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Abstract: This research addressed the issue of fixed-time synchronization between random neutral-
type fuzzy inertial neural networks and non-random neutral-type fuzzy inertial neural networks.
Notably, it should be emphasized that the parameters of the drive and reaction systems did not
correspond. Initially, additional free parameters were introduced to reduce the order of the error
system. Subsequently, considering the influence of memory on system dynamics, a piecewise time-
delay fixed time controller was developed to compensate for the influence of the time delay on the
system. Utilizing stochastic analysis techniques and Lyapunov functions, sufficient conditions were
derived to ensure the random fixed-time synchronization of the two neural networks. Furthermore, the
settling time for system synchronization was assessed using stochastic finite-time inequalities. As a
particular case, the necessary criteria for achieving fixed-time synchronization were established when
the strength of the random disturbances was equal to zero. Finally, simulation results were provided to
demonstrate the effectiveness of the proposed approach.
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1. Introduction

Neural networks (NNs) are artificial intelligence models based on the organizations of neurons in
the human brain. With the development of computer technology and the renewed attention to neural
network research, neural networks became a research hotspot in the 1980s, and a series of important
algorithms and models appeared. In recent years, with the rise of deep learning, neural networks have
achieved great success in image recognition, natural language processing, speech recognition, financial
prediction, and other fields [1–4]. Moreover, neural networks have gradually become one of the core
technologies in the field of artificial intelligence, which has a profound impact on various fields.
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NNs are often used to describe the dynamic behaviors of neurons and the process of information
transmission, where the relationships between the output and input of neurons can be described by first-
order differential equations. However, most neural network models described by first-order differential
equations usually only involve the adjustment of the output and connection weights of neurons. This
may lead to incomplete characterization of the dynamic characteristics of neurons, so it is necessary
to further consider the higher-order NNs. Babcock and Westervelt first proposed a NN with second-
order derivative terms in [5] and [6], i.e., an inertial neural network (INN), where the second-order
derivative terms are called inertial terms. This kind of neural network model described by second-order
differential equations is often used to study the vibration characteristics, resonance phenomena, and
dynamic modes of neural networks. In addition, INNs are more flexible in modeling complex systems.
By introducing more variables and parameters, the modeling requirements of complex systems can be
better adapted, thereby improving the accuracy and applicability of the model. In recent years, INN has
attracted a lot of attention and achieved some meaningful results. For example, Arbi et al. explored the
stability of INNs in an almost anti-periodic environment in [7], whereas Han et al. [8] analyzed project
synchronization between inertial neural networks using a direct method.

Synchronization analysis represents a critical dimension in the investigation of dynamic behaviors
within neural network systems. Synchronization is defined as the establishment of a relationship among
one or more NN models, whereby their state variables tend to exhibit time-consistent behavior or
maintain a specific correlation. In recent years, the study of synchronization phenomenon has received
extensive attention [9–11]. In [9], the polynomial synchronization of INN models with proportional
delays has been explored. Dong et al. [10] investgated the exponential synchronization of discrete
NN models and applied the results on the problem of multi-channel audio encryption. Wang et al.
explored the global h-synchronization of delayed INNs via the direct second-order response system
(SORS) method in [11]. However, in practical modeling scenarios, various sources of uncertainty
can impede synchronization among NN models. These uncertainties may include time-varying delays
and fuzziness. Time-varying delays typically emerge from physical limitations associated with signal
transmission, processing, and propagation. Moreover, the inclusion of time-varying delays within
differential terms is referred to as neutral terms. Such neutral terms can give rise to oscillations and
chaotic behavior, rendering them a significant consideration in synchronization research. In addition,
to effectively capture the uncertainties and fuzziness inherent in models, fuzzy logic operations are
often integrated into system modeling and analysis, resulting in the development of fuzzy neural
networks (FNNs) [12, 13]. The addition of fuzziness, primarily through fuzzy logic and fuzzy set
theory, helps to address a variety of problems that are inherently uncertain, imprecise, or complex.
These approaches are particularly beneficial in dealing with systems where binary logic is inadequate
for capturing the nuances of real-world phenomena. Based on this characteristic, Liu et al. have
applied it to the study of image encryption in [14]. Consequently, the incorporation of fuzzy logic is
essential for a comprehensive examination of synchronization phenomena. Therefore, it is imperative
to account for both delay and fuzzy factors in the analysis of synchronization within INNs. Recently,
many interesting results of neutral inertial fuzzy neural networks (NIFNNs) have been obtained. Jian
et al. [15] established the coefficient conditions for the finite-time synchronization of NIFNNs. Duan
and Li [16] further explored the FTS of bidirectional associative memory (BAM) type NIFNNs. Han
et al. [17] discussed the anti-synchronization between fuzzy INNs.

In addition, synchronization is usually obtained on the basis of infinite time. However, in the
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practical application process, we hope that the synchronization between systems can be reached as
quickly as possible, so the concept of fixed-time synchronization (FTS) is proposed. Based on this
concept, many articles have analyzed the fixed-time synchronization between neural network models.
Zheng et al. [18] investigated the FTS between competitive neural networks with the same structural
parameters. Ping et al. [19] achieved the FTS between memristive neural networks by designing an
event-trigger controller. Guo et al. [20] discussed the FTS between stochastic neural networks.

In the studies of FTS mentioned above [14–16, 18–20], they all have predominantly focused on
examining two NN models with varying initial conditions. Typically, these systems are characterized
by identical structures and system parameters. However, practical modeling endeavors must account
for the unavoidable environmental interference and internal deviations that preclude the drive system
and response system from being precisely identical in structure or parameters. Therefore, in practical
application, the actual controlled disturbed system is usually synchronized with the ideal undisturbed
model by control means, which also allows the dynamic properties of the actual controlled disturbed
system to be obtained by the ideal undisturbed system model. Consequently, it is more realistic and
theoretically meaningful to investigate synchronization phenomena within the context of structurally
distinct drive and response systems.

Based on the above discussion, the innovations of this paper are as follows:

1) In this paper, the problem of fixed-time synchronization of INN models with different structures
and mismatched parameters are considered. Different from the existing literature [9], this paper
chooses two INN models with different structure, the NIFNN and stochastic NIFNN (SNIFNN),
as the drive system and the response system.

2) Unlike the studies presented in [21, 22], two variable parameters are introduced when using the
reduced order method, which allows us to obtain a less conservative synchronization condition by
adjusting the parameters.

3) In addition, in the controller design, we consider the memory effect of the system and design
a class of state feedback controller with time delay, which also enhances the robustness of the
system to a certain extent.

Finally, the organizational structure of this paper is given. In Section 2, the models, assumptions,
and lemmas are given. In Section 3, the main results of this paper are given. An example is given in
Section 4.

Notations: R = (−∞,+∞), R+ = (0,+∞), and Z+ = {a|a = 1, . . . , n}. Rn and Rn×m are the spaces
which constitute the n-dimensional real vector and n × m-dimensional real matrices, respectively.
||A(t)|| =

∑n
i=1 |ai(t)|, where A(t) = [a1(t), . . . , an(t)]T . (~,F, {Ft}t≥0,P) represents the complete

probability space, where filtration {Ft}t≥0 is right continuous and includes all P-null sets. Φ(t) is
a Brownian movement which is defined in (~,F, {Ft}t≥0,P). E stands for mathematical expectation
operator.

∑
i =

∑n
i=1,

∧
i =

∧n
i=1, and

∨
i =

∨n
i=1.

2. Preliminaries

We consider the following NIFNN as the drive system:

ÿi(t) = − aiẏi(t) − biyi(t) +
∑

j

ci j% j(y j(t)) +
∑

j

hi j% j(y j(t − γ j(t)))
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+
∑

j

λi j% j(ẏ j(t − γ j(t))) +
∧

j

ei j% j(yi(t − γ j(t))) +
∨

j

ki j% j(y j(t − γ j(t))), (2.1)

where ai and bi are positive constants, ci j, hi j, and λi j are all connection weights between the ith and jth
neuron. Variables ei j and ki j denote the elements corresponding to the fuzzy feedback MIN template
and the fuzzy feedback MAX template, respectively. % j(·) is the activation function. γ j(·) is the time-
varying delay function. yi(t), ẏ(t), and ÿ(t) are the state, the rate of state change, and the inertial term
of the drive system (2.1), respectively.

Consider the following SNIFNN as the response system:

dẋi(t) =

{
−ai ẋi(t) − bixi(t) +

∑
j

ĉi j% j(x j(t)) +
∑

j

ĥi j% j(x j(t − γ j(t)))

+
∑

j

λ̂i j% j(ẋ j(t − γ j(t))) +
∧

j

êi j% j(xi(t − γ j(t)))

+
∨

j

k̂i j% j(x j(t − γ j(t))) + ui

}
dt +

∑
j

ςi j(t, x j(t))dΦ(t), (2.2)

where ai and bi are the same as defined in (2.1), xi(t), ẋ(t), and ẍ(t) are the state, the rate of state change,
and the inertial term of the response system (2.2), respectively. ĉi j , ci j, ĥi j , hi j, λ̂i j , λi j, êi j , ei j,
and k̂i j , ki j. ςi j(·) is the intensity function of stochastic disturbances.

Let Qi(t) = xi(t) − yi(t), and then,

dQ̇i(t) =

{
−aiQ̇i(t)(t) − biQi(t) +

∑
j

ĉi jζ̃ j(Q j(t)) +
∑

j

ĥi jζ̃ j(Q j(t − γ j(t)))

+
∑

j

λ̂i jζ̃ j(Q̇ j(t − γ j(t))) +
∧

j

êi jζ̃ j(Q j(t − γ j(t)))

+
∨

j

k̂i jζ̃ j(Q j(t − γ j(t))) + Qi(t) + ui

}
dt +

∑
j

ςi j(Q j(t))dΦ(t), (2.3)

where c̃i j = ĉi j−ci j, h̃i j = ĥi j−hi j, λ̃i j = λ̂i j−λi j, ẽi j = êi j−ei j, k̃i j = k̂i j−ki j, ζ̃ j(Qi(t)) = %i(xi(t))−%i(yi(t)),
and

Qi(t) =
∑

j

c̃i j% j(y j(t)) +
∑

j

h̃i j% j(y j(t − γ j(t))) +
∑

j

λ̃i j% j(ẏ j(t − γ j(t)))

+
∧

j

ẽi j% j(y j(t − γ j(t))) +
∨

j

k̃i j% j(y j(t − γ j(t))). (2.4)

Remark 2.1. In the modeling process, the parameters of the system are usually obtained by fitting
the data in the ideal state. However, the parameters may change during the operation of the system
due to various realistic factors, so there often exists mismatched or unequal parameters between the
model and the actual operating systems. For example, in industrial systems, due to system aging,
wear, manufacturing errors, and other factors, it is easy to cause the ideal system parameters and the
actual system parameters to not match or be equal, and therefore, it is more practical to consider the
synchronization between the systems with mismatched parameters.
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Remark 2.2. Due to the existence of of the parameter-matching phenomenon, the error system
obtained will have a redundant term, that is, (2.4), which is also a major obstacle for the realization
of fixed-time stability. In addition, if Q = 0, then the parameter mismatch between the models will
disappear and degenerate into a general synchronization problem of the driving response system. In
addition, this paper further considers the influence of random interference on synchronization, and
how to transform a random process into a general process is also a difficulty we will consider.

By using the reduced-order method (RoM), let Q̄i(t) = ηi
dQi(t)

dt + ξiQi(t), and one has

dQi(t) =

{ 1
ηi

Q̄i(t) −
ξi

ηi
Qi(t)

}
dt,

dQ̄i(t) =

{
(
ξi

ηi
− ai)Q̄i(t) + (aiξi − biηi −

ξ2
i

ηi
)Qi(t)

+ ηi

[∑
j

ĉi jζ̃ j(Q j(t)) +
∑

j

ĥi jζ̃ j(Q j(t − γ j(t)))

+
∑

j

λ̂i jζ̃ j(Q̇ j(t − γ j(t))) +
∧

j

êi jζ̃ j(Qi(t − γ j(t)))

+
∨

j

k̂i jζ̃ j(Q j(t − γ j(t))) + Qi(t) + ui

]}
dt +

∑
j

ςi j(Q j(t))dΦ(t).

Remark 2.3. The investigation of the dynamical behaviors of INNs can be approached through
two methodologies: The reduced-order method (RoM) and the non-reduced order method (nRoM).
The RoM facilitates system analysis by effectively reducing the system’s order while increasing its
dimensionality. Consequently, the RoM is widely adopted in the literature [14, 23, 24]. However,
this approach introduces additional variables that necessitate the validation of the system’s stability
conditions in relation to these extra parameters. Conversely, substantial research has also been devoted
to non-reductive methods [25,26]. This approach employs the construction of Lyapunov functionals to
analyze the properties of INN, yielding a well-defined structure, albeit one that is complex to derive.
As this method does not simplify the system, the resulting stability conditions tend to be more intricate.

Remark 2.4. In this paper, the controller is placed in the original and undeformed INN model to
study the synchronization between INNs. In previous studies [23, 24], synchronization of INNs are
investigated using the order reduction method. The controller is placed in the response system after
deformation, and synchronization is achieved by controlling the transformation system with high
dimensions. However, using this method will make the system with a controller difficult to restore
to the original system, and the high dimension of the controller is not easy to achieve. Therefore, this
method is not suitable in the actual modeling process.

The following are the assumptions and lemmas that the model needs to satisfy.

Assumption 2.1. There exist positive constants Mi and M̄i such that

|%i(u)| ≤ Mi, and |%i(u) − %i(v)| ≤ M̄i|u − v|. (2.5)

Remark 2.5. Since Qi(t) = xi(t) − yi(t) and ζ̃ j(Qi(t)) = %i(xi(t)) − %i(yi(t)), Assumption 2.1 implies that
|ζ̃ j(Qi(t))| ≤ M̄i|Qi(t)|.
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Assumption 2.2. There exist Γi j > 0 such that∣∣∣∣∣∑
j

ςi j(Q j(t))
∣∣∣∣∣2 ≤∑

j

Γi j|Q j(t)|2.

Lemma 2.1. [27] Assume µ, ω, µ̄, and ω̄ are the states of the drive system (2.1) and the response
system (2.2), respectively. Then,∣∣∣∣∣∧

j

ei j% j(µ) −
∧

j

ei j% j(ω)
∣∣∣∣∣ ≤∑

j

|ei j||% j(µ) − % j(ω)|,∣∣∣∣∣∨
j

ki j% j(µ) −
∨

j

ki j% j(ω)
∣∣∣∣∣ ≤∑

j

|ki j||% j(µ) − % j(ω)|,∣∣∣∣∣∧
j

êi j% j(µ̄) −
∧

j

êi j% j(ω̄)
∣∣∣∣∣ ≤∑

j

|êi j||% j(µ̄) − % j(ω̄)|,∣∣∣∣∣∨
j

k̂i j% j(µ̄) −
∨

j

k̂i j% j(ω̄)
∣∣∣∣∣ ≤∑

j

|k̂i j||% j(µ̄) − % j(ω̄)|.

Lemma 2.2. [28] If a1, . . . , an ≥ 0, ~ > 1, and } ∈ (0, 1), then∑
i

a~i ≥ n1−~
(∑

i

ai

)~
,

∑
i

a}i ≥
(∑

i

ai

)}
. (2.6)

Definition 2.1. [24] For a nonlinear stochastic system

dR(t) = Ψ1(R(t))dt + Ψ2(R(t))dΦ(t), R(0) = R0, (2.7)

where R ∈ R+, and Ψi ∈ R
+ × Rn 7→ Rn, i = 1, 2.

(1) The system (2.7) is called globally stochastically finite-time stable (GSFnS) if there exists a
positive function T (·) such that limt→T (R0) E||H(t)||2 = 0 and E||H(t)||2 = 0, when t > T (R0) ∈ R+

hold.
(2) The system (2.7) is called globally stochastically fixed-time stable if sytem (2.7) is GSFnS and

there exists a positive constant T max such that T (R0) ≤ T max and E||H(t)||2 = 0, t > T max hold.

Definition 2.2. [29] For system (2.7) and given function V : Rn → R+, infinitesimal generator L is
defined as the following:

L V(t,H(t)) = Vt(t,H(t)) + VΩ(t,H(t))Ψ1(H(t)) +
1
2

trace[ΨT
2 (H(t))VΩΩΨ2(H(t))],

where

Vt(t,H(t)) =
∂V(t,H(t))

∂t
,

VΩ(t,H(t)) =

(
∂V(t,H(t))

∂Ω1
, . . . ,

∂V(t,H(t))
∂Ωn

)
,

VΩΩ(t,H(t)) =

(
∂2V(t,H(t))
∂Ωi(t)∂Ω j(t)

)
n×n
.
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Lemma 2.3. [30] Let V : Rn → R+ be a positive definite and radially unbounded function, then
systems (2.1) and (2.2) can achieve FTS if

L V(H(t)) ≤ −Φ1V(H(t))ı −Φ2 (2.8)

holds, where H(t) ∈ Rn, ı > 1, and Φ1, Φ2 > 0. In addition, the settling time (ST) is estimated by

E[T (s, B)] ≤ T max =
1
Φ2

(1 +
1

ı − 1
)
(
Φ2

Φ1

) 1
ı

. (2.9)

When there is no stochastic disturbance in the system, Lemma 2.3 will degenerate to the following
lemma.

Lemma 2.4. [31] Let V : Rn → R+ be a positive definite and radially unbounded function, and then
systems (2.1) and (2.2) can achieve FTS in the absence of stochastic interference if

dV(H(t))
dt

≤ −Φ1V(H(t))ı −Φ2 (2.10)

holds, where H(t) ∈ Rn, ı > 1, and Φ1, Φ2 > 0. In addition, the ST is estimated by

T max =
1
Φ2

(1 +
1

ı − 1
)
(
Φ2

Φ1

) 1
ı

. (2.11)

3. Main results

For simplicity, we introduce the following notations: Qi = Qi(t), Q̄i = Q̄i(t), and Qγ
i = Qi(t − γi(t)).

Theorem 3.1. Under Assumptions 2.1 and 2.2 and the following controller:

ui =



− sign(Q̄i)
(
Ki1
|Qi|

`+1 + |Qi|
2

|Q̄i|
+ Ki2|Q̄i|

` + Ki3(|Qi| + |Q̄i|) +
ϑi

|Q̄i|

+
∑

j

K̄i j|Q
γ
j | + δi

)
, |Q̄i(t)| , 0, ` > 1,

0, |Q̄i(t)| = 0.

(3.1)

FINNs (2.1) and (2.2) can achieve FTS, where

Ki1 ≥

∣∣∣∣∣∑
j

Γ2
i j −

ξi

ηi

∣∣∣∣∣, (3.2)

Ki2 ≥ 0, (3.3)

Ki3 ≥ max
i=1,2,...,n

{ 1
ηi

+ |aiξi − biηi −
ξ2

ηi
|,
ξi

ηi
− ai

}
, (3.4)

K̄i j ≥ (|ĥi j| + |êi j| + |k̂i j|)M̄ j, (3.5)

δi ≥
∑

j

(|c̃i j| + |h̃i j| + |λ̃i j| + |ẽi j| + |k̃i j| + 2|λ̂i j|)M j. (3.6)
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In addition, the settling time can be estimated by

E[T (s, B)] ≤ T max =
1
Φ2

(1 +
2

` − 1
)
(
Φ2

Φ1

) 2
`+1

, (3.7)

where

Φ1 = (2n)
1−`

2 min
i=1,2,...,n

{
Ki1,Ki2

}
, (3.8)

Φ2 = min
i=1,2,...,n

{ϑi}. (3.9)

Proof. Take the following Lyapunov functional

V(t) = V1(t) + V2(t), (3.10)

where V1(t) = 1
2

∑
i |Qi|

2 and V2(t) = 1
2

∑
i |Q̄i|

2. Hence,

L V1(t) =
∑

i

sign(Qi)|Qi|(
1
ηi

Q̄i −
ξi

ηi
Qi), (3.11)

and

L V2(t) =
∑

i

sign(Q̄i)|Q̄i|

{
(
ξi

ηi
− ai)Q̄i + (aiξi − biηi −

ξ2
i

ηi
)Qi

+ ηi

[∑
j

ĉi jζ̃ j(Q j) +
∑

j

ĥi jζ̃ j(Q
γ
j ) +

∑
j

λ̂i jζ̃ j(Q̇
γ
j )

+
∧

j

êi jζ̃ j(Q
γ
j ) +

∨
j

k̂i jζ̃ j(Q
γ
j )
]

+ Qi(t)

− sign(Q̄i)
(
Ki1
|Qi|

`+1 + |Qi|
2

|Q̄i|
+ Ki2|Q̄i|

`

+ Ki3(|Qi| + |Q̄i|) +
∑

j

K̄i j|Q
γ
j | + δi

)}
+

1
2

∑
i

{∑
j

ςi j(t,Q(t))
}2

. (3.12)

By combining Lemma 2.1 and Assumption 2.1, we have∧
j

êi jζ̃ j(Q
γ
j ) ≤

∑
j

|êi j|M̄ j|Q
γ
j |, (3.13)∨

j

k̂i jζ̃ j(Q
γ
j ) ≤

∑
j

|k̂i j|M̄ j|Q
γ
j |, (3.14)∑

j

λi jζ̃ j(Q̇
γ
j ) ≤

∑
j

2|λ̂i j|M j, (3.15)

Qi(t) ≤
∑

j

(
|c̃i j| + |h̃i j| + |λ̃i j| + |ẽi j| + |k̃i j|

)
M j. (3.16)
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According to Cauchy’s inequality as well as (3.13)–(3.16), we can obtain

L V ≤
∑

i

( 1
ηi

+ |aiξi − biηi −
ξ2

ηi
| − Ki3

)
|Qi||Q̄i| +

(
ξi

ηi
− ai − Ki3

)
|Q̄i|

2

+
∑

i

[∑
j

(
(|ĥi j| + |êi j| + |k̂i j|)M̄ j − K̄i j

)]
|Q̄i||Q

γ
j |

−
∑

i

(
Ki1|Qi|

`+1 + Ki2|Q̄i|
`+1

)
+

∑
i

(
−δi +

∑
j

(|c̃i j| + |h̃i j| + |λ̃i j|

+ |ẽi j| + |k̃i j| + 2|λ̂i j|)M j

)
|Q̄i| +

∑
i

(
∑

j

Γ2
i j −

ξi

ηi
− Ki1)|Qi|

2 − ϑi. (3.17)

Combining with conditions (3.2)–(3.6), we have

L V ≤L V1 + L V2

≤ −
∑

i

Ki1|Qi|
`+1 −

∑
i

Ki2|Q̄i|
`+1 − ϑi

≤ − (2n)
1−`

2 min
i=1,2,...,n

{
Ki1,Ki2

}
V

`+1
2 − min

i=1,2,...,n
{ϑi}

= −Φ1V
`+1

2 −Φ2. (3.18)

Therefore, the NIFNN (2.1) and SNIFNN (2.2) can achieve FTS with the settling time (3.7). �

Remark 3.1. First, we design a class of segmented feedback controllers in Theorem 3.1. Compared
with the continuous controllers used in the literature [14,16], the segmented controller can change the
control mode in real time according to the system state, and can provide higher control accuracy under
the influence of random terms. In addition, the influence of the memory performance of the system on
the system performance was considered in the design of the controller. In order to compensate for the
delayed response caused by the time delay, we designed a memory feedback controller to reduce the
impact of the time delay and improve the robustness of the system.

When there is no stochastic disturbance in the response system (2.2), we get the following theorem.

Theorem 3.2. If Assumptions 2.1 and 2.2 hold and stochastic intensity function ςi j(·) = 0, NIFNN (2.1)
and SNIFNN (2.2) can achieve FTS under the following controller:

ui =



− sign(Q̄i)
(
Ki1
|Qi|

`+1

|Q̄i|
+ Ki2|Q̄i|

` + Ki3(|Qi| + |Q̄i|) +
ϑi

|Q̄i|

+
∑

j

K̄i j|Q
γ
j | + δi

)
, |Q̄i(t)| , 0, ` > 1,

0, |Q̄i(t)| = 0,

(3.19)

with the settling time (3.7), where

Ki1 ≥ 0, Ki2 ≥ 0, (3.20)
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Ki3 ≥ max
i=1,2,...,n

{ 1
ηi

+ |aiξi − biηi −
ξ2

ηi
|,
ξi

ηi
− ai

}
, (3.21)

K̄i j ≥ (|ĥi j| + |êi j| + |k̂i j|)M̄ j, (3.22)

δi ≥
∑

j

(|c̃i j| + |h̃i j| + |λ̃i j| + |ẽi j| + |k̃i j| + 2|λ̂i j|)M j. (3.23)

Proof. Take the following Lyapunov functional

V =
1
2

∑
i

(
|Qi|

2 + |Q̄i|
2
)
. (3.24)

Then,

V̇ =
∑

i

(
sign(Qi)|Qi|Q̇i + sign(Q̄i)|Q̄i|

˙̄Qi

)
≤

∑
i

(
sign(Qi)|Qi|(

1
ηi

Q̄i −
ξi

ηi
Qi)

)
+

∑
i

{
sign(Q̄i)|Q̄i|

[
(
ξi

ηi
− ai)Q̄i

+ (aiξi − biηi −
ξ2

i

ηi
)Qi + Qi + ηi

[∑
j

ĉi jζ̃ j(Q j) +
∑

j

ĥi jζ̃ j(Q
γ
j )

+
∑

j

λ̂i jζ̃ j(Q̇
ϕ
j ) +

∧
j

êi jζ̃ j(Q
ϕ
i ) +

∨
j

k̂i jζ̃ j(Q
γ
j ) + ui

]]}
. (3.25)

Combining this with (3.19) and (3.20)–(3.23), similar to Theorem 3.1, we can obtain

V̇ ≤ −Φ1V
`+1

2 −Φ2. (3.26)

Hence, NIFNN (2.1) and SNIFNN (2.2) without randomness can achieve FTS with the settling
time (3.7). �

When parameters ĉi j, ĥi j, λ̂i j, êi j, and k̂i j are given the same values as ci j, hi j, λi j, ei j, and ki j, the
following corollary can be obtained.

Corollary 3.1. If Assumptions 2.1 and 2.2 and conditions (3.2)–(3.5) hold, then FINN can achieve
synchronization under controller (3.1) with ST (3.7), where δi ≥ 0.

Proof. The proof is similar to Theorem 3.1 and is therefore omitted here. �

4. Example

Example 4.1. Consider the NIFNN (2.1) and the SNIFNN (2.2) with the following parameters:
a1 = b2 = 2, b1 = a2 = 1, c11 = 0.5377, c12 = −2.2588, c21 = 1.8339, c22 = 0.8622, ĉ11 =

0.3188, ĉ12 = −0.4336, ĉ21 = −1.3077, ĉ22 = 0.3426, h11 = 3.5784, h12 = −1.3499, h21 =

2.7694, h22 = 3.0349, ĥ11 = 0.7254, ĥ12 = 0.7147, ĥ21 = −0.0631, ĥ22 = −0.2050, e11 =

0.4889, e12 = 0.72689, e21 = 1.0347, e22 = −0.3034, ê11 = 0.2938, ê12 = 0.8884, ê21 =

−0.7873, ê22 = −1.1471, k11 = −1.0689, k12 = −2.9443, k21 = −0.8095, k22 = 1.4384, k̂11 =

0.3252, k̂12 = 1.3703, k̂21 = −0.7549, k̂22 = −1.7115, λ11 = −0.1241, λ12 = 1.4090, λ21 =

1.4897, λ22 = 1.4172, λ̂11 = 0.6715, λ̂12 = 0.7172, λ̂21 = −1.2075, and λ̂22 = 1.6302.
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Take % j(x) = tanh(x), γ j(x) = sin(2x)+1.5, and ςi j(x) = tanh(sin(x)). The states of the NIFNN (2.1)
and SNIFNN (2.2) are shown in Figures 1 and 2, respectively. With the increase of running time
without the influence of the controller, the drive system gradually exhibits cyclic behavior. However,
the response system produces chaos under the influence of noise, and the two systems cannot achieve
synchronization. Figure 3 shows the values of the time-varying delay functions and stochastic intensity
functions. From Theorem 3.1, we can obtain

Ki1 ≥ 1, Ki3 ≥ 1, K̄11 ≥ 1.3445, K̄12 ≥ 2.9734,
K̄21 ≥ 1.6053, K̄22 ≥ 3.0636, δ1 ≥ 15.9031,
and δ2 = 21.3515.
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Figure 1. States of the NIFNN (2.1) without control.
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Figure 2. States of the SNIFNN (2.2) without control.
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Figure 3. Values of the time-varying delay function γ j(t) and stochastic intensity function
ςi j(t).

Based on the above calculation, take the following controller:

ui =



− sign(Q̄i)
(
|Qi|

2.2 + |Qi|
2

|Q̄i|
+ 12|Q̄i|

1.2 + 2(|Qi| + |Q̄i|) +
12
|Q̄i|

+
∑

j

K̄i j|Q
γ
j | + δi

)
, |Q̄i(t)| , 0,

0, |Q̄i(t)| = 0,

(4.1)

where K̄ = [2.3445, 3.9734; 2.6053, 4.0636], δ1 = 16.9031, and δ2 = 22.3515.

Therefore, the NIFNN (2.1) and SNIFNN (2.2) can achieve synchronization with the following
settling time:

E[T (s, B)] ≤ T max =
1

12
(1 +

2
1.2 − 1

)
( 12
0.8706

) 2
1.2+1

= 9.9545. (4.2)

Figure 4 shows the states of systems (2.1) and (2.2) under controller (4.1). The values of the
synchronization error are shown in Figure 5. It can be found from Figure 5 that the error system
gradually reaches stochastic fixed-time stability, which also means that under the influence of the
controller, the state error of NIFNN and SNIFNN further decreases with time, that is, the stochastic
FTS is achieved.
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Figure 4. States of systems (2.1) and (2.2) under controller (3.1).

0 3 6 9 12 15

Time t

-2

-1

0

1

2

E
rr

o
rs

0 3 6 9 12 15

Time t

0

1

2

3

4

V
a
lu

e
s

Settling time

Figure 5. Values of error system (2.5).

Example 4.2. Take ςi j(t) = 0 and the same parameters as in Example 4.1. Then, under
controller (3.19), NIFNNs (2.1) and (2.2) can achieve synchronization with ST (4.2). Figure 6 shows
the states of NIFNN (2.1) and SNIFNN (2.2) under ςi j(t) = 0 without controller (3.19). It can be
seen that without the intervention of the controller, the drive system and the response system cannot
achieve fixed-time synchronization when ςi j(t) = 0. Figures 7 and 8 show the synchronization states
of NIFNN (2.1) and SNIFNN (2.2) under ςi j(t) = 0 and the values of error system (2.5). With the
intervention of the controller, the drive system and the response system can obviously achieve FTS
before the systems reach the settling time.
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Figure 6. States of systems (2.1) and (2.2) without controller (3.19) with ςi j(t) = 0.
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Figure 7. States of systems (2.1) and (2.2) under controller (3.19) with ςi j(t) = 0.
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Figure 8. Values of error system (2.5) under ςi j(t) = 0.

Remark 4.1. The synchronization of INNs is addressed in references [14, 23, 25]. Notably, the driver
and response systems estabilshed in these studies maintain identical parameter configurations, and it
can be seen as a specific case within the framework of the present research. Furthermore, this paper
extends the discussion by incorporating a stochastic disturbance term within the response system. This
means that there are not only parametric differences between the drive system and the response system
but also structural differences, thereby complicating the analysis and enhancing its alignment with
real-world modeling processes.

Remark 4.2. Table 1 shows the comparison between this paper and the existing literatures. The
factors for comparison are as follows: mismatched parameters (MP), different structures of drive
and response systems (DSDR), fuzzy terms (FT), FTS, and inertial terms (IT). Although the models
considered in [8,9,14] are all INN models, it can be seen from Table 1 that the models in the literature
can be considered as a special case of the model considered in this paper.

Table 1. A comparison between the present study and existing literature.

MP DSDR FT FTS IT
Zhou et al. (2023) [9] - - - - 4

Han et al. (2023) [8] - - - 4 4

Liu et al. (2023) [14] - - 4 4 4

This paper 4 4 4 4 4
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Remark 4.3. The block diagram illustrating the proposed control approach is presented in Figure 9.
This diagram provides a visual representation of the various components and interactions that
constitute the control strategy. It highlights the relationships between the input, processing, and output
stages of the control system. This block diagram serves as a valuable tool for understanding the
operational framework and effectiveness of the proposed approach.

Drive system

Response system

Mismatched 
parameters

Stochastic
terms

Error system

Sensor Detector

Controller 

Yes

No

and

Figure 9. The block diagram of the proposed control approach.

Remark 4.4. In the process of estimating the settling time, it can be found that the obtained results
are related to the dimension of the system. When the size of the system is larger, the error of the
deduced settlement time is larger. Therefore, how to derive a more exact settling time in the case of
high dimensions is one of our future research priorities.

5. Conclusions

This paper presents a comprehensive examination of the synchronization of fuzzy inertial
neural networks that incorporate neutral terms alongside the complexities introduced by parameter
mismatches. In this research, we employ a variety of sophisticated methodologies, including a
specially designed controller, stochastic analysis, inequality techniques, and order reduction methods,
to systematically investigate the conditions for achieving fixed-time synchronization between a drive
system and a response system characterized by differing structures and mismatched parameters.
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Additionally, two numerical examples are presented to validate the findings of this study. These
examples are carefully chosen to illustrate the effectiveness of the proposed synchronization approach
under varying conditions.
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