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Abstract: First, we construct a new type of feedforward neural network operators on finite intervals,
and give the pointwise and global estimates of approximation by the new operators. The new operator
can approximate the continuous functions with a very good rate, which can not be obtained by
polynomial approximation. Second, we construct a new type of feedforward neural network operator
on infinite intervals and estimate the rate of approximation by the new operators. Finally, we investigate
the weighted approximation properties of the new operators on infinite intervals and show that our
new neural networks are dense in a very wide class of functional spaces. Thus, we demonstrate
that approximation by feedforward neural networks has some better properties than approximation
by polynomials on infinite intervals.
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1. Introduction

Feed-forward neural networks (FNNs) have been investigated extensively because of their universal
approximation capabilities on compact input sets. Many authors have dealt with the FNNS with one
hidden layer, which can be mathematically expressed as

Nn (x) =

n∑
j=0

c jσ
(〈

a j · x
〉

+ b j

)
, x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, b j ∈ R are the thresholds, a j ∈ R
s are the connection weights, c j ∈ R are the

coefficients,
〈
a j · x

〉
is the inner product of a j and x, and σ is the activation function. As we know,

FNNS are universal approximators. Theoretically, any continuous function defined on a compact set
can be approximated to any desired degree of accuracy by increasing the number of hidden neurons.
A lot of results concerning the existence of an approximation and determining the number of neurons
required to guarantee that all functions (belong to a certain class) can be approximated to the prescribed

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241523


31680

degree of accuracy have been achieved by many mathematicians (see [1–6]). The complexity problem
of neural networks is to study the relationship between the topological structure of neural networks
and their approximation ability. Among them, research on the quantitative estimates of approximation
is particularly important (see [7–11] ).

In many fundamental network models, the activation function σ is usually taken to be a sigmoidal
function. In other words, σ satisfies the conditions

lim
x→+∞

σ (x) = 1, lim
x→−∞

σ (x) = 0. (1.1)

Many neural network operators with different activation functions in both univariate and multivariate
settings are studied (see [12–16]). In [4], the authors investigated the FNN with activation function
g j : Rd → R, defined by

g j (x) :=
e−Aρ(x,x j)∑n
i=0 e−Aρ(x,xi)

, j = 0, 1, 2, · · · ,

where x0, x1, · · · , xn are the data in Rd, ρ (a, b) denotes the Euclidean distance between the points a
and b in Rd, and A > 0 is a parameter. In this case, Nn (x) can be regarded as a FNN with four
layers: the first layer is the input layer x; the second layer is the processing layer for computing values
ρ (x, xi) , i = 0, 1, · · · , n, between input x and the prototypical input points xi, and it is the input of
the third layer that contains n + 1 neuron, g j (x) is the activation function of the j-th neuron; the fourth
layer is the output layer Nn (x) .Although g j (x) not sigmoidal, they have some better properties than the
usual sigomidal functions. For example, (i) 0 < g j (x) ≤ 1, j = 0, 1, · · · n; (ii)

∑n
j=0 g j (x) = 1, x ∈ Rd.

In [4], Cao, Zhang, and Xu constructed a class of neural networks Na (x, A) with activation functions
g j (x) on a finite interval [a, b] as follows:

Na (x, A) :=
n∑

j=0

f (x j)
e−A(n)|x−x j|∑n
i=0 e−A(n)|x−xi |

, (1.2)

where x j = a + b−a
n j, j = 0, 1, · · · , n, and A (n) is a parameter depending on n. For the approximation

rate of operator Na (x, A) , they established the following results in [4].

Theorem 1.1. Let f be a continuous function on [a, b]. Then there exists A∗ > 0, such that

| f (x) − Na (x, A)| ≤ 2ω
(

f ,
b − a

n

)
+ 2 ‖ f ‖[a,b] Mne−n, (1.3)

for A (n) > A∗ and for all x ∈ [a, b] , where ‖ f ‖[a,b] := maxx∈[a,b] | f (x)| , and ω ( f , t) is the modulus of
continuity of f on [a, b] , that is,

ω ( f , t) := sup
|h|≤t

max
x,x+h∈[a,b]

| f (x + h) − f (x)| .

Throughout the paper, ‖ f ‖I denotes the uniform norm of f on the interval I, C denotes an absolute
constant, and Ct1,··· ,ts a positive constant only depending on the parameter(s) t1, t2, · · · , ts, which may
be different in different occurrences.

To approximate the functions defined on the infinite interval R := (−∞,+∞) , Cao, Li, et al. [5]
investigated the approximation by neural networks with activation functions g j (x) on R. In fact, they
obtained the following:
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Theorem 1.2. Let f be a continuous function on R satisfying limx→∞ f (x) = B1, limx→−∞ f (x) = B2,

where B1 and B2 are two constants. For any r > 0, define

g (x) :=
n∑

j=0

f (x j)
e−A|x−x j|∑n
i=0 e−A|x−xi |

, (1.4)

where x j = −M + 2M j/n, j = 0, 1, · · · , n, A = n2

2M , and M is a positive number depending on f and r.
Then,

‖ f − g‖R ≤ 2n ‖ f ‖R exp (−n) + ω

(
f ,

2M
n

)
+ 2r.

For the operator Na (x, A) defined in (1.2), we see that it depends on the parameters A (n) and
A∗ strictly. Therefore, we should calculate the values A (n) and A∗ before constructing the operator,
while the calculations are usually not obvious. Similarly, to construct the operator g (x) in (1.4), we
should estimate the values M first, which depends on r and f . On the other hand, generally speaking,
we have M → +∞, when r → 0. Hence, to assure the convergence of the approximation, the number
of neurons n must tend to infinity a rate not too slow (it should hold that M = o (n)). To overcome the
above problem in the constructions of the neural network operators, we will introduce two new classes
of operators defined on finite intervals and infinite intervals, respectively. Also, the approximation rates
by the new operators will be given.

The present paper is organized as follows: In Section 2, we construct a new class of neural
networks on finite intervals and give pointwise and global estimates of the approximation (see (2.2)
and (2.3)) which is better than (1.3) and cannot be achieved by the usual approximation by polynomials.
In Section 3, we construct a new class of neural networks on finite intervals and give its rate of
approximation. Furthermore, we investigated the weighted approximation of operators on the infinite
intervals and show that our new neural networks are dense in a very wide class of functional spaces.
Thus, we demonstrate that approximation by feedforward neural networks has some better properties
than approximation by polynomials on infinite intervals.

2. Neural network operators on finite intervals

For convenience, we take the interval to be [−1, 1] . Let x = x(θ) be a function from [0, 1] to [−1, 1]
defined by

x = x(θ) :=

 (2θ)p − 1, θ ∈
[
0, 1

2

]
,

−(2 − 2θ)p + 1, θ ∈
(

1
2 , 1

]
,

where p ≥ 1 is a given number.
Set X =

{
xk = x

(
k
n

)
: k = 0, 1, 2, · · · , n

}
. Define

Np( f , X, x) =

n∑
k=0

f (xk)
e−np |x−xk |∑n
i=0 e−np |x−xi |

. (2.1)

See Figure 1, for the structural diagram of the neural network Np( f , X, x).
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Figure 1. The structural diagram of the neural network Np( f , X, x).

Theorem 2.1. If f ∈ C([−1, 1]), p ≥ 1, then, we have∣∣∣Np( f , X, x) − f (x)
∣∣∣ ≤ Cpω

(
f ,
δn (x)

n

)
, (2.2)

and ∥∥∥Np ( f , X) − f
∥∥∥

[−1,1]
≤ Cpωψ

(
f ,

1
n

)
, (2.3)

where δn (x) = 1
np−1 + ψ (x), ψ (x) =

(
1 − x2

) p−1
p and ωψ ( f , t) is the Ditzian-Totik type modulus defined

by

ωψ ( f , t) := sup
0<h≤t

sup
−1≤x≤1

∣∣∣∣∣∣ f
(
x +

h
2
ψ (x)

)
− f

(
x −

h
2
ψ (x)

)∣∣∣∣∣∣ .
Remark 2.1. (1) The operator defined in (2.1) only depends on the values f (xk), 1 ≤ k ≤ n, and the
number of neurons n.

(2) The approximation rate achieved in (2.2) cannot be obtained by approximation of polynomials.
In fact, Gopengauz proved in [17] that there exist continuous functions f on [−1, 1] for which there
are no algebraic polynomials Pn of degree less or equal n such that

| f (x) − Pn(x)| = O
ω  f ,

√
1 − x2

n
ε(1 − x2) +

δ(n−1)
n2

 ,
for all integers n and x ∈ I, where ε(u) ↓ 0 and δ(u) ↓ 0, when u→ 0.

(3) The approximation rate obtained in Theorem 2.1 is sharper than that in Theorem 1.1. For
example, from (2.2), we see that we have a better approximation rate when x is nearer to the endpoints,
when p > 1. In fact, if x ∈ [−1, x1] ∪ [xn−1, 1] , we have∣∣∣Np( f , X, x) − f (x)

∣∣∣ ≤ Cpω

(
f ,

1
np

)
.
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(4) Since ωψ ( f , t) ≤ ω ( f , t) , we see that (2.3) is also an improvement of Theorem 1.1 on the
approximation rate.

Proof of (2.2). We need the following inequalities (2.4)–(2.8) (see [18]): For x ∈
[
x j−1, x j

]
, j =

2, 3, · · · , n − 1, it holds that

|x − xk| ≤ Cp
(| j − k| + 1)p

n
ψ (u) , u ∈ [x, xk] or u ∈ [xk, x] . (2.4)

For x ∈ [−1, x1] , it holds that

|x − xk| ≤ Cp
(k + 1)p

np , k = 0, 1, · · · , n. (2.5)

For x ∈ [xn−1, 1] , it holds that

|x − xk| ≤ Cp
(n − k + 1)p

np , k = 0, 1, · · · , n. (2.6)

Denote by x j, 0 ≤ j ≤ n, the closest node to x, then∣∣∣x − x j

∣∣∣ ≤ Cp
ψ (x)

n
, (2.7)

|x − xk| ≥ Cp
| j − k|

n
ψ (x) , k , j. (2.8)

We prove (2.2) by considering the following two cases.
Case 1. x ∈ [−1, x1] ∪ [xn−1, 1] . We only treat the subcase x ∈ [−1, x1] , when x ∈ [xn−1, 1] , it can

be done similarly. It is obvious that

∣∣∣Np( f , X, x) − f (x)
∣∣∣ ≤ ∑

k=0,1

| f (x) − f (xk)|
e−np |x−xk |∑n
i=0 e−np |x−xi |

+

n∑
k=2

| f (x) − f (xk)|
e−np |x−xk |∑n
i=0 e−np |x−xi |

= : I1 (x) + I2 (x) . (2.9)

By (2.5), we have

I1 (x) ≤ | f (x) − f (x1)| + | f (x) − f (x2)| ≤ Cpω

(
f ,

2p

np

)
≤ Cpω

(
f ,

1
np

)
, (2.10)

where in the last inequality, we used the following well-known property of modulus of continuity:

ω ( f , λt) ≤ (λ + 1)ω ( f , t) , λ > 0. (2.11)

By (2.4) and (2.8), we observe that for k ≥ 2,

e−np |x−xk |∑n
i=0 e−np |x−xi |

≤ e−np(|x−xk |−|x−x1 |) ≤ e−np(|x1−xk |)

≤ e−Cpnp( k
nψ(x1)) ≤ e−Cpk. (2.12)
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Now, by (2.4) and (2.11),

I2 (x) ≤
n∑

k=2

ω ( f , |x − xk|) e−Cpk

≤ Cpω

(
f ,

1
np

) n∑
k=2

(1 + np |x − xk|) e−Cpk

≤ Cpω

(
f ,

1
np

) n∑
k=2

(
1 + Cpnp kp

n
ψ (x1)

)
e−Cpk

≤ Cpω

(
f ,

1
np

) n∑
k=2

kpe−Cpk

≤ Cpω

(
f ,

1
np

)
. (2.13)

By (2.9), (2.10), and (2.13), we verify that (2.2) holds for x ∈ [−1, x1] .
Case 2. x ∈ (x1, xn−1) , say x ∈

[
x j−1, x j

]
, j = 1, 2, · · · , n − 1. Then

∣∣∣Np( f , X, x) − f (x)
∣∣∣ ≤ (∣∣∣∣ f (x) − f

(
x j

)∣∣∣∣ +
∣∣∣∣ f (x) − f

(
x j−1

)∣∣∣∣)
+

j−2∑
k=1

| f (x) − f (xk)|
e−np |x−xk |∑n
i=0 e−np |x−xi |

+

n∑
k= j+1

| f (x) − f (xk)|
e−np |x−xk |∑n
i=0 e−np |x−xi |

= : I3 (x) + I4 (x) + I5 (x) . (2.14)

By (2.4), (2.7), and (2.11), it is easy to deduce that

I3 (x) ≤ Cpω

(
f ,
δn (x)

n

)
. (2.15)

By (2.8), we have for k = 1, 2, · · · , j − 2, that

e−np |x−xk |∑n
i=0 e−np |x−xi |

≤ e−np(|x−xk |−|x−x j−1|) ≤ e−np(|x j−1−xk|)

≤ e−Cpnp
( j−k

n ψ(x j−1)
)
≤ e−Cp | j−k|. (2.16)

Therefore, by (2.11) and (2.4),

I4 (x) ≤
j−2∑
k=1

ω ( f , |x − xk|) e−Cp | j−k|

≤ ω

(
f ,
δn (x)

n

) j−2∑
k=1

(
1 +

n |x − xk|

δn (x)

)
e−Cp | j−k|
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≤ Cpω

(
f ,
δn (x)

n

) j−2∑
k=1

1 +
n (| j−k|+1)p

n ψ (x)
ψ (x)

 e−Cp | j−k|

≤ Cpω

(
f ,
δn (x)

n

) j−2∑
k=1

| j − k|p e−Cp | j−k|

≤ Cpω

(
f ,
δn (x)

n

)
. (2.17)

Analogues to (2.16), we have for k ≥ j + 2 that

e−np |x−xk |∑n
i=0 e−np |x−xi |

≤ e−np(|x j−xk|) ≤ e−Cp | j−k|. (2.18)

Therefore, by (2.4), we can deduce that

I5 (x) ≤ Cpω

(
f ,
δn (x)

n

)
(2.19)

in a similar way to that of (2.17).
Now, by (2.14), (2.15), (2.17), and (2.19), we conclude that (2.2) holds for x ∈ (x1, xn−1). �

Proof of (2.3). From (2.12), (2.16) and (2.18), we actually have for x ∈
[
x j−1, x j

]
, j = 1, 2, · · · , n and

k = 0, 1, · · · , n, that
e−np |x−xk |∑n
i=0 e−np |x−xi |

≤ e−Cp | j−k|. (2.20)

Setting g (θ) = f (x (θ)) , then

∣∣∣Np( f , X, x) − f (x)
∣∣∣ ≤ n∑

k=0

| f (x) − f (xk)|
e−np |x−xk |∑n
i=0 e−np |x−xi |

≤

n∑
k=0

ω

(
g,
| j − k| + 1

n

)
e−Cp | j−k|

≤ Cω
(
g,

1
n

) n∑
k=0

(| j − k| + 1) e−Cp | j−k|

≤ Cpω

(
g,

1
n

)
.

By [19],
K ( f , t) = inf

‖g′‖<∞,h∈AC[0,1]
{‖ f − g‖ + t‖g′‖} ,

Kψ ( f , t) = inf
‖ψg′‖<∞,h∈AC[0,1]

{‖ f − g‖ + t‖ψg′‖} ,

we have

ω

(
g,

1
n

)
∼ K

(
g, n−1

)
AIMS Mathematics Volume 9, Issue 11, 31679–31695.
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∼ inf
{
‖g − h‖ + n−1 ‖h′‖ : h ∈ AC[0,1]

}
∼ inf

{
‖ f − h‖ + n−1 ‖ψh′‖ : h ∈ AC[0,1]

}
∼ Kψ

(
f , n−1

)
.

Thus (2.3) follows from the following equivalent relation (see [19])

Kψ

(
f , n−1

)
∼ ωψ

(
f , n−1

)
.

�

3. Neural network operators on infinite intervals

In this section, we set

xk :=
k
m
, k = 0,±1,±2, · · · ,±n, (3.1)

where m = m (n) > 0 is a parameter depending on n. To ensure the point system is dense on finite
intervals and the whole real axis R is filled up with the nodes, we should assume that m → ∞ and
m = o (n) when n→ ∞. Now, we construct a new neural network operator on C (R) as follows:

g (x) :=
n∑

k=−n

f (xk)
e−m|x−xk |∑n

i=−n e−m|x−xi |
. (3.2)

Obviously, the way to construct g (x) is more direct than g (x) defined in (1.4). In fact, g (x) only
depends on the values f (xk) , k = 0,±1,±2, · · · ,±n, the number of neurons and the parameter m.

Theorem 3.1. Let f be a continuous function on R satisfying limx→∞ f (x) = B1, limx→−∞ f (x) = B2,

where B1and B2 are two constants. Then,

‖ f − g‖R ≤ C
(
ω

(
f ,

1
m

)
+ ε f

( n
m

)
+ e−(1− 1

m )n ‖ f ‖
R

)
, (3.3)

where
ε f (t) := max

(
max

x≥t
| f (x) − B1| ,max

x≤−t
| f (x) − B2|

)
, t > 0.

Proof. If x > n
m , then

| f (x) − g (x)| ≤ | f (x) − B1| +

n∑
k=−n

| f (xk) − B1|
e−m|x−xk |∑n

i=−n e−m|x−xi |

≤ ε f (x) +
∑
|k|≥n/m

| f (xk) − B1|
e−m|x−xk |∑n

i=−n e−m|x−xi |
+

∑
|k|<n/m

| f (xk) − B1| e−m(|x−xk |−|x−xn |)

≤ ε f (x) + ε f (n/m) + 2 ‖ f ‖
R

∑
|k|<n/m

e−(n−k)

≤ 2ε f (n/m) + Ce−(1− 1
m )n ‖ f ‖

R
,

which implies (3.3) holds for x > n
m .
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Similarly, we see that the same estimation holds for x < − n
m .

Now, we consider the case when x ∈
[
− n

m ,
n
m

]
, say, x ∈

[
x j−1, x j

]
, j = 0,±1,±2, · · · ,±n. For any

−n ≤ k ≤ n, set x j∗ = x j for k > j or k = j − 1, and x j∗ = x j−1 for k < j − 1 or k = j. In other words, we
take x j∗ such that

∣∣∣x j∗ − xk

∣∣∣ = min
{∣∣∣x j − xk

∣∣∣ , ∣∣∣x j−1 − xk

∣∣∣} . Then

e−m|x−xk |∑n
i=−n e−m|x−xi |

≤ e−m(|x−xk |−|x−x j∗ |)

≤ e−m(|x j∗−xk|)

≤ Ce−| j−k|. (3.4)

Therefore, by (2.11), we have

| f (x) − g (x)| ≤
n∑

k=−n

| f (xk) − f (x)|
e−m|x−xk |∑n

i=−n e−m|x−xi |

≤ C
n∑

k=−n

ω ( f , |x − xk|) e−| j−k|

≤ Cω
(

f ,
1
m

) n∑
k=−n

(m |x − xk| + 1)e−| j−k|

≤ Cω
(

f ,
1
m

) n∑
k=−n

(| j − k| + 1) e−| j−k|

≤ Cω
(

f ,
1
m

)
.

Thus, we prove (3.3) for |x| ≤ n
m . �

Now, we consider the weighted approximation by neural networks on R. Let w (x) := e−Q(x) be the
weight function satisfying the following conditions:

(i) Q (x) is even, limx→∞ Q (x) = ∞;
(ii) Q′ (x) ≥ 0 is either strictly monotone increasing or bounded in [a,∞) ;
(iii) In the case where Q′ (x) is strictly monotone increasing in [a,∞) , Q′ (x + 1) ≤ AQ′ (x) (x ∈

[a,∞) , A > 0 independent of x).
In connection with these weights, for each t ∈ [a,∞) , we define t∗ as
(a) the unique solution of tQ′ (t∗) = 1 if Q′ (x) ↑ ∞ as x ↑ ∞,
(b)∞ if Q′ (x) is bounded as x→ ∞.

Example 3.1. Functions like Q (x) = logβ (1 + |x|), Q (x) = (1 + |x|)β (β > 0), and Q (x) = ec|x| (c > 0)
are weights satisfying conditions (i)–(iii).

In what follows, we always assume that the weight function w (x) = e−Q(x) satisfies conditions
(i)–(iii). Define

Cw (R) :=
{

f (x) : f ∈ C (R) , lim
|x|→∞

w (x) f (x) = 0
}
.
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For any f ∈ Cw (R) , define its modulus of continuity as follows:

Ω ( f , t)w := sup
0<h≤t
‖w (x) ( f (x + h/2) − f (x − h/2))‖[−h∗,h∗] .

It is proved by Mastroianni and Szabados [20] that

Ω ( f , λt)w ≤ Cw (λ + 1) Ω ( f , t)w . (3.5)

For convenience, we write λn = n
m , or equivalently, m = n

λn
. Then, the nodes in (3.1) can be rewritten

as
xk =

λnk
n
, k = 0,±1,±2, · · · ,±n,

and the operator g (x) as

g (x) :=
n∑

k=−n

f (xk)
e−

n
λn
|x−xk |∑n

i=−n e−
n
λn
|x−xi |

.

Theorem 3.2. If f ∈ Cw (R) , then

‖w ( f − g)‖R ≤ C
(
Ω

(
f ,
λn

n

)
w

+ εw f (δn) +
w (λn)
w (δn)

+
λ2

n

n2w (λn)

)
, (3.6)

where {δn} is any given sequence satisfying 0 < δn < λn, and

εw f (t) := max
|x|≥t
|w (x) f (x)| .

Proof. By symmetry, it is sufficient to prove for x ≥ 0.We prove the result by considering the following
two cases.

Case 1. 0 ≤ x ≤ λn = xn, say x ∈
[
x j−1, x j

]
, j = 1, 2, · · · , n. Set

Kn (x) :=

k : |k| ≤ n, |x − xk| ≤ min

 2

Q′
(

x+xk
2

) , 1

 .

Then for k ∈ Kn (x) , it holds that (see [20])

w (x)

w
(

x+xk
2

) ≤ Cw. (3.7)

By (3.4), (3.5), and (3.7), we have

w (x)
∑

k∈Kn(x)

| f (x) − f (xk)|
e−

n
λn
|x−xk |∑n

i=−n e−
n
λn
|x−xi |

≤ C max
w (x)

w
(

x+xk
2

) ∑
k∈Kn(x)

Ω ( f , |x − xk|)w e−| j−k|

≤ CwΩ

(
f ,
λn

n

)
w

∑
k∈Kn(x)

(
1 +

n |x − xk|

λn

)
e−| j−k|
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≤ CwΩ

(
f ,
λn

n

)
w

∑
k∈Kn(x)

(| j − k| + 1) e−| j−k|

≤ CwΩ

(
f ,
λn

n

)
w
. (3.8)

On the other hand, by the fact that (see [20])

w (x)
(
Q′

( x + xk

2

))2
≤ Cw,

we have

w (x)
∑

k<Kn(x)

| f (x) − f (xk)|
e−

n
λn
|x−xk |∑n

i=−n e−
n
λn
|x−xi |

≤ C
w (x) ‖w f ‖

w (λn)

∑
k<Kn(x)

(x − xk)2

(x − xk)2 e−| j−k|

≤ C
w (x) λ2

n ‖w f ‖
n2w (λn)

∑
k<Kn(x)

(
Q′

( x + xk

2

))2
(| j − k| + 1)2 e−| j−k|

≤ C
λ2

n ‖w f ‖
n2w (λn)

. (3.9)

From (3.8) and (3.9), we have

|w (x) ( f (x) − g (x))| ≤ C
(
Ω

(
f ,
λn

n

)
w

+
λ2

n

n2w (λn)

)
, |x| ≤ λn.

Case 2. x > λn. For any δn < λn, we have

|w (x) ( f (x) − g (x))| ≤ w (x)
n∑

k=−n

(| f (x)| + | f (xk)|)
e−

n
λn
|x−xk |∑n

i=−n e−
n
λn
|x−xi |

≤ εw f (λn) + ‖w f ‖
R

∑
|k|≤nδn/λn

w (x)
w (xk)

e−
n
λn
|x−xk |∑n

i=−n e−
n
λn
|x−xi |

+εw f (δn)
∑

nδn/λn<|k|≤n

w (x)
w (xk)

e−
n
λn
|x−xk |∑n

i=−n e−
n
λn
|x−xi |

≤ εw f (λn) + C
(
w (λn)
w (δn)

+ εw f (δn)
)

≤ C
(
w (λn)
w (δn)

+ εw f (δn)
)
,

which implies that (3.6) holds for |x| > λn. �

In a similar way to the corollary in Page 3 of [20], we have the following corollary of Theorem 3.2:

Corollary 3.1. For any f ∈ Cw (R) , there exists λn > δn > 0 such that

lim
n→∞
‖w ( f − g)‖ = 0.
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Remark 3.1. From Corollary 3.1, we see that the neural networks of the form

g (x) =

n∑
j=0

C j
e−A|x−x j|∑n
i=0 e−A|x−xi |

are always dense in the space Cw (R) with respect to the weights e−Q(x) satisfying the conditions (i)–(iii).
This is in sharp contrast with the weighted polynomial approximation, where the density condition is∫ +∞

−∞

Q (x)
1 + x2 dx = ∞.

Therefore, our result shows that the neural networks are dense in a wider class of weighted functional
spaces than polynomials. Thus, Corollary 3.1 implies that approximation by feedforward neural
networks has some better properties than approximation by polynomials on infinite intervals.

4. Numerical example

In this section, we give some numerical experiments to demonstrate the validity of the obtained
results. We take

f (x) =

(1 + x)
1
3 , −1 ≤ x ≤ 0,

(1 − x)
1
3 , 0 < x ≤ 1,

as the target function, Table 1 gives the approximate interpolation neural network operators Np( f , X, x).
Figure 2 gives the error of Np( f , X, x) with different p, Figures 3–10 give the error of g(x).

Table 1. Values of approximation error ‖Np( f , X, x) − f ‖∞.

p = 1 p = 2 p = 3 p = 4 p = 5
n = 10 0.0822 0.0549 0.0868 0.0749 0.017
n = 20 0.0653 0.0331 0.0459 0.0061 0
n = 30 0.0571 0.0242 0.0291 0.0021 0
n = 40 0.0518 0.0202 0.0209 0.0006 0
n = 50 0.0481 0.0161 0.0161 0 0

Figure 2. Errors of Np( f , X, x) with different p.
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Figure 3. Errors of g(x) with m = 2, n = 4.

Figure 4. Errors of g(x) with m = 3, n = 9.

Figure 5. Errors of g(x) with m = 4, n = 16.
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Figure 6. Errors of g(x) with m = 5, n = 25.

Figure 7. Errors of g(x) with m = 6, n = 36.

Figure 8. Errors of g(x) with m = 7, n = 49.

AIMS Mathematics Volume 9, Issue 11, 31679–31695.



31693

Figure 9. Errors of g(x) with m = 8, n = 64.

Figure 10. Errors of g(x) with m = 9, n = 81.

5. Conclusions

In this paper, we constructs two kinds of feedforward neural network operators and estimates
their approximation rate. One type of the operators can approximate the continuous functions with
a very good rate which cannot be obtained by polynomial approximation. Another type of operators
is constructed to investigate the weighted approximation properties by neural networks on infinite
intervals. Thus, we demonstrate that approximation by feedforward neural networks has some better
properties than approximation by polynomials on infinite intervals.
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