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Abstract: Fuzzy Differential Equations (FDES) have attracted great interest among researchers. These
FDEs have been used to develop a mathematical model for everyday life problems. In this study, we
propose a solution method for a second-order Fuzzy Boundary Value Problem (FBVP). Four systems
of FBVPs were developed based on the generalized fuzzy derivative. The second-order FBVP for each
system was divided into two parts: Fuzzy non-homogeneous and fuzzy homogeneous equations. Using
the shooting method, these two equations were then reduced to first-order FDEs. By implementing the
Fuzzy Runge-Kutta Cash-Karp of the fourth-order method (FRKCK4), the approximate solution was
compared with the analytical solution and the solution from the Fuzzy Runge-Kutta of the fourth-order
method (FRK4).
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1. Introduction

Developing ideas and relations in humerous science topics has been significantly influenced by
the development of fuzzy sets and fuzzy logic [1]. The Fuzzy Differential Equations (FDESs) theory
has received much attention since it offers a natural framework for simulating dynamical systems with
uncertainty [2]. The concept of a fuzzy derivative was first proposed by Chang and Zadeh in 1972 [3].
It was then developed further by Dubois and Prade [4], who incorporated the extension concept into
their strategy. The derivative for fuzzy valued mappings was initially created by Puri and Ralescu [5],
who generalized and expanded on the idea of Hukuhara differentiability (H-derivative) for the class
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of fuzzy mappings. Consequently, the theory for FDE was further developed by Kaleva [6] using
the idea of H-derivative.

The FDE is used to solve fuzzy initial or boundary conditions, which is employed to model several
science and engineering-related problems [7]. Furthermore, the solution of FDE, which involves a
Fuzzy Initial Value Problem (FIVP) or Fuzzy Boundary Value Problem (FBVP), can be solved for
almost all practical problems. However, not all FIVP or FBVP can be solved precisely due to the
difficulty of finding their analytical solution [8]. Therefore, reliable and effective numerical techniques
may be required for the corresponding FDE. In handling the FBVP, it can be approached by two types [9].
The first approach assumes that the boundary values are fuzzy and the solution is a fuzzy function.
Correspondingly, the derivative of the differential equation can be considered as the derivative of a
fuzzy function. Moreover, the second approach is generating a fuzzy solution from a crisp one.

Most scientific and engineering problems require FDE solutions, which are satisfied by fuzzy
boundary values. Using generalized differentiability, Khastan and Nieto [10] explain a two-point
Boundary Value Problem (BVP) for a second-order FDE. Jamshidi and Avazpour [2] suggested a
shooting method to solve Fuzzy Boundary Value Differential Equations (FBVDES) under generalized
differentiability. The FBVDE is divided into two Fuzzy Initial VValue Differential Equations (FIVDES),
and the Adomian approach is used to solve the differential equation system. Subsequently, Rabiei, Ismail,
Ahmadian, and Salahshour [11] proposed a Fuzzy Improved Runge-Kutta Nystrom method (FIRKN),
which was an extension of the Fuzzy Runge-Kutta Nystrom method (FRKN). By analyzing the outcomes
of FIRKN and FRKN, a numerical example of second-order FDE has been conducted. The findings
demonstrate that the FIRKN requires fewer function evaluations and has a lower computational cost than
the FRKN. In 2016, the chasing method to solve the FBVP was introduced by Can, Bayrak, and
Hicdurmaz [12]. In order to demonstrate the effectiveness of the proposed method, the heat transfer
problems are resolved by comparing the analytical and approximate solutions of (1,1) and (1,2)-systems.

In 2016, Saadeh, Al-Smadi, Gumah, Khalil, and Khan [13] implemented the Iterative Reproducing
Kernel Method (IRKM) to solve the fuzzy two-point BVP based on generalized differentiability.
Bayrak [14] developed the Adomian Decomposition Method (ADM) with Green’s function to solve
second-order FBVP under generalized H-differentiability. The examples were created by splitting the
domain into two subdomains, and the results demonstrate how effective this approach is at resolving
numerical problems. Moreover, Gumah, Naser, Al-Smadi, and Al-Omari [15] presented the
reproducing kernel Hilbert space method to solve the second-order Fuzzy Volterra Integro-Differential
Equation (FVIDE) with the assumption of strongly generalized differentiability. It has been
demonstrated that this method is more accurate than analytical solutions and that examples employing
the (1,1) and (1,2)-systems have been provided to indicate their robustness.

Liu and Lou [16] converted the second-order system of partial differential equations into a first-
order system by applying variable substitution. Sufficient conditions for global exponential stability
and the existence of periodic solutions in fuzzy wave equations have been obtained by creating a
suitable Lyapunov functional and utilizing various analytical techniques. An and Guo [17] solved a
second-order fuzzy linear differential equation through decentralization. Using the Hukuhara
difference, a given problem is solved, and an approximation of the solution is obtained by resolving a
crisp function extended system of linear equations. The Random Fixed Point (RFP) theorem was
introduced in fuzzy metric space by Srivastava, Chaharpashlou, Saadati and Li [18]. To demonstrate
the presence of a unique random solution, the authors studied the nonlinear BVP for a system of
random differential equations using an iterative method from the RFP. Furthermore, Hashim, Anakira,
Jameel, Alomari, Zureigat, Alomari, and Ying [19] proposed the Fuzzy Fractional Homotopy Analysis
Method (FFHAM) to address the linear and nonlinear Fuzzy Fractional Two-Point Boundary Value
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Problems (FFTBVPs) in the context of the application. Accordingly, the FFTBVP solution suggests
that FFHAM is more straightforward and produces accurate results than other methods.

Therefore, we propose Fuzzy Runge-Kutta Cash-Karp of the fourth-order method (FRKCK4) to
solve the second-order FBVP, and the approximate solutions are compared with Fuzzy Runge-Kutta
of the fourth-order method (FRK4). Thus, the process involved throughout this paper is divided into a
few sections: In Section 2, we recall some basic concepts on fuzzy numbers and generalized
differentiability. In Section 3, the concept of the shooting method for BVP is explained. In Section 4,
we discuss the shooting method for FBVPs where the general equation is split into four types of
systems, namely the (1,1), (1,2), (2,1), and (2,2)-system. Using the first-order FDE, which is obtained
in Section 4, the FRKCKA4 is proposed in Section 5. In Section 6, we present the numerical example,
and the solutions of the proposed method are compared with the solutions of the analytical and FRK4
methods. The tables and graphs are presented to summarize our findings. Correspondingly, the overall
conclusion and future work are written in Section 7.

2. Preliminaries

Throughout this section, the basic ideas of fuzzy numbers are introduced. The set of all real
numbers and fuzzy numbers are indicated as R and Rp.

Definition 2.1. [2] A fuzzy number is mapping u: R — [0,1] with the following properties:

(1) u is upper semi-continuous,

(2) u isfuzzy convex, ie., u(Ax + (1 — 1)y) = min{u(x),u(y)} forall x,y e R, 2 €[0,1],
(3) u isnormal,i.e., 3x, € R for which u(x,) =1,

(4) supp u = {x € Rlu(x) > 0} is the support of the u and its closure cl(supp u) is compact.

Definition 2.2. [20] A fuzzy number (or interval) u is completely determined by any pair u = (u, %)

of functions [g, H]: [0,1] » R, defining the end-points of « — cuts, satisfying the three conditions:

(1) u:a - u, €R is bounded monotonic increasing (nondecreasing) left-continuous function
Va €]0,1] and right—continuous for « = 0;

(2) w:a - u, €R is bounded monotonic decreasing (nonincreasing) left-continuous Va €]0,1]
and right—continuous for « = 0;

3) uy <uyvVea €[0,1].

Definition 2.3 [21] If A and B are two fuzzy intervals, then the distance D between A and B is
defined as

D(A,B) — Sup dH([A]a' [B]a)

a€l0,1]

where

dy([A]%, [B]%) =max{ sup inf d(a,b), sup inf d(a, b)}.

a€[A]*be[B]* be[B]*ac[A]¢

Definition 2.4. [22] Let x,y € Rp. Ifthere exits z € Ry suchthat x = y 4+ z then z is called the H-
difference of x,y and itis denoted x@y.
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Definition 2.5. [23] Let x, € S. Afuzzy mapping f:S — F issaid to be continuous at x, if for each
€ > 0 there exists a § > 0 such that D(f(x), f(x,)) < 8, whenever x € S N Bs(x,). f:S = F is said
to be continuous if it is continuous at each x € S.

Next, the fuzzy derivative of the fuzzy function is recalled.
Definition 2.6. [22] Let F:I - R, and fix X,el. We say F is (1)-differentiable at X,, if there
exists an element F (x,)e R, such that forall h>0 sufficiently near to 0, exist
F(xo + h)OF (xo), F (x0) OF (xo — h)
and the limits (in the metric D)

. F(xo +h)OF(x0) . F(xo)OF(xog — h)
lim = lim
h—0t h h—0t h

= F'(xp).

In this case we denote F'(x,) by DiF(x,).
And F is (2)-differentiable if for all h >0 sufficiently nearto 0, exist

F(XO + h)@F(xO), F(xO)@F(xO - ]’l)
and the limits (in the metric D)
. F(xq)OF (x¢ + h) . F(xo — h)OF(x,)
m = lim —

li 7

h—0*t —h h—0t =F (x0)

In this case, the derivative is denoted by D F (x,).

Theorem 2.1. [22] Let F:I - R; be a fuzzy function, where [F(x,a)] = [i(x, a), f(x, a)] for
each a € [0,1].
(1) If F is(1)-differentiable, then f(x,a) and f(x,a) are differentiable functions and

[DiF (e, @)] = [f x, @), F (@)

(2) If F is(2)-differentiable, then f(x,a) and f(x,a) are differentiable functions and

[D3F(x, )] = [F (v @), f (0]

Definition 2.7. [22] Let F:l1 >R, and n,m=12. We say F is (n,m)- differentiable at
X €l, if D,fF exists on a neighborhood of X, as a fuzzy function and it is (m) — differentiable at

X, . The second derivative of F isdenoted by D; F(x,) for n,m=1, 2.

Theorem 2.2. [22] Let DIF:1 » R or DIF:1 - R be a fuzzy function, where [F(x,a)] =
[i(x, a),]_c(x, a)]. Then:
(1) If D/F is (1)-differentiable, il(x,a) and ?(x,a) are differentiable functions and

D%, F(x,@)] = |f (@), F ()]
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(2) If DiF is(2)-differentiable, f (x,&)and T'(x,a) are differentiable functions and

[DZ,F(x, )] = []_f"(x, a),]_f"(x, a)].

(3) If DyF is (1)-differentiable, f (x,&)and Tl(x,a) are differentiable functions and

[DZ,F(x, )] = [j_” (x, a),f(x, a)].

(4) If DJF is (2)-differentiable, f(x, a)and 7'(x, «) are differentiable functions and
[DZ,F(x,@)] = []_f"(x, ), f (x, a)].

3. The shooting method for Boundary Value Problem

This section discusses the concept of BVP using the shooting method. Let the second-order BVP

be in the form:
{W"(X) =sw'(x) + t()w(x) + ulx),p < x < g, (3.1)
w(p) = B,w(q) =v. '

By implementing the shooting method [2], two Initial Value Problems (I\VVPs) are considered: Non-
homogeneous and homogeneous equations.

(1) Non-homogeneous equation
The non-homogeneous equation occurred when u(x) = 0 and let 2 = w',h =w and h = w.

{h"(x) = s()h (x) + t()h(x) +ux),p<x <q (3.2)
h(p) = B, 1 (p) = 0. '

(2) Homogeneous equation
The homogeneous equation occurred when u(x)=0 andlet j =w, j =w and j=w,

J(x) =s(x)j'(x) + t(x)j(x),p<x<gq,
i(p) =0,j'(p) = 1.

By referring to Eqgs (3.2) and (3.3), we define m, = h,m, = h,ms = jand m, = j. Both equations
are converted into first-order Ordinary Differential Equations (ODES) as follows:

(3.3)

mi(X) =My,
=m0 )+t »

m;t(x) = s(x)m4(x) + t(x)m3(x),

subject to initial conditions A(p) = 8,4 (p) = 0,j(p) = 0 and j'(p) = 1. Eq (3.4) is solved by any
numerical method and the solution of Eq (3.1) is calculated based on the following equation.

AIMS Mathematics Volume 9, Issue 11, 31806-31847.
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w(q) —my(q)
ms(q)

w(x) = my(x) + ( ) (m3(0)), m3(q) # 0.

Theorem 3.1. [2] Let us consider FIVP (see Eq (3.2)), where F:[xy, xo + a] X Rp X Rp = Ry issuch
that:

@ |F(xy0,y'®) @] = [fry,y)(@, F@y,y)(@)] foreach ae[0.1],

(2) The functions f(x,y,y)(a) and f(x,y,y")(a) are equi-continuous, i.e., for any £ > 0 there
exists 6 >0 such that for any (x,u, v), (x1,u;,v1) € [x0, X0 + a, x + b] X R%, we have

|f Gow v) (@) = f G, v) (@) < & and [FGew,v)(@) = FOr,ug v (@) <

whenever ||(xq,uq,v,) — (x,u, v)|| < 6.
3) [F (x,y(x),y'(x)) (a)] is named uniformly bounded on any bounded set, if exists L >0 such
that

‘f (x,uy, v, ) () f (x,uz,vz)(a)‘ <L max {|x, =X, Ju, =, |,[v; =V, |}

and also

‘f (x,u, v, ) () f (x,uz,vz)(a)‘ <L max {[x, =X, ,Juy = Uy, [v; =V, }.

Then, for (n,m)- differentiability, the FIVP (Eq (3.2)) and the corresponding (n,m)-system are
equivalent.

The concept of the shooting method for FBVP is discussed in the following section.
4. The shooting method for Fuzzy Boundary Value Problem
This section introduces the concept of FBVP under fuzzy generalized differentiability. Suppose

the second order of FBV/P is as follows:

{W"(x) =SCOW'(x) + T)W (x) + U(x),
W) =W =7,

where W (p), W(q) € F(R), S(x),T(x),U(x) >0, and xe[p,q]. Based on Theorem 2.2, Eq (4.1)
is split into four types of systems as follows:

(1) (1,1)-system
Using Theorem 2.2 (1), the (1,1)-system of Eq (4.1) is presented as:

(4.1)

w (x,a) = S)w'(x, @) + T()w(x, @) + U(x),
W (x,) = SCOW (x, @) + TOW(x, @) + U(x),
w(p, a) = B(a), w(p, @) = B(a),
w(q, a) =y(a),w(q,a) =y(a).

(4.2)

AIMS Mathematics Volume 9, Issue 11, 31806-31847.
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The fuzzy non-homogeneous equation for Eq (4.2) is written as:

(h (x, @) = SCOA (x, @) + T(x)h(x, @) + U(x),
7 (xa) = SCOT (x, o) + TOORGx, @) + U ),

h(p, @) = (@), h(p, @) = B(@),
W, @) = 0(@), 7 (p, @) = 0(a).
The fuzzy homogeneous equation for Eq (4.2) is:
(j (x, @) = S(x)j (x, @) + T(x)j(x, @),

) 7 (@) = SG] (x, @) + TWj(x, @),
(@) = 0(a),j(p, @) = 0(a),

' o) = 1), (0, 0) = T(@).

To solve Egs (4.3) and (4.4) simultaneously, we define

ml (xr a) = ﬁ(x: a)) m1 (.X, (Z) = Z(X, a)r
mz (X', CZ) = h'(x' C(), m2 (x, a) = % (x: a),

ﬂs (xr a) = ]_(X, a)) mS (X, (Z) = j(x; a):
m,(x, @) = j (x, @), My (x, @) = ] (x,@).

Consequently, the system of first-order FDEs is obtained.

with fuzzy initial conditions

ml (p: a) = E(a)' m1 (p: (Z) = E((Z), mZ (p: a) = Q((Z), m2 (p’ Qf) = 6((1),
mS (p' a) = g(“)Jm3 (pr (l) = 6(“)' m4(29' (l) = l(a),ﬁdp, (Z) = T(“)

(2) (1,2)-system
Using Theorem 2.2 (2), the (1,2)-system of Eq (4.1) is presented as:

m, (x,e) =m,(xa),

m(x,a) = Mz (x,a),

m, (X&) =S(X)m, (%, &) + T (x)m, (X, a) + U (
Mz (X, @) = S(X)Mz (%, @) + T (X)Ma(x, &) + U (
m (x,a) = m, (x,a),

ms(x,) = me (X, ),

m, (X&) =S(X)m, (X, &) + T (x)m,(x, &)

M (%) = S(X)Me (X, @) + T (X)Ms(x, @)

(4.3)

(4.4)

(4.5)

AIMS Mathematics Volume 9, Issue 11, 31806-31847.
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w'(x, @) = SEOW (x, @) + TOW(x, @) + U(x),
w (x,a) = SEOw (x, @) + T)w(x, @) + Ux),
w(p, a) = B(a), w(p, @) = B(a),

\w(q, @) = y(a),w(q,a) = 7(a).

The fuzzy non-homogeneous equation for Eq (4.6) is written as:

(K (x, @) = SCOT (x, @) + TOh(x, &) + U(x),
) B (x,a) = SCOR (x,@) + TCOhCx, ) + U(),
h(p, @) = B(a), h(p, @) = B(a),
U (p, @) = 0(@), % (p, @) = D(@).

The fuzzy homogeneous equation for Eq (4.6) is:

(' (x, @) = S@)] (x,0) + T (x, @),

(4.6)

4.7)

j(p @) = 0(@),j(p, @) = 0(a),
' o) = 1), (0, 0) = T(@).

To solve Egs (4.7) and (4.8) simultaneously, let define

JJ ) = 5@ (x,0) + T (x @),

(4.8)

ml (x, (Z) = é(x! (l), m1 (x' (l) = Z(x, a)' mZ (x, CZ) = ﬁ'(x, (X), mz (xr (l) = Z'(x, Qf),

m3 (X, a) = ]_‘(xr a)rm:’: (xr a) = ]_.(x, (Z), mz}(x» a) = ]_"(X, 0(), mﬁl—(x' a) = ]_"(x, a)'

Correspondingly, the system of first-order FDEs is obtained.

..>< >
Q R
Il

13
=

N
N—"

x
K

x
K

313303 3113 3
\_/\_/\_/\%/\_/\_/\—/
I
3|
X
K

x
N

x
g

with fuzzy initial conditions

(4.9

ml (p» Cl) = é(a)' ml (p: (Z) = ,E((Z), mz (p: CZ) = Q((Z), m2 (pr C() = 6(“);
mS (p' CZ) = g(“):m3 (p’ a) = 6(“)' m4(p' a) = l(“)'mzt(p, Of) = T(a)

(3) (2,1)-system

AIMS Mathematics
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Using Theorem 2.2 (3), the (2,1)-system of Eq (4.1) is presented as:

(W' (x,a) = S()w'(x,a) + T)wW(x, a) + U(x),
w (x,@) = SCOW (x, @) + T()w(x, @) + U(x),

w(p, a) = (@), w(p, @) = B(a),
w(q @) = y(@),7(q,@) = 7(@).

The fuzzy non-homogeneous equation for Eq (4.10) is written as:

(h (x,a) = SR (x, @) + TCOR(x, @) + U ),
B (x,a) = SR (x, @) + TA(x, @) + U,
h(p, @) = B(@),5(p, @) = B(a),
K (p,@) = 0(@), 7 (p, @) = 0(a).

The fuzzy homogeneous equation for Eq (4.10) is:

(" (@) = S0 (e, @) + T(x)j(x, @),
J (@) = SJ (v a) + T()j(x, @),
(@ @) = 0@, j(p, a) = 0(a),
' a) = 1(),] (0, ) = 1(@).

To solve Egs (4.11) and (4.12) simultaneously, we define

m, (x, @) = h(x, @), 7, (x, @) = h(x, @), my(x, @) = b (x, @), iy (x, @) = i (x, @),

ms(x, @) = j(x, @), 5 (x, @) = Jx, @), my(x,@) = j (x, @), 7, (x, @) = ] (x, 0.

Consequently, the system of first-order FDEs is obtained.

w

S| 3. 313

S
—~~
x
K

= S(x)m, (X, @) + T(x)m(x, &) + U (x),
( X, a)+T(x)m (x, &) +U(x),

(4.10)

(4.11)

(4.12)

(4.13)

with fuzzy initial conditions given by

ml (p: a) = E(a)' m1 (pr (Z) = ,E((Z), mZ (pr CZ) = Q(a), mZ (p’ Qf) = 6((1),
m'o’ (pr Cl) = Q(a);ms (pr CZ) = 6(“)' m4(p: CZ) = l(a)'mél-(pr CZ) = T(a)

AIMS Mathematics
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(4) (2,2)-system
Using Theorem 2.2 (4), the (2,2)-system of Eq. (4.1) is presented as:

w'(x,@) = SCOW (x, @) + T()w(x, @) + U(x),
W (x,a) = SCOW (x, @) + TCOW(x, a) + U(x),

w(p, a) = B(a), w(p, @) = B(a),
(g, @) = y(a),w(q,a) = 7(a).

The fuzzy non-homogeneous equation for Eq. (4.14) is written as:

(1'(x, @) = S(Oh (x, @) + TCOR(x, @) + U (),
|7 @) = SEH (@) + TR @) + U ),
h(p, @) = B(a), h(p, @) = B(a),

U (p, ) = 0(a), T (p, @) = D(a).

The fuzzy homogeneous equation for Eq (4.14) is:

(' (e, a) = SCOJ (@) + TGO (x, ),
7 (@) = SG)j (@) + T (x, ),
J(p,a) = 0(a),j(p,a) = 0(a),
@) = 1(a),] (p,@) = ().

To solve Egs (4.15) and (4.16) simultaneously, we define

ml (x, (Z) = é(x! (l), m1 (x' (l) = Z(x, a)' mZ (x, CZ) = ﬁ'(x, (X), mz (xr (l) = Z'(x, Qf),

m3 (X, a) = ]_‘(xr a)rm:’: (xr a) = ]_.(x, (Z), mz}(x» a) = ]_"(X, 0(), mﬁl—(x' a) = ]_"(x, a)'

Subsequently, the system of first-order FDES is obtained.

m, (x,a)=m,(xa),

ﬁ;(x,a)zﬁg(x a),

m, (x,@) = S(X)mz(x, &) + T (x)m,(x, @) + U (X)
m2 (x,@) = S(X)m, (X, @) + T (X)m(x, a) + U (x
m, (x,@) = m, (x,),

E},(x,a) =ma(xa),

m, (%) =S(X)ms(x, @) + T (x)m,(x, @)
ma(x,a) = S(x)m, (x, @) + T (X)Ma(x, @)

with fuzzy initial conditions given by

(4.14)

(4.15)

(4.16)

(4.17)

AIMS Mathematics Volume 9, Issue 11, 31806-31847.
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ml (p: a) = E(a)' m1 (pr (Z) = ,E((Z), mZ (pr CZ) = Q(a), mZ (p’ Qf) = 6((1),
m3(p, @) = 0(@), m3(p, a) = 0(a), my(p, @) = 1(a), My (p, @) = 1(a).

5. Fuzzy Runge-Kutta Cash-Karp of the Fourth-Order method for the systems

In this section, we discuss how to solve the system of first-order FDE using FRKCKA4. The idea
of FRKCKA4 is obtained from [24]. Based on the four types of systems presented in the previous section,
the procedures to obtain the approximate solution for (1,1), (1,2), (2,1), and (2,2)-systems using the
FRKCK4 are detailed below.

(1) (1,1)-system
Using the FRKCK4, the approximate solution for the (1,1)-system is suggested as follows:

2825 L 18575 L 13525 L
ml(xl'+1ia)_ml(xi:a)+Ax<27648 (L; ) 48384 3 (lr )+55296_4 (l’ )
277 1
tTaasghks Ce® t k_l(x“a))
_ _ 2825 _m 18575 —m, 13525 —m,
My (x4, @) = (2 @) + A% (276 Bk 1<xl, @)+ merks (0) + sk ()
277 —m,
18575 13525
. — . A mz mz )
Mo (tiar, @) = M5y, ) + x(27648 (i @) + o K (0 @) + s K2 (0, @)
277
14336 5 (xlra)+ k_z(xba)>
_ _ 2825 _m, 28575 —m, 13525 —m.
My (X141, @) = T, (x5, @) + Ax (276 5k Z(xl.a) +2g3as s (w@ ook (x,@)
277 —m,
2825 18575 e 13525 .
mS(xi+1!a)_m3(xi!a)+Ax<27648 K (l' )+4‘8384‘ A (u )+55296_4 (l!a)
277 1
+Ti33cks =2 (g, a) + = k—3(xl.a)>
_ _ 825 m3 18575 —m, 13525 —m;
ms(xm,a)—ms(xi,a)+Ax<27648 (xua)+48384k3 (xua)+55296k4 (x;, @)
277 —ms 1
( ) = (e @) + 4 (2825 ( )+18575 m4( )+13525 )
My (Xir1, @) = Mo (6, @) + AX | gl ™ (06, @) + gy g (0, @) + g by (i @

277
14336 ks

+ (xl, a) +— 1 k—4 (x;, a))
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2825 Em;( - 18575Eﬁ;( - 13525 _,
27648 1 ¥ T agaag s Yo @) T eeoge

My (X1, ) = my(x;, a) + Ax (

277 —m, 1—m,
+14336k5 (xi,a)+zk6 (x;, @) ),

where

kT (g, @) = my(x;, @),

—my _

kl (xi: “) = mz(xl-, a),

k72 (o, @) = S(x)my (xg, @) + T(xe)my (g, @) + U (xy),
_m. . .

k4 Z(xi' ) = S(xp)m,(x;, @) + T(x;)my (x;, @) + U(x;),
kT (g, @) = my(x;, @),

—mg; _

ki (xp, @) = mMy(x;, @),

k7 (g, @) = S(x)my (x;, @) + T(x)ms (x;, @),

K G ) = S (e, Geoy @) + T ()it (g, @),

, 1 :
I (i, @) = my (xi, @) + 2 Axky™ (x, ),

5
—m, _ 1 —my
k2 (xil a) = mZ(xil a) + gAxkl (xl') a)u
kK (xp,a)=S5 (xi + EAX) my, (x;, a) + gﬂx&_ (xpa) +T (xi + gAx) my (x;, @)

1 m) 1
+ gﬂx& (xj, ) +U (xl- + gAx),

i, 1 \_ 1 —m 1 \_
k, (x;,a) =S (xi + gAx) m,(x;, a) + gzlxk1 (xp, ) +T (xl- + §Ax> m, (x;, a)

1 1
+ gzlxk1 (xj, ) +U (xl- + gAx),

' 1 ' . 1 _m,

k™ (i, 0) = ma (i, @) + 2 kT (), Ky (3, @) = Ty (xi, @) + 2 Axky (xi, @),
m, 1 1 m, 1

kK (xp,a)=S (xi + EAX) my (x;, a) + gﬂx&_ (xpa) +T (xi + gAx) ms(x;, @)

1 ’
+ —Axklmz' (x;, ),

5
i, 1 \_ 1 —m, 1 \_
ky, (xj,a) =S (xi + gAx) my(x;, a) + gzlxk1 (xjp, ) +T (xl- + gAx> ms(x;, a)
1 =
+gdxky (x, @),

k4 (xi) a)
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m, 3 o om 9 . m
k' (g, a) =my(xg, @) + —Axk = (x;, a) + OAxk— (x;, ),

40
3 9
k3 (xl, a) =my,(x;, a) + EAXIQ (xl, a) + EAxkz “(x;, ),
m, 3 3 9
kP (x,a) =S (xi + 1—0Ax) m,(x;, a) + — 20 Axk—2 (x;, a) + Ozlxk—2 (x;, @)

3 9 ’
— Aka1 (x;, @) +— Ax&zml (x;, )

3
+T<xl- +EAx)m1(xl-,a) +40 i 20

3
+U (xl + 1—OAx>

—m, 3 3 9
k;nz (xj, @) = S( 10Ax) m,(x;, a) + EAxkl (xl, a) + EAxkz (xl, a)

3 _ 3 —m, 9 —m,y
+T (xl- + EAX) my (x;, @) + EAxkl (x;, ) + EAxkz (x;, )

3
+U (xl + 1—OAx>

3 9
Aka“ (x;, @) + Axk—4 (x;, @),

ks (e, @) = ma (@) + 45

= _ 3 _m, 9 iy
ks (x;,a) = my(x;, a) +4—OAxk1 (xl-,a) +—OAka (xi,a),

9
Axk—4 (x;, )

3
Axk—”‘ (x;, @) +— 0

m, 3
k' (x,a) =S (xi + 1—0Ax) m,(x;, a) + — 10

9
Axk—3 (x;, @),

3
Axk—3 (x;, @) + — 0

3
+ T(xl- +EAx)m3(xi,a) +— 20

—ﬁ; 3 — 3 —m4 9 —ﬁ4
ks (x;,a) =S (xi + EAx) my(x;, a) + —Axk1 (xi, a) + —Axkz (xl-, a)
3 3 9
+T ( 10 Ax) ms(x;, a) + —Axk1 (xl, a) + Axkz (xl, a),

3 9 6
Axk—z(xl,a) —Akaz(xl,a)+ Axk—z(xl, a),

I (e, @) = ma (61, @) + 75

—my _ 3 9 6
ky (x;,a) =my(x;, @) + — Axk1 (xl,a:)——oz\xk2 (xl,a:)+ Axk3 (xl,a)

10

! 3 3 9 6
&}mz (x;, @) = (xl += c Ax) m,(x;, a) + OAXk_Z (x;, ) — —Axk—2 (xj, ) + = Axk—2 (x;, )

3
+T (xl + 5Ax> my(x;, a) + —

10 10

3
+ U(xi +§Ax),

3 9 6
Axk—1 (x;, ) — —Axk—1 (xj, ) + = Axk—1 (x;, )

—m, 3 3 9 6
ky, (x;,a) = (xl + SAx) m,(x;, @) + —Axk1 (xl,a) Axkz (xl, a) +— Axk3 (xl, @)

3 3 6
+T (xl + 5Ax> my (x;, a) + Aka1 (x;, a) Axkz ") + = Axk3 "(x;, Q)

3
+U (xi + gAx),
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! 3 9 6
m3 (xi, a) =mu(x;, a) +— Axk—4 (xl, a) — Axk—4 (xl, a) + 5Axk—“(xl, a),

10
3 9 6
k4 (xl, a) = my(x;, a) + —OAxk1 (xl, a) — —OAka (xl, a)+— Axk3 (xl, a),

3 9 6
Ozlxk—4 (x;, ) — 1—OAxk—4(xl, a) += Axk—"(xl, a)

3 3 6
+T (xl + = z Ax) ms(x;, a) + — 10 Alxk—3 (x;, a) Axk—3 (x;, ) + —Axk—3 (x;, @),

—m, 3 3 9 6
k;n4(xi, a)=3S (xi + gAx) my(x;, a) + 10Axk1 (xl, a) — —OAka (xl, a) + = Axk3 (xl, a)

3
&_4(xil a) = (xl + = 5 Ax) m4-(xl! a) +

3 3 6
+T (xl + 5Ax> ms(x;, a) + — Alxk—3 (x;, a) Axkz (xi, a) + —Axk3 (xl-, a),

10
) 11 5 70
Ksml (xy, @) = my(x, @) — 5—4Axk_2 (i) + 5 AXk_Z (i, @) = _7AXk_2 (xi, @)
35
+ —Axk—2 (x;, @),

27

11 5 70
54Axk1 (xl,a)+ Axkz (xl,a) ﬁAxk3 (xl,a)

35
ﬁAxk4 (xl, a),

- 11w 5  m 70w
5 (xpa) =50+ Ax)my(x;, a) — Axk— (xj,a) += Axk— (x;, ) + 7Axk— (x;, )

—my _
ks (xi: a) = mz(xi, a) —

35 11 5
+ —Axk—2 (x;, @) + T(x + Ax)m, (x;, a) Axk—1 (x;, @) + = Axk—1 (x;, @)

27
70 35
— ﬁﬂxk—l (x;,a) + —7Alxk—1 (x;, @) + U(x + Ax)

11 5 70
k5 (xl,a)—S(xl+Ax)m2(xl,a) —Axkl (xl,a)+ Axk2 (xl,a) 7Axk3 (xl,a)

35 _m 11 5
—Axk4 (xl, a) + T(x; + Ax)ml(xl, a) — —Axk1 (xl, a) + = Axkz (xl, a)

27
70 —m 35
—ﬁﬂxk3 (xl,a)+ 7Axk4 (xl,a)+U(x + Ax),
. 11 5 m 70w,
5000 = a3 @) = £ A0 (o )+ 5 070 1, ) = 7 070 )
35
+ ﬁAx@;‘* (x;, @),
—ms _ 11 5 70
ke (x;,a) = my(x;, @) — S4Axk1 (xl,a)+ Axkz (xl,a)——Axk3 (xl,a)
35
+ﬁAxk4 *(x;, ),

11 5 70
m“(xl, a) = S(x; + Ax)m,(x;, @) — —Aka‘*(xl, a) + = Axk—4 (x;, @) — Axk—“(xl, a)

35 11 5

27Axk—“(xl, a) + T(x; + Ax)ms(x;, a) - —Aka3 (x;, a) + = Axk—3 (x;, a)
70 35

- ﬁAka (x;, @) + —Axk—3 (x;, @),
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T, _ 11 5 70
ks (x;,a) =S(x; + Ax)m4(xi, a) — —Axk1 (xl, a) +—= > Axk2 (xl, a) — —7Axk3 (xl, a)

54
35 11 5
+ ﬁAka} (xl, a)+ T(x; + Ax)mg(xl, a) — —44|xk1 (xl, a) + - Axk2 (xl, a)
70

35
- ﬁAxk3 *(x;, ) + —7Axk4 *(x;, ),

' 631 175 575 ’
Kéml (x;, @) =m, (::-1:26{7)54- 55296Aka2 (x;;; + Axk—2 (x;, @) + 13824Axk3m2 (x;, a)
A mZ i A _2 i
* TT0592 ks (0 @) * 7096 xks (x““)' |
—m, _ 1 —m 175 5 —m,
ke (x;,a) =my(x;, a) + 55296 Axk; " (x;,a) + mzlxk2 (xl, a) + 13824Axk3 (x;, @)
44275 —m 25
+ mé]xl@ 2(xl-,cz) + 4096Axk5 (xl-,a),
m’Z 7 1 mz 175 2
kg (xpa)=S (xl- + §Ax) m,(x;, a) + 55296Axk (x;, ) + Axk— (x;, )
575 ' 44275 253
+ 13824413@3&2(3@-, a) + 110592Aka2(xi, a) + 4096Axksm2(xi, a) +
7 1631 175 5 '
m1 my
+110592A)ck4 (xl,a)+4096Axk (xl,a)+U<xl+8Ax)
iy 7 . 1 175
ke (x;,a) = (xi + §Ax> mz(xl-, a) + 55296Axk1 (xl,a) + — R Axk2 (xl, a)
575 44275 253
+ 1382441xk3 (xl,a) +—1105924xk4 (xl-,a) + 4096Axk5 (xl,a)
7 1631 —m 175
+T (xl- + gAx> my(x;, a) + 55296Axk;n1(xi, a) + 512Axk2 "(x;, )
+ 13824Axk3 (x;, @) + 1105924xk4 (x;,a) + 4096Axk5 (x;, @)

7
+ U(xi +§Ax),

/ 1 175 575 '
ms m4 m4 my
ke (x;,a) m4(:z:2a7)5+ 55296 xk; (x;.:;)+ P xk; (xl,a)+13824 xky* (x;, @)
m4 . m4 .
110592Axk (xl,a)+4096Axk (xl,a)
o) = 7 () + 2534 )+175Ak o) 4T AT ()
6 (x,a) =mu(x;,a 55296 xk, (x;,«a =12 xk, (x;,a 13804 xks (x;,a
+44275Ak ( )+253Ak4( )
110592 74 W& T 4hgg 0 X Wi @)

631

, 7 1 ' 175
Eem4 (x,a) =S (xi + _Ax> my(x;, @) + Axklm“ (x;, @) + —Axk—4(xl; a)

575 A2rs S
+ Tagaa 40ks ™ (0 @ + qyge07 Axky (@) 4096“""5_4(% a)
7 1631 175
+T (xi + gAx) ms(x;, @) + 5529643@1_ (xpa) + EAxk— (x;, )
575 ' 44275 / 223
t3gzadrks (o @ + ey Axk” (o @) + 4096“"&3ms (i, @),
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—m, 7 _ 1631 T, 175
ke (x;,a) =S (xi + §Ax) my(x;, a) + 55296Alxk1 (x;, @) + mz\xkz (xl, a)
575  _m, 44275 _m 253  _m,
+ 13824Axk3 4(xi,a) + 1105924135k4 4(xl-,a) + 4096Axk5 4(xl-,a)
7 _ 16311 175
+T (xl- + gAx) my(x;, ) + 552961\xk1 (xl, a)+——= R Axk2 (xl,a)
575 —m3 44275 253
+13824Axk3 (x;, ) + 110592Axk4 (xi,a)+4096Axk5 (xl-,a).

(2) (1,2)-system
Using the FRKCK4, the approximate solution for the (1,2)-system is suggested as follows:

2825 o, 18575 m; 13525 .
ml(xi+1'a)_ml(xi'a)+Ax(27648 (lr )+48384 A (li )+55296K4 xi'a)
277 1
tTa33gks (@ +7 k_l(x“a)>
_ . 2825 m1 18575 —m, 13525 —m,
) = , A k
my (Xigy, @) =, (6 @) + x<27648 (i, @) + 753ga ks (@) +5555e ke (i @)
277 —m,
18575 13525 !
] ) = 1) A m2 ) mZ ) 2 )
(g, @) = (3, @) + x(27648 (ki @) + g 3 (@) + 5 I (3, @)
277
14336 5 (xlla)-l_ k (xila)>;
. . 2825 mz 18575 mz 13525 mz
my(xi4q, @) = My(x;, @) + Ax 57648 kq (x"a)+48384 3 (xl'a)+55296 s ()
277 i, 1
2825 18575 13525
mg(xl-ﬂ,a)=m3<xi,a)+Ax(27648 S Ot @) + o 8 O @) + o 2 (1, @)
277 1
UEVETTLO 2 (g, a) +— k_s(xua)>
_ _ 2825 m3 18575 —m; 13525 m3
m3(xl+1'a) m3(xua)+ x<27648 (u )+48384k3 (l'a)+55296 4 (Xl,(l)
277 —m. 1_m'
2825 m 18575 m 13525
. — . A 24 LY
s (41, @) = ma (63, @) + x(27648 (ot @) + o k2 (0 @) + o K2 (1, @)
277 m, m,
mks (xi:a)+ZK6 (xi:a)>;
_ _ 2825 _m, 18575 —m, 13525 —m,
my (X1, @) = My(x;, a) + Ax mkl (xi’“)+mk3 (xi'a)+55296k4 (x;, @)
277 1=
+14336k5 (xl,a)+ k6 (xl,a)
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where
m’ J—
k7 (g, a) = my(xg, @),

iy
ky ,(xi' a) = my(x;, @),
Klmz (x;, @) = S(Ce)m, (x, ) + T (x)my (x;, @) + U(xy),

Elmz (x;, @) = S(x)my(x;, a) + T (x))my (x;, @) + U(xy),

m J—
Kl_g (xi: a) = m4-(xil a)r

T
kl (xi' (X) = mél-(xil (X),

k™ (@) = S (o) (o, @) + T (x)ts (o, @),

—m

by (g, @) = S(e)ma (@) + T (x)ms (x, @),
my — 1 —m

ke (e, @) =15 (g, @) + < Axky (g, @),

—m,y 1 m,

ky () = my(x;, ) + gl‘x&_ (x;, @),

m 1 _ 1 —my 1 _
k7 (x,a) =S <xi + —Ax) m,(x;, a) + gzlxk1 (xj,a) +T (xl- + —Ax) my (x;, )

5 5
1 —m 1
+ gélxk1 (xj, ) +U (xi + gAx),
i 1 1w 1
ky (xjp,a) =S <xi + EAX) my,(x;, @) + gﬂx&_ (xp,a) +T (xi + gAx) my (x;, @)
1 m; 1
+ EAXKT (xj, ) +U (xl- + gAx),

m; — 1
kz (xl" a) = m4(xl" a) + EAXkl (xi; a):
Ty 1 m,
ky () = my(x;, @) + gAxﬁl_ (x;, @),
my 1 _ 1 _—m, 1 o
- (x,a)=S (xi + gAx) my(x;, a) + gzlxk1 (xp, ) +T (xl- + gﬂx> ms(x;, a)
1 —ms
+ gzlxk1 (x;, ),
Ty 1 1 m, 1
k, (x;,a)=S (xl- + gAx> my(x;, a) + gAxkl— (xj, @) +T (xl- + gﬂx> ms(x;, a)
1 '
+ gﬂx@lm3 (x;, @),
m) — 3 —ﬁrz 9 —ﬁ;
Kg_ (xl" a) = mZ(xl" a) + EAXkl (‘xil a) + Eﬂxkz (xi' a);

—m 3 / 9 j
ks (21, @) = my (i, @) + 75 AxkT™ (i, @) + 75 A%k (3 @),

' 3 3 —m, 9 —m,
Egmz (xj,@) =S (xl- + EAx) m,(x;, a) + —Axkin2 (x;, @) + —Axk;n2 (x;, @)

40 VT ,
3 _ 3 —my 9 —my

+T (xi + EAx) my (x;, a) + %Axkl (x;, ) + EAxkz (x;, a)
3

+U (xl- + EAx),
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3 ’ 9 ’
— Akaz (xj,a) +— Akaz (x;, @)

—m 3
k32(xi,a) =S<xi+EAx)m2(xi,a)+40 20

3 3 9
+T <xi + 1—39Ax) m;(x;, @) +— 20 Aka1 (xj,a) +— 20 Axk—1 (x;, a)
—A
+U (xl + 10 x) | |
' 3 —m 9 —m
KsmS (xp, @) = my(x;, @) + EAxklm (x;, @) + EAX’C;M(XL'; a),
. 3 , 9 ,
k73n3 (xp, @) = my(x;, @) + —04ka4 (x;, @) + _OAka4(xi; a),
my 3 3 9
k'(x,a) =S (xl 10Ax> my(x;, @) + 4—0Axk1 (xl, a) + EAka (xl, a)

3 _ 3 _m, 9 _m
+T <xi + I_OAx) my(x;, a) + 4—01\xk1 (xj, @) + EAxk2 (x;, @),

3 ’ 9 ’
— Axk ™ (x;, @) + — Ax@;ﬂ“ (x;, @)

i, 3
ks (x;,a) = S(xl- + 1—0Ax> my(x;, a) + 20 4%k 20

3 3 m, 9 m’
+T <xi + I_OAx) m3’(xi, a) + 4—0Ax@1—3l(xi, a) + EAxK;T" (x;, @),
' 3 _m 9 _m 6 —m
&ml (xj, @) =m,(x;, ) + 1—0Axk;n2 (x;,a) — 1—0Axk;n2 (x;, ) + —Axk;n2 (x;, ),
—m, 3 9 6
k;nl (x;, @) = my(x;, @) + EAxk—2 (x;, ) — 1_0Axk_2 (xj, @) += Axk—2 (x;, a)

! 3 3 9 6
K%2 ('xi' a) = (‘xl +c 5 Ax) m; (‘xll a) + _OAxkl (xll a) - _Axkz (xll a) += Axk3 (‘xll a)
3 3 9 6
+T (xi + gﬂX) m,(x;, @) + EAx&—l (x;, a) — 1—0Axk2 Y, ) + §Axk3 "(x;, )

3
+ U(xi +§Ax),

—m, 3 3 ' 9 ' 6 i
k;nz (xj, @) =S (xi + gﬂX) m,(x;, @) + —Akaz (x;, ) — —Akaz (x;, ) + —Akaz (x;, @)

3 3 9 6
+T (xl + SAx> my (x;, @) + Axk—1 (x;,a) — Axk—1 (xj, ) += Axk—1 (x;, @)

+u( +3A)
Xi 5 x),
10 10

3 9 6
70 Axk—‘*(xl,oc) —Aka4(xl,a)+ Axk—“(xl,a)

' 3
K‘Lm“(xi,a) =S (xl- + gAx) my(x;, @) + —

3 9 6
—3(xl,a) = m,(x;, @) +—Axk1 (xl, a) — —Axkz (xl,a) + SAxk3 (xl,a)
T
k4 (xir CZ) = m4—(xir CZ) +—

3 9 6
Axk1 (xl,a)——OAxkz (xl,a')+ Axk3 (xl,a)

10
+T (xl + 24\x> ms(x;, @) + > Axk—3 (xj, ) — i Axkz ‘(@) + = Axk3 * (s, @),
ET; (x;,a) =S (xi + %Ax) m,(x;, @) + 13 Aka4 (x;, a) — iAka“ (x;, a) + 6Axk 2 (x, )
+T (xl + zAx) ma(x;, ) + 30 Axk—3 (x;, ) — i Aka3 (x;, ) + 6Axk—3 (xl, a),
I G ) = 5, ) = 3Ty G )+ 2 8T, ) — 7°Axk3 (@) + 5 5 ~ axky” (),
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70
Axk—2 (x;, @)

A, 11 5
k;nl (x;, @) = my(x;, @) — —Akaz (xj,a) += Axk—2 (x;,a) — >

54

35
+ 77 Axﬁ—z (x;, @),

m) _ 11 5 70
ke (x,a) =S(x; + Ax)m2 (x;, ) — S—Axk1 (xl, a)+ = Axkz (xl, a) — —Axk3 (xl, a)

35 11 5
+ —Axk4 (xl, a) + T(x; + Ax)m1 (x;, ) — —Axk1 (xl, a)+= Axkz (xl, a)

27
70 35
— Edtkg (xl, a) + —7Axk4 (xl, a) + U(x; + 4x),

11w 5 70w
k5 (xl,a) =S(x; + Ax)m,(x;, ) — Axk— (x;,a) + = Axk— (x;, ) — 7Axk— (x;, )

35 11 5
Axk—2 (x;, ) + T(xl + Ax)m, (x;, a) Axk—1 (xj, @) += Axk—1 (x;, @)

2
70 m 35  m
27Axk— (x;, ) + Axk— (x;, a) + U(xl + Ax),
' 11 5 70
Esms (xil a) = mﬁl-(xil a) - aﬂxkl (xl' a) + AXkZ (xl' a) - —7AXk3 (xl' a)
35
+ﬁAxk4 (xl,a)

—_m 11 5 70
k;ng (@) = my(x;, @) — Aka4 (x, @) += Axk—4 (x;, ) — Axk—4 (x;, @)

3 5 27

+ ﬁﬂxkz}_‘} (xl" a);

my _ 11 5 70
ket (x,a) = S(x; + Ax)m4(xl-, a) — S—Alxk1 (xl, a) + = Axkz (xl, a) — —Axk3 (xl, a)

35  _m, 11 5

+ ﬁﬂxh (x;, @) + T(x; + Ax)m3(xl, a) — —Axk1 (xl, a) + = Axkz (xl, a)
70 —m 35

— ﬁﬂxkg (xl, a) + —Axk4 (xl, a),

i m, 5 ml 70w,
k5 (xl, a) = S(x; + Ax)my(x;, @) — Axk— (xj, @) + = Axk— (x;, @) — Axk— (x;, @)

L 35, m, 11 5 ol
2 = Axk, " (x;, a) + T(xl + Ax)mg(xl,a) Axk— (xl,a) + = Axk— (x;, )

70 m 35
— ﬁAxk— (x;, @) + —Axk— (x;, ),

631Ak ( )+175Ak (x;, a) +
55296 1 C v TE Rt

3
2096 Axks (xl-, a),

175
Akaz (x;, @) + — 12

AXES_Z (xl'f a),

—m,
Axks " (x;, )

K?l (xl" a) = mZ (xi' a) +
44275

+
110592

13824

Axk4 (xl-, a) +
631
55296

. 253
Axk, " (x;, a) +4096

5 ’
Ax@gmz (x;, )

7
_2
——=Axk, " (x;, ) + 13824

—_m,
ke (x;a) = my(x;,a) +
44275

+ 110592
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—m, 175
Axk; " (x;,a) + mAka (xl, a)

—m, 253 _m,
Axk, (xi, a) +4096Axk5 (xi, a)

5
Axk2 (xl, a)

’ 7 _ 1631
E?Z(xi, a) = S(xi + §Ax) m?(xi,a) + T
575 —m, 44275

Axke (x,
+ 3824 2%ks (0@ + 170557

£ 7 (x + Lax)m § 3
(xi 8 x) ™ (@) + 5556
575  _m, 44275

A ,
3824 2%ks (0 @) + 170507

7
+U (xl- + §Ax>,

17
Axk1 (xl,a)+ t17

+

253
Axk4 (xi, a) +

1096 Axk5 (xi, a)

' 175
Ax@lmz (x;, ) + 5Ezlka2 (x;, @)

253
Akaz (x;, @)

—m, 7 1631
ke (x;,a) = S(xl- + §Ax) m,(x;, a) + 206
575 . 44275

Axk™2 (x;
3824 4%ks " (O + 170507 4096

7 1631 175
+ T5<;c;+ §Ax) m,(x;, @) + 55296Aka1(x“ a) + ZAxk 1(xl,cr)

44275 225
Axck™ (x;
13824 xky” G ) +

110592 4096

+U (xl- + gzm),
631
55296

—m, 253
Axk, (x;, a) +4096

1 175
_4 _4-
55296Axk (x;, @) + Axk (x;, @) +

Ax&m" (x;, a) +

+ Akaz (x;, @) +

+ Ax@gml (x;, @) + Ax@Sml (x;, )

K6m3 (xil Qf) = mzl-(xi! Qf) + Axkz (xl’ a) LPereys Axk?’ (xl’ a)
44275

* 110592

_m, 175 57
Axky (xp, @) + =5 512 13824

Ast (Xi, a),

5 '
Axk3m4 (xir (X)

—m; 5
ke (xpa) = my(x;, a) + 13824

44275 253 k_4( :
110592 4096 % Yo @)

’ 7 1631
My, . — a0 — )
k' (x,a) S(xl + 8Ax) m4(xl,a) +— CT206

575 44275

+ 13824Axk3 (G ) + 110592
631

7 1
+T (xi + §Ax) ms(x;, a) +

175
Axk1 (xl,a:)+ Axk2 (xl,a)

512

A k ( )+ — 253
X X0 @) T 5096

—ms 175
55296lek1 (x;, @) + 512Axk2 *(x;, @)

575 s 44275  _—m;, 253  _m;,
+1382441xk3 (xl-,oz)+11059241xk4 (xi,a)+4096Axk5 (x;, @),

i, 7 1631 . 175
ke (x;,a) =S (xi5+5§Ax) my,(x;, a) + 5522965Axk (x;, @) + 2253
7 4427
Aka“ (x,a) + —

my
+ 3824 4% (o O + 170557 4096

7 1631 175
+T5(;;+§Ax)m3(xi,a)+55296Axk (xl,a)+ £ —=Axk, " (x;, @)

4275 @ + 253
13824 110592 7 *% Yo%) T ihge

Axk5 (xl, @)

Axk—4 (x;, )

Axk—4 (x;, @)

+

Axk% (x;, ) + Axks—3 (x;, @).

(3) (2,1)-system
Using the FRKCK4, the approximate solution for the (2,1)-system is suggested as follows:
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2825 18575 m,
ml(xm,a)=m1(xi,a)+Ax(27648 K (o @)+ e I (1, ) +
277 1
+14336 ko (xl,a)+ —k (xl,a)>
_ _ 2825 m1 18575 m1
my (x40, @) = my(x;, a) + Ax <m 1 (g, a)+ 48384 (x;, @) +

277 —m, 1
2825 18575
My (i1, @) = 15 (3, @) + A% (oI (0, @) + o 5 Ot @) +
277 1
14336 5 (xll a) + k_z(xlt a))
. L 2825 m 18575 —m,
277 —m, 1_m,
2825 18575
s (41, @) = M @) + A (27648 P (1, @) + g I G @) +
277
+14336 —3(xl, a) +— k—3(xl,a)>
_ _ 2825 _m 18575 _m
ms(x;.q,a) = my(x;, a) + Ax (m ky 3(xl-,a) + mh 3(xl-,a) +—
277 1=
+14336k5 (xl,a)+ k6 (xl,a)
2825 18575
277 1
T 113365 w4y k_4(xl'a)>
_ _ 2825 m 8575 —m,

277
14336

—m, 1—m,
ks (x;,a)+ Zk6 (xp, @) |,
Where
ki (g, @) = 5 (x;, @),
—m,
kq ' (x;, @) = my(x;, @),
Klmz (x;, @) = S(x)my(x;, a) + T (x)my (x;, @) + U(xy),

T G, @) = SGe)t (e, @) + TOc)my (e @) + UG,

k7B (g, @) = my(x;, @),

—ms
ky (x;, a) = my(x;, @),

13525 m1

13525 —m,
4 z(xu 0{)

™ (2, @)

(x;, @)

"2 (x;, @)

™ (3, @)

k4- (xli (X)

k,” ™ (x;, @)

k4 (xu a)
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k™ (g, @) = SGe)my (i, @) + T ()s (x;, @),

—-m _

ki G @) = SO (x, @) + T (x)ms (i, @),
my — 1 —m

ey (xi, @) =15 (g, @) + ¢ Axky (g, @),

—m, 1 m,
k2 (xil a) =m, (xil a) + EAXKT (xi) a)'

5 5

1 —m 1
+ gzlxk1 (xj, ) +U (xi + gAx),

i, 1 \_ 1 —m 1
ky, (x;,a) =S (xl- + gAx> m,(x;, a) + gl\xk1 (xjp, ) +T (xi + gAx) my (x;, @)

m 1 1 m 1 \—
kE(x,a)=S (xl- + —Ax) m,(x;, a) + gﬂxﬁ_ (xjp, ) +T (xi + —Ax) my (x;, @)

1 m, 1
+ gAxK1 (xj, @) +U (xi + EAJC),

1 —m,
gAxkl (xi) a)'

szs (xil a) = m‘l-(xil a) +
—m, 1 m,
ky () = my(x;, @) + gﬂx&_ (x;, @),

, 1 1 ’ 1
sz‘L (xl., a) =9 (Xl' + EAX> m4(xi' C() + gAxklm4(xil a) +T <xi + EAX') m3 (xi' CZ)

1 =
+ gAxklM (x;, @),

—m, 1 . 1 —m, 1
k, (x;,a) =S (xl- + gAJC) my(x;, @) +=A4xk,; (x;,a) +T <xi + gAx) ms(x;, a)

5
1 '
+ —Aka3 (x;, @),

5
o 3 9
(‘xll a) - mZ (‘xll a) + EAxkl (xl' a) + EAXkZ (‘xll a)
3 9
k3 (xi’ a) = my(x;, a) +— m Axk_z (xp, @) +— 40 AXk_z (x;, @),

(4) (2,2)-system
Using the FRKCK4, the approximate solution for the (2,2)-system is suggested as follows:

2825 18575 13525
my (Xipyq, @) = mq (x;, @) + Ax (27648 ml(xl, a) + 15382 %3 kml(xl, a) + 55296_4 (xl, a)
277 1
T 143365 ) + k_l(x“a)>
_ . 2825 _m 18575 —m, 13525 —m;,
my(x;jp1, @) =my(x;, a) + Ax <27648k1 1(xi,a) + 48384k3 1( Xi, Q) + ——— 5206 ky 1(xl,a)
277 —m. 1 —m,
2825 18575 ; 13525
(41, @) = Mot @) + A (27648 K (1, @) + g 5 (6 @) + oo (3, )
277
+Mk_2(xua)+ k_z(xua))
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2825 m2
27648

18575

(xp ) + 48384

my (X1, @) = my(x;, a) + Ax (

2825
27648 ky (“ @+

m3 (xpa) + k—3 (xs, a))

18575
48384

ms(x;4q, @) = ma(x;, ) + Ax (
277

* 14336

2825 m3
27648 ks

18575
48384

m3 (xi+1! CZ) = m3 (xi! a) + Ax < (xu CZ) +

277 Em3( )—klk Y
t 1433675 Vi 6 i@

2825
27648

(@) + 2 G a))

2825 m4
27648

18575

m4
(i, @) + 7535 K

my (X1, @) = myu(x;, @) + Ax(
277
14336 ks

18575
48384

(xy, @) +

)

My (X1, ) = my(x;, a) + Ax (

277 1 —m,
ks 4(xi, a) + Zk;n4 (x;, @)

14336

where

K1m11 (xi, @) = m,(x;, @),

Elml (xp, @) = my(x;, @),

3 (x, @) = SO (g, @) + T (x, @) + U xy),
Elmz (i @) = S (e, (g, @) + T ()my (x, @) + Uxy),
K Cxp @) = ma (i, @), (31, ) = 0,
Klm%(xi' a) = S(x)m,(x;, @) + T(x)ms(x;, @),

;T‘* (xi, @) = S(x)my (x;, @) + T (x)ms (x, @),

1 ’
= Ak (x;, @),

kS (g, @) = my (g, @) +
, 5
—Axk;n2 (x;, @),

—my —
ky (xa) =my(x;, @) +

5
! 1 1 —m;
szz (xj,@) =S (xi + gAx) m,(x;, a) + gAkunl (x;, @) +
1 ’ 1
+ gAxklml(xi, a)+U <xi + gAx>,
—_m 1 1 ,
k;nz (x;,a) =S (xi + gAx) m,(x;, a) + gAxﬁlmz (x;, @) +
1 —m 1
+ gélxk1 (xj, ) +U (xi + gAx),
AIMS Mathematics

B () + oo T 1, )
550 + S 0
) + Gpgghs )
5 50+ g )

B () + o T )

1
T (xl- + gﬂx> my (x;, @)

1
T (xl- + gAx> my (x;, @)
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m, 1 m A _ 1 —m,
ky~ (@) = my (g, @) + o Axk ™ (0, @), ky (o, @) = my(x, @) + gﬂx’ﬁ (x;, @),

5
m 1 _ 1 —m, 1

k- (x,a) =S (xi + gAx) m,(x;, a) + gzlxk1 (xj, ) +T (xl- + gﬂx> ms(x;, )

1 '
+ gAxklm:“ (x;, @),

—m, 1 1 m. 1 _

k, (x,a)=S (xi + gAx) my(x;, a) + gAxKT4 (xj, @) +T (xl- + gﬂx> ms(x;, a)
1 =

+ gAxklns (x;, @),

' 3 ' 9 '
m1 (xl-, a) = my(x;, a) + —Akaz (x;, a) + —Akaz (x;, @),

40

3 9
k3 (xl' a) - mZ(xl' a) + EAXkl (xl; a) + AXkZ (xl) a)

' 3 3 —m, 9 —m,
53&2 (xj,@) =S (xl- + 1—0Ax) m,(x;, a) + EAkaz (x;, @) + EAxk;nz (x;, )

3 3 ’
+T (xl- + 1—OAx> m; (x;, a) + —Alxklml (x;, a)

40
2 Ak G, @)U (x4 —= ).
| Tt M (xl 107"
—mz 3 3 2 9 2
ks (x;,a) =S (xl- + 1—0Ax) m,(x;, a) + — 20 — Axk - (xl,a) + OAxk— (x;, a)
3 3 9
+ +T( 10Ax) my(x;, a) + Eélxk1 "o, ) + —OAka "(x;, @)

3
+ U(xi +EAX)'

' 3 ' 9 '
m3 (xl-, a) = my(x;, a) + —Aka‘L (x;, ) + —Aka" (x;, @),

40 40
3 9
k3 (xl, a) = myu(x;, a) + EAxkl (xl, a) + EAxkz (xl, a),
m, 3 3 9
Kty ) = § (30 25 ) Ty G @) + o Ky (33, @) + 55 Dy, (@)

3 9
20 Aka3(xl,a)+ Axk—3(xl,a)

—m, 3 3 9
k;n4 (x;, @) =S (xl- EAx) my(x;, @) + —Axk—“(xi, a) + —Axk—“(xi, @)

3
+T (xl- + EAx) mz(x;, a) + —

3 3 9
+T (xl 10Ax> ms(x;, a) + —Axkl (xl, a) + Axkz (xl, a),

3 9 6
10 Axk—z(xl,a) Axk—z(xl,a)+ Axk—z(xl,a)

K;l_ml (xi' a) =m, (xil a) +—
—my _ 3 9 6
ky, (x;, ) =m,(x;,a) + 1OAxk1 (xl, a) — OAxk2 (xl, a) +— Axk3 (xl, a),

' 3 3 9
&mz (x;,a) = (x- + gAx) m,(x;, @) + 10[\xk1 (xl, a) — OAka (xl, a)

6 3 3

+ 5Axk3 (xl, a)+T (x + SAx) m;(x;, @) + ()Axk—1 (x;, @)
9 6 3

— EAxkz (xl, a) + = Axk3 (xl, a)+U (x + - z Ax)
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31830

3 9
0 Akaz (x;, @) — —Ozlxk—2 (x;, @)

6 3
+ - z Axk—2 (x;, @)+ T (x + - z Ax) m;(x;, @) + —

—m, 3
ky, (x;,a) = (x + SAx) m,(x;, @) + —

3
Axk—1 (x;, @)

10
9 3
- EAxk—l(xl,a) + = Akal(xl,a) +U (x + SAx)
—m 11 5 70
k;n3(xi, a) = my(x;, a) — 52 Axkl Y, a) + = Axkz (xl,a) ——Axk3 (xl, a)
35
ﬁﬂxh *(x;, @),

11 5 70
—4(xl,a) =S(x; + Ax)m4(xl,a) Axk1 (xl,a) + = Axk2 (xl, a) ——7L1xk3 (xl,a)

35 11
+ ﬁzlxk4 " @) + T(x; + Ax)ms(x;, @) — Axk—3 (x;, )

5 70 35
+ = 5 Axk—3 (x;, ) — 57 Axk—3 (x;, @) + —7Axk—3 (x;, @),

11 5 70
k5 (xl, a) = S(x; + Ax)my(x;, @) — Axk—“(xl, a) += Axk—“(xl, a) —Axk—4(xl, a)

35 11
Axk—“(xl, a)+ T(x; + Ax)m3(xl, a) — —4Axk1 *(x;, )

2
5 70 35
+2Axk2 (xl,a) 7Axk3 (xl,a)+—7Axk4 (xl,a)
! 631 175 75
LTS 258 k_z( )
| 110592 = 0% Tgpge tiEs Vi |
—m _ 631 —m, 175 575 —m
ke (x;, ) =m,(x;, a) + mﬂx’ﬁ *(x;, ) + 512Axk2 “(x;, Q) + 13824Axk3 *(x;, )
+ 44275 2 Eﬁz( )+ 253 2 k ( )
110592 74 V@) T gg9g 20 s Vi)
. 7 \_ 631 175
ko (x,a) =S (xi + gdx) m2 (x;, ) + 55296lek1 (xl,a) +— £ Axk2 (xl, a)
575 44275 253
+ 138244\7xk3 (xl,a) +—110?2§1Axk4 (xl-,a) +4019765Axk5 (xi,a)
+T (xi + §Ax> m, (x;, @) + 55296Aka1 (x;, @) + — =12 Axk—1 (x;, )
575 m. 44275 m 253
Axk™ (x; Axk™ (x; Axk™ (x,
T 1382847k (%0 @) F g505 A%k, " (xi @) + 550 Axks ™ (xi, @)

7
+U (xi + §Ax),

By implementing the system of first-order FDEs with FRKCKA4, the solution to the problem of
Eqgs (4.2), (4.6), (4.10) and (4.14) are derived as

w(q,a) —my(q, )
ms(q, @)
W(q' a) ml (q' a) —
m3(q, @)

W(xl' a) - ml (xu a) += S(xi) Qf), m3 (q’ Qf) * 0;

W(xil (X) = m1(xil (I) + 3(xu a) m3 (q' a) * 0
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where  m, (x;, @), my (x;, @), ms(x;, a)andms(x;, @) are unique solutions for fuzzy non-
homogeneous and fuzzy homogeneous equations. Hence, the analytical and approximate solution for
Eq (4.1) are denoted as Wanalytical(x; a) = [ﬂanalytical(x' a), Wanalytical(x' a)] and
W (x,a)= [V_V(X,a), w(x,a)], respectively.

6. Numerical example

This section presents a numerical example to express the ability of the proposed method. For
the (1,1)-system, the solution of the proposed method is compared with the analytical solution and
FRK4. The errors between FRKCK4 and FRK4 are determined by deducting the absolute values of
analytical and approximative solutions. Since the analytical solutions for the (1,2), (2,1) and (2,2)-
systems could not be determined analytically, we now analyze the approximations provided by
FRKCK4 and FRK4. This section discusses the example of FBVP, where the idea was obtained from
Example 5.1 in [2].

Let the FBVP as follows:

{W"(x) =W'(x) + W(x) +x,

wo)=0w() =1, (6.1)

where [0]* = [a — 1,1 — a] and [1]* = [a,2 — a]. Based on Sections 4 and 5, the procedure to
solve Eq (6.1) using the (1,1)-system is discussed below:

(1) (1,1)-system
With reference to Eq. (6.1), it is expressed as follows in (1,1)-system:

(w(x,a) =w'(x,a)+w(x a)+x,

W"(x, a) = W'(x, a) +w(x,a) + x, 6.2)
w0,a)=a—-1,w0,a)=1-a, '
w(l,a)=a,w(l,a) =2—a.

The fuzzy non-homogeneous equation for Eq (6.2) is translated as:
B (x, @) = h'(x, @) + h(x, @) +x,
h(x,a) =h(xa)+h(x,a) +x,

h(0,a) = a — 1,h(0,0) =1—a, (6:3)
h(0,a) = 0,7 (0,@) = 0.
The fuzzy homogeneous equation for Eq (6.2) is:
(j (x,0) =j'(x, @) + j(x, @),
J a) =7 @ a) +jxa), 60

1j0,@ = 0,j(0,@) = 0,

U'(0,a) = 1,j(0,a) = 1.

Equations (6.3) and (6.4) are solved simultaneously and defined as:
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ml (x' a) = ﬁ(X, 0(), ml (xr a) = E(xr a)r
m,(x,a) = ﬁ'(x, a),m,(x,a) = h (x, a),
m3 (x, a) = ]_'(.X', 0(), m3 (X, CZ) = j(x' (Z),

m, (x, @) = j (6, 0), 7, (x, ) = (x, ).

The system of first-order FDE is:

with fuzzy initial conditions

m; (x, @) = m,(x, a),

m, (x, @) = 1, (x, @),

m,(x, @) = m,(x, @) + my(x, @) + x,
m'z (x,a) =my(x, @) + my(x, @) + x,
ms(x, @) = my(x, @),

iy (x, @) = 1, (x, @),

mi(x, a) = my(x, a) + m3(x, a),
m;(x, a) =mu(x,a) + ms(x, a),

m;(0,) =a—-1m(0,a)=1—q,
m,(0,a) = 0,m,(0,a) =0,
m3(0,a) = 0,m3(0,a) =0,
m,(0,a) =1,my(0,a) = 1.

To solve the (1,1)-system, the following is proposed:

m
E1_1 = mz (a)'

_ﬁl
kq
m,
k3
_m,

ky

mg
k™
my
K~
—m,

ky

my
k;

—my
k,
m,
k,
—m,

ks

mg
k;

—m

AIMS Mathematics

1
ky =my(a)+

m, (@) + my(a) + x;,
(@) + 71, (@) + x,
my(@), % = My (@)
my(a) + ms(a),
s (@) + i3 (@),

1
m,(a) + gﬂx&mz,

1 ! 1 ' 1
Axky? +my (@) + EAxklml + x; + gAx,

_ 1, 1 _m, 1
m,(a) + gﬂxkl +m, (a) +§Axk1 + x; + EAX’
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1 ’ 1 ’
k™t = my(a) + gAka“ + my(a) + gAxk%

1 1
k, =my(a)+ 5Axk1 +ms(a) + SAxk1 ,

! 3 9
m; _ m, - _2
@3' —mz(a)+40Axk +40Axk |
—ml 3 9 _mz
k3 = mz(a) + AXkl 40 A.sz )
' 3 9 3 9 ! 3
53&2 =m,(a) + OAxk—2 20 Axk—2 +my(a) + Ozlxk—1 0 Ax@zml +x; + 1—0Ax,
i, 3 9 3 9 7y 3
ks =my(a) + Axk1 4 Axkz +m;(a) + Axk1 40 —Axk, +x;+ EAX'
! 3 9
k= my(a) + OAxk . EAxk
s 3 9 _m,
k3 = m4(a) + OAxkl 40 Axkz )
ml; 3 _4 9 _4 3 _3 9 ms
kit =my(a) + OAxk 40Axk + ma(a) + OAxk + 4OAx@2 ,
i, 3 9 3 9 _m;
ks =myu(a) + Axk1 40 Axkz + ms(a) + Axk1 40Axk2 ,
! 3 9 6
kgt =my(a) + OAxk loAxKZ— + EAxK;
—my 3 9 _m, 6 —m
k4 = mz(a) + OAxkl - 1_0Axk2 + gAxkg y
km'2 =m,(a) + — 3 Axk—2 _2 Axk—2 + 6Axk—2 +my(a) + — 3 Axk—1 - iAxk—1 + 6Axk
4 T 10 5 10 5 - 10 10 5
+x; + gAx
i, 3 9 _m, 6 3 9 _m 6 -m
k, =m,(a) + Axk1 — EAsz + EAxkg +m, (a) + Axk1 — EAsz + gAxk3
3
+ X; + EAX
m. 3 9 6
54—3 =my(a) + Ozlxk—4 — 1_0Axk_4 + 5Axk |
—ms 3 9 6 —m,
k4_ — m4_(a) + Axkl - EAxkz + gAXk:), )
’ 3 9 6 3 9
KZL = my(a) + Axk—4 0 Axk—4 + = z Axk—4 + ms(a) + Axk—3 - EAxk—3
6
+ gﬂxk_
T, 3 m, 9 m, 6 3 9 _m, 6 _m,
k, =my(a)+ 10Axk1 10Axk2 + gAxk3 + ms(a) + OAXkl - 1—0Axk2 + gAxk3 ,
! 11 5 70 35
Esml =m,(a) — ank—z + 3A k—2 27Axk +ﬁAxk—2
B (@) — e 4+ 2 = 10 e 4+ 2 g
5. = Mel@) g Axia Hgdxin mog Ak F g7 Ak
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: 631 . 175 Q275 253
kT = Xk + —— Axky” Axkyt ey = Axks
kg™ = mu(@) + 5555 4% 512 13824 * 110592 4096 %5

(@) + o K 4 75A k> axies ¢ 227 e
M%) T 552067 51227 T 138247 T 1105024
53 A kml3
| 4096~ | | |
Em__( )+1631A k 175A Eﬁ N AEE 442 754_m4 5 AFE
o =Ma(@) +gpogedak 4o 2 138247 T 110592 4096
M T E5206 7 5127 13824 0 T 1105927
53 A Em3
T 2096 "5
The analytical solution for Eq (6.2) is
1_\/_ 1+\/§
e 2 (a—2)—a\ +5)x [ 72 (a—2)+a) (1-V5)x
Eanalytical(xr a) = 15 145 2 15 s e 2 —-x+1,
e 2 —e 2 e 2 —e 2
1-5 1+v5
_ —e—( )—2+4+a)| @+V5)x e 2 (a)+2—a)| (=V5)x
Wanalytical(x: a) = 1S 1475 e 2 15 1+v5 2 -x+1
eT—e 2 e 2 —e 2

The numerical example is evaluated using step size Ax=0.01, N =100, and the solutions
are corrected to 13 significant figures. Table 1 compares the analytical and approximate solutions
of FRKCK4 and FRK4, while Table 2 provides the errors (Err(x,a) = [err(x, ), err(x, a)])
for (1,1)-systemat x=0.5.

Table 1. The comparisons of approximate solutions of FRKCK4 and FRK4 for (1,1)-
systemat x=0.5.

Analytical solution FRKCK4 FRK4

* Wanatytical (05, @)| Wanaiyticar (0.5, @) w(0.5,a) w(0.5,a) w(0.5,a) w(0.5,a)

0 -0.606573485238  1.171170746022  -0.606573485241 1.171170746016 -0.606573485117 1.171170746252
0.1 -0.517686273675 1.082283534459 -0.517686273678  1.082283534453 -0.517686273548  1.082283534683
0.2 -0.428799062112  0.993396322896  -0.428799062115 0.993396322890 -0.428799061980  0.993396323115
0.3 -0.339911850549  0.904509111333 -0.339911850553  0.904509111327 -0.339911850412  0.904509111547
0.4 -0.251024638986  0.815621899770 -0.251024638990  0.815621899764  -0.251024638843  0.815621899978
0.5 -0.162137427423 0.726734688207 -0.162137427427  0.726734688202 -0.162137427275 0.726734688410
0.6 -0.073250215860 0.637847476644 -0.073250215864  0.637847476639  -0.073250215706 0.637847476841
0.7 0.015636995703  0.548960265081  0.015636995699  0.548960265076  0.015636995862  0.548960265273
0.8  0.104524207266  0.460073053518  0.104524207262  0.460073053513  0.104524207431  0.460073053704
0.9 0.193411418829  0.371185841955  0.193411418824  0.371185841950  0.193411418999  0.371185842136
1.0 0.282298630392  0.282298630392  0.282298630387  0.282298630387  0.282298630568  0.282298630568
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Table 2. The errors between FRKCK4 and FRK4 for (1,1)-system at x=0.5.

Error of FRKCK4 Error of FRK4

¢ err(0.5,a) err(0.5, ) err(0.5,a) err(0.5,a)

0 0.000000000003 0.000000000006 0.000000000121 0.000000000230
0.1 0.000000000003 0.000000000006 0.000000000127 0.000000000225
0.2 0.000000000003 0.000000000006 0.000000000132 0.000000000219
0.3 0.000000000004 0.000000000006 0.000000000137 0.000000000214
0.4 0.000000000004 0.000000000005 0.000000000143 0.000000000208
0.5 0.000000000004 0.000000000005 0.000000000148 0.000000000203
0.6 0.000000000004 0.000000000005 0.000000000154 0.000000000197
0.7 0.000000000004 0.000000000005 0.000000000159 0.000000000192
0.8 0.000000000004 0.000000000005 0.000000000165 0.000000000186
0.9 0.000000000004 0.000000000005 0.000000000170 0.000000000181
1.0 0.000000000005 0.000000000005 0.000000000176 0.000000000176

A comparison of the analytical and numerical solutions, FRKCK4 and FRK4, is provided in Table 1.
The error analysis is computed and displayed in Table 2 to demonstrate the efficacy of the proposed
method. According to the findings, FRKCK4’s error is less than FRK4’s, and all three fuzzy solutions
are displayed in Figure 1.

W(x, a)

(a) (®) (©

Figure 1. The approximate solution of (a) FRKCK4 and (b) FRK4 and the (c) analytical solution for
(1,1)-system.

Apart from error analysis, we can measure the area under the curve at a certain X using the
following formula:

A=Y (o —aj_)) (WY —w®). (6.5)

For instance, when applying Eq (6.5), the area under the curve for the analytical solution at
x=0.5 is 0.501882736424, while the areas under the curve for FRKCK4 and FRK4 are
0.501882736418 and 0.501882736677, respectively. As a result, the area under the curve of FRKCK4
is closer to the area under the curve of the analytical solution. However, the difference in area under
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the curve between FRK4 and the analytical solution is quite significant. Figure 1 below illustrates the
analytical and approximate solutions of FRKCK4 and FRK4 for the (1,1)-system.

Next, we discuss the steps to solve Eq (6.1) using the (1,2)-system, and the results are summarized
in Table 3 and Figure 2.

Table 3. The comparisons of approximate solutions of FRKCK4 and FRK4 for (1,2)-system at

x=05.
FRKCK4 FRK4

« w(0.5,a) w(0.5,a) w(05,@) w(0.5,a)

0 -0.693065481025 1.257662741800 -0.693065480839 1.257662741974
0.1 -0.595529069884 1.160126330659 -0.595529069699 1.160126330834
0.2 -0.497992658743 1.062589919517 -0.497992658558 1.062589919693
0.3 -0.400456247601 0.965053508376 -0.400456247417 0.965053508552
0.4 -0.302919836460 0.867517097235 -0.302919836277 0.867517097412
0.5 -0.205383425319 0.769980686094 -0.205383425136 0.769980686271
0.6 -0.107847014178 0.672444274952 -0.107847013995 0.672444275130
0.7 -0.010310603036 0.574907863811 -0.010310602855 0.574907863990
0.8 0.087225808105 0.477371452670 0.087225808286 0.477371452849
0.9 0.184762219246 0.379835041529 0.184762219427 0.379835041708
1.0 0.282298630387 0.282298630387 0.282298630568 0.282298630568

Figure 2. The approximate solution of (a) FRKCK4 and (b) FRK4 for (1,2)-system.

(2) (1,2)-system

w(x,a) = W (x, @) + wix, a) + x,
w (x,a) =w'(x, @) + wix,a) +x,
w0,a)=a—-1,w0,a) =1-a,
w(l,a)=a,w(l,a)=2-a.

(6.6)

The fuzzy non-homogeneous equation for Eq. (6.6) is expressed as:
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(1 (@) =1 (x, @) + h(x, a) + x,

< Z"(x, a) = @'(x, a) + h(x, a) + x,

_ (6.7)
h(0,0) =a—-1,h0,a) =1—a,
K(0,a) = 0,7 (0,) = 0.
The fuzzy homogeneous equation for Eq (6.6) is:
(j" G, 0) = (v, @) +j(x, @),
J () = j (@) + j(x, @),
<] ! ! (6.8)

j(0,a) =0,j(0,a) =0,

L]_"(O, a)=1,j(0,a) = 1.

Equations (6.7) and (6.8) are solved simultaneously and defined as:
ml (x, (Z) = ﬁ(xl 0(), ml (xr a) = E(xr a),
m,(x, @) = h (x,a), M, (x, @) = h (x, @),
ms(x,a) = j(x, @), m3(x,a) = j(x,a),
my(x, @) = j'(x, @), m,y(x, @) = j (x, ).
The system of first-order FDE is:
m;l (.X', a) = m2 (.'X', (X),
my (x, @) = my(x, @),
my(x, ) = my(x, @) + my(x, a) + x,
ﬁé (x,a) =my(x,a) + m(x,a) + x,
mé (x' a) = m4-(xt (X),
My (x, @) = my(x, @),
my(x, @) = my(x, @) + mz(x, a),
My (%, @) = my(x, @) + my(x, @),
with fuzzy initial conditions

m;(0,a) =a—1,m(0,a) =1-aq,
m2(0' 0() =0, mz (0, a) =0,
m3(0,a) = 0,m3(0,a) =0,
m,(0,a) =1,my(0,) = 1.

To solve the (1,2)-system, the following is proposed:
k=, (a),
—my
ky = m,(a),
ki =, + 1 (@) + x,
E;nz =my(a) + my(a) + x;,
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kP =m,(a),

i

k4 , = m4(a),

k™ = m, () +ms(a),

ky f= my(a) + ms(a), '

szi =m,(a) + %Axﬂmz,
B = male) + 2 a5k,
szé =m,(a) + %Axﬁlﬁz +my(a) + %Axﬁlm'l + x; + %Ax,
E;_n; = my(a) ‘l'%élxklﬂ2 +my (a) + %Ax&m; +x; + %Ax,
R =iy (@) + AR
B = my(a) + éﬂxklm"‘,
sz‘; =my(a) + %Ax%lﬁ; +m3(a) + %Axﬁlmé,
E;_n; = my(a) + %AXE?;‘ +ms(a) + %Axkﬂé,
Es,ml =m,(a) + %szlﬁé + %szzﬁz,
Efl =m,(a) + %Ax@lﬁz + %Axkzmé,
k?; =my(a) + 1631 AxET; +1—75Axﬁzﬁ; + >75 Ax%ﬁ; + 44275 xaﬁ; ﬁﬂx%?
= 5_5296 31 512mé 175 138th . 1105;22 44275 4096mg
" Tg;g“) " 53296“51 te e T 13g2a s 0502 K
* 200625
k6_ =my(a) + 55623916A klm"1 + S%Axkzm;’ + %Axg@1 + 14140257952 Ax&m"1 + 4205_93643@?;
+ rrzl;(ga) + %Ax&m + S—ZzAxEZ% + %Axﬁ% + %Ax&%
* 2006 2%ks

The numerical example is evaluated using step size Ax=0.01, N =100, and the solution is
corrected to 13 significant figures using the proposed method. Table 3 compares the approximate
solutions of FRKCK4 and FRKA4 for the (1,2)-system. As there is no analytical solution for the (1,2)-
system, this can be demonstrated by calculating the area under the curve using Eq. (6.5). Based on
Table 3, the areas under the curve at x=0.5 for FRKCK4 and FRK4 are 0.510199655305
and 0.510199655592, respectively. According to the findings, the area under the curve for FRKCK4
is smaller than the area under the curve for FRK4. This indicates that FRKCK4 offers a better
approximation than FRK4.
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Figure 2 below displays how the approximate solutions of FRKCK4 and FRK4 behaved in the
time domain Xx.

Next, we discuss the steps to solve Eq (6.1) using the (2,1)-system, and the results are summarized
in Table 4 and Figure 3.

Table 4. The comparisons of approximate solutions of FRKCK4 and FRK4 for (2,1)-

systemat X=0.5.

FRKCK4 FRK4

“ w(0.5,) w(0.5,c) w(0.5,) w(0.5,c)

0 -0.606573485241 1.171170746016 -0.606573485117 1.171170746252
0.1 -0.517686273678 1.082283534453 -0.517686273548 1.082283534683
0.2 -0.428799062115 0.993396322890 -0.428799061980 0.993396323115
0.3 -0.339911850553 0.904509111327 -0.339911850412 0.904509111547
0.4 -0.251024638990 0.815621899764 -0.251024638843 0.815621899978
0.5 -0.162137427427 0.726734688202 -0.162137427275 0.726734688410
0.6 -0.073250215864 0.637847476639 -0.073250215706 0.637847476841
0.7 0.015636995699 0.548960265076 0.015636995862 0.548960265273
0.8 0.104524207262 0.460073053513 0.104524207431 0.460073053704
0.9 0.193411418824 0.371185841950 0.193411418999 0.371185842136
1.0 0.282298630387 0.282298630387 0.282298630568 0.282298630568

Figure 3. The approximate solution of (a) FRKCK4 and (b) FRK4 for (2,1)-system.

3) (2,1)-system
w(x,a) =w(xa)+wa)+x,

w (x,a) = W’(x, a) +w(x,a) +x, (6.9)
w0,a)=a—-1,w(0,a)=1-a, '
w(l,a)=a,w(l,a) =2-a.
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The fuzzy non-homogeneous equation for Eq (6.9) is translated as:
h (x,a) = h(x,0) + h(x,a) + x,

Zn (x,a) = E’(x, a) + h(x,a) + x,
i@(O,a) =q— 1,%(0,6!) =1-g¢,

\k'(0,a) = 0,7 (0,) = 0.
The fuzzy homogeneous equation for Eq (6.9) is:
(j'(x, @) = j'(x, @) +j(x, ),

) =] a)+jxa),
j(0,@) =0,j(0,a) =0,

U'(0,0) =1,j(0,a) = 1.

Equations (6.10) and (6.11) are solved simultaneously and defined as:

my (x, @) = h(x, @), m; (x, @) = h(x, a),

mz (X, a) = ﬁ’(x, (Z), mz (x, a) = E (x, a);

ms(x, @) = j(x, @), m3(x, @) = j(x, ),
mél(x! a) = ]_"(x, a), mél(xl 0.’) = ]_ (x' (X).
The system of first-order FDE is:

m; (x, @) = my(x, ),

ﬁ; (x, @) = my(x, @),

m,(x,a) = my(x, @) + My (x, @) + x,
m; (x,a) =my(x,a) + my(x, a) + x,
ms(x, @) = m,(x, @),

ﬁ; (x, ) = my(x, @),

ml;(x, a) = my(x, a) + m3(x, a),

M4 (x, @) = M, (x, @) +ms(x, ),

with fuzzy initial conditions

m(0,0) =a—-1m0,a) =1—aq,
mZ(OJ (l) = 0: mz (0) (l) = 0'
m3(0; a) =0, m3 (0' CZ) =0,
m,(0,a) =1,my(0,) = 1.

To solve the (2,1)-system, the following is proposed:
k't =y (a),
iy
ki =my(a),

K = my (a) + 7, (2) + (@),

AIMS Mathematics
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T,
kq , =m,(a) +m1(a) - X
K =my(a),
i
ky =m4(a),
k= my(a) + m3(a),
: 631 .. 175 575 o 44275 3
kg = Axk;™” Axk Axky” XK 4 o pk
kg™ =ma(@) + googe Axk, ™ + 57 Ax +13824 T 110592 4% 4096 X
+_()+1631Ak J175 w575 m1+44275 o
m153“ 55296 + 524k + 13802 110592 2%
+4096Ax@5m1+xi+§élx,
Em' () + 1631 Em;+175A Em’er 575 Em’z 44275 _m’z 253 Em;
6 =M T 5596 x11631 51272 . 13824 x ;7 110592 44275 40965
km1 A km1 A m1 Ax m1
+m15(3“)+55,296 i Tr12% 13822 110592
+4096Ax@5m1+xi+§zlx,
k’"3 @) 1631 y kﬁ;+175A i 575 y Eﬁ*+ 44275 Eﬁ; 253 253 Em;
to TMANITEEo967 T T51279 2 T 1382473 T 1105027 T 40967
_m 631 .. 175 ' 575 . 44275 . 253
ke = K 4 222 g™ Axk™ Ly k—‘*
| o Srata - 372 = 13924 iy 14140257952 - Py
km4 — km4 ~- km4 km4 m4 ity k_4
kg™ =ma(@) +zo55e x—11631 512 ?‘—217: 13824 —27; 110592 44275 + 2006 2*
— km3 iy | km3 m3 — " Ax kms
+’Z;(3“)+55296 Xt g A T i3ga 4 110592
ms
| * 2096 2*Ks ’, | | | |
Eﬁ4 (@) + 1631 A km4+175A Fm4+ 575 A Em4+ 44275 Em 253 A Eﬁ4
6 T TE52067 Tt TR 2 T 138247 2 T 1105927 ¢ T 40960
‘@) + 631 w175 k_3 5 km_;’ 44275 kmé
mz?éga 55296 Xk + o Ax 13824 110592°%
mg
+4096Ax@5 .

The numerical example is evaluated using step size AXx=0.01, N =100, and the solution is corrected
to 13 significant figures using the proposed method. Table 4 compares the approximate solutions of
FRKCK4 and FRK4 for the (2,1)-system. Based on Table 4, we quantify the area under the curve to
demonstrate the efficacy of the proposed method. Using Eq (6.5), the areas under the curve for
FRKCK4 and FRK4 are 0.501882736418 and 0.501882736677, respectively. The results suggest that
the area under the curve for FRKCKA4 is smaller than the area under the curve for FRK4. This indicates

that FRKCK4 offers a better approximation than FRK4.

Figure 3 displays how the approximate solutions of FRKCK4 and FRK4 behave in the time

domain x for the (2,1)-system.

Next, we discuss the steps to solve Eq (6.1) using the (2,2)-system, and the results are summarized

in Table 5 and Figure 4.
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Table 5. The comparisons of approximate solutions of FRKCK4 and FRK4 for (2,2)-

systemat X=0.5.

FRKCK4 FRK4

“ w(0.5,2) w(0.5,2) w(0.5,2) w(0.5,2)

0 -0.693065481025  1.257662741800  -0.693065480839  1.257662741974
0.1  -0.595520069884  1.160126330659  -0.595529069699  1.160126330834
0.2 -0.497992658743  1.062589919517  -0.497992658558  1.062589919693
0.3 -0.400456247601  0.965053508376  -0.400456247417  0.965053508552
0.4  -0.302919836460  0.867517097235  -0.302919836277  0.867517097412
0.5  -0.205383425319  0.769980686094  -0.205383425136  0.769980686271
0.6  -0.107847014178  0.672444274952  -0.107847013995  0.672444275130
0.7  -0.010310603036  0.574907863811  -0.010310602855  0.574907863990
0.8  0.087225808105  0.477371452670  0.087225808286  0.477371452849
0.9  0.184762219246  0.379835041520  0.184762219427  0.379835041708
10  0.282298630387  0.282298630387  0.282298630568 0.282298630568

Figure 4. The approximate solution of (a) FRKCK4 and (b) FRK4 for (2,2)-system.

(4) (2,2)-system

(w'(x,a) = W (x, @) + w(x, a) + x,

W (x,a) = w'(x,a) + w(x, a) + x,

(6.12)
w0,a)=a—-1,w0,a) =1-a,
Lm(l, a)=a,w(l,a)=2—a.
The fuzzy non-homogeneous equation for Eq (6.12) is translated as:
f&" (x, ) = h(x,a) + h(x,a) + x,
< h(x,a) =h(x,a)+h(x,a)+x, (6.13)

h(0,@) =a— 1,%(0,6() =1—aq,
\A'(0,@) = 0,4 (0,a) = 0.
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The fuzzy homogeneous equation for Eq. (6.12) is:

r]_'"(x, a) = f,(x, @) +j(x,a),

)i o =)t +jea,

6.14
j(0,a) =0,j(0,a) =0, (.19

J'(0,a0) = 1,7 (0,@) = 1.
Equations (6.13) and (6.14) are solved simultaneously and defined as:

my (x, a) = h(x, @), m; (x, @) = h(x, a),
mZ (x, (Z) = ﬁ’(x, 0(), mz (xr a) = E (x' a),
ms(x,a) = j(x, @), mz(x,a) = j(x,a),
m4(xJ a) = ]_.'(x' a)' m4-(x' a) = j_ (xr a)'
The system of first-order FDE is:
m;(x, @) = my(x, @), My (x, @) = M, (x, @),
m,(x, @) = m,(x, @) + my(x, @) + x,
m'z (x, a) = mz (x! a) + ml (x' a) + X, m’3 (x' a) = m4(x: a),
Ma(x, @) = M, (x, @), my(x, @) = m,(x, @) + ms(x, @),
My (X, @) = my(x, @) + m3(x, @),
with fuzzy initial conditions

m(0,a) =a—-1m0,a) =1—aq,
m,(0,a) = 0,m,(0,a) =0,
m3(0' 0() =0, m3 (0, a) =0,
m,(0,a) =1,my(0,) = 1.

To solve the (2,2)-system, the following is proposed:

K = my(a) by =),

k' = my () + my(a) + x;,

—m,

ky o =my(a) + My (a) + x,
K% = my(a) k= my(a),
k™ =m,(a) + ms(a),

L%
= _
ky  =my(a) + ms(a),

' 1 '
k't = my(a) +Z Axk;”,
—_my 1 —m
kz = mz(a) + EAxkl )
! 1 —m 1 ! 1
szz =m,(a) + gAxk;nz +my(a) + gAxklml +x; + EAx,
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e 1 mp, 1 1
k2 :mZ(a)-I_EAxKl +m1(“)+§Axk1 +xl'+§Ax,

: 1 ' _m, 1 _m,
K5 = ma () + 2 Axk]™) Ky =T, (@) + gAxkl"‘*,
' 1 _—' 1 '
sz4 =m,(a) + gAka4 + ma(a) + gAx@mg’,

_ms 1631 175 , 575 _m, 44275 _—m, 253 _m,

3
ks _m‘*(“)Jr55296‘“”1‘1 a8+ 3e F 110592 4%+ T 109645
1631 —m, 175 —m, 575 —m, 44275 _m, 253  _m,

= Axky "t + o Axky 4+ e 4 Sl 2= Axk
T 5596 163Ir 12 217; 136247 37+110592 14427; 1096
Axk™ + 22 Axk Axky® Axk”
O T I R 177 Sl B T T P
L 253
| 2006 "
i, 1631 175  m, 575 m, 44275 = m m,
ke = Axk™ + —= Axke Axk™ Axky " + o~ Axkg*
o =m0 +5ri5e x1631 512 x—zl;g 1382473 " 110592 4427; 4096 =5
Axk™ Axk Axk Ky
+m3(a)+55296 XK +512 x +13824 +110592 g
£ 223 g
40965

The numerical example is evaluated using step size AXx=0.01, N =100, and the solution is corrected
to 13 significant figures using the proposed method. Table 5 displays the comparisons between the
approximate solutions of FRKCK4 and FRK4 for the (2,2)-system. Table 5 indicates that the
approximation of FRKCK4 is better than FRK4. To support the statement, we applied Eq (6.5) and
obtained the areas under the curve for FRKCK4 and FRK4 at X=0.5 are 0.510199655305 and
0.510199655592, respectively. It suggests that FRKCK4’s area under the curve is smaller than FRK4’s.

Figure 4 portrays how the approximate solutions of FRKCK4 and FRK4 for the (2,2)-system
behave in the time domain x.

The approximate solutions for FRKCK4 and FRK4 are provided in Table 1 and Tables 3-5.
Although the (1,2), (2,1) and (2,2)-systems do not have analytical solutions, we may compute the area
under the curve, and the findings demonstrate that FRKCK4’s area under the curve is less than FRK4’s.
In general, we are able to conclude that for all of the tested systems, the FRKCK4 solution is superior
to the FRK4 solution. Based on [2], there is a semi-analytical solution that can be sampled. However,
when the errors of FRKCK4 and FRK4 are compared, FRK4’s errors are superior to FRKCK4’s. This
semi-analytical solution is considered only inappropriate as an example in this study. With the help of
the MATLAB program, the above problem was solved, and we discovered that the solutions for
the (1,1) and (2,1)-systems, as well as the (1,2) and (2,2)-systems are comparable.

7. Conclusions

In conclusion, the RKCK4 method can be modified for time-delay systems by effectively
managing past state information and applying interpolation as needed. This approach helps to
accurately simulate complex systems where current behavior depends on delayed inputs. Whereas
delay fuzzy system models a situation where the system's behavior is uncertain and influenced by both
current and past conditions. These models are used to handle real-world problems where both
uncertainty and time delays are factors.
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In this paper, the idea of FBVP has been presented and explained in terms of fuzzy generalized
differentiability. This FBVP is used to address the issues for the (1,1), (1,2), (2,1), and (2,2)-systems,
and a detailed procedure is provided to obtain the first-order FDE system. The FRKCK4 numerical
approach is used to solve each of these FDE systems.

Numerical simulations of FBVP are discussed to illustrate the effectiveness of FRKCK4. The
results from FRKCK4 for the (1,1)-system were compared to those from FRK4 and analytical solutions.
According to error analysis, FRKCK4 generates answers that are more precise than FRK4. This is true
since when compared to the analytical solution, FRKCKA4’s error is smaller than FRK4’s error. Since
the analytical solution cannot be solved analytically for (1,2), (2,1) and (2,2)-systems, we compute the
area under the curve, and it was discovered that the area of FRKCKA4 is less than the area of FRK4. In
light of this, it may be considered that FRKCK4 generates a better solution than FRK4.

Note that the findings from the research have also been represented graphically to demonstrate
the behavior of all four systems at the time interval X. It was discovered that when X increases, the
graphs for the (1,1) and (2,1)-systems as well as the (1,2) and (2,2)-system produced the same graph.

Basically, the FRKCK4 can be used to solve FBVP with a good agreement where this FRKCK4
can handle the six time-steps while FRK4 can handle only four time-steps. This will make the solution
of FRKCKA4 better than FRK4. Since FRKCK4 has more numbers and notations than FRK4, managing
it can be more challenging than FRK4. For future studies, this FBVP can be improved using higher-
order derivatives for a better approximation.

Author contributions

N. Z. Husin and M. Z. Ahmad: Writing-original draft. These authors contributed equally to this
work. All authors have read and agreed to the published version of the manuscript.

Acknowledgements

This research was funded by the Ministry of Higher Education of Malaysia under the Fundamental
Research Grant Scheme (FRGS): FRGS/1/2020/STG06/UNIMAP/02/2.

Conflict of interest
The authors declare no conflict of interest.
References

1. M. Mazandarani, L. Xiu, A Review on fuzzy differential equations, /IEEE Access, 9 (2021),
62195-62211. https://doi.org/10.1109/ACCESS.2021.3074245

2. L. Jamshidi, L. Avazpour, Solution of the fuzzy boundary value differential equations under
generalized differentiability by shooting method, J. Fuzzy Set Valued Anal., 136 (2012), 1-19.
https://doi.org/10.5899/2012/jfsva-00136

3. S.S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, /[EEE Trans. Syst. Man Cybern., 2
(1972), 30-34. https://doi.org/10.1109/TSMC.1972.5408553

4. D. Dubois, H. Prade, Towards fuzzy differential calculus: Part 3, differentiation, Fuzzy Sets Syst.,
8 (1982), 225-233.

AIMS Mathematics Volume 9, Issue 11, 31806-31847.


https://doi.org/10.1109/ACCESS.2021.3074245
https://doi.org/10.5899/2012/jfsva-00136
https://doi.org/10.1109/TSMC.1972.5408553

31846

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552—
558.

0. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301-317.

D. O’Regan, V. Lakshmikantham, J. J. Nieto, Initial and boundary value problems for fuzzy
differential equations, Nonlinear Anal. Theory Meth. Appl, 54 (2003), 405-415.
https://doi.org/10.1016/S0362-546X(03)00097-X

A. F. Jameel, N. R. Anakira, A. K. Alomari, D. M. Alsharo, A. Saaban, New semi-analytical
method for solving two point nth order fuzzy boundary value problem, Int. J. Math. Model. Numer.
Optim., 9 (2019), 12. https://doi.org/10.1504/IJMMNO.2019.096906

N. Gasilov, S. E. Amrahov, A. G. Fatullayev, Linear differential equations with fuzzy boundary
values, In: 2011 5th International Conference on Application of Information and Communication
Technologies, AICT 2011, 1 (2011), 1-5. https://doi.org/10.1109/ICAICT.2011.6111018

A. Khastan, J. J. Nieto, A boundary value problem for second order fuzzy differential equations,
Nonlinear Anal., 72 (2010), 3583-3593. https://doi.org/10.1016/j.na.2009.12.038

F. Rabiei, F. Ismail, A. Ahmadian, S. Salahshour, Numerical solution of second-order fuzzy
differential equation using improved runge-kutta nystrom method, Math. Probl. Eng., 2013.
https://doi.org/10.1155/2013/803462

E. Can, M. A. Bayrak, Hicdurmaz, A novel numerical method for fuzzy boundary value problems,
J. Phys. Conf. Ser., 707 (2016), 012053. https://doi.org/10.1088/1742-6596/707/1/012053

R. Saadeh, M. Al-Smadi, G. Gumah, H. Khalil, R. A. Khan, Numerical investigation for solving
two-point fuzzy boundary value problems by reproducing kernel approach, Appl. Math. Inf. Sci.,
10 (2016), 2117-2129. http://doi.org/10.18576/amis/100615

M. A. Bayrak, Approximate solution of second-order fuzzy boundary value problem, New Trends
Math. Sci., 5 (2017), 7-21.

G. N. Gumah, M. F. M. Naser, M. Al-Smadi, S. K. Al-Omari, Application of reproducing kernel
Hilbert space method for solving second-order fuzzy Volterra integro-differential equations, Adv.
Differ. Equ., 2018 (2018), 475. https://doi.org/10.1186/s13662-018-1937-8

W. Liu, Y. Lou, Global exponential stability and existence of periodic solutions of fuzzy wave
equations, Adv. Differ. Equ., 2020 (2020), 13. https://doi.org/10.1186/s13662-019-2481-x

J. An, X. Guo, Numerical solution of second-orders fuzzy linear differential equation, Appl. Math.,
12 (2021), 1118-1125. https://doi.org/10.4236/am.2021.1211071

H. M. Srivastava, R. Chaharpashlou, R. Saadati, C. Li, A fuzzy random boundary value problem,
Axioms, 11 (2022), 414. https://doi.org/10.3390/axioms11080414

D. J. Hashim, N. R. Anakira, A. Fareed Jameel, A. K. Alomari, H. Zureigat, M. W. Alomari, et al.,
New series approach implementation for solving fuzzy fractional two-point boundary value
problems applications, Math. Probl. Eng., 2022. https://doi.org/10.1155/2022/7666571

L. Stefanini, L. Sorini, M. L. Guerra, Parametric representation of fuzzy numbers and application
to fuzzy calculus, Fuzzy Sets Syst., 157 (2000), 2423-2455.
https://doi.org/10.1016/5.£s5.2006.02.002

M. Z. Ahmad, B. De Baets, A predator-prey model with fuzzy initial populations, In: The Joint
13th IPSA World Congress and 6th EUSFLAT Conference, 2009, 1311-1314.

A. Khastan, J. J. Nieto, A boundary value problem for second order fuzzy differential equations,
Nonlinear Anal. Theory Meth. Appl., 72 (2010), 3583-3593.
https://doi.org/10.1016/j.na.2009.12.038

AIMS Mathematics Volume 9, Issue 11, 31806-31847.


https://doi.org/10.1016/S0362-546X(03)00097-X
https://doi.org/10.1504/IJMMNO.2019.096906
https://doi.org/10.1109/ICAICT.2011.6111018
https://doi.org/10.1016/j.na.2009.12.038
https://doi.org/10.1155/2013/803462
https://doi.org/10.1088/1742-6596/707/1/012053
http://doi.org/10.18576/amis/100615
https://doi.org/10.1186/s13662-018-1937-8
https://doi.org/10.1186/s13662-019-2481-x
https://doi.org/10.4236/am.2021.1211071
https://doi.org/10.3390/axioms11080414
https://doi.org/10.1155/2022/7666571
https://doi.org/10.1016/j.fss.2006.02.002
https://doi.org/10.1016/j.na.2009.12.038

31847

23. Y.R. Syau, E. Stanley Lee, Fuzzy Weirstrass theorem and convex fuzzy mappings, Int. J. Comput.
Math. Appl., 51 (2006), 1741-1750. https://doi.org/10.1016/j.camwa.2006.02.005

24. N.Z. Husin, M. Z. Ahmad, M. K. M. Akhir, Incorporating fuzziness in the traditional runge-kutta
cash-karp method and its applications to solve autonomous and non-autonomous fuzzy
differential equations, Mathematics, 10 (2022), 4659. https://doi.org/10.3390/math10244659

Appendix

Notations and abbreviations.

FDE
FIVP
FBVP
BVP
ADM
FBVDE
FIVDE
FIRKN
FRKN
FVIDE
IRKM
RFP
FFTBVP
FFHAM
FRKCK4
FRK4
IVP

R

Rr

a

Ax

S{ES

S

Xanalytical
Wanalytical

err

err

Fuzzy differential equation

Fuzzy initial value problem

Fuzzy boundary value problem

Boundary value problem

Adomian decomposition method

Fuzzy boundary value differential equation

Fuzzy initial value differential equation

Fuzzy improved Runge—Kutta Nystrom method
Fuzzy Runge—Kutta Nystrom method

Fuzzy Volterra integro-differential equation
Iterative reproducing kernel method

Random fixed point

Fuzzy fractional two-point boundary value problem
Fuzzy fractional homotopy analysis method

Fuzzy Runge—Kutta Cash—Karp of fourth-order method
Fuzzy Runge—Kutta of fourth-order method

Initial value problem

Real number

Fuzzy number

a-cuts of fuzzy number

Step size

Lower bound of approximate solution

Upper bound of approximate solution

Lower bound of analytical solution

Upper bound of analytical solution

Lower bound of error analysis (| Wanatytical = W. |)

Upper bound of error analysis (lWanalytical - Wl)
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