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Abstract: The prevalence of cardiovascular disease (CVD) is a major issue in world health. There is 

a compelling desire for precise and effective methods for making decisions to determine the most 

effective technique for treating CVD. Here, we focused on the urgent matter at hand. Pythagorean 

fuzzy dynamic settings are exceptionally proficient at capturing ambiguity because they can handle 

complex problem specifications that involve both Pythagorean uncertainty and periodicity. In this 

article, we introduced a pair of novel aggregation operators: The Pythagorean fuzzy dynamic ordered 

weighted averaging (PFDOWA) operator and the Pythagorean fuzzy dynamic ordered weighted 

geometric (PFDOWG) operator, and we proved various structural properties of these concepts. Using 

these operators, we devised a systematic methodology to handle multiple attribute decision-making 

(MADM) scenarios incorporating Pythagorean fuzzy data. Moreover, we endeavored to address a 

MADM problem, where we discerned the most efficacious strategy for the management of CVD 

through the application of the proposed operators. Finally, we undertook an exhaustive comparative 

analysis to evaluate the ability of the suggested methods in connection with several developed 

procedures, therefore demonstrating the reliability of the generated methodologies. 
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The abbreviations used in this study are summarized as below: 

Description Abbreviation 

Cardiovascular disease CVD 

Fuzzy set FS 

Intuitionistic fuzzy set IFS 

Pythagorean fuzzy set PFS 

Pythagorean fuzzy sets PFSs 

Pythagorean fuzzy dynamic ordered weighted averaging operator PFDOWA 

Pythagorean fuzzy dynamic ordered weighted geometric operator PFDOWG 

Multi-attribute decision-making MADM 

Pythagorean fuzzy ordered weighted averaging operator PFOWA 

Pythagorean fuzzy ordered weighted geometric operator PFOWG 

Pythagorean fuzzy weighted averaging operator PFWA 

Pythagorean fuzzy weighted geometric operator PFWG 

Aggregation operators AOs 

1. Introduction 

MADM constitutes a pivotal component of the decision-making process (DM). Its objective is to 

choose the most rational option from a spectrum of choices, taking into account a multitude of 

conflicting criteria. The MADM method is recognized as a notable approach due to its immediate 

application, disregarding the reluctance of individuals with decision-making difficulties and the 

complexity of decision-making scenarios. The significance of this technique is increasing because of 

its ability to effectively address real-world issues in several fields. In recent years, healthcare issues 

have become a central focus for researchers employing decision-making approaches [1–3]. The 

growing importance of MADM is due to its capacity to effectively address real-world problems across 

a variety of domains through the use of AOs. These operators are explicitly designed to scrutinize each 

value within the original set and combine all values into a singular entity within the same set. Prior to 

the advent of AOs, selections were solely based on entire collections. Nevertheless, the concept of 

belonging to a set is often imprecise, particularly in disciplines such as biology, social sciences, 

language and linguistics, psychology, economics, and other social sciences. In these fields, traditional 

mathematical techniques appear somewhat insufficient. To address this challenge, Zadeh [4] proposed 

the notion of partial membership in a set, which he termed a fuzzy set. Kahne [5] developed a 

significant decision-making approach that can be used to assess potential solutions by considering 

numerous factors with different levels of importance. An approach for identifying the optimal choice 

using fuzzy logic was presented [6]. Fuzzy sets' fundamental operations were investigated in [7]. The 

AOs for fuzzy sets were first introduced by Yager in [8]. Atanassov [9] introduced the notion of IFS to 

further develop the concept of fuzzy sets. Szmidt and Kaeprzyk [10] developed a method for solving 

group decision problems using the intuitionistic fuzzy (IF) environment. Li [11] did a study on 

fundamental linear programming techniques and methodologies for MADM in an uncertain 

environment. Xu and Yager [12] developed many geometric AOs for IFS. In 2007, several basic 

arithmetic aggregation algorithms were created [13] using an IFS framework. [14] suggested the 

utilization of generalized AOs on IFS as a possible solution to the MADM problem. The researchers in 
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[15] aimed to tackle challenges related to group decision-making in IFS environments by utilizing 

AOs. Huang [16] proposed a DM method for IFS using Hamacher AOs. Verma [17] was the first to use 

the Bonferroni mean operators for IFS. In order to tackle MADM issues, the Aczel-Alsina AOs of IFS 

were introduced by [18]. 

The condition 𝜇 + 𝜂 ≤ 1 restricts the possibility of having membership and non-membership 

grades in IFS. To prevent this scenario, Yager [19,20] proposed (PFSs) as a successor to IFSs. PFSs 

are designed to handle imprecision and complicated uncertainty by imposing the constraint 𝜇2 + 𝜂2 ≤

1, where 𝜇 represents membership grade and 𝜂 represents non-membership grade. Moreover, the 

Pythagorean fuzzy number (PFN) was proposed by Zhang and Xu [21] to describe an object’s dual 

characteristics. PFSs generally permit and incorporate a higher amount of ambiguity than IFSs. Yager 

[22] demonstrated the development of several AOs, such as the weighted power geometric and 

PFOWA operators. A similarity measure and two AOs form the basis of an innovative method 

suggested by Zhang [23] in a Pythagorean fuzzy (PF) setting. Peng and Yaun [24] explored the basic 

characteristics of Pythagorean fuzzy AOs. Wei [25] introduced a collection of generalized 

Pythagorean fuzzy AOs and highlighted their applications in decision-making. Zeng et al. [26] later 

integrated AOs and distance measurements to develop the PF weighted and ordered weighted distance 

operators. For more developments about PFSs, we refer to [27–29]. A set of generalized Pythagorean 

fuzzy geometric AOs was proposed by Garg [30], which incorporated Einstein's operations. 

Furthermore, Garg [31,32] examined the utilization of the PF environment in diverse decision-making 

scenarios. Liang et al. [33] devised a PF Bonferroni mean AO and presented a proficient method for its 

computation to address decision-making problems. To go deeper into this specific area of expertise, 

one might examine [34–37]. 

All the aforementioned decision-making challenges involve the consideration of decision 

information with simultaneous inputs. However, certain domains of decision-making, such as 

multi-period dynamic investment, medical diagnosis, dynamic personal selection, and dynamic 

military system efficiency evaluation, entail the collection of data at various time intervals. Xu and 

Yager [38] first discovered this particular kind of information in their study on dynamic MADM 

problems. They presented an application of MADM problems utilizing the uncertain IF dynamic 

weighted averaging (UIFDWA) operator and the IF dynamic weighted averaging (IFDWA) operator 

to obtain dynamic or uncertain dynamic IF information. In addition, the IFDWA and UIFDWA 

operators were employed to address two dynamic MADM challenges when the attributes' arguments 

are utilized in IFNs or IVIFNs. Dynamic MADM problems involving the utilization of IVIFNs or IFN 

attribute values were examined by Wei [39]. He introduced weighted geometric AOs comprised of 

various periods to gather dynamic IFS data, including the IF dynamic weighted geometric (IFDWG) 

operator and the uncertain IF dynamic weighted geometric (UIFDWG) operator. The scholarly 

discourse on PFSs has rapidly gained popularity among numerous researchers, as evidenced by the 

considerable focus they have garnered across diverse studies [40–44]. 

1.1. The research gap, motivation, and advantages of this study 

PFSs sustain higher levels of uncertainty than IFSs, underscoring their suitability for addressing 

scenarios marked by heightened complexity and ambiguity in MADM challenges. Ordered weighted 

AOs do not depend on preassigned weights designated to certain attributes. These operators allow 

decision-makers to include the uncertainty and imprecision associated with real-world scenarios by 
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rearranging the input values to accurately reflect their importance in the decision-making process. 

Moreover, ordered weighted AOs with varying time intervals offer a strong tool for temporal 

aggregation and decision-making. Researchers have focused mainly on issues where all of the initially 

selected data was collected at the same time for decision-making. Nonetheless, it is common in many 

decision-making environments to collect relevant data at several time points for the underlying 

selection. In the context of the MADM, the term “time interval” refers to how the decision-maker 

prefers to receive information throughout various time periods. It is accomplished by employing a time 

varying function. By combining components into the dynamic paradigm, it becomes feasible to 

analyze variations in membership degrees as time passes and examine changes within particular time 

frames. This aspect improves decision-making accuracy, provides insight into modifications, and 

evaluates the dynamics of fuzzy sets. To address these problems, a variety of techniques are needed. 

The PFDOWA and PFDOWG operators are essential components of decision-making models because 

they allow for dynamic modifications and accurately depict complex interactions among systems 

affected by imprecision and uncertainty. These operators aid in prioritizing pertinent, current data and 

provide insights into both short- and long-term trends by varying weights over time. In addition, the 

ordered weighted AOs have already been proposed for PF settings. However, these operators are not 

capable of handling uncertainty at different time periods. As a result, it is critical to provide a detailed 

explanation of these operators for PF sets in order to effectively address such scenarios and fill the gap. 

This motivates us to study dynamic ordered weighted AOs in the framework of PFSs. The dynamic 

nature of the operator, together with the PFS, is an essential part of our strategy. The key motivations 

for this study are listed below: 

a) Dynamic operators provide exceptional flexibility when dealing with ambiguous data. 

b) These operators exhibit exceptional proficiency in switching diverse data into a single value, 

consequently effectively addressing the complicated aspects of decision-making in an 

ever-changing environment. 

c) In dynamic contexts characterized by ever-changing conditions, PFSs present an advanced 

representation that can accommodate emerging preferences or circumstances. 

The major contributions of this study are explained as follows: 

i. We introduce two innovative AOs, the PFDOWA operator and the PFDOWG operator. We design 

these operators to apply to procedures that use PF data in decision-making. 

ii. We thoroughly examine the essential characteristics of PFDOWA and PFDOWG operators, such 

as idempotency, boundedness, and monotonicity. 

iii. By utilizing the PFDOWA and PFDOWG operators, an organized approach for addressing 

MADM problems is proposed. This demonstrates the practical significance of these operators. 

iv. The suggested method is used to tackle a specific MADM issue that is focused on treating CVD. It 

underscores the significance of PFDOWA and PFDOWG operators in the context of 

decision-making processes. 

v. To determine the efficacy of the proposed methods in comparison to a variety of established 

techniques, we perform a comprehensive comparative analysis. These comparison results 

demonstrate the consistency and validity of the developed methodology. 

To accomplish the work presented in this article, the remaining portion of this study is organized 

as follows: In Section 2, we provide a few basic definitions that are crucial for understanding the major 

findings presented in this research work. Section 3 contains an introduction to the study of PFDOWA 

and PFDOWG operators and establishes the key structural aspects of these phenomena. Section 4 
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presents a step-by-step methodology for tackling the MADM problem through the utilization of PF 

dynamic information, employing the suggested operators. In Section 5, we illustrate the validity of 

defined approaches in the framework of solving the MADM problem of selecting an efficient 

treatment method for CVD. Additionally, we include a comparative study to demonstrate the 

effectiveness and practicality of these novel approaches in contrast with established approaches. In 

Section 6, we describe the conclusions drawn from the complete research. 

2. Preliminaries 

In this section, we give key definitions that are required for a complete understanding of the 

subject matter covered in this article. 

Definition 1. ([9]) Assuming that 𝒵 is a universe of discourse, an IFS ℐ is described as follows: 

ℐ = {𝓏, 𝜇ℐ(𝓏), 𝜂ℐ(𝓏)|𝓏 ∈ 𝒵}, 

where 𝜇ℐ ∶ 𝒵 → [0,1] and 𝜂ℐ: 𝒵 → [0,1] represent the membership function and non-membership 

function, respectively, that admit the criteria 0 ≤ 𝜇ℐ(𝓏) + 𝜂ℐ(𝓏) ≤ 1. The hesitation margin of the 

IFS ℐ can be characterized as follows: 𝜋ℐ(𝓏) = 1 − 𝜇ℐ(𝓏) − 𝜂ℐ(𝓏). 

Definition 2. ([22]). Let 𝒵 be a universal set. A PFS 𝒫 can be characterized in the following 

manner: 

𝒫 = {𝓏, 𝜇𝒫(𝓏) , 𝜂𝒫(𝓏)|𝓏 ∈ 𝒵}, 

where, 𝜇𝒫: 𝒵 → [0,1] and 𝜂𝒫: 𝒵 → [0,1], are called membership and non-membership functions 

respectively, under a few restrictions: 0 ≤ 𝜇𝒫(𝓏) ≤ 1, 0 ≤ 𝜂𝒫(𝓏) ≤ 1 and 0 ≤ 𝜇𝒫
2 (𝓏) + 𝜂𝒫

2 (𝓏) ≤

1   ∀ 𝓏 ∈ 𝒵 . Additionally, the degree of indeterminacy of (PFS) 𝒫  is specified as  π𝒫(𝓏) =

√1 − 𝜇𝒫
2 (𝓏) − 𝜂𝒫

2 (𝓏), such that 0 ≤ 𝜋𝒫(𝓏) ≤ 1  ∀ 𝓏 ∈ 𝒵. 

Now, we specify the membership and non-membership degrees of 𝓏 ∈ 𝒵 as 𝓏 = (𝜇, 𝜂). The 

aforementioned description of 𝓏 is referred to as a PF number. 

Definition 3. ([22]) Assume that 𝜙 is a collection of PFNs represented as ἆ𝑖 = (𝜇𝑖 , 𝜂𝑖) where, 𝑖 =

1,2, … , 𝑛 and 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇 is the weight vector linked to ἆ𝑖 with condition 𝜔𝑖 ∈ [0,1] 

and ∑ 𝜔𝑖
𝑛
𝑖=1 = 1. The Pythagorean fuzzy weighted averaging AO is a mapping 𝑃𝐹𝑊𝐴:ϕ𝑛 → ϕ, 

defined by the rule: 

𝑃𝐹𝑊𝐴(ἆ1, ἆ2, … , ἆ𝑛) = ⨁𝑖=1
𝑛 𝜔𝑖ἆ𝑖 

= (√1 − ∏(1 − 𝜇𝑖
2)𝜔𝑖

𝑛

𝑖=1

,∏𝜂𝑖
𝜔𝑖

𝑛

𝑖=1

). 

Definition 4. ([27]) Assume that 𝜙 is a collection of PFNs represented as ἆ𝑖 = (𝜇𝑖 , 𝜂𝑖) where, 𝑖 =

1,2, … , 𝑛 and 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇  is the weight vector of ἆ𝑖  with that that conditions 𝜔𝑖 ∈
[0,1] and ∑ 𝜔𝑖

𝑛
𝑖=1 = 1. The Pythagorean fuzzy weighted geometric AO is a function 𝑃𝐹𝑊𝐺:ϕ𝑛 →
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ϕ, defined by the rule: 

𝑃𝐹𝑊𝐺(ἆ1, ἆ2, … , ἆ𝑛) = ⨂𝑖=1
𝑛  (ἆ𝑖)

𝜔𝑖
 

= (∏𝜇𝑖
𝜔𝑖

𝑛

𝑖=1

, √1 − ∏(1 − 𝜂𝑖
2)𝜔𝑖

𝑛

𝑖=1

). 

Definition 5. ([20]) Assume that 𝜙 is a collection of PFNs represented as ἆ𝑖 = (𝜇𝑖 , 𝜂𝑖) where, 𝑖 =

1,2, … , 𝑛 and 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇 is the weight vector of ἆ𝑖 with the conditions that 𝜔𝑖 ∈ [0,1] 

and ∑ 𝜔𝑖
𝑛
𝑖=1 = 1 . The Pythagorean fuzzy ordered weighted averaging AO is a mapping 

𝑃𝐹𝑂𝑊𝐴:𝜙𝑛 → ϕ, defined by the rule: 

𝑃𝐹𝑂𝑊𝐴(ἆ1, ἆ2, … , ἆ𝑛) = ⨁𝑖=1
𝑛 𝜔𝑖ἆ𝜚(𝑖) 

= (√1 − ∏(1 − 𝜇𝜚(𝑖)
2 )

𝜔𝑖

𝑛

𝑖=1

,∏𝜂𝜚(𝑖)
𝜔𝑖

𝑛

𝑖=1

). 

Notice, 𝜚(1), 𝜚(2), … , 𝜚(𝑛)  is the permutation of {1, 2, … , 𝑛 } in a certain manner, satisfying 

condition ἆ𝜚(𝑖−1) ≥ ἆ𝜚(𝑖). 

Definition 6. ([45]) Assume that 𝜙 is a collection of PFNs represented as ἆ𝑖 = (𝜇𝑖 , 𝜂𝑖) where, 𝑖 =

1,2, … , 𝑛 and 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇 is the weight vector linked to ἆ𝑖 with the conditions 𝜔𝑖 ∈
[0,1] and ∑ 𝜔𝑖

𝑛
𝑖=1 = 1. The PFOWG operator is a function 𝑃𝐹𝑂𝑊𝐺:ϕ𝑛 → ϕ, defined by the rule: 

𝑃𝐹𝑂𝑊𝐺(ἆ1, ἆ2, … , ἆ𝑛) = ⨂𝑖=1
𝑛  (ἆ𝜚(𝑖))

𝜔𝑖
 

= (∏𝜇𝜚(𝑖)
𝜔𝑖

𝑛

𝑖=1

, √1 − ∏(1 − 𝜂𝜚(𝑖)
2 )

𝜔𝑖

𝑛

𝑖=1

). 

Definition 7. ([21]) For any PFN ἆ = (𝜇, 𝜂) two vital functions are outlined as follows: 

i. The score function 𝑆(ἆ) is computed in the following manner: 𝑆(ἆ) = 𝜇2 − 𝜂2, where, 𝑆(ἆ) ∈

[−1,1]. 

ii. The definition of the accuracy function 𝐻(ἆ) is described as follows: 𝐻(ἆ) = 𝜇2 + 𝜂2, where, 

𝐻(ἆ) ∈ [0,1]. 

Definition 8. ([38]) Let 𝑡 be a time variable, then ℐ𝑡 = (𝜇𝑡 , 𝜂𝑡) is an IF variable where, 𝜇𝑡 ∈

[0,1] , 𝜂𝑡 ∈ [0,1] with restriction 𝜇𝑡 + 𝜂𝑡 ≤ 1. 
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In the context of IF variable ℐ𝑡 = (𝜇𝑡 , 𝜂𝑡) if a time sequence is known 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑝), then 

notation ℐ𝑡1 , ℐ𝑡2 , … , ℐ𝑡𝑝  represents a collection of 𝓅  IF numbers considered at 𝓅  different time 

periods. 

3. Dynamic ordered weighted aggregation operators for PFNs 

In this section, we examine the dynamic operations that occur inside the PF framework. 

Furthermore, we present the concepts of dynamic ordered weighted AOs for PFNs, namely PFDOWA 

and PFDOWG, and analyze their key features. 

Definition 9. Let 𝑡 symbolize a variable that represents time. Within this framework, we establish 

ἆ𝑡 = (𝜇𝑡 , 𝜂𝑡) as a PF variable where, 𝜇𝑡 ∈ [0,1] , 𝜂𝑡 ∈ [0,1]  with constraint 𝜇𝑡
2 + 𝜂𝑡

2 ≤ 1. 

For a PF variable ἆ𝑡 = (𝜇𝑡 , 𝜂𝑡)  if we have a time sequence 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑝)  then 

ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝 represents 𝑝 PFNs, associated with distinct time periods. 

The following definition introduces us to dynamic operational laws applied to PFNs. 

Definition 10. Assume two PFNs ἆ𝑡1 = (𝜇𝑡1 , 𝜂𝑡1) and ἆ𝑡2 = (𝜇𝑡2 , 𝜂𝑡2). The fundamental ordering 

principles governing the interrelationship of operational laws in PFNs can be characterized as 

follows:  

1- ἆ𝑡1 ≤ ἆ𝑡2, if 𝜇𝑡1 ≤ 𝜇𝑡2 and 𝜂𝑡1 ≤ 𝜂𝑡2 

2- ἆ𝑡1 = ἆ𝑡2, if and only if ἆ𝑡1 ≤ ἆ𝑡2 and ἆ𝑡2 ≤ ἆ𝑡1 

Definition 11. Consider ἆ𝑡 = (𝜇𝑡, 𝜂𝑡), ἆ𝑡1 = (𝜇𝑡1 , 𝜂𝑡1) and ἆ𝑡2 = (𝜇𝑡2 , 𝜂𝑡2) represent three PFNs 

and ϒ > 0. The dynamic operations for these PFNs are described as follows: 

i. ἆ𝑡1⨁ἆ𝑡2 =  (√𝜇𝑡1
2 + 𝜇𝑡2

2 − 𝜇𝑡1
2 𝜇𝑡2

2   , 𝜂𝑡1  𝜂𝑡2) 

ii. ἆ𝑡1⨂ἆ𝑡2 = (𝜇𝑡1𝜇𝑡2  , √𝜂𝑡1
2 + 𝜂𝑡2

2 − 𝜂𝑡1
2 𝜂𝑡2

2 ) 

iii. λἆ𝑡 = (√1 − (1 − 𝜇𝑡
2)ϒ, 𝜂𝑡

ϒ) 

iv. ἆ𝑡
ϒ

= (𝜇𝑡
ϒ, √1 − (1 − 𝜂𝑡

2)ϒ) 

Definition 12. Assume that 𝜙 is a collection of PFNs represented as ἆ𝑡ř = (𝜇𝑡ř  , 𝜂𝑡ř) where, ř =

1,2.3, … , 𝑝 and ϒ𝑡 = [ϒ𝑡1 , ϒ𝑡2 , … , ϒ𝑡𝑝  ]
𝑇
is the weight vector linked to the time periods 𝑡ř such that 

∑ ϒ𝑡ř = 1
𝑝
ř=1  and ϒ𝑡ř ∈ [0,1]. In this context, the PFDOWA is a mapping 𝑃𝐹𝐷𝑂𝑊𝐴: ϕ𝑝 → 𝜙 

defined by the rule: 

𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) = ⨁ř=1
𝑝

ϒ𝑡řἆ𝜚(𝑡ř) 
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= (√1 − ∏ (1 − 𝜇𝜚(𝑡ř)
2 )

ϒ𝑡ř𝑝
ř=1 , ∏ 𝜂

𝜚(𝑡ř)

ϒ𝑡ř𝑝
ř=1 ) 

In the upcoming theorem, we will demonstrate that the aggregated value of PFNs at different time 

periods, using the PFDOWA operator, results in a new PFN. 

Theorem 1. Consider 𝑝  numbers of PFNs expressed as ἆ𝑡ř
= (𝜇𝑡ř

 , 𝜂𝑡ř
)  at 𝑝  different time 

periods 𝑡ř, where ř = 1,2,3, … , 𝑝, and the associated weight vector is ϒ𝑡 = [ϒ𝑡1  , ϒ𝑡2  , … . , ϒ𝑡𝑝]
𝑇
 

with some restrictions ∑ ϒ𝑡ř = 1
𝑝
ř=1  and ϒ𝑡ř ∈ [0,1]. The aggregated value of these PFNs using the 

PFDOWA operator is also a PFN. It can be described as follows: 

𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) = (√1 − ∏ (1 − 𝜇𝜚(𝑡ř)
2 )

ϒ(𝑡ř)𝑝
ř=1 , ∏ 𝜂𝜚(𝑡ř)

ϒ(𝑡ř)𝑝
ř=1 )  

Proof. The technique of mathematical induction is used to establish the proof of this theorem. The 

proof begins by examining the basic case when 𝑝 = 2 

𝑃𝐹𝐷𝑂𝑊𝐴(ἆ𝑡1 , ἆ𝑡2) =  ϒ𝑡1ἆ𝜚(𝑡1)⨁ϒ𝑡2ἆ𝜚(𝑡2) 

By separating the components ϒ𝑡1ἆ𝜚(𝑡1)  and ϒ𝑡2ἆ𝜚(𝑡2)  utilizing definition 12, we derive the 

subsequent equations: 

ϒ𝑡1ἆ𝜚(𝑡1) = [√1 − (1 − 𝜇𝜚(𝑡1)
2 )

ϒ𝑡1   , 𝜂
𝜚(𝑡1)

ϒ𝑡1 ] 

ϒ𝑡2ἆ𝜚(𝑡2) = [√1 − (1 − 𝜇𝜚(𝑡2)
2 )

ϒ𝑡2 , 𝜂
𝜚(𝑡2)

ϒ𝑡2 ] 

Thus, 

ϒ𝑡1 . ἆ𝜚(𝑡1)⨁ϒ𝑡2 . ἆ𝜚(𝑡2) = [√1 − (1 − 𝜇𝜚(𝑡1)

2 )
ϒ𝑡1

, 𝜂
𝜚(𝑡1)

ϒ𝑡1 ]⨁ [√1 − (1 − 𝜇𝜚(𝑡2)
2 )

ϒ𝑡2 , 𝜂
𝜚(𝑡2)

ϒ𝑡2 ] 

= [√1 − (1 − 𝜇𝜚(𝑡1)
2 )

ϒ𝑡1(1 − 𝜇𝜚(𝑡2)
2 )

ϒ𝑡2 , 𝜂
𝜚(𝑡1)

ϒ𝑡1  
 𝜂

𝜚(𝑡2)

ϒ𝑡2 ] 

Consequently, 
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𝑃𝐹𝐷𝑂𝑊𝐴(ἆ𝑡1 , ἆ𝑡2) =

[
 
 
 
√1 − ∏(1 − 𝜇𝜚(𝑡ř)

2 )
ϒ𝑡ř

2

ř=1

,∏𝜂
𝜚(𝑡ř)

ϒ𝑡ř

2

ř=1
]
 
 
 

 

Hence, the result is true for 𝑝 = 2. 

Now, we assume that the given result is true for 𝑝 = 𝑛 > 2, then we have, 

𝑃𝐹𝐷𝑂𝑊𝐴(ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑛) =

[
 
 
 
√1 − ∏(1 − 𝜇𝜚(𝑡ř)

2 )
ϒ𝑡ř

𝑛

ř=1

,∏𝜂
𝜚(𝑡ř)

ϒ𝑡ř

𝑛

ř=1
]
 
 
 
 

Now we prove the result for 𝑝 = 𝑛 + 1 

𝑃𝐹𝐷𝑂𝑊𝐴(ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑛 , ἆ𝑡𝑛+1
) = ϒ𝑡1ἆ𝜚(𝑡1)⨁ϒ𝑡2ἆ𝜚(𝑡2)⨁. . .⨁ϒ𝑡𝑛ἆ𝜚(𝑡𝑛)⨁ϒ𝑡𝑛+1

ἆ𝜚(𝑡𝑛+1) 

=

[
 
 
 
√1 − ∏(1 − 𝜇𝜚(𝑡ř)

2 )
ϒ𝑡ř

𝑛

ř=1

  ,∏𝜂
𝜚(𝑡ř)

ϒ𝑡ř

𝑛

ř=1
]
 
 
 
 ⨁ [√1 − (1 − 𝜇𝜚(𝑡𝑛+1)

2 )
ϒ𝑡𝑛+1  , (𝜂𝜚(𝑡𝑛+1))

ϒ𝑡𝑛+1] 

It follows that 

𝑃𝐹𝐷𝑂𝑊𝐴(ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑛 , ἆ𝑡𝑛+1
) =

[
 
 
 
√1 − ∏(1 − 𝜇𝜚(𝑡ř)

2 )
ϒ𝑡ř

𝑛+1

ř=1

,∏𝜂
𝜚(𝑡ř)

ϒ𝑡ř

𝑛+1

ř=1
]
 
 
 

 

Hence, we can deduce that the result is applicable to all positive integer values of 𝑝. 

Example 1. Consider ἆ𝑡1 = (0.30,0.80) , ἆ𝑡2 = (0.40,0.70) , ἆ𝑡3 = (0.20,0.80)  and ἆ𝑡4 =

(0.70,0.60) represents four PFNs and ϒ𝑡 = (0.2,0.1,0.3,0.4)𝑇 is the weight vector linked to time 

periods 𝑡ř where ř = 1,2,3,4. First we compute the scores values of ἆ𝑡ř by applying definition 7 

as follows: 

𝑆(ἆ𝑡1) = −0.55, 𝑆(ἆ𝑡2) = −0.33, 

𝑆(ἆ𝑡3) = −0.6, 𝑆(ἆ𝑡4) = 0.13 

then the permuted values of PFNs are organized as follows: 

ἆ𝜚(𝑡1) = (0.70,0.60), ἆ𝜚(𝑡2) = (0.40,0.70), ἆ𝜚(𝑡3) = (0.30,0.80), ἆ𝜚(𝑡4) = (0.20,0.80) 

In view of definition 12, the aggregated values of the above PFNs is calculated as follows: 
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𝑃𝐹𝐷𝑂𝑊𝐴(ἆ𝑡1 , ἆ𝑡2 , ἆ𝑡3 , ἆ𝑡4) =

(

 √1 − ∏(1 − 𝜇𝜚(𝑡ř)
2 )

ϒ𝑡ř

4

ř=1

,∏𝜂
𝜚(𝑡ř)

ϒ𝑡ř

4

ř=1
)

  

𝑃𝐹𝐷𝑂𝑊𝐴(ἆ𝑡1 , ἆ𝑡2 , ἆ𝑡3 , ἆ𝑡4)

= (√1 − (1 − 0.72)0.2(1 − 0.42)0.1(1 − 0.32)0.3(1 − 0.22)0.4,   (0.6)0.2(0.7)0.1(0.8)0.3(0.8)0.4) 

It follows that 

𝑃𝐹𝐷𝑂𝑊𝐴(ἆ𝑡1 , ἆ𝑡2 , ἆ𝑡3 , ἆ𝑡4) = (0.423,0.745) 

In the upcoming theorem, we establish the idempotency property of the PFDOWA operator, 

showing that if all PFNs are equal for a given time period, the aggregated result will also equal that 

PFN. 

Theorem 2. Consider the 𝑝 number of PFNs represented as ἆ(𝑡ř) = (𝜇(𝑡ř), 𝜂(𝑡ř)), existing at 𝑝 

different time periods 𝑡ř, and let ϒ𝑡 = (ϒ𝑡1 , ϒ𝑡2 , … , ϒ𝑡𝑝)
𝑇
be the weight vector linked to time periods 

𝑡ř with the condition ∑ ϒ𝑡ř
𝑝
ř=1 = 1 and ϒ𝑡ř ∈ [0,1], where ř = 1,2,… , 𝑝. If   ἆ𝜚(𝑡ř) = ἆ𝜚(𝑡𝑗) are 

mathematically equal for all ř and for some 𝑗 ∈ {1,2, … , 𝑝} where, ἆ𝜚(𝑡𝑗) = (𝜇𝜚(𝑡𝑗), 𝜂𝜚(𝑡𝑗)). Then 

𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) = ἆ𝜚(𝑡𝑗) 

Proof. Given that ἆ𝜚(𝑡ř) = ἆ𝜚(𝑡𝑗) for all ř = 1,2, … , 𝑝  and for some 𝑗 ∈ {1,2, … , 𝑝}, which implies 

that 𝜇𝜚(𝑡ř) = 𝜇𝜚(𝑡𝑗) and 𝜂𝜚(𝑡ř) = 𝜂𝜚(𝑡𝑗). Thus, we have 

𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) = (√1 − (1 − 𝜇𝜚(𝑡𝑗)
2 )

∑ ϒ𝑡ř
𝑝
ř=1

, 𝜂
𝜚(𝑡𝑗)

∑ ϒ𝑡ř
𝑝
ř=1 ) 

= (√1 − (1 − 𝜇𝜚(𝑡𝑗)
2 ) , 𝜂𝜚(𝑡𝑗)) = (√𝜇𝜚(𝑡𝑗)

2 , 𝜂𝜚(𝑡𝑗)) = (𝜇𝜚(𝑡𝑗), 𝜂𝜚(𝑡𝑗)) 

Consequently, 

𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) = ἆ𝜚(𝑡𝑗) 
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In the upcoming theorem, we establish the boundedness property of the PFDOWA operator, 

demonstrating that the aggregated value of PFNs lies between the defined lower and upper bounds. 

Theorem 3. Consider ἆ− = (min
𝑡ř

(𝜇𝜚(𝑡ř)
) ,max

𝑡ř
(𝜂𝜚(𝑡ř)

))  and ἆ+ = (max
𝑡ř

(𝜇𝜚(𝑡ř)
) ,min

𝑡ř
(𝜂𝜚(𝑡ř)

)) 

represent the lower bound and upper bound of PFNs ἆ𝑡ř
= (𝜇𝑡ř

, 𝜂𝑡ř
) where, ř = 1,2, … , 𝑝. Let 

ϒ𝑡 = (ϒ𝑡1 , ϒ𝑡2 , … , ϒ𝑡𝑝)
𝑇
be the corresponding weight vector of time periods 𝑡ř such that ϒ𝑡ř

∈ [0,1] 

satisfying the condition  ∑ ϒ𝑡ř
𝑝
ř=1 = 1. Then 

ἆ− ≤ 𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) ≤ ἆ+. 

Proof. Consider the outcome when employing the PFDOWA operator on a PFNs collection, indicated 

as 𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) = (𝜇𝑡 , 𝜂𝑡), 

In view of the given conditions, we have 

min
𝑡ř

{𝜇𝜚(𝑡ř)} ≤ 𝜇𝜚(𝑡ř) ≤ max
𝑡ř

{𝜇𝜚(𝑡ř)} 

⟹ min
𝑡ř

{𝜇𝜚(𝑡ř)
2 } ≤ 𝜇𝜚(𝑡ř)

2 ≤ max
𝑡ř

{𝜇𝜚(𝑡ř)
2 } 

⟹ 1 − max
𝑡ř

{𝜇𝜚(𝑡ř)
2 } ≤ 1 −𝜇𝜚(𝑡ř)

2 ≤ 1 − min
𝑡ř

{𝜇𝜚(𝑡ř)
2 } 

⟹ ∏(1 − max
𝑡ř

{𝜇𝜚(𝑡ř)
2 })

ϒ𝑡ř
≤ ∏(1 − 𝜇𝜚(𝑡ř)

2 )
ϒ𝑡ř ≤

𝑝

ř=1

𝑝

ř=1

∏(1 − min
𝑡ř

{𝜇𝜚(𝑡ř)
2 })

ϒ𝑡ř

𝑝

ř=1

 

⟹ (1 − max
𝑡ř

{𝜇𝜚(𝑡ř)
2 })

∑ ϒ𝑡ř
𝑝
ř=1

≤ ∏(1 − 𝜇𝜚(𝑡ř)
2 )

ϒ𝑡ř ≤

𝑝

ř=1

(1 − min
𝑡ř

{𝜇𝜚(𝑡ř)
2 })

∑ ϒ𝑡ř
𝑝
ř=1

 

⟹ (1 − max
𝑡ř

{𝜇𝜚(𝑡ř)
2 }) ≤ ∏(1 − 𝜇𝜚(𝑡ř)

2 )
ϒ𝑡ř ≤

𝑝

ř=1

(1 − min
tk

{μ𝜚(tk)
2 }) 

⟹ 𝑚𝑖𝑛
𝑡ř

{𝜇𝜚(𝑡ř)
2 } ≤ 1 − ∏(1 − 𝜇𝜚(𝑡ř)

2 )
ϒ𝑡ř ≤

𝑝

ř=1

𝑚𝑎𝑥
𝑡ř

{𝜇𝜚(𝑡ř)
2 } 

⟹ √𝑚𝑖𝑛
𝑡ř

{𝜇𝜚(𝑡ř)
2 } ≤ √1 − ∏(1 − 𝜇𝜚(𝑡ř)

2 )
ϒ𝑡ř

𝑝

ř=1

≤ √𝑚𝑎𝑥
𝑡ř

{𝜇𝜚(𝑡ř)
2 } 
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Consequently, 

𝑚𝑖𝑛
𝑡ř

{𝜇𝜚(𝑡ř)
} ≤ 𝜇𝑡 ≤ 𝑚𝑎𝑥

𝑡ř
{𝜇𝜚(𝑡ř)

}       (3.1) 

Moreover, in view of given conditions we have 

max
𝑡ř

{𝜂𝜚(𝑡ř)
} ≤ 𝜂𝜚(𝑡ř)

≤ min
𝑡ř

{𝜂𝜚(𝑡ř)
} 

⟹ ∏(max
𝑡ř

{𝜂𝜚(𝑡ř)})
ϒ𝑡ř

𝑝

ř=1

≤ ∏(𝜂𝜚(𝑡ř))
ϒ𝑡ř

𝑝

ř=1

≤ ∏(min
𝑡ř

{𝜂𝜚(𝑡ř)})
ϒ𝑡ř

𝑝

ř=1

 

⟹ (max
𝑡ř

{𝜂𝜚(𝑡ř)})
∑ ϒ𝑡ř

𝑝
ř=1

≤ ∏(𝜂𝜚(𝑡ř))
ϒ𝑡ř

𝑝

ř=1

≤ (min
𝑡ř

{𝜂𝜚(𝑡ř)})
∑ ϒ𝑡ř

𝑛
ř=1

 

⟹ max
𝑡ř

{𝜂𝜚(𝑡ř)} ≤ 𝜂𝑡 ≤ min
𝑡ř

{𝜂𝜚(𝑡ř)}.      (3.2) 

In view of definition 12 and by comparing (3.1) and (3.2) we obtain the following expression: 

ἆ− ≤ 𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) ≤ ἆ+. 

In the upcoming theorem, we will establish the monotonicity property of the PFDOWA operator, 

showing that if one set of PFNs dominates another, their aggregated values will preserve this ordering. 

Theorem 4. Let ἆ𝑡ř = (𝜇𝑡ř , 𝜂𝑡ř) and ἆ𝑡ř
′ = (𝜇𝑡ř

′ , 𝜂𝑡ř
′ ) where, ř = 1,2, … , 𝑝, be any two collection 

of PFNs. Consider ϒ𝑡 = (ϒ𝑡1 , ϒ𝑡2 , … , ϒ𝑡𝑝)
𝑇
signifies the weight vector linked to time periods 𝑡ř, 

such that ϒ𝑡ř ∈ [0,1] and ∑ ϒř = 1
𝑝
ř=1 . If 𝜇𝜚(𝑡ř) ≤ 𝜇𝜚(𝑡ř)

′  and 𝜂𝜚(𝑡ř) ≥ 𝜂𝜚(𝑡ř)
′  then we can establish 

that: 

𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) ≤ 𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1
′ , ἆ𝑡2

′ , … , ἆ𝑡𝑝
′ ) 

Proof. The application of PFDOWA operator yields: 

𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) = (𝜇𝑡 , 𝜂𝑡) and 

𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1
′ , ἆ𝑡2

′ , … , ἆ𝑡𝑝
′ ) = (𝜇𝑡

′ , 𝜂𝑡
′) 

Since 𝜇𝜚(𝑡ř) ≤ 𝜇𝜚(𝑡ř)
′ , which shows that 𝜇𝜚(𝑡ř)

2 ≤ 𝜇𝜚(𝑡ř)
2 ′ , this implies that 

1 − 𝜇𝜚(𝑡ř)
2 ≥ 1 − 𝜇𝜚(𝑡ř)

2 ′  
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⇒ ∏(1 − 𝜇𝜚(𝑡ř)
2 )

ϒ𝑡ř

𝑝

ř=1

≥ ∏(1 − 𝜇𝜚(𝑡ř)
2 ′ )

ϒ𝑡ř

𝑝

ř=1

 

⇒ 1 − ∏(1 − 𝜇𝜚(𝑡ř)
2 )

ϒ𝑡ř

𝑝

ř=1

≤ 1 − ∏(1 − 𝜇𝜚(𝑡ř)
2 ′ )

ϒ𝑡ř

𝑝

ř=1

 

⇒ √1 − ∏(1 − 𝜇𝜚(𝑡ř)
2 )

ϒ𝑡ř

𝑝

ř=1

≤ √1 − ∏(1 − 𝜇𝜚(𝑡ř)
2 ′ )

ϒ𝑡ř

𝑝

ř=1

 

It follows that 

𝜇𝑡 ≤ 𝜇𝑡
′           (3.3) 

Moreover, by taking into account 𝜂𝜚(𝑡ř) ≥ 𝜂𝜚(𝑡ř)
′ , we have 

∏𝜂
𝜚(𝑡ř)

ϒ𝑡ř

𝑝

ř=1

≥ ∏𝜂
𝜚(𝑡ř)

ϒ𝑡ř 
 ′

𝑝

ř=1

 

It follows that 

⇒ 𝜂𝑡 ≥ 𝜂𝑡
′          (3.4) 

Consequently, in view of definition 12 and by comparing (3.3) and (3.4), we obtain the following: 

𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) ≤ 𝑃𝐹𝐷𝑂𝑊𝐴 (ἆ𝑡1
′ , ἆ𝑡2

′ , … , ἆ𝑡𝑝
′ ). 

Definition 13. Assume that 𝜙 is a collection of PFNs represented as ἆ𝑡ř = (𝜇𝑡ř  , 𝜂𝑡ř) where, ř =

1,2.3, … , 𝑝 and ϒ𝑡 = [ϒ𝑡1 , ϒ𝑡2 , … , ϒ𝑡𝑝  ]
𝑇
is the weight vector linked to the time periods 𝑡ř such that 

∑ ϒ𝑡ř = 1
𝑝
ř=1  and ϒ𝑡ř ∈ [0,1]. The PFDOWG operator is a mapping 𝑃𝐹𝐷𝑂𝑊𝐺: ϕ𝑝 → 𝜙 specified 

by the rule: 

𝑃𝐹𝐷𝑂𝑊𝐺 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) = ⨂ř=1
𝑝

(ἆ𝜚(𝑡ř))
ϒ𝑡ř  

=

(

 ∏𝜇𝜚(𝑡ř)
ϒ(𝑡ř)

𝑝

ř=1

, √1 − ∏(1 − 𝜂𝜚(𝑡ř)
2 )

ϒ(𝑡ř)

𝑝

ř=1
)

  

In the upcoming theorem, we will demonstrate that the aggregated value of PFNs at different time 

periods, using the PFDOWG operator, results in a new PFN. 
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Theorem 5. Consider 𝑝  numbers of PFNs expressed as ἆ𝑡ř
= (𝜇𝑡ř

 , 𝜂𝑡ř
)  at 𝑝  different time 

periods 𝑡ř where, ř = 1,2,3, … , 𝑝, and the associated weight vector is ϒ𝑡 = [ϒ𝑡1  , ϒ𝑡2  , … . , ϒ𝑡𝑝]
𝑇
 

with some restrictions  ∑ ϒ𝑡ř
= 1

𝑝
ř=1  and ϒ𝑡ř

∈ [0,1]. The aggregated value of these PFNs using 

PFDOWG operator is also a PFN. It can be described as follows: 

𝑃𝐹𝐷𝑂𝑊𝐺 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) =

[
 
 
 

∏𝜇
𝜚(𝑡ř)

ϒ𝑡ř

𝑝

ř=1

, √1 − ∏(1 − 𝜂𝜚(𝑡ř)
2 )

ϒ𝑡ř

𝑝

ř=1
]
 
 
 

 

Example 2. Consider ἆ𝑡1 = (0.70,0.40) , ἆ𝑡2 = (0.80,0.30) , ἆ𝑡3 = (0.50,0.70)  and ἆ𝑡4 =

(0.50,0.40) represent four PFNs and ϒ𝑡 = (0.2,0.1,0.3,0.4)𝑇 is the weight vector linked to time 

periods 𝑡ř where ř = 1,2,3,4. First we compute the scores values of ἆ𝑡ř by applying definition 7 

as follows: 

𝑆(ἆ𝑡1) = 0.33, 𝑆(ἆ𝑡2) = 0.55, 

𝑆(ἆ𝑡3) = −0.24, 𝑆(ἆ𝑡4) = 0.09 

Then the permuted values of PFNs are given as: 

ἆ𝜚(𝑡1) = (0.80,0.30), ἆ𝜚(𝑡2) = (0.70,0.40), ἆ𝜚(𝑡3) = (0.50,0.40), ἆ𝜚(𝑡4) = (0.50,0.70) 

In view of definition 13, the aggregated values of above PFNs in the context of PFDOWG operator is 

calculated as follows: 

𝑃𝐹𝐷𝑂𝑊𝐺(ἆ𝑡1 , ἆ𝑡2 , ἆ𝑡3 , ἆ𝑡4  ) =

(

 ∏𝜇𝜚(𝑡ř)
ϒ(𝑡ř)

4

ř=1

, √1 − ∏(1 − 𝜂𝜚(𝑡ř)
2 )

ϒ(𝑡ř)
4

ř=1
)

  

𝑃𝐹𝐷𝑂𝑊𝐺(ἆ𝑡1 , ἆ𝑡2 , ἆ𝑡3 , ἆ𝑡4)

= ((0.8)0.2(0.7)0.1(0.5)0.3(0.5)0.4), √1 − (1 − 0.32)0.2(1 − 0.42)0.1(1 − 0.42)0.3(1 − 0.72)0.4 

It follows that 

𝑃𝐹𝐷𝑂𝑊𝐺(ἆ𝑡1 , ἆ𝑡2 , ἆ𝑡3 , ἆ𝑡4) = (0.568,0.548). 

In the upcoming theorem, we establish the idempotency property of the PFDOWG operator, 
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showing that if all PFNs are equal for a given time period, the aggregated result will also equal that 

PFN. 

Theorem 6. Consider the collection of 𝑝 number of PFNs represented as ἆ(𝑡ř)
= (𝜇(𝑡ř)

, 𝜂(𝑡ř)
), 

existing at 𝑝 different time periods 𝑡ř, and let ϒ𝑡 = (ϒ𝑡1 , ϒ𝑡2 , … , ϒ𝑡𝑝)
𝑇
be the weight vector linked 

to time periods 𝑡ř  with the condition ∑ ϒ𝑡ř
𝑝
ř=1 = 1  and ϒ𝑡ř

∈ [0,1] , where ř = 1,2, … , 𝑝 . If 

ἆ𝜚(𝑡ř)
= ἆ𝜚(𝑡𝑗)

 are mathematically equal for all ř and for some 𝑗 ∈ {1,2, … , 𝑝} where, ἆ𝜚(𝑡𝑗)
=

(𝜇𝜚(𝑡𝑗)
, 𝜂𝜚(𝑡𝑗)

). Then 

𝑃𝐹𝐷𝑂𝑊𝐺 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) = ἆ𝜚(𝑡𝑗) 

In the upcoming theorem, we establish the boundedness property of the PFDOWG operator, 

demonstrating that the aggregated value of PFNs lies between the defined lower and upper bounds. 

Theorem 7. Consider ἆ− = (minř(𝜇𝜚(𝑡ř)),maxř(𝜂𝜚(𝑡ř))) and ἆ+ = (maxř(𝜇𝜚(𝑡ř)),minř(𝜂𝜚(𝑡ř))) 

be the lower bound and upper bound of PFNs ἆ𝜚(𝑡ř) = (𝜇𝜚(𝑡ř), 𝜂𝜚(𝑡ř)) where, ř = 1,2, … , 𝑝. Let 

ϒ𝑡 = (ϒ𝑡1 , ϒ𝑡2 , … , ϒ𝑡𝑝)
𝑇
be the weight vector associated with time periods 𝑡ř such that ϒ𝑡ř ∈ [0,1] 

meeting the restriction ∑ ϒ𝑡ř
𝑝
ř=1 = 1. Then 

ἆ− ≤ 𝑃𝐹𝐷𝑂𝑊𝐺 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) ≤ ἆ+. 

In the upcoming theorem, we establish the monotonicity property of the PFDOWG operator, 

showing that if one set of PFNs dominates another, their aggregated values will preserve this ordering. 

Theorem 8. Let ἆ𝑡ř = (𝜇𝑡ř , 𝜂𝑡ř) and ἆ𝑡ř
′ = (𝜇𝑡ř

′ , 𝜂𝑡ř
′ ) where, ř = 1,2, … , 𝑝, be any two collection 

of PFNs. Let ϒ𝑡 = (ϒ𝑡1 , ϒ𝑡2 , … , ϒ𝑡𝑝)
𝑇

represents the weight vector linked to time periods 𝑡ř, such 

that ϒ𝑡ř ∈ [0,1] and ∑ ϒř = 1
𝑝
ř=1 . If 𝜇𝜚(𝑡ř) ≤ 𝜇𝜚(𝑡ř)

′  and 𝜂𝜚(𝑡ř) ≥ 𝜂𝜚(𝑡ř)
′  then we can establish that: 

𝑃𝐹𝐷𝑂𝑊𝐺 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) ≤ 𝑃𝐹𝐷𝑂𝑊𝐺 (ἆ𝑡1
′ , ἆ𝑡2

′ , … , ἆ𝑡𝑝
′ ). 

4. Application of the suggested aggregation operators for MADM problems 

In this section, we present a new approach for solving MADM issues. This method utilizes PF 
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dynamic information and applies the recently defined PF dynamic ordered weighted AOs. 

1) Let us consider a finite set of alternatives represented as Ȳ = {Ȳ1, Ȳ2, … , Ȳ𝑚}. 

2) Let a collection of attributes be indicated as Ջ = {Ջ1, Ջ2, … , Ջ𝑛} and the related weight vector is 

𝜍 = (𝜍1, 𝜍2, … , 𝜍𝑛)𝑇 such that 𝜍𝑗 ∈ [0,1] and ∑ 𝜍𝑗
𝑛
𝑗=1 = 1 where 𝑗 = 1,2, … , 𝑛. 

3) In addition, we incorporate the notion of distinct time periods 𝑡ř where, ř = 1,2, … , 𝑝, and these 

time periods are characterized by an associated weight vector ϒ𝑡 = [ϒ𝑡1 , ϒ𝑡2 , … , ϒ𝑡𝑝]
𝑇
, where 

ϒ𝑡ř ∈ [0,1] and  ∑ ϒ𝑡ř
𝑝
ř=1 = 1. 

4) Consider 𝑅𝑡ř
= [↋𝑖𝑗(𝑡ř)]𝑚×𝑛

= (𝜇𝑖𝑗(𝑡ř)
, 𝜂𝑖𝑗(𝑡ř)

)
𝑚×𝑛

 indicates the PF dynamic decision matrices 

of time periods 𝑡ř, where 𝜇𝑖𝑗(𝑡ř) represents the ratings to which the alternative Ȳ𝑖 fulfills the 

attribute Ջ𝑗  at time period 𝑡ř, and 𝜂𝑖𝑗(𝑡ř) reflects the degree that the alternative Ȳ𝑖  fails to 

satisfy with the attribute Ջ𝑗 at time period 𝑡ř. In addition, the following restrictions apply to 

these values: 

𝜇𝑖𝑗𝜚(𝑡ř) ∈ [0,1], 𝜂𝑖𝑗𝜚(𝑡ř) ∈ [0,1] and (𝜇𝑖𝑗𝜚(𝑡ř))
2
+ (𝜂𝑖𝑗𝜚(𝑡ř))

2
≤ 1. 

Based on the aforementioned decision information, we formulate a methodology for assessing 

and selecting the most favorable alternative. The process involves the following steps: 

4.1. Procedure for PFDOWA operator 

Step 1. Obtain the PF dynamic decision matrices 𝑅𝑡ř = [↋𝑖𝑗(𝑡ř)]𝑚×𝑛
= (𝜇𝑖𝑗(𝑡ř), 𝜂𝑖𝑗(𝑡ř))𝑚×𝑛

 that 

indicate various alternatives associated with attributes. 

Step 2. To acquire the permuted PF dynamic decision matrices 𝑅𝜚(𝑡ř) = [↋𝑖𝑗𝜚(𝑡ř)]𝑚×𝑛
=

(𝜇𝑖𝑗𝜚(𝑡ř), 𝜂𝑖𝑗𝜚(𝑡ř))𝑚×𝑛
 we implement the subsequent two stages: 

• Obtain the score values for each attribute Ջ𝑗 relating to each alternative Ȳ𝑖 within each matrix 

𝑅𝑡ř during the time period 𝑡ř using definition 7. 

• Formulate the permuted PF dynamic decision matrices by organizing the calculated values from 

the preceding step for each attribute Ջ𝑗, related to each alternative Ȳ𝑖 within each matrix 𝑅𝑡ř, in 

a descending order during the time period 𝑡ř. 

Step 3. Utilize the recently developed PFDOWA operator in the following manner: 

𝑃𝐹𝐷𝑂𝑊𝐴 (↋𝑖𝑗𝜚(𝑡1), ↋𝑖𝑗𝜚(𝑡2), … , ↋𝑖𝑗𝜚(𝑡𝑝)) = ↋𝑖𝑗𝜚(𝑡ř) = (𝜇𝑖𝑗𝜚(𝑡ř), 𝜂𝑖𝑗𝜚(𝑡ř)) 
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It implies that 

𝑃𝐹𝐷𝑂𝑊𝐴 (↋𝑖𝑗𝜚(𝑡1), ↋𝑖𝑗𝜚(𝑡2), … , ↋𝑖𝑗𝜚(𝑡𝑝)) =

(

 √1 − ∏(1 − 𝜇𝑖𝑗𝜚(𝑡ř)
2 )

ϒ𝑡ř

𝑝

ř=1

,∏𝜂
𝑖𝑗𝜚(𝑡ř)

ϒ𝑡ř

𝑝

ř=1
)

  

Here, 𝑖 varies from 1 to 𝑚 and and 𝑗 varies from 1 to 𝑛. This technique integrates all the PF 

decision matrices to a unified PF decision matrix as 𝑅 = [↋𝑖𝑗]𝑚×𝑛
= (𝜇𝑖𝑗 , 𝜂𝑖𝑗)𝑚×𝑛

. 

Step 4. Determine the combined value ↋𝑖 = (𝜇𝑖 , 𝜂𝑖) of the alternatives Ȳ𝑖 by applying the PFWA 

operator to the collective decision matrix as follows: 

𝑃𝐹𝑊𝐴(↋𝑖1, ↋𝑖2, … , ↋𝑖𝑛) = ↋𝑖 = (𝜇𝑖 , 𝜂𝑖) 

It follows that: 

𝑃𝐹𝑊𝐴(↋𝑖1, ↋𝑖2, … , ↋𝑖𝑛) = (√1 − ∏(1 − 𝜇𝑖𝑗
2 )

𝜍𝑗

𝑛

𝑗=1

,∏𝜂
𝑖𝑗

𝜍𝑗

𝑛

𝑗=1

) 

Step 5. Applying definition 7, compute the scores 𝑆(↋𝑖) of the PF preference values ↋𝑖 for all the 

alternatives Ȳ𝑖. 

Step 6. Obtain the score values 𝑆(↋𝑖), write all Ȳ𝑖 in decreasing sequence and select the best one. 

Figure 1 demonstrates the flowchart of developed approach for addressing MADM issues 

through the PFDOWA operator. 
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Figure 1. Algorithmic workflow for addressing MADM issues through the PFDOWA 

operator. 

4.2. Procedure for PFDOWG operator 

Step 1. Obtain the PF dynamic decision matrices 𝑅𝑡ř = [↋𝑖𝑗(𝑡ř)]𝑚×𝑛
= (𝜇𝑖𝑗(𝑡ř), 𝜂𝑖𝑗(𝑡ř))𝑚×𝑛

 that 
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indicate various alternatives associated with attributes. 

Step 2. To acquire the permuted PF dynamic decision matrices 𝑅𝜚(𝑡ř) = [↋𝑖𝑗𝜚(𝑡ř)]𝑚×𝑛
=

(𝜇𝑖𝑗𝜚(𝑡ř)
, 𝜂𝑖𝑗𝜚(𝑡ř)

)
𝑚×𝑛

 we implement the subsequent two stages: 

• Acquire the score values for each attribute Ջ𝑗 related to each alternative Ȳ𝑖 within each matrix 

𝑅𝑡ř
 during the time period 𝑡ř using definition 7. 

• Formulate the permuted PF dynamic decision matrices by arranging the calculated values from the 

preceding step for each attribute Ջ𝑗, related to each alternative Ȳ𝑖 within each matrix 𝑅𝑡ř
, in a 

descending order during the time period 𝑡ř. 

Step 3. Utilize the recently developed PFDOWG operator in the following manner: 

𝑃𝐹𝐷𝑂𝑊𝐺 (↋𝑖𝑗𝜚(𝑡1), ↋𝑖𝑗𝜚(𝑡2), … , ↋𝑖𝑗𝜚(𝑡𝑝)) = ↋𝑖𝑗𝜚(𝑡ř) = (𝜇𝑖𝑗𝜚(𝑡ř), 𝜂𝑖𝑗𝜚(𝑡ř)) 

It implies that 

𝑃𝐹𝐷𝑂𝑊𝐺 (↋𝑖𝑗𝜚(𝑡1), ↋𝑖𝑗𝜚(𝑡2), … , ↋𝑖𝑗𝜚(𝑡𝑝)) =

(

 ∏(𝜇𝑖𝑗𝜚(𝑡ř))
ϒ𝑡ř

𝑝

ř=1

, √1 − ∏(1 − 𝜂𝑖𝑗𝜚(𝑡ř)
2 )

ϒ𝑡ř

𝑝

ř=1
)

  

Here, 𝑖 varies from 1 to 𝑚 and and 𝑗 varies from 1 to 𝑛. This technique integrates all the PF 

decision matrices to a unified PF decision matrix as 𝑅 = [↋𝑖𝑗]𝑚×𝑛
= (𝜇𝑖𝑗 , 𝜂𝑖𝑗)𝑚×𝑛

. 

Step 4. Calculate the aggregated value ↋𝑖 = (𝜇𝑖 , 𝜂𝑖) of the alternatives Ȳ𝑖 by applying PFWG 

operator on collective decision matrix as follows: 

𝑃𝐹𝑊𝐺(↋𝑖1, ↋𝑖2, … , ↋𝑖𝑛) = ↋𝑖 = (𝜇𝑖 , 𝜂𝑖) 

It follows that: 

𝑃𝐹𝑊𝐺(↋𝑖1, ↋𝑖2, … , ↋𝑖𝑛) = (∏(𝜇𝑖ř)
𝜍ř

𝑛

ř=1

, √1 − ∏(1 − 𝜂𝑖ř
2 )

𝜍ř

𝑛

ř=1

). 

Step 5. Applying definition 7, compute the scores 𝑆(↋𝑖) of the PF preference values ↋𝑖 for all the 

alternatives Ȳ𝑖. 

Step 6. Obtain the score values 𝑆(↋𝑖), write all Ȳ𝑖 in decreasing sequence and select the best one. 

Figure 2 demonstrates the flowchart of developed approach for addressing MADM issues 

through the PFDOWG operator. 
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Figure 2. Algorithmic workflow for addressing MADM issues through the PFDOWG 

operator. 

5. Utilizing the proposed aggregation operators in MADM problems 

In this section of the article, we solve a MADM problem within the context of algorithm 

developed in section 4 and establish a comparative analysis to showcase the validity of this novel 

approach with the existing methodologies. 
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5.1. Case study 

Illnesses affecting the heart and blood vessels are commonly known as cardiovascular illnesses. 

In the United States, abnormal saturated fat is present in over half of the population. There are two 

possibilities for managing CVD: Changing your lifestyle or getting medication from your doctor. CVD 

is easier to treat the earlier it is identified. In the US as well as throughout the world, CVD is the main 

cause of death. Heart disease is responsible for 655,000 deaths in America each year. In the United 

States, about 50% of people have some form of cardiovascular disease. Both men and women are 

impacted. Indeed, one in every three women dies from cardiovascular disease. People of different age 

groups, races, and socioeconomic backgrounds are affected by it. Tobacco, excessive drinking, 

insufficient nutrition, and a sedentary lifestyle are the main psychological risk factors linked to 

cardiovascular illness and death. Behavioral risk factors may result in the development of high 

cholesterol levels, high blood sugar levels, elevated blood fatty acids, weight gain, or obesity in adults. 

These intermediate risk variables suggest a heightened likelihood of experiencing a heart attack, 

bleeding, or cardiac arrest, along with related outcomes. In order to mitigate the risks linked to CVD, it 

is advisable to quit smoking, reduce salt intake, increase consumption of fruits and vegetables, engage 

in regular exercise, and avoid excessive alcohol use. To encourage the adoption and maintenance of 

healthy habits, it is critical to enact health policies that make healthy options more accessible and 

affordable. CVDs are influenced by additional underlying causes. Globalization, urbanization, and 

population aging are the major components that exert influence on financial, social, and cultural 

aspects. Genetic factors, anxiety, and poverty are additional risk factors for CVD. Treatment for 

hypertension, diabetes, and high blood cholesterol is essential to mitigate cardiovascular risk and 

prevent strokes and heart attacks in individuals with these conditions. 

Studies have highlighted significant advancements in CVD detection and treatment. Innovative 

imaging techniques for liver and cardiovascular conditions have enhanced disease management [46], 

while histone modifications have emerged as potential therapeutic targets in calcific aortic valve 

disease [47]. Intravascular ultrasonography has also shown promise in treating carotid stenosis [48]. 

Research into hypoxia-induced signaling [49] and new approaches in electrocardiogram 

classifications [50] further underscore the need for comprehensive strategies to reduce CVD risks 

and improve outcomes. 

Various methodologies exist for the management and prevention of CVD all over the world. A 

brief description of some important approaches to preventing CVD. These approaches include. 

1) An array of healthy lifestyle choices can contribute to the enhancement of cardiovascular health 

and the mitigation of illness risk. These choices encompass refraining from smoking, sustaining an 

optimal weight by adhering to a balanced diet, and engaging in consistent physical activity. 

Consistent physical exercise aids in weight management while concurrently enhancing 

cardiovascular health. Many health advantages may be obtained from a diet abundant in fruits, 

vegetables, lean meats, and whole grains, which can also successfully decrease blood pressure. 

The cessation of smoking markedly diminishes the chance of developing cardiovascular disease. 

2) Pharmacological interventions play a vital role in preventing and managing CVD risks, 

encompassing antihypertensive agents, statins, and antiplatelet medications. These techniques of 

therapy are widely accepted by physicians, who need strict attention to the suggested regimens to 

assure their effectiveness. 
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3) Primary safeguarding represents a proactive strategy that aims to prevent the development of 

cardiovascular disease in asymptomatic individuals. This all-encompassing approach entails the 

implementation of a healthy nutritional plan, consistent engagement in physical activity, and 

periodic screening for potential risk factors, such as high cholesterol levels and blood pressure. 

4) Secondary mitigation stands as a pivotal aspect within the comprehensive cardiovascular disease 

approach. This requirement involves impeding the progression of CVD among individuals who are 

already suffering from the disease. Such endeavors necessitate the enactment of prudent lifestyle 

changes, the discerning application of pharmaceutical treatments, and vigilant oversight by 

healthcare professionals to observe progress and mitigate unexpected adverse reactions. 

5) Within the domain of cardiovascular disease prevention and management, the meticulous 

management of risk factors is of the highest priority. Individuals can markedly diminish their 

vulnerability to CVD by efficiently managing situations such as diabetes, hypertension, and 

elevated cholesterol levels. The orchestration of this preventive regimen involves pharmaceutical 

adjustments, modifications to one's lifestyle, and vigilant medical supervision. 

6) An integral facet of the multidimensional approach to combating CVD encompasses 

community-based initiatives. These endeavors encompass a diverse array of activities, comprising 

public health campaigns, support groups and educational programs, all aimed at enhancing public 

awareness of CVD and fostering healthier lifestyles 

Based on data available in 2019, cardiovascular disease appeared as the predominant cause of 

death in Asia, accounting for approximately eleven million fatalities. Around 39 percent of these 

possible fatalities from CVD could have been prevented. The amount of premature deaths from CVD 

was greater than the number of premature deaths from CVD in the US (23%), Europe (22%), and 

worldwide (34%). Attributable to CVDs, the global mortality toll witnessed a substantial escalation, 

rising from approximately 12.1 million in 1990, evenly distributed between genders, to 18.6 million 

in 2019. 

The exacerbation of patient treatment expenses and challenges within Pakistan’s pharmaceutical 

industry in recent decades can be attributed to an inequitable distribution of medical supplies, 

inefficiencies within the healthcare sector, and deficiencies in the health framework. Diseases are 

evolving towards increased severity, and the twenty-first century’s socioeconomic globalization has 

brought about significant and enduring enhancements in individuals’ living standards. The 

burgeoning discord between ecological considerations and human expansion is increasingly apparent. 

Numerous urban areas in Pakistan are grappling with severe climatic conditions, posing heightened 

challenges for the medical sector. The prevailing environmental issues are currently impeding the 

healthcare industry in Pakistan. Presently, the number of patients diagnosed with CVD is escalating 

at an accelerated rate. The inclination of individuals to seek medical counsel and aid at larger 

hospitals is notably elevated in comparison to the inferior care settings and treatment offerings found 

at smaller clinics. Lahore hospital, being the largest medical facility in Pakistan, is equipped with 

state-of-the-art medical equipment and ample resources. Given a considerable increase in workload 

over the past several decades, the Lahore hospital has been unable to adequately meet the increased 

demands. Within the framework of Lahore hospital, the establishment of a medical system with 

hierarchies is regarded as a viable strategy to alleviate the strain induced by the substantial influx of 

patients. The objective is to systematically categorize the degree of treatment complexity according 

to the type of disease. The attainment of medical qualifications from diverse institutions equips 

practitioners to adeptly address a diverse spectrum of ailments. A fundamental aspect of the 
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hierarchical healthcare system is the classification of diseases into different severity categories. 

There is a hierarchical medical care system in place, and instead of sending all patients to a Grade III 

or Class A institution, people with different medical conditions can choose from numerous tiers of 

institutions. Determining diverse levels of illness severity is an essential initial step in building the 

hierarchical framework. In order to help build the medical system’s hierarchical structure, we aim to 

classify the different stages of CVD. 

5.2. Illustrated example 

The crucial step is to carefully choose a group of experts who possess a deep comprehension of 

the problem’s importance. Considering that this article mainly entails medical therapy, we have 

primarily focused on selecting physicians who have experience in this subject. The consultants have 

been assigned the responsibility of managing CVD by employing a range of different methods and 

key features in the treatment process. 

Let {Ȳ1, Ȳ2, Ȳ3, Ȳ4, Ȳ5} represent the set of alternatives for the treatment of CVD; 

i. Ȳ1: Angioplasty; 

ii. Ȳ2: Lifestyle modifications; 

iii. Ȳ3: Blood pressure management; 

iv. Ȳ4: Medication; 

v. Ȳ5: Coronary Artery Bypass Grafting (ABG); 

Let {Ջ1, Ջ2, Ջ3, Ջ4} represent the set of attributes, each of which contributes to the medical 

care of CVD. 

i. Ջ1: Efficiency; 

ii. Ջ2: Reliability; 

iii. Ջ3: Expertise required; 

iv. Ջ4: Sensitivity; 

A medical team wants to analyze the five possible alternative Ȳ𝑖 values, where 𝑖 ranges from 1 

to 5, utilizing PF information. In accordance with the aforementioned four attributes Ջ1, Ջ2, Ջ3 and 

Ջ4 at the time periods 𝑡1, 𝑡2, and 𝑡3. Here 𝑡1 designates the period 1990–1999, 𝑡2 is pans from 

2000 to 2009, and 𝑡3 portrays the progression from 2010 to 2019. The medical team has assigned 

weight values to the three time periods, represented by the weight vector ϒ𝑡 = [0.2,0.3,0.5]𝑇, where 

∑ ϒ𝑡ř = 13
ř=1  and the weight vector of attributes is 𝜍 = [0.15,0.16,0.5,0.19]𝑇 where, ∑  𝜍j = 14

j=1 . 

The medical expert opinion to legitimate the alternative Ȳ𝑖 with respect to the time period 𝑡ř is 

summarized in the f PF dynamic decision matrices 𝑅𝑡1, 𝑅𝑡2 and 𝑅𝑡3  (See Tables 2–4). 

Table 2. PF dynamic decision matrix 𝑅𝑡1. 

 Ջ1 Ջ2 Ջ3 Ջ4 

Ȳ1 (0.8,0.3) (0.4,0.2) (0.9,0.2) (0.5,0.6) 

Ȳ2 (0.6,0.5) (0.7,0.3) (0.4,0.6) (0.5,0.4) 

Ȳ3 (0.5,0.5) (0.8,0.3) (0.6,0.3) (0.5,0.6) 

Ȳ4 (0.9,0.2) (0.6,0.5) (0.7,0.3) (0.4,0.5) 

Ȳ5 (0.3,0.7) (0.5,0.4) (0.8,0.2) (0.6,0.5) 
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Table 3. PF dynamic decision matrix 𝑅𝑡2. 

 Ջ1 Ջ2 Ջ3 Ջ4 

Ȳ1 (0.6,0.3) (0.5,0.3) (0.8,0.3) (0.7,0.2) 

Ȳ2 (0.7,0.3) (0.8,0.2) (0.5,0.4) (0.6,0.5) 

Ȳ3 (0.9,0.2) (0.6,0.5) (0.7,0.3) (0.4,0.5) 

Ȳ4 (0.5,0.5) (0.8,0.3) (0.5,0.6) (0.6,0.3) 

Ȳ5 (0.4,0.5) (0.5,0.3) (0.6,0.3) (0.7,0.4) 

Table 4. PF dynamic decision matrix 𝑅𝑡3. 

 Ջ1 Ջ2 Ջ3 Ջ4 

Ȳ1 (0.6,0.3) (0.5,0.2) (0.7,0.4) (0.3,0.4) 

Ȳ2 (0.4,0.5) (0.6,0.5) (0.7,0.3) (0.9,0.2) 

Ȳ3 (0.6,0.5) (0.3,0.7) (0.5,0.4) (0.8,0.2) 

Ȳ4 (0.7,0.4) (0.5,0.3) (0.4,0.5) (0.6,0.3) 

Ȳ5 (0.7,0.4) (0.7,0.3) (0.6,0.5) (0.4,0.8) 

Within the context of the PFDOWA and PFDOWG operators, the given MADM problem is 

solved as follows: 

5.3. Procedure I (PFDOWA operator) 

Step 1. The permuted PF dynamic decision matrix 𝑅𝜚(𝑡1) = [↋𝑖𝑗𝜚(𝑡1)]5×4
= (𝜇𝑖𝑗𝜚(𝑡1), 𝜂𝑖𝑗𝜚(𝑡1))5×4

 is 

computed as follows: 

i. Apply definition 7 to ascertain the score values of all four attributes of each alternative of decision 

matrix 𝑅𝑡1 at the time period 𝑡1. 

• For alternative Ȳ1, we have 

𝑆( ↋11) = 0.55, 𝑆(↋12) = 0.12, 

𝑆( ↋13) = 0.77, 𝑆( ↋14) = −0.11 

• For alternative Ȳ2, we have 

𝑆( ↋21) = 0.11, 𝑆(↋22) = 0.40, 

𝑆( ↋23) = −0.2, 𝑆( ↋24) = 0.09 

• For alternative Ȳ3, we have 

𝑆( ↋31) = 0, 𝑆(↋32) = 0.55, 

𝑆( ↋33) = 0.27, 𝑆( ↋34) = −0.11 

• For alternative Ȳ4, we have 

𝑆( ↋41) = 0.77, 𝑆(↋42) = 0.11, 
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𝑆( ↋43) = 0.40, 𝑆( ↋44) = −0.09 

• For alternative Ȳ5, we have 

𝑆( ↋51) = −0.40, 𝑆(↋52) = 0.09, 

𝑆( ↋53) = 0.60, 𝑆( ↋54) = 0.11 

ii. List the values obtained in the previous stage for each option in in decreasing sequence, displayed 

below: 

• For alternative Ȳ1; 

𝑆(↋13) > 𝑆(↋11) > 𝑆(↋12) > 𝑆(↋14) 

• For alternative Ȳ2; 

𝑆(↋22) > 𝑆(↋21) > 𝑆(↋24) > 𝑆(↋23) 

• For alternative Ȳ3; 

𝑆(↋32) > 𝑆(↋33) > 𝑆(↋31) > 𝑆(↋34) 

• For alternative Ȳ4; 

𝑆(↋41) > 𝑆(↋43) > 𝑆(↋42) > 𝑆(↋44) 

• For alternative Ȳ5; 

𝑆(↋53) > 𝑆(↋54) > 𝑆(↋52) > 𝑆(↋51) 

Moreover, the permuted PF decision matrix 𝑅𝜚(𝑡2) = [↋𝑖𝑗𝜚(𝑡2)]5×4
= (𝜇𝑖𝑗𝜚(𝑡2), 𝜂𝑖𝑗𝜚(𝑡2))5×4

 is 

computed as follows: 

i. Apply definition 7 to ascertain the score values of all four attributes of each alternative of decision 

matrix 𝑅𝑡2 at the time period 𝑡2. 

• For alternative Ȳ1, we have 

𝑆( ↋11) = 0.27, 𝑆(↋12) = 0.16, 

𝑆( ↋13) = 0.55, 𝑆( ↋14) = 0.45 

• For alternative Ȳ2, we have 

𝑆( ↋21) = 0.40, 𝑆(↋22) = 0.60, 

𝑆( ↋23) = 0.09, 𝑆( ↋24) = 0.11 

• For alternative Ȳ3, we have 

𝑆( ↋31) = 0.77, 𝑆(↋32) = 0.11, 

𝑆( ↋33) = 0.40, 𝑆( ↋34) = −0.09 

• For alternative Ȳ4, we have 

𝑆( ↋41) = 0, 𝑆(↋42) = 0.55, 

𝑆( ↋43) = −0.11, 𝑆( Ȳ44) = 0.27 
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• For alternative Ȳ5, we have 

𝑆( ↋51) = −0.09, 𝑆(↋52) = 0.16, 

𝑆( ↋53) = 0.27, 𝑆( ↋54) = 0.33 

ii. List the values obtained in the previous stage for each option in in decreasing sequence, displayed 

below: 

• For alternative Ȳ1; 

𝑆(↋13) > 𝑆(↋14) > 𝑆(↋11) > 𝑆(↋12) 

• For alternative Ȳ2; 

𝑆(↋22) > 𝑆(↋21) > 𝑆(↋24) > 𝑆(↋23) 

• For alternative Ȳ3; 

𝑆(↋31) > 𝑆(↋33) > 𝑆(↋32) > 𝑆(↋34) 

• For alternative Ȳ4; 

𝑆(↋42) > 𝑆(↋44) > 𝑆(↋41) > 𝑆(↋43) 

• For alternative Ȳ5; 

𝑆(↋54) > 𝑆(↋53) > 𝑆(↋52) > 𝑆(↋51) 

Furthermore, the permuted PF decision matrix 𝑅𝜚(𝑡3) = [↋𝑖𝑗𝜚(𝑡3)]5×4
= (𝜇𝑖𝑗𝜚(𝑡3), 𝜂𝑖𝑗𝜚(𝑡3))5×4

 is 

computed as follows: 

i. Apply definition 7 to ascertain the score values of all four attributes of each alternative of decision 

matrix 𝑅𝑡3 at the time period 𝑡3. 

• For alternative Ȳ1, we have 

𝑆( ↋11) = 0.27, 𝑆(↋12) = 0.21, 

𝑆( ↋13) = 0.33, 𝑆( ↋14) = −0.07 

• For alternative Ȳ2, we have 

𝑆( ↋21) = −0.09, 𝑆(↋22) = 0.11, 

𝑆( ↋23) = 0.40, 𝑆( ↋24) = 0.77 

• For alternative Ȳ3, we have 

𝑆( ↋31) = 0.11, 𝑆(↋32) = −0.40, 

𝑆( ↋33) = 0.09, 𝑆( ↋34) = 0.60 

• For alternative Ȳ4, we have 

𝑆( ↋41) = 0.33, 𝑆(↋42) = 0.16, 

𝑆( ↋43) = −0.09, 𝑆( ↋44) = 0.27 
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• For alternative Ȳ5, we have 

𝑆( ↋51) = 0.33, 𝑆(↋52) = 0.40, 

𝑆( ↋53) = 0.11, 𝑆( ↋54) = 0.48 

ii. List the values obtained in the previous stage for each option in in decreasing sequence, displayed 

below: 

• For alternative Ȳ1; 

𝑆(↋13) > 𝑆(↋11) > 𝑆(↋12) > 𝑆(↋14) 

• For alternative Ȳ2; 

𝑆(↋24) > 𝑆(↋23) > 𝑆(↋22) > 𝑆(↋21) 

• For alternative Ȳ3; 

𝑆(↋34) > 𝑆(↋31) > 𝑆(↋33) > 𝑆(↋32) 

• For alternative Ȳ4; 

𝑆(↋41) > 𝑆(↋44) > 𝑆(↋42) > 𝑆(↋43) 

• For alternative Ȳ5; 

𝑆(↋54) > 𝑆(↋52) > 𝑆(↋51) > 𝑆(↋53) 

Step 2. Formulate the permuted PF decision matrices 𝑅𝜚(𝑡1), 𝑅𝜚(𝑡2), and 𝑅𝜚(𝑡2) (See Tables 5–7) 

using the data acquired from step 1. 

Table 5. Permuted PF dynamic decision matrix 𝑅𝜚(𝑡1). 

 Ջ1 Ջ2 Ջ3 Ջ4 

Ȳ1 (0.9,0.2) (0.8,0.3) (0.4,0.2) (0.5,0.6) 

Ȳ2 (0.7,0.3) (0.6,0.5) (0.5,0.4) (0.4,0.6) 

Ȳ3 (0.8,0.3) (0.6,0.3) (0.5,0.5) (0.5,0.6) 

Ȳ4 (0.9,0.2) (0.7,0.3) (0.6,0.5) (0.4,0.5) 

Ȳ5 (0.8,0.2) (0.6,0.5) (0.5,0.4) (0.3,0.7) 

Table 6. Permuted PF dynamic decision matrix 𝑅𝜚(𝑡2). 

 Ջ1 Ջ2 Ջ3 Ջ4 

Ȳ1 (0.8,0.3) (0.7,0.2) (0.6,0.3) (0.5,0.3) 

Ȳ2 (0.8,0.2) (0.7,0.3) (0.6,0.5) (0.5,0.4) 

Ȳ3 (0.9,0.2) (0.7,0.3) (0.6,0.5) (0.4,0.5) 

Ȳ4 (0.8,0.3) (0.6,0.3) (0.5,0.5) (0.5,0.6) 

Ȳ5 (0.7,0.4) (0.6,0.3) (0.5,0.3) (0.4,0.5) 
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Table 7. Permuted PF dynamic decision matrix 𝑅𝜚(𝑡3). 

 Ջ1 Ջ2 Ջ3 Ջ4 

Ȳ1 (0.7,0.4) (0.6,0.3) (0.5,0.2) (0.3,0.5) 

Ȳ2 (0.9,0.2) (0.7,0.3) (0.6,0.5) (0.4,0.5) 

Ȳ3 (0.8,0.2) (0.6,0.5) (0.5,0.4) (0.3,0.7) 

Ȳ4 (0.7,0.4) (0.6,0.3) (0.5,0.3) (0.4,0.5) 

Ȳ5 (0.7,0.3) (0.7,0.4) (0.6,0.5) (0.4,0.8) 

Step 3. We aggregate all of the PF permuted decision matrices 𝑅𝑡1, 𝑅𝑡2and 𝑅𝑡3 using the PFDOWA 

operator to obtain a collective PF decision matrix 𝑅, as shown in Table 8. 

Table 8. Collective PF decision matrix 𝑅 using PFDOWA operator. 

 Ջ1 Ջ2 Ջ3 Ջ4 

Ȳ1 (0.78,0.32) (0.68,0.27) (0.52,0.23) (0.42,0.45) 

Ȳ2 (0.85,0.22) (0.68,0.33) (0.58,0.48) (0.43,0.48) 

Ȳ3 (0.84,0.22) (0.63,0.39) (0.53,0.45) (0.38,0.61) 

Ȳ4 (0.79,0.32) (0.62,0.3) (0.52,0.39) (0.43,0.53) 

Ȳ5 (0.72,0.30) (0.65,0.38) (0.55,0.41) (0.42,0.68) 

Step 4. Compute the aggregated value ↋𝑖 = (𝜇𝑖 , 𝜂𝑖) of the alternatives Ȳ𝑖 where, 𝑖 = 1,2,3,4,5 by 

employing the PFWA operator on Table 8. The outcomes of this procedure are listed in Table 9. 

Table 9. Results of alternatives aggregation using the PFWA operator. 

 ↋𝑖 

Ȳ1 (0.596,0.278) 

Ȳ2 (0.644,0.402) 

Ȳ3 (0.607,0.419) 

Ȳ4 (0.586,0.385) 

Ȳ5 (0.582,0.426) 

Step 5. To compute the scores 𝑆(↋𝑖) of the entire PF preference values ↋𝑖 for each alternative Ȳ𝑖, 

utilize definition 7. 

𝑆(↋1) = (0.277) 

𝑆(↋2) = (0.253) 

𝑆(↋3) = (0.193) 

𝑆(↋4) = (0.195) 

𝑆(↋5) = (0.157) 

Step 6. In the light of the score values 𝑆(↋𝑖) obtained from the previous step the alternatives Ȳ𝑖 are 

to be ranked as follows: Ȳ1 > Ȳ2 > Ȳ4 > Ȳ3 > Ȳ5. 
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Step 7. The aforementioned discussion concludes that “Angioplasty” is the efficient strategy to cure 

the CVD. 

Figure 3 shows the hierarchical ordering of alternatives as determined by the PFDOWA 

operator. 

 

Figure 3. Hierarchical ordering of alternatives determined by the PFDOWA operator. 

5.4. Procedure II (PFDOWG operator) 

Similarly, the PFDOWG operator resolves the previously mentioned MADM problem employing 

the subsequent method: 

Step 1. To get a collective PF decision matrix 𝑅 (see Table 10), we aggregate all the PF permuted 

decision matrices 𝑅𝑡ř employing the PFDOWG operator. 

Table 10. Collective decision matrix by applying PFDOWG operator. 

 Ջ1 Ջ2 Ջ3 Ջ4 

Ȳ1 (0.77,0.34) (0.67,0.27) (0.51,0.24) (0.39,0.47) 

Ȳ2 (0.83,0.22) (0.68,0.35) (0.58,0.48) (0.43,0.50) 

Ȳ3 (0.83,0.22) (0.63,0.42) (0.53,0.45) (0.36,0.63) 

Ȳ4 (0.77,0.34) (0.62,0.3) (0.52,0.42) (0.43,0.53) 

Ȳ5 (0.72,0.32) (0.64,0.40) (0.55,0.43) (0.38,0.72) 

Step 2. Compute the aggregated value ↋𝑖 = (𝜇𝑖 , 𝜂𝑖) of the alternatives Ȳ𝑖 where, 𝑖 = 1,2,3,4,5 by 

employing the PFWG operator on Table 10. The Table 11 presents the computed values. 

Table 11. Aggregated values of alternatives under PFWG operator. 

 ↋𝑖 

Ȳ1 (0.534,0.318) 

Ȳ2 (0.593,0.439) 

Ȳ3 (0.541,0.468) 

Ȳ4 (0.547,0.419) 

Ȳ5 (0.547,0.498) 
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Step 3. Utilizing definition 7 to calculate the scores 𝑆(↋𝑖) of the overall PF preference values ↋𝑖 for 

each of the alternatives Ȳ𝑖. 

𝑆(↋1) = (0.184) 

𝑆(↋2) = (0.159) 

𝑆(↋3) = (0.074) 

𝑆(↋4) = (0.124) 

𝑆(↋5) = (0.051) 

Step 4. In view of the score values 𝑆(↋𝑖) the alternatives Ȳ𝑖 are to be ranked in descending order as 

follows: Ȳ1 > Ȳ2 > Ȳ4 > Ȳ3 > Ȳ5 and the optimal alternative is to be chosen. 

Step 5. The aforementioned discussion concludes that “Angioplasty” is the best strategy to cure the 

CVD. 

Figure 4 shows the hierarchical ordering of alternatives as determined by the PFDOWG operator. 

 

Figure 4. Hierarchical ordering of alternatives determined by the PFDOWG operator. 

5.5. Comparative evaluation 

In the subsequent section, we compare our suggested operators to those developed in 

[22,38,39,45,51] to evaluate their effectiveness and reliability for the MADM issue. We utilize many 

approaches, such as the IFDWA, IFDWG, PFDOWA, and PFDOWG operators, to gather and 

consolidate similar data. The results produced by these operators are compiled in Table 12, and the 

outcomes provided according to their ranking are presented in Table 13. 

Table 12. Aggregated outcomes of alternatives across various existing operators. 

 IFDWA [38] IFDWG [39] PFDOWA PFDOWG 

↋(Ȳ1) (0.688,0.407) (0.618,0.326) (0.596,0.278) (0.534,0.318) 

↋(Ȳ2) (0.654,0.378) (0.597,0.395) (0.644,0.402) (0.593,0.439) 

↋(Ȳ3) (0.592,0.396) (0.581,0.464) (0.607,0.419) (0.541,0.468) 

↋(Ȳ4) (0.577,0.405) (0.535,0.434) (0.586,0.385) (0.547,0.419) 

↋(Ȳ5) (0.615,0.403) (0.550,0.422) (0.582,0.426) (0.547,0.498) 
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Table 13. Scoring data and rankings of alternatives for current and newly suggested techniques. 

 𝑆(↋1) 𝑆(↋2) 𝑆(↋3) 𝑆(↋4) 𝑆(↋5) Ranking order 

IFDWA 0.281 0.276 0.196 0.172 0.212 Ȳ1 > Ȳ2 > Ȳ5 > Ȳ3 > Ȳ4 

IFDWG 0.292 0.202 0.117 0.101 0.128 Ȳ1 > Ȳ2 > Ȳ5 > Ȳ3 > Ȳ4 

PFDOWA 0.277 0.253 0.193 0.195 0.157 Ȳ1 > Ȳ2 > Ȳ4 > Ȳ3 > Ȳ5 

PFDOWG 0.184 0.159 0.074 0.124 0.051 Ȳ1 > Ȳ2 > Ȳ4 > Ȳ3 > Ȳ5 

Comparison 1. The suggested techniques are genuine and suitable for MADM challenges. The 

primary reasoning for the superiority of our suggested methods lies in the fact that these models 

exhibit a more comprehensive framework, which serves as an expansion of the techniques developed 

in [22]. In addition, the methods developed in [22] are inadequate for the analysis of the data in 

Tables 2–4 because they cannot handle the problems related to decision-making that are reliant on 

time, whereas the models proposed in this study can handle data from many time intervals, making 

them more adaptable. 

Comparison 2. The incorporation of the techniques presented in this study within the context of the 

dynamic PF environment enhances their efficacy. This is due to the fact that they assess many time 

periods and provide a more precise assessment of the data under consideration. The approaches 

delineated in [38,39] can be considered a specific case of the innovative methods introduced in our 

current investigation because they have a more restricted area of application compared to the 

methods presented in this study within the framework of PF knowledge. Thus, the newly proposed 

approaches provide a wider array of comprehensive alternatives for identifying and mitigating 

ambiguity than the methods outlined in [38,39]. 

Comparison 3. A significant quantity of data is lost because the aggregation techniques explained in 

[45,51] do not include time intervals, whereas the proposed aggregation techniques are dynamic 

because they can handle data from many time intervals, making them more adaptable. 

The above discussion highlights that the mathematical frameworks of the proposed operators 

utilizing PF knowledge with time intervals are highly effective and substantial. This establishes the 

novel techniques' efficiency over other strategies. 

6. Conclusions 

We seek to unveil innovative strategies for addressing complex decision-making challenges 

through the application of a dynamic PF framework. Although the literature has already established 

various useful operators, none of these specifically take into account the issue of time duration in PF 

settings. Consequently, utilizing a dynamic PF model proves to be a more efficient method for 

elucidating information associated with time-dependent considerations, as it adeptly handles 

two-dimensional data within an integrated framework. In light of these factors, we have implemented a 

new collection of operators, specifically PFDOWA and PFDOWG, within the framework of the PF 

environment. We have examined several features of these operators. Furthermore, we have suggested 

step-by-step mathematical mechanisms to address dynamic PF MADM issues using innovative 

strategies. Moreover, we have demonstrated the practical application of these newly devised 

methodologies in discerning the optimal strategy for treating cardiovascular disease in a patient. 

Finally, we have compared these novel approaches with existing methods to show their reliability and 

importance. 
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6.1. Limitations of present research 

Despite the advantages offered by the methodologies proposed in this article, several limitations 

remain: 

i. These techniques are incapable of dealing with situations in which the sum of the squares of the 

membership and non-membership values surpasses 1. 

ii. Due to their limitation to accepting just two parameters, these techniques are incapable of managing 

model cases that involve picture and spherical fuzzy information. 

6.2. Potential future research directions of the current study 

The principal objective of forthcoming research is to address the constraints recognized in the 

present study by formulating methodologies applicable to generalized settings, specifically within the 

contexts of interval-valued Pythagorean fuzzy, complex Pythagorean fuzzy, bipolar fuzzy, spherical 

fuzzy, and picture fuzzy frameworks. Another goal of future research will be to create a 

comprehensive decision-analysis tool that employs PF dynamic aggregation operators in order to 

maximize their significance and efficiency. The strategies suggested in this article will be flexible and 

applicable to a range of situations, such as the creation of more flexible financial plans, real-time social 

media activity monitoring online, dynamic military management assessment, dynamic and private 

shortlisting procedures, addressing the lack of energy in developing countries, and addressing 

time-dependent MADM issues. 
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Appendix 

Proof (Theorem 5). The technique of mathematical induction is used to establish the proof of this 

theorem. 

For 𝑝 = 2. We have 

𝑃𝐹𝐷𝑂𝑊𝐺(ἆ𝑡1 , ἆ𝑡2) =  ἆ𝜚(𝑡1)
ϒ𝑡1⨂ἆ𝜚(𝑡2)

ϒ𝑡2  

Utilizing definition 12, we get 

ἆ𝜚(𝑡1)
ϒ𝑡1 = [ 𝜇

𝜚(𝑡1)

ϒ𝑡1 , √1 − (1 − 𝜂𝜚(𝑡1)
2 )

ϒ𝑡1] 

ἆ𝜚(𝑡2)
ϒ𝑡2 = [𝜇

𝜚(𝑡2)

ϒ𝑡2 , √1 − (1 − 𝜂𝜚(𝑡2)
2 )

ϒ𝑡2] 

Thus, 

ἆ𝜚(𝑡1)
ϒ𝑡1⨂ἆ𝜚(𝑡2)

ϒ𝑡2

= [ 𝜇
𝜚(𝑡1)

ϒ𝑡1 , √1 − (1 − 𝜂𝜚(𝑡1)
2 )

ϒ𝑡1   ]⨂ [𝜇
𝜚(𝑡2)

ϒ𝑡2 , √1 − (1 − 𝜂𝜚(𝑡2)
2 )

ϒ𝑡2]

= [𝜇
𝜚(𝑡1)

ϒ𝑡1 𝜇
𝜚(𝑡2)

ϒ𝑡2 , √1 − (1 − 𝜂𝜚(𝑡1)
2 )

ϒ𝑡1 ((1 − 𝜂𝜚(𝑡2)
2 )

ϒ𝑡2)] 

In consequence, 

𝑃𝐹𝐷𝑂𝑊𝐺(ἆ𝑡1 , ἆ𝑡2) =

[
 
 
 

∏𝜇
𝜚(𝑡ř)

ϒ𝑡ř

2

ř=1

, √1 − ∏(1 − 𝜂𝜚(𝑡ř)
2 )

ϒ𝑡ř

2

ř=1
]
 
 
 

 

Hence, the result is true for 𝑝 = 2. 

Furthermore, we assume that the given result is true for = 𝑛 > 2, then we have: 

𝑃𝐹𝐷𝑂𝑊𝐺(ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑛) = ⨂ř=1
𝑛 ἆ𝜚(𝑡ř)

ϒ𝑡ř  

[
 
 
 
∏𝜇

𝜚(𝑡ř)

ϒ𝑡ř

𝑛

ř=1

, √1 − ∏(1 − 𝜂𝜚(𝑡ř)
2 )

ϒ𝑡ř

𝑛

ř=1

 

]
 
 
 
 

Now we prove the result 𝑝 = 𝑛 + 1. It can be expressed as 
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𝑃𝐹𝐷𝑂𝑊𝐺(ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑛 , ἆ𝑡𝑛+1
) = ⨂ř=1

𝑛 ἆ𝜚(𝑡ř)
ϒ𝑡ř⨂ἆ𝜚(𝑡𝑛+1)

ϒ𝑡𝑛+1  

=[∏ 𝜇
𝜚(𝑡ř)

ϒ𝑡ř𝑛
ř=1 , √1 − ∏ (1 − 𝜂𝜚(𝑡ř)

2 )
ϒ𝑡ř𝑛

ř=1 ] ⊗ [(𝜇𝜚(𝑡𝑛+1))
ϒ𝑡𝑛+1 , √1 − (1 − 𝜂𝜚(𝑡𝑛+1)

2 )
ϒ𝑡𝑛+1] 

It follows that 

𝑃𝐹𝐷𝑂𝑊𝐺(ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑛 , ἆ𝑡𝑛+1
) =

[
 
 
 

∏𝜇
𝜚(𝑡ř)

ϒ𝑡ř

𝑛+1

ř=1

, √1 − ∏(1 − 𝜂𝜚(𝑡ř)
2 )

ϒ𝑡ř

𝑛+1

ř=1

,

]
 
 
 

 

Hence, the result holds for each 𝑝 ∈ ℤ+. 

Proof (Theorem 6). Given that ἆ𝜚(𝑡ř) = ἆ𝜚(𝑡𝑗) for all ř = 1,2, … , 𝑝  and for some 𝑗 ∈ {1,2, … , 𝑝} 

which implies that 𝜇𝜚(𝑡ř) = 𝜇𝜚(𝑡𝑗) and 𝜂𝜚(𝑡ř) = 𝜂𝜚(𝑡𝑗). 

𝑃𝐹𝐷𝑂𝑊𝐺 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) =

(

 ∏𝜇
𝜚(𝑡ř)

ϒ𝑡ř

𝑝

ř=1

, √1 − ∏(1 − 𝜂𝜚(𝑡ř)
2 )

ϒ𝑡ř

𝑝

ř=1
)

  

= (𝜇
𝜚(𝑡𝑗)

∑ ϒ𝑡ř
𝑝
ř=1  , √1 − (1 − 𝜂𝜚(𝑡𝑗)

2 )
∑ ϒ𝑡ř

𝑝
ř=1

) 

= (𝜇𝜚(𝑡𝑗) , √1 − (1 − 𝜂𝜚(𝑡𝑗)
2 ) ) = (𝜇𝜚(𝑡𝑗) , √𝜂𝜚(𝑡𝑗)

2  ) = (𝜇𝜚(𝑡𝑗) , 𝜂𝜚(𝑡𝑗)) 

Consequently, 

𝑃𝐹𝐷𝑂𝑊𝐺 (ἆ𝑡1 , ἆ𝑡2 , … , ἆ𝑡𝑝) = ἆ𝜚(𝑡𝑗) 

The proofs of Theorems 7 and 8 can be derived by employing analogous reasoning to that used 

in the proofs of Theorems 3 and 4, respectively. 
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