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Abstract: In this paper, we propose a novel nonmonotone trust region method that incorporates the
Metropolis criterion to construct a new function sequence. This sequence is used to update both the
trust region ratio and the iteration criterion, increasing the likelihood of accepting the current trial step
and introducing randomness into the iteration process. When the current trial step is not accepted, we
introduce an improved nonmonotone line search technique to continue the iteration. This approach
significantly reduces the number of subproblems that need to be solved, thereby saving computational
resources. The stochastic nonmonotone technique helps the algorithm avoid being trapped in the local
optima, and a global convergence is guaranteed under certain conditions. Numerical experiments
demonstrate that the algorithm can be more effectively applied to a broader range of problems.
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1. Introduction

Unconstrained optimization is one of the fundamental problems in the optimization theory [4, 26].
It has broad applications across various fields such as engineering design, financial investments,
signal processing, and so on [6, 18, 21]. In engineering design, unconstrained optimization is used to
determine the most efficient design parameters for systems or products, which may either include
optimizing the dimensions of mechanical components or minimizing material usage while
maintaining the structural integrity. In financial investments, unconstrained optimization techniques
enable investors to identify the optimal portfolio allocation, thereby balancing the risk and the return
without being confined by predefined constraints. This helps investors maximize the expected returns
while minimizing the potential losses. In signal processing, unconstrained optimization is employed
in tasks such as signal denoising, image quality enhancement, and performance optimization of
communication systems. By either minimizing error functions or maximizing the signal-to-noise
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ratio, unconstrained optimization algorithms can extract meaningful information from noisy data.
Therefore, the discussion of methods for solving unconstrained optimization problems becomes very
important.

The trust region method is one of the most commonly used iterative algorithms to solve
unconstrained optimization problems [14, 27]. The fundamental concept behind the trust region
method lies in constructing a surrogate model that approximates the objective function within the
neighborhood of the current iteration point. This surrogate model captures the local behavior of the
original objective function, thus allowing the algorithm to compute the optimal step size or the trial
step within the predefined trust region.

In most practical implementations, a quadratic model is typically chosen as the approximation
function due to its mathematical convenience and the availability of efficient solvers. However, the
effectiveness of the quadratic model heavily depends on the proper tuning of its parameters.
Researchers have proposed various techniques to solve trust region subproblems, including exact
solutions, dog-leg methods, and conjugate gradient methods [1, 5, 33].

However, trust region subproblems are often difficult to solve, particularly for complex objective
functions and high-dimensional problems, thus leading to increased computational costs. The
challenges typically arise from the non-convexity and multimodal nature of the surrogate function
within the trust region, requiring frequent subproblem solutions during the iterative process. To
address this, researchers have explored methods to improve the efficiency of solving these
subproblems by developing more efficient solvers, employing advanced optimization techniques, and
exploring alternative approximation functions [8, 22, 23].

Overall, trust region methods remain powerful tools for unconstrained optimization, and further
advancements in subproblem solvers could enhance their performance and applicability to a wider
range of problems. To handle situations where the trial step is not accepted, trust region methods
combined with line search techniques have been proposed [11, 25]. When the trial step is rejected,
these algorithms use the trial step as the search direction and apply a line search technique to
determine the corresponding step size. However, these methods require the objective function to
monotonically decrease at each iteration, which has some impact on the convergence rate of the
algorithm. With the introduction of nonmonotone techniques [12], a new class of nonmonotone trust
region algorithms was developed [7], which allowed the sequence of the objective function values to
be nonmonotone. Numerical results show that these methods outperform traditional trust region
methods. Further research has been conducted in this area [10, 28, 29].

However, in some cases, the class of aforementioned nonmonotone techniques that used a
maximum of recent function values may ignore some better function values. To address this, scholars
have proposed improved nonmonotone strategies. Zhang and Hager [34] introduced a new
nonmonotone line search algorithm that replaced the maximum function value with the average of
recent function values. Gu and Mo [13] developed a simplified nonmonotone strategy that was
applied within the trust region framework, which avoided the complex parameterization process of
Zhang and Hager [34]. Zhou et al. [35] proposed a nonmonotone trust region method based on a
simple model, which performed well on large-scale problems. Improved nonmonotone techniques
have also been applied to solve other problems, such as the nonmonotone BFGS (Broyden, Fletcher,
Goldfarb and Shanno) algorithm proposed by Wan et al. [31] for smooth nonlinear equations, where
the nonmonotone parameters were updated using known information of the nonlinear equation. Some
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scholars have developed new nonmonotone line search rules that were applied to unconstrained and
box-constrained optimization problems [16, 19]. In contrast to previous work, we study a stochastic
nonmonotone technique that allows the algorithm to explore a larger solution space during the search
process.

To reduce the number of subproblem computations and improve the overall efficiency of the
algorithm, we propose a modified trust region method that incorporates recent advances in this field,
with the following key innovations and advantages.

Construction of a New Function Sequence: To prevent convergence to the local optima and to
improve algorithmic performance, we introduce the idea of simulated annealing to construct a new
function sequence. Based on this sequence, a new nonmonotone trust region ratio is defined, which
leads to corresponding improvements in the iteration criterion of the trust region framework, thus
providing a greater flexibility during the iterative process.

Improved Nonmonotone Strategy: When the current trial step is not accepted, we utilize an
improved nonmonotone strategy that leverages the new function sequence to determine the step size.
This approach effectively reduces the required number of subproblem solutions, thus enhancing the
algorithm’s overall efficiency.

Global Convergence and Efficiency: Our algorithm guarantees a global convergence under certain
assumptions. Furthermore, numerical experiments demonstrate that the algorithm significantly reduces
the number of iterations, improves the efficiency, and delivers a strong performance.

The structure of this paper is as follows: in Section 2, we describe the new nonmonotone trust region
algorithm; in Section 3, the global convergence of our algorithm is proved under certain assumptions;
in Section 4, the related numerical experimental results are given; and finally, the conclusion of this
paper is given in Section 5.

2. New nonmonotone trust region method

Consider the following unconstrained optimization problem:

min
x∈Rn

f (x) , (2.1)

where f : Rn → R is continuously differentiable. The difficulty in solving the trust region problem often
stems from the need to balance multiple objectives: minimizing the approximate objective function,
satisfying the trust region constraint, and potentially incorporating additional requirements such as
sparsity or regularization. The trust region method computes the trial step dk by solving the following
subproblem:

min
d∈Rn

mk(d) = gT
k d +

1
2

dT Bkd, s.t. ∥d∥ ≤ ∆k, (2.2)

where gk = ∇ f (xk), Bk is the approximation of the Hessian matrix at xk, ∆k is the trust region radius,
and ∥·∥ denotes the Euclidean norm.

As we all know, in trust region method, the trust region ratio is the key to determining whether the
algorithm iterates using the current trial step. The following original trust region ratio is monotone:

rk =
Ared
Pred

=
fk − f (xk + dk)

mk (0) − mk (dk)
, (2.3)
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where fk = f (xk), Ared is the actual reduction, and Pred is the predicted reduction. The monotone
technique may slow down the rate of convergence, particularly in a narrow curved valley. In order to
overcome this disadvantage, the nonmonotone trust region ratio [30] has been proposed:

rk =
flk − f (xk + dk)
mk (0) − mk (dk)

,

where flk = max
0≤ j≤q(k)

f (xk− j), N is a fixed positive constant, and

q(k) =
{

k, i f k ≤ N,
min{q (k − 1) + 1,N}, i f k > N.

However, this method may result in missing some well-performing function values, so some
scholars have proposed improved nonmonotone algorithms. Gu and Mo [13] constructed the
following trust region ratio in 2008:

rk =
Dk − f (xk + dk)
mk (0) − mk (dk)

,

where

Dk =

{
fk, i f k = 0,
ηDk−1 + (1 − η) fk, i f k ≥ 1,

and 0 < η < 1 or a variable η.
Based on the inspiration from the above ideas, we propose a new nonmonotone trust region

algorithm, which allows the algorithm to use the existing favorable information, and also avoids the
algorithm from falling into local optimal solutions. To achieve these, we consider introducing the idea
of simulated annealing [15, 17, 32] into the trust region method. A new trust region framework is
constructed, which includes the improvement of the trust region iteration criterion and the trust region
ratio, etc.

First, we construct a new trust region ratio:

rk =
Rk − f (xk + dk)
mk (0) − mk (dk)

, (2.4)

where

Rk =

{
fk, i f k = 0,
(1 − pk−1) Rk−1 + pk−1 fk, i f k ≥ 1,

(2.5)

and

pk =

 1, i f rk ≥ τ,

exp
{
−
τ−rk
Tk

}
, otherwise.

(2.6)

Here, we introduce the above parameter pk [3, 20] into the Rk, where Tk is the temperature during
annealing, τ is a given constant, and rk is the trust region ratio. It is crucial to control the rate of the
annealing cooling process [2], which is usually updated according to the following:

Tk+1 = βTk, where 0 < β < 1.
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From the definition of pk, we know that it is dynamically updated by the value of rk. From this,
it can be observed that our trust region ratio rk can be adaptively adjusted according to the existing
information.

Furthermore, considering the relation between rk and τ in the parameter pk, we use the parameter
pk to determine whether the current trial step dk is accepted. For a random number lk < 1, if pk ≥ lk is
satisfied, then the current trial step is accepted. When rk ≥ τ, pk = 1, the current trial step is naturally
accepted. Otherwise, the current trial step will be accepted with a certain probability, and the larger
pk is more probable when the current trial step is accepted. If pk < lk, then the current trial step is
rejected. Using our sequence Rk, we propose a new nonmonotone line search:

f
(
xk + λ

idk

)
≤ Rk + δλ

igT
k dk,

where 0 < δ < 1, 0 < λ < 1. According to the line search, the corresponding step size is obtained for
the iteration. The parameter im is computed by this method, which is iterated through xk+1 = xk +λ

imdk.
The nonmonotone line search doesn’t require the objective function to be monotonically decreasing,
which makes the overall algorithm more flexible and faster.

Combined with the above improvements, we propose the nonmonotone trust region algorithm based
on the Metropolis criterion (Algorithm 2.1).
Algorithm 2.1.

Step 0. Given an initial point x0 ∈ R
n, R0 = f (x0), ∆0 > 0, T0 > 0, ε > 0, v > 1,

0 < λ < 1, 0 < δ ≤ 0.5, 0 < η1 < η2 < 1, 0 < γ1 < 1 < γ2, 0 < β < 1,
0 < τ ≤ η1,B0 = ξI, ξ > 0, let k := 0.

Step 1. Compute gk. If ∥gk∥ ≤ ε, stop.
Step 2. Solve the subproblem (2.2) to obtain dk.
Step 3. Compute rk and pk by (2.4) and (2.6), respectively. Additionally, compute the following:

lk = e−v +
(
e−1/v − e−v

)
× rand (1) .

Step 4. If pk ≥ lk, then xk+1 = xk + dk. Otherwise, compute im, which is the minimum nonnegative
integer i which satisfies the following:

f
(
xk + λ

idk

)
≤ Rk + δλ

igT
k dk;

then, xk+1 = xk + λ
imdk.

Step 5. Update the trust region radius:

∆k+1 =


γ1∆k, i f rk ≤ η1,

γ2∆k, i f rk ≥ η2,

∆k, otherwise.

Step 6. Compute fk+1 and Rk+1 = (1 − pk) Rk + pk fk+1, Tk+1 = βTk, and compute Bk+1 by a
quasi-Newton update. Set k := k + 1, then go to Step 1.

Remark 2.1. In Step 3, if rk ≥ τ, then the function approximation of the previous iteration is better;
then, pk = 1 and Rk+1 = fk+1, which is reduced to the case of the traditional trust region ratio. If rk < τ,
then 0 < pk < 1, and Rk+1 is the convex combination of Rk and fk+1.
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3. Convergence analysis

Nonmonotone trust region methods have good global convergence as described in [13, 24]. In
this section, we will analyze the convergence of our algorithm, which also inherits the properties of
nonmonotone trust region methods. First, the following assumptions are made.

Assumption 3.1. Let L = {x ∈ Rn | f (x) ≤ f (x0) } ⊂ Ω be the level set, where Ω ∈ Rn is a bounded
closed set.

Assumption 3.2. There exists a positive constant m such that dT Bkd ≥ m∥d∥2, ∀d ∈ Rn.

Remark 3.1. Combining with Assumptions 3.1 and 3.2, f (x) is a quadratic continuous differentiable
function. It follows that there exists a positive constant M > m, such that ∥Bk∥ ≤ M.

Lemma 3.1. Let the sequence {xn} be generated by the Algorithm 2.1. There are

mk(0) − mk(dk) ≥
1
2
∥gk∥min

{
∆k,
∥gk∥

∥Bk∥

}
, (3.1)

gT
k dk ≤ −

1
2
∥gk∥min

{
∆k,
∥gk∥

∥Bk∥

}
≤ 0. (3.2)

Lemma 3.2. Let the sequence {xn} be generated by the Algorithm 2.1. Then,

Rk+1 ≥ fk+1

holds for all k.

Proof. (1) From the definition of Rk+1 and pk, if rk ≥ τ, then we have the following:

Rk+1 − fk+1 = (1 − pk)(Rk − fk+1) = 0.

(2) From Tk+1 = βTk, if rk < τ and pk = exp{− τ−rk
Tk
} ≥ lk, then we can have lim

k→∞
Tk = 0. It is known

that lk ∈ [e−v, e−1/v], and we can obtain −v ≤ lnlk ≤ −
1
v . Therefore, there exists a positive integer N such

that 0 < −Tklnlk < ε1 holds for any k > N, ε1 > 0. From the definition of pk, we have the following:

rk ≥ τ + Tklnlk ≥ τ − ε1.

From the definition of rk and (3.1), we have the following:

Rk − fk+1 ≥ (τ − ε1)[mk(0) − mk(dk)]

≥
1
2

(τ − ε1)∥gk∥min
{
∆k,
∥gk∥

∥Bk∥

}
. (3.3)

Let ε1 =
τ
2 ; then

Rk+1 − fk+1 = (1 − pk)(Rk − fk+1)

≥
1
4

(1 − pk)τ∥gk∥min
{
∆k,
∥gk∥

∥Bk∥

}
≥ 0.
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(3) If rk < τ and pk ≤ lk, then f
(
xk + λ

imdk

)
≤ Rk+δλ

imgT
k dk holds. Combining with (3.2), we obtain

the following:
Rk − fk+1 ≥ −δλ

imgT
k dk ≥ 0.

Therefore, Rk+1 ≥ fk+1 holds. The proof is completed. □

Lemma 3.3. Let the sequence {xn} be generated by the Algorithm 2.1. The sequence {Rk} is
monotonically decreasing.

Proof. (1) If rk ≥ τ, namely,

Rk − fk+1 ≥ τ [mk (0) − mk (dk)] ≥
1
2
τ∥gk∥min

{
∆k,
∥gk∥

∥Bk∥

}
,

then

fk+1 ≤ Rk −
1
2
τ∥gk∥min

{
∆k,
∥gk∥

∥Bk∥

}
.

According to the definition of Rk+1, we have the following:

Rk+1 ≤ Rk −
1
2
τpk∥gk∥min

{
∆k,
∥gk∥

∥Bk∥

}
< Rk. (3.4)

(2) By (3.3) and the definition of Rk+1, if rk < τ and pk > lk, then we obtain the following:

Rk − Rk+1 = pk (Rk − fk+1) >
1
4
τpk∥gk∥min

{
∆k,
∥gk∥

∥Bk∥

}
. (3.5)

(3) If rk < τ and pk ≤ lk, then f
(
xk + λ

imdk

)
≤ Rk + δλ

imgT
k dk holds. Since gT

k dk ≤ 0, then fk+1 ≤ Rk.
By the definition of Rk+1, we obtain the following:

Rk+1 = (1 − pk) Rk + pk fk+1 ≤ (1 − pk) Rk + pkRk = Rk.

Therefore, Rk+1 ≤ Rk holds. The proof is completed. □

Lemma 3.4. Let the sequence {xn} be generated by the Algorithm 2.1. Then, the step length αk satisfies
αk >

(1−δ)λm
M .

Proof. The proof can be proved similarly to the proof of Lemma 3.3 in [13] and is omitted here. □
To facilitate the subsequent discussion, the definition of the sequence Mk is introduced as Mk =

1 + max
0≤i≤k

∥Bi∥.

Lemma 3.5. Assume that the sequences {xk} and {Rk} are generated by the Algorithm 2.1. If there
exists a positive constant ε, such that ∥gk∥ ≥ ε holds, then for any k, there is the following:

Rk+1 − Rk ≤ −
1
2
εpkψmin

{
∆k,

ε

Mk

}
,

where ψ = min
{

1
2τ,

δ(1−δ)λm
M

}
.
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Proof. (1) By (3.4) and (3.5), if pk > lk, then we know that

Rk+1 − Rk ≤ −
1
4
τpk ∥gk∥min

{
∆k,
∥gk∥

∥Bk∥

}
.

(2) By combining (3.2), Lemma 3.4, and fk+1 ≤ Rk + δαkgT
k dk, if pk ≤ lk, then the following holds:

fk+1 ≤ Rk −
1
2

(1 − δ) λm
M

δ ∥gk∥min
{
∆k,
∥gk∥

∥Bk∥

}
.

According to the definition of Rk+1, we obtain the following:

Rk+1 − Rk = pk ( fk+1 − Rk) ≤ −
1
2

(1 − δ) λm
M

δpk ∥gk∥min
{
∆k,
∥gk∥

∥Bk∥

}
.

Additionally, if ψ = min
{

1
2τ,

δ(1−δ)λm
M

}
and ∥gk∥ ≥ ε, then

Rk+1 − Rk ≤ −
1
2
εpkψmin

{
∆k,

ε

Mk

}
.

The proof is completed. □

Lemma 3.6. Assume that Assumption 3.1 holds. If the sequence {xk} generated by the Algorithm 2.1
does not converge (i.e., there exists a positive constant ε, such that ∥gk∥ ≥ ε), then

lim
k→∞

min
{
∆k,

ε

Mk

}
= 0.

Proof. Algorithm 2.1 shows that R0 = f0. From Lemmas 3.2 and 3.3, we know that fk+1 ≤ Rk+1 ≤ Rk ≤

f0. Assumption 3.1 shows that if { f (xk)} is bounded, then {Rk} is bounded. According to Lemma 3.5,
we can know that lim

k→∞
min

{
∆k,

ε
Mk

}
= 0. □

Lemma 3.7. If the sequence {xk} generated by the Algorithm 2.1 does not converge (i.e., there exists a
positive constant ε such that ∥gk∥ ≥ ε), then there exists a set J = {k|pk < lk} such that the following
inequality holds for a sufficiently large k ∈ J:

∥xk+1 − xk∥ ≥

√
(1 − τ) εmin

{
∆k,

ε
Mk

}
M − τm

, αk = 1, (3.6)

∥xk+1 − xk∥ >
(1 − δ) ελ

M
min

{
1,

ε

∆kMk

}
, αk < 1, (3.7)

∆k >
ε

Mk
, ∀k ∈ J.
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Proof. Based on α, we consider the following two cases.
Case 1. If im = 0 (i.e., αk = 1), then

∥xk+1 − xk∥ = ∥dk∥ ≤ ∆k,∀k ∈ J.

At this point, there is rk < τ. According to fk+1 ≤ Rk+1 and the definition of rk, we have the
following:

f (xk) − f (xk + dk) ≤ Rk − f (xk + dk) ≤ τ
(
−gT

k dk −
1
2

dT
k Bkdk

)
. (3.8)

According to the Taylor’s expansion and Remark 3.1, we obtain the following:

f (xk + dk) − f (xk) ≤ gT
k dk +

1
2

M∥dk∥
2. (3.9)

Combining (3.8) and (3.9), we have the following:

−gT
k dk −

1
2

M∥dk∥
2
≤ τ

(
−gT

k dk −
1
2

dT
k Bkdk

)
. (3.10)

Combining (3.10) and Assumption 3.2, we obtain the following:

− (1 − τ) gT
k dk ≤

1
2

(M − τm) ∥dk∥
2. (3.11)

Combining (3.2) and (3.11), we have the following:

(1 − τ) ∥gk∥min
{
∆k,
∥gk∥

∥Bk∥

}
≤ (M − τm) ∥dk∥

2. (3.12)

From the definition of Mk and ∥gk∥ ≥ ε, and combined with ∥xk+1 − xk∥ = ∥dk∥ and (3.12), we obtain
the following:

(1 − τ) εmin
{
∆k,

ε

Mk

}
≤ (M − τm) ∥xk+1 − xk∥

2.

Therefore, it is proved that ∥xk+1 − xk∥ ≥

√
(1−τ)εmin

{
∆k ,

ε
Mk

}
M−τm , αk = 1.

Assuming ∆k ≤
ε

Mk
, there is (3.6) to obtain ∆k ≥

√
(1−τ)ε∆k

M−τm (i.e., ∆k ≥
(1−τ)ε
M−τm ). Combined with

∆k ≤
ε

Mk
, there is ε

Mk
≥ ∆k ≥

(1−τ)ε
M−τm . This contradicts Lemma 3.6, so we have ∆k >

ε
Mk

.
Case 2. If im > 0 (i.e., αk < 1), then by combining (3.2), Remark 3.1, Lemma 3.2, and the Step 4 of

Algortihm 2.1, according to the Taylor’s expansion yield,

0 > Rk − f
(
xk + λ

−1αkdk

)
+ δλ−1αkgT

k dk

≥ fk − f
(
xk + λ

−1αkdk

)
+ δλ−1αkgT

k dk

≥ − (1 − δ) λ−1αkgT
k dk −

1
2

Mλ−2αk
2∥dk∥

2
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≥
1
2
λ−1αk

[
(1 − δ) εmin

{
∆k,

ε

Mk

}
− Mλ−1∥dk∥∥xk+1 − xk∥

]
≥

1
2
λ−1αk

[
(1 − δ) εmin

{
∆k,

ε

Mk

}
− Mλ−1∆k∥xk+1 − xk∥

]
=

1
2
λ−1αk∆k

[
(1 − δ) εmin

{
1,

ε

∆kMk

}
− Mλ−1∥xk+1 − xk∥

]
.

Therefore, it is proved that ∥xk+1 − xk∥ >
(1−δ)ελ

M min
{
1, ε
∆k Mk

}
, αk < 1.

There is

∥xk+1 − xk∥ = αk∥dk∥ ≤ ∆k. (3.13)

Suppose there exists ∆k ≤
ε

Mk
. Combining (3.7), we have the following:

∥xk+1 − xk∥ >
(1 − δ) ελ

M
. (3.14)

Combining (3.13), (3.14), and Assumption 3.1, there are ε
Mk
≥ ∆k ≥ ∥xk+1 − xk∥ >

(1−δ)ελ
M . This

contradicts lim
k→∞

min
{
∆k,

ε
Mk

}
= 0. Therefore, ∆k >

ε
Mk

holds.

In summary, the proof is completed. □

Lemma 3.8. If the sequence {xk} generated by the Algorithm 2.1 does not converge (i.e., there exists a
positive constant ε such that ∥gk∥ ≥ ε), then ∆k >

ε
Mk

holds for all sufficiently large k.

Proof. (1) If there are only finitely many k such that ∆k+1 ≤ ∆k (i.e., J is a finite set), then there exists
a positive constant ∆∗ such that ∆k > ∆

∗. According to Lemma 3.6, we know that lim
k→∞

ε
Mk
= 0.

(2) We assume that J is an infinite set. It follows from Lemma 3.7 that there exists k̄ ∈ J, such that
∆k >

ε
Mk

holds when ∀k ∈ J, k ≥ k̄. When k < J, k ≥ k̄, noted as k̃ = max {i|i ∈ J, i ≤ k}. We have
∆k̃ >

ε
Mk̃

, and k̃ + s < J, s = 1, 2, · · · , k − k̃. We can obtain ∆k̃ ≤ ∆k̃+1 ≤ ∆k̃+2 ≤ · · · ≤ ∆k, so ∆k >
ε

Mk̃
holds. According to the definition of Mk, {Mk} is a monotonically increasing sequence.

The proof is completed. □

Theorem 1. If Assumptions 3.1 and 3.2 hold, and {Bk} satisfies
∞∑

k=0

1
Mk
= ∞, then the sequence {xk}

generated by the Algorithm 2.1 satisfies the following:

lim inf
k→∞

∥gk∥ = 0.

Proof. Suppose there exists a positive constant ε such that ∥gk∥ ≥ ε. Lemma 3.8 holds, that is ∆k >
ε

Mk

holds for sufficiently large k. By Lemma 3.5, we know that Rk − Rk+1 ≥
1
2εpkψmin

{
∆k,

ε
Mk

}
. We have

∞∑
k=0

(Rk − Rk+1) ≥
∞∑

k=0

1
2ε

2 pkψ
1

Mk
, then

∞∑
k=0

1
Mk
< ∞ contradicts

∞∑
k=0

1
Mk
= ∞. The theorem is proved. □
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4. Numerical experiments

In the following, we will show the effectiveness of our Algorithm 2.1 through some numerical
experimental results. The numerical experiments are all implemented by using MATLAB (R2017a)
on a PC with a CPU of 2.30 GHz and 8.00 GB RAM. The relevant parameters in Algorithm 2.1 and
other comparison algorithms are selected as T0 = 200, v = 100, ε = 10−5, ∆0 = ∥g0∥, λ = 0.5, δ = 0.5,
η1 = 0.25, η2 = 0.75 ,γ1 = 0.5, γ2 = 2, β = 0.9, and τ = 0.25. The matrix Bk is updated by the BFGS
formula, i.e.,

Bk+1 = Bk +
ykyT

k

sT
k yk
−

BksksT
k Bk

sT
k Bksk

.

In order to explore the influence of the simulated annealing idea, nonmonotone technologies, and
different trust region ratios on the algorithm, we perform the following three sets of comparison
experiments:

(a) Algorithm 2.1 is compared with the existing trust region algorithm. The NTRM (Nonmonotone
Trust Region Method With Line Search) algorithm [13] is a classical nonmonotone trust region
algorithm. The SATRBB (Simulated Annealing-based Trust Region Bazilai-Borwein) algorithm [20]
is a trust region algorithm combined with simulated annealing.

(b) Algorithm 2.1 is compared with the algorithms that combine different line search techniques
(i.e., Algorithm 2.1 without a line search (SATR) and with a monotonic line search (ATR)).

(c) Algorithm 2.1 is compared with algorithms that combine different ratios (i.e., Algorithm 2.1 by
using the original trust region ratio (SATR-OR), correcting the numerator portion of the trust region
ratio to the form in [13] (SATR-U), and correcting the numerator and denominator portions of the trust
region ratio according to Ck in [13] (SATR-UD)).
Remark 4.1. The SATR-UD algorithm is inspired by Remark in [29], and the form of trust region ratio
is as follows:

rk =
Ck − f (xk + dk)
Ck − fk − mk(dk)

.

The test functions used and their associated dimensionality are shown in Table 1. We require the
maximum number of iterations of the algorithm to be 5000. It is worth noting that the algorithm which
uses the idea of simulated annealing is random in practice; therefore the relevant data are the average
of the results of 10 tests.

To further investigate the efficiency of the algorithm, we use the performance profiles [9] to evaluate
and compare the performance of the solvers. Assume that k denotes the number of iterations required,
and t denotes the time required for the algorithm. Moreover, there exist ns solvers on the test set S and
np problems on test set P. If the computation running time is used as the performance metric, then we
define tp,s as computing time required to solve problem p by the solver s. We define the performance
ratio as follows:

rp,s0 =
tp,s0

min
{
tp,s : s ∈ S

} .
There exists a rM such that there is rM ≥ rs for any p and s. For the overall evaluation of the solver,

we define the following:

ρs (τ) =
1
np

size
{
p ∈ P : rp,s ≤ τ

}
,
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where ρ is the cumulative distribution function of the performance ratio, which is the probability that
the performance ratio rp,s of the solver s is within the best possible ratio factor τ.

Table 1. List of test functions.

Problem Dimension Problem Dimension
Helical valley 3 Chebyquad 7
Biggs EXP6 6 Freudenstein and Roth 2
Gaussian 3 Generalized Rosebrock 50/100/500
Powell badly scaled 2 Boundary value 100/500
Box 3 Broyden tridiagonal 1000/2000
Variable dimension 1000/3000/5000 S eparable cubic 100/500/1000
Watson 1000/2000 Nearly separable 1000/2000/3000/5000
Penalty1 500/1000/1500 Yang tridiagonal 50/100/500
Brown and Dennis 4 Allgower 100/300/500
Wood 4 S chittkowski 100/300
Extended Rosenbrock 500/1000 Beale 2
Extended Powell singular 100/500/1000

The above three sets of experiments were conducted on the efficiency of solving some problems
using the number of iterations and the time required for the algorithm as the performance metrics.
The results are shown in Figures 1–3. It is not difficult to see from Figures 1 and 2 that Algorithm 2.1
has good properties compared with existing algorithms, and the nonmonotone line search technology
proposed in this paper greatly improves the performance of the algorithm. Figure 3 shows that
although the SATR-UD algorithm has a slight advantage for some problems. However, compared
with Algorithm 2.1, there are still some problems that the SATR-UD algorithm cannot solve. All in
all, the algorithm proposed in this paper is the preferred solver for the above problem with a high
probability. Algorithm 2.1 solves the problems with a higher accuracy and requires fewer iterations.

Figure 1. Performance profiles of (a) for the number of iterations k and the CPU time t.

AIMS Mathematics Volume 9, Issue 11, 31790–31805.
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Figure 2. Performance profiles of (b) for the number of iterations k and the CPU time t.

Figure 3. Performance profiles of (c) for the number of iterations k and the CPU time t.

5. Conclusions

In this paper, we proposed a novel stochastic nonmonotone trust region algorithm, which
incorporated the simulated annealing for an enhanced performance. This integration of ideas aimed to
address some of the challenges faced by traditional optimization methods, especially in terms of
avoiding the local minima and achieving a global convergence. At the heart of our algorithm lies the
construction of a new sequence, which was governed by the Metropolis criterion. The trust region
ratio was modified based on this sequence, and the iterative criterion was adjusted according to the
improved ratio. When the current trial step was not accepted, the iteration step size was obtained
based on the modified nonmonotone line search. By doing so, we not only reduced the number of
solutions required for the trust region subproblem, but also enhanced the algorithm’s ability to escape
the local minimum and converge to a global optimum. A theoretical analysis showed that our
proposed algorithm achieved a global convergence under certain conditions, making it avoid local
optimal solutions as much as possible. Furthermore, numerical experiments were conducted to
demonstrate the effectiveness of our algorithm in practical applications. These experiments revealed
that our algorithm outperformed traditional methods.
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