ0 − g) + hb(ζ0 − 1)(1 − α))
((1 − α)2b2 + h(g − ζ0) + hb(1 − g)(1 − α))

} λ+

{
(1 − α)4b4 − h2((1 − α)b + 1)(g + b(1 − ζ0)(1 − α) − ζ0)(g + b(1 − α)×

(1 − g) − ζ0)(−1 + b(1 − α) + k̂1) + h(1 − α)2b2(g − ζ0 + (1 − g)(1 − α)b)k̂2

}
((1 − α)2b2 + h(ζ0 − g) + hb(1 − α)(ζ0 − 1))((1 − α)2b2 + h(g − ζ0) + hb(1 − α)(1 − g))

= 0.

(5.9)
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If one denotes roots of (5.9) are λ1,2, then

λ1 + λ2 =

{
(1 − α)3b3(2b(1 − α) − h(g − ζ)) + h(g + b(1 − α)(1 − g) − ζ0)×

((1 − α)2b2 + h(ζ0 − g) + hb(1 − α)(ζ0 − 1))k̂2

}
{

((1 − α)2b2 + h(ζ0 − g) + hb(1 − α)(ζ0 − 1))×
((1 − α)2b2 + h(g − ζ0) + hb(1 − α)(1 − g))

} , (5.10)

and

λ1λ2 =

{
(1 − α)4b4 − h2(b(1 − α) + 1)(g + b(1 − ζ0)(1 − α) − ζ0)(g + b(1 − α)×

(1 − g) − ζ0)(−1 + b(1 − α) + k̂1) + h(1 − α)2b2(g − ζ0 + (1 − g)(1 − α)b)k̂2

}
{

((1 − α)2b2 + h(ζ0 − g) + hb(1 − α)(ζ0 − 1))×
((1 − α)2b2 + h(g − ζ0) + hb(1 − α)(1 − g))

} . (5.11)

Now, to get lines of marginal stability for (5.7), one requires λ1 = ±1 and λ1λ2 = 1, where these
restrictions give characteristics roots satisfying |λ1,2| < 1. If λ1λ2 = 1, then from (5.11), we have

L1 : h2((1 − α)b + 1)(g + b(1 − ζ0)(1 − α) − ζ0)(g + b(1 − g)(1 − α) − ζ0)k̂1−

h(1 − α)2b2(g − ζ0 + (1 − g)(1 − α)b)k̂2 + ((1 − α)2b2 + h(ζ0 − g) + hb(ζ0 − 1)(1 − α))×
((1 − α)2b2 + h(g − ζ0) + hb(1 − g)(1 − α)) + b4(1 − α)4 − h2(1 − (1 − α)2b2)×
(g + b(1 − ζ0)(1 − α) − ζ0)(g + b(1 − g)(1 − α) − ζ0) = 0.

(5.12)

If λ1 = 1, then from (5.10) and (5.11), we have

L2 : h2((1 − α)b + 1)(g + (1 − α)b(1 − ζ0) − ζ0)(g + (1 − α)b(1 − g) − ζ0)k̂1−

h2(g − ζ0 + (1 − g)(1 − α)b)(g + b(1 − α)(1 − ζ0) − ζ0)k̂2+

h2(1 − α)2b2(g − ζ0 + (1 − g)(1 − α)b)(g + b(1 − α)(1 − ζ0) − ζ0) = 0.

(5.13)

Finally, if λ1 = −1, then from (5.10) and (5.11), we have

L3 : h2((1 − α)b + 1)(g + (1 − α)b(1 − ζ0) − ζ0)(g + (1 − α)b(1 − g) − ζ0)k̂1−

h(g − ζ0 + (1 − g)(1 − α)b)
(
2(1 − α)2b2 − h(g + b(1 − α)(1 − ζ0) − ζ0)

)
k̂2+

b2(1 − α)2(−4b2(1 − α)2 + hb2(1 − α)2(1 − g)(1 − ζ0)+
h2(g − ζ0)2 − bh(1 − α)(g − ζ0)(−2 + h(−2 + g + ζ0))) = 0.

(5.14)

Therefore, the stable eigenvalues are located within the triangular region (k̂1k̂2)-plane bounded by
Li(i = 1, 2, 3) for parametric values b, α, g, ζ, and h.

6. Numerical simulations

The following two cases are to be considered for the completeness of this section.
Case I. If b = 12.01, α = 0.665, g = 0.1232, ζ = 2.002, h = [0.55, 1] with the initial condition
(u0, v0) = (0.012352, 0.232), then at h = 0.8850211364486024, the HCV model (1.6) undergoes the
Neimark-Sacker bifurcation, and Figure 3 shows the maximum Lyapunov exponent with bifurcation
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diagrams. Further, if b = 12.01, α = 0.665, g = 0.1232, ζ = 2.002, h = 0.8850211364486024, then
model (1.6) has PIFP = (0.36511216748407743, 0.1018618715629854) and, moreover, from (3.15),
one gets

J|PIFP=(0.36511216748407743,0.1018618715629854) =


0.7557825001858909 −1.2267899776912048

0.2500158244698668 0.9173050343262055

 , (6.1)

with
λ2 − 1.6730875345120961λ + 1 = 0. (6.2)

The roots are λ1,2 = 0.8365437672560481 ± 0.5479001053705491ι with |λ1,2| = 1, which implies
from the respective bifurcation curve (4.7) that (b, α, g, ζ, h) =

(12.01, 0.665, 0.1232, 2.002, 0.8850211364486024) ∈ N|PIFP=(0.36511216748407743,0.1018618715629854).
Furthermore, by fixing b = 12.01, α = 0.665, g = 0.1232, ζ = 2.002 and varying
h = 0.8850211364486024, then one can conclude that the corresponding PIFP is a stable focus. To
verify this, if h = 0.795 < 0.8850211364486024, then Figure 4(a) indicates that PIFP is a stable
focus. Similarly, if h = 0.805, 0.835, 0.855, 0.865, 0.875 < 0.8850211364486024, then
Figures 4(b)–(f) also show that the corresponding PIFP is stable focus. Conversely, if
h > 0.8850211364486024, then respective PIFP is an unstable focus, and as a result, supercritical N-S
bifurcation takes place for the HCV model (1.6). For instance, if b = 12.01, α = 0.665, g = 0.1232,

and ζ = 2.002, then from (4.18), one gets d|λ1,2 |

dε

∣∣∣∣∣
ε=0

= 0.6070024854770324 > 0, and if

h = 0.895 > 0.8850211364486024, then from (4.22) and (4.25), one gets

l11 = 0.7537070762796483, l12 = −1.2372155583706284,
l13 = −1.0168530987328883, l14 = −2.5540045067599264,
l21 = 0.252599297693408, l22 = 0.916450527496516,
l23 = 2.272634068707745, l24 = −1.50338800913407,

(6.3)

η = 0.8350788018880821, ζ = 0.39028624560846026. (6.4)

From (6.3), (6.4), and (4.27), one gets

σ11 = 1.0502427204029419, σ12 = 0.9967928302104191, σ21 = 0.8306993329208056,
σ22 = −2.848581027486128, σ23 = 0.5867516617777137.

(6.5)

From (6.5) and (4.31), one gets

ρ02 = −0.4495845767707965 + 0.6035609562272346ι,
ρ11 = 0.5251213602014709 + 0.7087254973492596ι,
ρ20 = −0.4495845767707965 − 0.1882112897668318ι, ρ21 = 0.

(6.6)

Now, utilizing (6.6) with λ, λ̄ = 0.8350788018880821 ± 0.39028624560846026ι into (4.29), one
obtains ψ = −0.6734309764490927 < 0, indicating the existence of a closed invariant curve. Thus, at
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the PIFP, the HCV model undergoes a supercritical N-S bifurcation (see Figure 5(a). Similarly, for
h = 0.905, 0.915, 0.925, 0.935, 0.945 > 0.8850211364486024, stable invariant curves also emerge, as
depicted in Figures 5(b)–(f). It is worth highlighting that similar bifurcation behavior, as depicted in
Figures 4 and 5, has been observed in another system [29].

(a) (b)

(c) (d)

(e) (f)

Figure 3. N-S bifurcation diagrams at PIFP of the HCV model (1.6) for 3a ut; 3b vt; 3c ut

and vt; 3d b and ut; 3e g and vt; 3f MLEs.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Phase portrait of the HCV model (1.6) at PIFP if h 4a 0.7064; 4b 0.7164; 4c
0.7264; 4d 0.7464; 4e 0.7564; 4f 0.7664.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Invariant closed curves of the HCV model (1.6) at PIFP if h 5a 0.7864; 5b 0.7964;
5c 0.8064; 5d0.8164; 5e 0.8364; 5f 0.8464.
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Case II. If one reconsiders the data from Case I with ζ0 = 0.0001, then (5.7) becomes

ut+1 =
2.652824992ut − 9.46934126775utvt

1 + 0.885065ut
,

vt+1 =

5.699211267749999utvt +
(
1 + 0.885065

(
0.9999+

k̂1(0.25612894566782324 + ut) + k̂2(−0.22553255211518677 + vt)
))

vt


1 + 0.885065vt

,

(6.7)

where

JPIFP − PT =


1.933561702180291

0.9019145397657196 + 0.29831628483824885k̂1

4.689607176647366

1. + 0.4251435203530145k̂2

 ,
(6.8)

with lines of marginal stability being

L1 : 1272.0324493907451 + 270.18749966926106k̂1 − 111.40041843372863k̂2 = 0, (6.9)

L2 : 870.6576949546483 + 270.18749966926106k̂1 − 53.786317829588036k̂2 = 0, (6.10)

and

L3 : −530.511530819259 + 270.18749966926106k̂1 − 169.01451903786923k̂2 = 0. (6.11)

Therefore, the lines (6.9)–(6.11) determine a triangular region that gives |λ1,2| < 1 (see Figure 6).

Figure 6. Region of stability where |λ1,2| < 1.
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7. Conclusions

This work investigates the dynamical characteristics of a discrete two-dimensional Hepatitis C
virus (HCV) model (1.6), specifically focusing on the local behavior at the fixed points of the discrete
model. By examining these fixed points, we gain insights into the stability and potential bifurcations
that may arise within the system. The study particularly emphasizes the absence of period-doubling
bifurcations at various fixed points under specific conditions. For example, no period-doubling
bifurcation occurs at liver-free fixed point (LFFP), disease-free fixed point (DFFP), and total infection
fixed point (TIFP). Furthermore, the study proves that at the PIFP, the HCV model undergoes a N-S
bifurcation. Additionally, no period-doubling bifurcation exists at the PIFP. To manage the chaos
induced by the Neimark-Sacker bifurcation, the OGY control strategy is applied, showcasing the
practical implications of controlling chaotic behavior in the HCV model (1.6). Numerical simulations
confirm the theoretical results, reinforcing the validity and applicability of the discrete HCV
model (1.6) in understanding the dynamics of Hepatitis C virus. The discrete HCV model is crucial
for comprehending the complexities of HCV dynamics. Local stability analysis at various fixed
points, such as the liver-free fixed point, disease-free fixed point, total infection fixed point, and partial
infection fixed point, provides a comprehensive understanding of the virus’s behavior under different
conditions. The study’s exploration of Neimark-Sacker bifurcation at the partial infection fixed point
offers significant insights into the potential for chaotic dynamics in the virus’s spread. Understanding
the existence of chaos in the model underscores the importance of this research in devising effective
control strategies for Hepatitis C. It is noted here that the existence of a Neimark-Sacker bifurcation at
a partial infection fixed point in a discrete HCV model (1.6) indicates a transition from stable periodic
behavior to quasi-periodic or chaotic dynamics as a key parameter crosses a critical threshold.
Biologically, this implies that the HCV infection dynamics can shift from predictable oscillations of
viral load and immune response to more complex and potentially erratic patterns. Such a bifurcation
may correspond to scenarios where the immune system’s response becomes less synchronized with
the viral replication cycle, leading to irregular flare-ups and remissions of the infection.
Understanding this transition is crucial for effective treatment strategies, as it suggests that minor
changes in treatment or the patient’s immune status could lead to significant changes in infection
dynamics. Chaos control techniques, such as parameter adjustments or therapeutic interventions, are
essential to stabilize the system, preventing chaotic outbreaks and maintaining the infection at
manageable levels. This understanding provides insights into optimizing treatment regimens to avoid
triggering complex and less controllable infection states. Future work can build upon this study by
exploring more complex models and control strategies. Previous research, such as Blackmore et
al.’s [29, 30] work on discrete dynamical modeling and analysis of the R-S flip-flop circuit and their
study on sigma map dynamics and bifurcations, provide a foundation for further investigations.
Additionally, Rahman and Blackmore’s [31] examination of bifurcations in walking droplet dynamics
and Joshi et al.’s [32] exploration of generalized attracting horseshoes and chaotic strange attractors,
suggest avenues for future research. Studies like Murthy et al. [33] on generalized attracting
horseshoes in the Rössler attractor also offer valuable insights that can be integrated into future
models of HCV dynamics. These directions can enhance our understanding of the complex behavior
of the HCV model and improve strategies for managing and controlling the spread of Hepatitis C.
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Appendix

A. Values of λ1,2 at (3.21) and (3.22)

λ1,2|(3.21) =
b3(1 − α)3(2b(1 − α) − h(g − ζ))

2((1 − α)2b2 − h(g − ζ) − hb(1 − α)(1 − ζ))((1 − α)2b2 + h(g − ζ) + hb(1 − α)(1 − g))
±

2
(

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

64(1 − b2(1 − α)2)(g − ζ)2(g + b(1 − g)(1 − α) − ζ)2

(g + b(1 − α)(1 − ζ) − ζ)2 − 16b2(−1 + b2(1 − α)2)
(1 − α)2(g − ζ)(g + b(1 − g)(1 − α) − ζ)(g + b(1 − α)

(1 − ζ) − ζ)(−g + ζ +

√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)(g − ζ)(−2 + g + ζ)

}
)

+b4(1 − α)4(9(g − ζ)2 + 8b2(1 − g)(1 − α)2(1 − ζ)+
8b(−1 + α)(g − ζ)(−2 + g + ζ))(−g + ζ+√{

5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−
4b(1 − α)(g − ζ)(−2 + g + ζ)

}
)2+

2b4(1 − α)4(g − ζ)(−g + ζ+√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)(g − ζ)(−2 + g + ζ)

}
)3



(−g + ζ +

√{
5(g − ζ)2 + 4b2(1 − g)(1 − α)2(1 − ζ)−

4b(g − ζ)(1 − α)(−2 + g + ζ)

}
)4

(16(g − ζ)2 + 16b2(1 − g)(1 − α)2(1 − ζ)+
16b(−1 + α)(g − ζ)(−2 + g + ζ) − 4b2(1 − α)2(g − ζ)

(g − ζ −

√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)2(g − ζ)(−2 + g + ζ)

}
)−

b2(1 − α)2(−g + ζ +

√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)(g − ζ)(−2 + g + ζ)

}



)

, 1 or − 1
(A.1)
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λ1,2|(3.22) =
(1 − α)3b3(2b(1 − α) − h(g − ζ))

2((1 − α)2b2 − h(g − ζ) − hb(1 − α)(1 − ζ))((1 − α)2b2 + h(g − ζ) + hb(1 − α)(1 − g))
±

2
(

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

64(1 − b2(1 − α)2)(g − ζ)2(g + b(1 − g)(1 − α) − ζ)2

(g + b(1 − α)(1 − ζ) − ζ)2 + 16b2(−1 + b2(1 − α)2)
(1 − α)2(g − ζ)(g + b(1 − g)(1 − α) − ζ)(g + b(1 − α)

(1 − ζ) − ζ)(−g + ζ +

√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)(g − ζ)(−2 + g + ζ)

}
)

+b4(1 − α)4(9(g − ζ)2 + 8b2(1 − g)(1 − α)2(1 − ζ)+
8b(−1 + α)(g − ζ)(−2 + g + ζ))(−g + ζ+√{

5(g − ζ)2 + 4b2(1 − g)(1 − α)2(1 − ζ)−
4b(g − ζ)(1 − α)(−2 + g + ζ)

}
)2−

2b4(1 − α)4(g − ζ)(−g + ζ+√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)(g − ζ)(−2 + g + ζ)

}
)3



(−g + ζ +

√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)(g − ζ)(−2 + g + ζ)

}
)4

(16(g − ζ)2 + 16b2(1 − g)(1 − α)2(1 − ζ)+
16b(−1 + α)(g − ζ)(−2 + g + ζ) − 4b2(1 − α)2(g − ζ)

(g − ζ −

√{
5(g − ζ)2 + 4b2(1 − α)2(1 − g)(1 − ζ)−

4b(1 − α)(g − ζ)(−2 + g + ζ)

}
)−

b2(1 − α)2(−g + ζ +

√{
5(g − ζ)2 + 4b2(1 − g)(1 − α)2(1 − ζ)−

4b(g − ζ)(1 − α)(−2 + g + ζ)

}



)

, 1 or − 1
(A.2)
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