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Abstract: A new nonlinear fourth-order sin-Gordon equation with actual physical background is first
created. Then, by introducing an auxiliary function, the nonlinear fourth-order sin-Gordon equation
is decomposed into the nonlinear system of equations of second-order derivatives of spatial variables.
Subsequently, the time derivative is discretized by using the Crank-Nicolson (CN) scheme to construct
a new time semi-discretized mixed CN (TSDMCN) scheme. Thereafter, the spatial variables in the
TSDMCN scheme are discretized by using a two-grid mixed finite element (MFE) method to construct
a new two-grid CN MFE (TGCNMFE) method with unconditional stability and second-order time
precision, which consists of a system of nonlinear MFE equations defined on coarser grids and a
system of linear MFE equations defined on finer grids with sufficiently high precision, and is very easy
to solve. The existence, stability, and error estimates of the TSDMCN and TGCNMFE solutions are
strictly proved theoretically, and the superiorities of the TGCNMFE method and the correctness of
theoretical results are verified by two sets of numerical experiments.
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1. Introduction

Let Ω ⊂ Rd (d = 2, 3) be a connected bounded domain with the boundary ∂Ω. We propose a new
nonlinear fourth-order sin-Gordon (NFOSG) equation, which is different from the standard sin-Gordon
equation in [1, 2] and is defined as follows:
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Problem 1. Find ϖ : [0, te]→ C4(Ω̄), satisfying
ϖtt(x, t) − ∆ϖ(x, t) + ∆2ϖ(x, t) + sin(ϖ(x, t)) = 0, (x, t) ∈ Ω × (0, te),
ϖ(x, t) = ∆ϖ(x, t) = 0, (x, t) ∈ ∂Ω × (0, te),
ϖ(x, 0) = ϖ0(x), ϖt(x, 0) = ϖ1(x), x ∈ Ω,

(1.1)

where te is a specified time upper bound,

ϖtt(x, t) = ∂2ϖ(x, t)/∂t2, x = (x1, x2, · · · , xd), ∆ =
d∑

i=1

∂2/∂x2
i

is the Laplace operator, both ϖ0(x) and ϖ1(x) are sufficiently smooth known initial functions, and

ϖt(x, t) = ∂ϖ(x, t)/∂t.

The NFOSG equation is obtained by adding a fourth-order term ∆2ϖ(x, t) to the standard
sin-Gordon equation. It is well known (see, e.g., [3–5]) that the fourth-order term ∆2ϖ(x, t) can
describe the deformation of an object under the action of an external force such as seismic waves and
flying aircraft, while the nonlinear term sin(ω(x, t)) can describe the nonlinear behavior of a moving
body/wave. Therefore, the NFOSG equation can not only describe the fluid mechanics of porous
media [6–8], groundwater dynamics [9], seepage mechanics and groundwater hydraulics [10–12],
etc., like the standard sin-Gordon equation, but also describe the nonlinear deformation behavior of
moving bodies/waves, such as the movement of seismic waves or the movement of flying aircraft.
Therefore, the NFOSG equation is an important mathematical physics model with a real application
background and has a wider range of applications than the standard sin-Gordon equation.

However, as a result of the NFOSG equation including a strong nonlinear term sin(ω(x, t)), it is very
difficult to solve analytically. A numerical method is the most effective choice to solve the NFOSG
equation. Fortunately, the numerical methods of the NFOSG equation play a pivotal role in simulation
of the earthquake wave, the motion of flying aircraft, as well as the fluid mechanics of porous media,
groundwater dynamics, seepage mechanics, groundwater hydraulics, and other phenomena. Therefore,
it is very important to study the numerical methods of the NFOSG equation.

A large number of numerical examples have showed that the two-grid finite element (FE) algorithm
is one of the best numerical methods for solving nonlinear partial differential equations (PDEs), which
consists of a nonlinear FE system of equations defined on coarser grids and a linear FE system of
equations defined on finer grids with sufficiently high precision. Hence, it can simplify computation
and enhance calculation efficiency. It was originally used to solve quasi-linear elliptic equations [13].
More recently, Shi’s and Liu’s teams have used it to solve some of the more complex nonlinear PDEs
(see [14–16]).

However, to our knowledge, at the moment, there has been no report on the Crank-Nicolson (CN)
mixed FE (MFE) (CNMFE) format for the NFOSG equation reduced with two-grid FE technique.
Therefore, the main task of this paper is to develop a new two-grid CNMFE (TGCNMFE) method
for the NFOSG equation (i.e., Problem 1). The TGCNMFE method has at least three benefits. First,
by introducing an auxiliary function φ = ∆ϖ, the NFOSG equation is split into two second-order
equations, which can be easily solved by lower degree FEs such as linear or quadratic FEs. Second, the
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TGCNMFE method has unconditional stability and second-order time accuracy. Third, the TGCNMFE
method also consists of a nonlinear MFE equation defined on coarser grids and a linear MFE equation
defined on finer grids, which greatly simplifies the calculation and improves the calculation efficiency.

Although some single-grid FE methods for the standard sin-Gordon equation with only second-
order derivatives of spatial variables have been proposed in [10–12], they are completely different from
the TGCNMFE method for the NFOSG equation with fourth-order derivatives of spatial variables.
Both the TGCNMFE method and the NFOSG equation are far more complex than those in [10–12].
Therefore, both the establishment of the TGCNMFE method and the theoretical analysis of existence,
stability, and errors of the TGCNMFE solutions herein are more difficult and require more skills than
the single-grid FE methods in [10–12], but the NFOSG equation has a wider range of applications
than the standard sin-Gordon equation, as mentioned above. Hence, it is very valuable to study the
TGCNMFE method for solving the NFOSG equation.

The rest of this paper consists of the following four sections. In Section 2, by introducing an
auxiliary function φ = ∆ϖ, we split the NFOSG equation into two second-order equations, and by
using the time CN scheme to discretize them, we design a new time semi-discretization mixed CN
(TSDMCN) scheme and discuss the existence, stability, and error estimates of the TSDMCN solutions.
In Section 3, by using the two-grid MFE method to discretize the TSDMCN scheme, we construct a
new TGCNMFE method for the NFOSG equation and analyze the existence, stability, and errors of
the TGCNMFE solutions. In Section 4, we use two sets of numerical experiments to confirm the
correctness of the obtained theoretical results and show the superiorities of the TGCNMFE method.
Finally, we give the main conclusions of this article and future study prospects in Section 5.

2. A new time semi-discretization CN scheme

The Sobolev spaces and norms used in this context are classical (see [5, 17, 18]). Let

W = H1
0(Ω) and φ = −∆ϖ.

Thus, by Green’s formula, we can derive the following mixed variational format of Problem 1.

Problem 2. For any t ∈ (0, te), find (ϖ, φ) ∈W ×W, meeting
(ϖtt, υ) + (∇φ,∇υ) + (φ, υ) = ( f (ϖ), υ), ∀υ ∈W,

(∇ϖ,∇ϑ) = (φ, ϑ), ∀ϑ ∈W,

ϖ(x, 0) = ϖ0(x), ϖt(x, 0) = ϖ1(x), φ(x, 0) = −∆ϖ0(x), x∈Ω,
(2.1)

where (·, ·) denotes the L2 inner product, and

f (ϖ) = − sin(ϖ).

Using the proof method of Theorem 3.3.1 in [5] or the proof method of the following Theorem 1,
we can demonstrate the existence and stability of the generalized solutions for Problem 2.

In order to establish the TGCNMFE method, we first set up a new TSDMCN scheme. Therefore,
we assume that K > 0 is an integer,

∆t = te/K
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is the time step, and ϖk and φk are the approximations to ϖ(x, t) and φ(x, t) at

tk = k∆t (0 ⩽ k ⩽ K),

respectively.
Using an implicit scheme of time to discretize the first equation in Problem 2 yields

1
∆t2 (ϖk+1 − 2ϖk +ϖk−1, υ) + (∇φk+1,∇υ) + (φk+1, υ) = ( f (ϖk+1), υ), ∀υ ∈W. (2.2)

Using an explicit scheme of time to discretize the first equation in Problem 2 yields

1
∆t2 (ϖk+1 − 2ϖk +ϖk−1, υ) + (∇φk−1,∇υ) + (φk−1, υ) = ( f (ϖk−1), υ), ∀υ ∈W. (2.3)

By adding formulas (2.2) and (2.3), we obtain the following brand-new TSDMCN format, which is
different from the existing time semi-discrete formats, including that in [1].

Problem 3. Find {ϖk, φk} ∈W ×W (1 ⩽ k ⩽ K), meeting

1
∆t2 (ϖk+1 − 2ϖk +ϖk−1, υ) +

1
2

(∇(φk+1 + φk−1),∇υ) +
1
2

(φk+1 + φk−1, υ)

=
1
2

( f (ϖk+1) + f (ϖk−1), υ), ∀υ ∈W, 1 ⩽ k ⩽ K − 1,

(∇ϖk,∇ϑ) = (φk, ϑ), ∀ϑ ∈W, 0 ⩽ k ⩽ K,
ϖ0 = ϖ0, ϖ

1 = ϖ0 + ∆tϖ1, φ
0 = −∆ϖ0, φ

1 = φ0 − ∆t∆ϖ1, in Ω.

(2.4)

For Problem 3, we obtain the following results:

Theorem 1. Problem 3 has a unique series of solutions

{ϖk, φk}Kk=1 ⊂W ×W

meeting the following boundness, i.e., stability:

∥∇ϖk∥0 + ∥∇φ
k∥0 ⩽ c(∥ϖ0∥1 + ∥ϖ1∥1), 1 ⩽ k ⩽ K. (2.5)

The c used in this context is a generical positive constant independent of ∆t. And, when ϖ0(x) and
ϖ1(x) are adequately smooth, the series of solutions {ϖk, φk}Kk=1 meets the error estimates

∥∇(ϖ(tk) −ϖk)∥0 + ∥∇(φ(tk) − φk)∥0 ⩽ c∆t2, 1 ⩽ k ⩽ K, (2.6)

where
ϖ(tk) = ϖ(x, tk) and φ(tk) = φ(x, tk) (1 ⩽ k ⩽ K).

Proof. The demonstration of Theorem 1 consists of the following three parts.

(1) The existence and uniqueness of series of solutions of Problem 3.
Taking

υ = ϖk+1 −ϖk−1
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in the first subsystem of equations of (2.4), by the second subsystem of equations of (2.4), the Hölder
and Cauchy inequalities, and the Lagrange differential mean formula (LDMF), we obtain

∥ϖk+1 −ϖk∥20 − ∥ϖ
k −ϖk−1∥20 +

∆t2

2
(∥φk+1∥20 − ∥φ

k−1∥20) +
∆t2

2
(∥∇ϖk+1∥20 − ∥∇ϖ

k−1∥20)

=
∆t2

2
( f (ϖk+1) + f (ϖk−1), ϖk+1 −ϖk−1)

⩽ c∆t2(∥ϖk+1 −ϖk∥20 + ∥ϖ
k −ϖk−1∥20), 1 ⩽ k ⩽ K − 1. (2.7)

By summing (2.7) from 1 to k (k ⩽ K − 1) and using the third equation of (2.4), we obtain

∥ϖk+1 −ϖk∥20 +
∆t2

2
(∥φk+1∥20 + ∥φ

k∥20) +
∆t2

2
(∥∇ϖk+1∥20 + ∥∇ϖ

k∥20)

⩽ ∥ϖ1 −ϖ0∥20 +
∆t2

2
(∥φ1∥20 + ∥φ

0∥20) +
∆t2

2
(∥∇ϖ1∥20 + ∥∇ϖ

0∥20) + c∆t2
k∑

j=0

∥ϖ j+1 −ϖ j∥20

⩽ c∆t2(∥ϖ0∥
2
1 + ∥ϖ1∥

2
1) + c∆t2

k∑
j=0

∥ϖ j+1 −ϖ j∥20, 1 ⩽ k ⩽ K − 1. (2.8)

When ∆t is adequately small satisfying c∆t2 ⩽ 1/4, by simplifying (2.8), we obtain

∥ϖk+1 −ϖk∥20 + ∆t2∥φk+1∥20 + ∆t2∥∇ϖk+1∥20

⩽ c∆t2(∥ϖ0∥
2
1 + ∥ϖ1∥

2
1) + c∆t2

k−1∑
j=0

∥ϖ j+1 −ϖ j∥20, 1 ⩽ k ⩽ K − 1. (2.9)

By applying Gronwall’s inequality (see [5, Lemme 3.1.9]) to (2.9), we obtain

∥ϖk+1 −ϖk∥20 + ∆t2∥φk+1∥20 + ∆t2∥∇ϖk+1∥20

⩽ c∆t2(∥ϖ0∥
2
1 + ∥ϖ1∥

2
1) exp(ck∆t2) ⩽ c∆t2(∥ϖ0∥

2
1 + ∥ϖ1∥

2
1), 1 ⩽ k ⩽ K − 1. (2.10)

Thereupon, we obtain

∥φk∥0 + ∥∇ϖ
k∥0 ⩽ c(∥ϖ0∥1 + ∥ϖ1∥1), 1 ⩽ k ⩽ K. (2.11)

Further, by the first and second subsystems of equations of (2.4), the Hölder and Cauchy
inequalities, and LDMF, we obtain

∥∇(ϖk+1 −ϖk)∥20 − ∥∇(ϖk −ϖk−1)∥20 +
∆t2

2
(∥∇φk+1∥20 − ∥∇φ

k−1∥20)

+
∆t2

2
(∥φk+1∥20 − ∥φ

k−1∥20) = (ϖk+1 − 2ϖk +ϖk−1, φk+1 − φk−1)

+
∆t2

2
(∇(φk+1 + φk−1),∇(φk+1 − φk−1)) +

∆t2

2
(φk+1 + φk−1, φk+1 − φk−1)

=
∆t2

2
( f (ϖk+1) + f (ϖk−1), φk+1 − φk−1) ⩽ c∆t(∥ϖk+1 −ϖk∥20 + ∥ϖ

k −ϖk−1∥20)
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+ c∆t3(∥φk+1∥20 + ∥φ
k−1∥20), 1 ⩽ k ⩽ K − 1. (2.12)

By summing (2.12) from 1 to k (k ⩽ K − 1) and using the third equation of (2.4), we obtain

∥∇(ϖk+1 −ϖk)∥20 +
∆t2

2
(∥∇φk+1∥20 + ∥∇φ

k∥20) +
∆t2

2
(∥φk+1∥20 + ∥φ

k∥20)

⩽ c∆t
k∑

j=0

∥ϖ j+1 −ϖk∥20 + c∆t3
k∑

j=0

∥φ j+1∥21 + c∆t2(∥ϖ0∥
2
1 + ∥ϖ1∥

2
1), 1 ⩽ k ⩽ K − 1. (2.13)

When ∆t is adequately small satisfying c∆t2 ⩽ 1/4, by simplifying (2.13), we obtain

∥∇(ϖk+1 −ϖk)∥20 + ∆t2∥∇φk+1∥20 + ∆t2∥φk+1∥20

⩽ c∆t
k−1∑
j=0

∥ϖ j+1 −ϖk∥20 + c∆t3
k−1∑
j=0

∥φ j+1∥21 + c∆t2(∥ϖ0∥
2
1 + ∥ϖ1∥

2
1), 1 ⩽ k ⩽ K − 1. (2.14)

By applying Gronwall’s inequality (see [5, Lemme 3.1.9]) to (2.14), we obtain

∥∇(ϖk+1 −ϖk)∥20 + ∆t2∥∇φk+1∥20 + ∆t2∥φk+1∥20 ⩽ c∆t2(∥ϖ0∥
2
1 + ∥ϖ1∥

2
1) exp(ck∆t), 1 ⩽ k ⩽ K − 1.

(2.15)

Thereupon, we obtain

∥∇φk+1∥0 + ∥φ
k+1∥0 ⩽ c(∥ϖ0∥1 + ∥ϖ1∥1), 1 ⩽ k ⩽ K − 1. (2.16)

Thus, when
ϖ0 = ϖ1 = 0,

by (2.11) and (2.16), we obtain
φk = ϖk = 0.

This signifies that Problem 3 has at least one series of solutions {ϖk, φk}Nk=1.

If Problem 3 has another series of solutions {ϖ̃k, φ̃k}Nk=1, it should satisfy the following system of
equations: 

1
∆t

(ϖ̃k+1 − 2ϖ̃k + ϖ̃k−1, υ) +
1
2

(∇(φ̃k+1 + φ̃k−1),∇υ) +
1
2

(φ̃k+1 + φ̃k−1, υ)

=
1
2

( f (ϖ̃k+1) + f (ϖ̃k−1), υ), ∀υ ∈W, 1 ⩽ k ⩽ K − 1,(
∇ϖ̃k,∇ϑ

)
= (φ̃k, ϑ), ∀ϑ ∈W, 0 ⩽ k ⩽ K,

ϖ̃0 = ϖ0, φ̃
0 = −∆ϖ0, ϖ̃

1 = ϖ1, φ̃
1 = φ0 − ∆t∆ϖ1, in Ω.

(2.17)

Let
Ek = ϖk − ϖ̃k and ek = φk − φ̃k.
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Subtracting (2.17) from (2.4) yields

1
∆t

(
Ek+1 − 2Ek + Ek−1, υ

)
+

1
2

(
∇(ek+1 + ek−1),∇υ

)
+

1
2

(
ek+1 + ek−1, υ

)
=

1
2

(
f (ϖk+1) + f (ϖk−1) − f (ϖ̃k+1) − f (ϖ̃k−1), υ

)
, ∀υ ∈W, 1 ⩽ k ⩽ K − 1,(

∇Ek,∇ϑ
)
= (ek, ϑ), ∀ϑ ∈W, 0 ⩽ k ⩽ K,

E0 = E1 = 0, e0 = e1 = 0, in Ω.

(2.18)

Taking
υ = Ek − Ek−1

in the first equation of (2.18), by the second equation of (2.18), the Hölder and Cauchy inequalities,
and the LDMF, we obtain

2(∥Ek+1 − Ek∥20 − ∥E
k − Ek−1∥20) + ∆t2(∥ek+1∥20 − ∥e

k−1∥20) + ∆t2
(
∥∇Ek+1∥20 − ∥∇Ek−1∥20

)
= ∆t2

(
f (ϖk+1) − f (ϖ̃k+1) + f (ϖk−1) − f (ϖ̃k−1), Ek+1 − Ek−1

)
= ∆t2

(
Ek+1 f ′(ξk) + Ek−1 f ′(ξk−1), Ek+1 − Ek−1

)
⩽ c∆t2(∥Ek+1 − Ek∥20 + ∥E

k − Ek−1∥20), 1 ⩽ k ⩽ K − 1, (2.19)

where ξi lies between ϖi and w̃i (i = k, k − 1).
Summing (2.19) from 1 to k (k ⩽ K − 1) and noting that

E1 = e1 = E0 = e0 = 0,

we obtain

2∥Ek+1 − Ek∥20 + ∆t2(∥ek+1∥20 + ∥e
k∥20) + ∆t2(∥∇Ek+1∥20 + ∥∇Ek∥20)

⩽ c∆t2
k∑

i=0

∥Ei+1 − Ei∥20, 1 ⩽ k ⩽ K − 1. (2.20)

When ∆t is adequately small, satisfying c∆t2 ⩽ 1, by simplifying (2.20), we obtain

∥Ek+1 − Ek∥20 + ∆t2∥ek+1∥20 + ∆t2∥∇Ek+1∥20 ⩽ c∆t2
k−1∑
i=0

∥Ei+1 − Ei∥20, 1 ⩽ k ⩽ K − 1. (2.21)

By applying Gronwall’s inequality to (2.21), we obtain

∥Ek+1 − Ek∥20 + ∆t2∥ek+1∥20 + ∆t2∥∇Ek+1∥20 ⩽ 0, 1 ⩽ k ⩽ K − 1. (2.22)

Thereupon, we obtain
ϖ̃k = ϖ̃k and φk = φk (1 ⩽ k ⩽ K).

Hence, Problem 3 has a unique series of solutions {ϖk, φk}Kk=1.

(2) Discuss the boundness, i.e., stability of solutions {ϖk, φk}Kk=1 of Problem 3.
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When Problem 3 has a unique series of {ϖk, φk}Kk=1, by (2.11) and (2.16), we claim that it is bounded,
i.e., stable, namely (2.5) holds.

(3) Estimate the errors of solutions {ϖk, φk}Kk=1 of Problem 3.
Via the Taylor expansion, we obtain

v(tk+1) = v(tk) + ∆tv′(tk) +
∆t2

2
v′′(tk) +

∆t3

6
v′′′(tk) +

∆t4

24
v′′′(tk) + · · · , (2.23)

v(tk−1) = v(tk) − ∆tv′(tk) +
∆t2

2
v′′(tk) −

∆t3

6
v′′′(tk) +

∆t4

24
v′′′(tk) + · · · , (2.24)

f (v(tk+1)) = f (v(tk)) + [v(tk+1) − v(tk)] f ′(v(tk)) +
1
2

(v(tk+1) − v(tk))2 f ′′(v(tk)) + · · · , (2.25)

f (v(tk−1)) = f (v(tk)) + [v(tk−1) − v(tk)] f ′(v(tk)) +
1
2

(v(tk−1) − v(tk))2 f ′′(v(tk)) + · · · . (2.26)

Therefore, we obtain

ϖ′′(tk) =
ϖ(tk+1) − 2ϖ(tk) +ϖ(tk−1)

∆t2 +
∆t2

24
ϖ′′′(ηk), tk−1 ⩽ ζk ⩽ tk+1, (2.27)

φ(tk) =
φ(tk+1) + φ(tk−1)

2
− ∆t2φ′′(ςk), tk−1 ⩽ ςk ⩽ tk+1, (2.28)

f (ϖ(tk)) =
f (ϖ(tk+1)) + f (ϖ(tk−1))

2
− ∆t2R(x, t), (2.29)

where R(x, t) is a bounded remainder function, which is obtained by (2.23)–(2.26).
Thereupon, subtracting the first equation of (2.4) from the first equation of (2.1) after taking t = tk

and setting
ϱk = ϖ(x, tk) −ϖk and ϱ̃k = φ(x, tk) − φk,

we obtain the following system of error equations:

1
∆t2

(
ϱk+1 − 2ϱk + ϱk−1, υ

)
+

1
2

(
∇(ϱ̃k+1 + ϱ̃k−1),∇υ

)
+

1
2

(
ϱ̃k+1 + ϱ̃k−1, υ

)
=

1
2

(
f (ϖ(tk+1)) − f (ϖk+1) + f (ϖ(tk−1)) − f (ϖk−1), υ

)
+ ∆t2 (R(x, t), υ) ,∀υ ∈W, 1 ⩽ k ⩽ K − 1, (2.30)(

∇ϱk,∇ϑ
)
= (ϱ̃k, ϑ), ∀ϑ ∈W, 0 ⩽ k ⩽ K, (2.31)

ϱ0 = ϱ1 = ϱ̃0 = ϱ̃1 = 0, (2.32)

where R̃(x, t) is also a bounded remainder function, which is determined by substituting (2.27)–(2.29)
into (2.1).

Taking
υ = ϱk+1 − ϱk−1

in (2.30) and using Eq (2.31), the Hölder and Cauchy inequalities, Green’s formula, and the LDMF,
we obtain

∥ϱk+1 − ϱk∥20 − ∥ϱ
k − ϱk−1∥20 +

∆t2

2
(∥ϱ̃k+1∥20 − ∥ϱ̃

k−1∥20) +
∆t2

2
(∥∇ϱk+1∥20 − ∥∇ϱ

k−1∥20)
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=
∆t2

2
( f (ϖ(tk+1)) − f (ϖk+1) + f (ϖ(tk−1)) − f (ϖk−1), ϱk+1 − ϱk−1) + ∆t4

(
R(x, t), ϱk+1 − ϱk−1

)
⩽ c∆t(∥ϱk+1 − ϱk∥20 + ∥ϱ

k − ϱk−1∥20) + c∆t7, 1 ⩽ k ⩽ K − 1. (2.33)

Summing (2.33) from 1 to k (k ⩽ K − 1), and noting that

ϱ0 = ϱ1 = ϱ̃0 = ϱ̃1 = 0,

we get

∥ϱk+1 − ϱk∥20 +
∆t2

2
(∥ϱ̃k+1∥20 + ∥ϱ̃

k∥20) +
∆t2

2
(∥∇ϱk+1∥20 + ∥∇ϱ

k∥20)

⩽ c∆t
k∑

i=0

∥ϱi+1 − ϱi∥20 + ck∆t7, 1 ⩽ k ⩽ K − 1. (2.34)

Thus, when ∆t is adequately small, satisfying c∆t ⩽ 1/4, by simplifying (2.34), we get

∥ϱk+1 − ϱk∥20 + ∆t2∥ϱ̃k+1∥20 + ∆t2∥∇ϱk+1∥20 ⩽ c∆t
k−1∑
i=0

∥ϱi+1 − ϱi∥20 + c∆t6, 1 ⩽ k ⩽ K − 1. (2.35)

By applying Gronwall’s inequality to (2.35), we obtain

∥ϱk+1 − ϱk∥20 + ∆t2∥ϱ̃k+1∥20 + ∆t2∥∇ϱk+1∥20 ⩽ c∆t6 exp(ck∆t) ⩽ c∆t6, 1 ⩽ k ⩽ K − 1. (2.36)

Thereupon, we obtain

∥φ(tk) − φk∥0 + ∥∇(ϖ(tk) −ϖk)∥0 ⩽ c∆t2, 1 ⩽ k ⩽ K. (2.37)

Further, by (2.30) and (2.31), the Hölder and Cauchy inequalities, and the LDMF, we obtain

2(∥∇(ρ̃k+1 − ρ̃k)∥20 − ∥∇(ρ̃k − ρ̃k−1)∥20) + ∆t2(∥∇ρ̃k+1∥20 − ∥∇ρ̃
k−1∥20) + ∆t2(∥ρ̃k+1∥20 − ∥ρ̃

k−1∥20)

= (ρk+1 − 2ρk + ρk−1, ρ̃k+1 − ρ̃k−1)

+ ∆t2(∇(ρ̃k+1 + ρ̃k−1),∇(ρ̃k+1 − ρ̃k−1)) + ∆t2(ρ̃k+1 + ρ̃k−1, ρ̃k+1 − ρ̃k−1)

= ∆t2( f (ϖ(tk+1)) − f (ϖk+1) + f (ϖ(tk−1)) − f (ϖk−1), ρ̃k+1 − ρ̃k−1) + ∆t4(R(x, t), ρ̃k+1 − ρ̃k−1)

⩽ c∆t(∥∇(ρ̃k+1 − ρ̃k)∥20 + ∥∇(ρ̃k − ρ̃k−1)∥20) + ∆t3(∥ρ̃k+1∥20 + ∥ρ̃
k−1∥20) + c∆t7, 1 ⩽ k ⩽ K − 1. (2.38)

By summing (2.38) from 1 to k (k ⩽ K − 1) and noting that

ϱ0 = ϱ1 = ϱ̃0 = ϱ̃1 = 0,

we obtain

2∥∇(ρ̃k+1 − ρ̃k)∥20 + ∆t2(∥∇ρ̃k+1∥20 + ∥∇ρ̃
k∥20) + ∆t2(∥ρ̃k+1∥20 + ∥ρ̃

k∥20)

⩽ c∆t
k∑

j=0

∥∇(ρ̃ j+1 − ρ̃ j)∥20 + c∆t3
k∑

j=0

∥ρ̃ j+1∥20 + ck∆t7, 1 ⩽ k ⩽ K − 1. (2.39)
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Thus, when ∆t is adequately small, satisfying c∆t ⩽ 1/2, by simplifying (2.39), we get

∥∇(ρ̃k+1 − ρ̃k)∥20 + ∆t2∥∇ρ̃k+1∥20 + ∆t2∥ρ̃k+1∥20

⩽ c∆t
k−1∑
j=0

∥∇(ρ̃ j+1 − ρ̃ j)∥20 + c∆t3
k−1∑
j=0

∥ρ̃ j+1∥20 + c∆t6, 1 ⩽ k ⩽ K − 1. (2.40)

By applying Gronwall’s inequality to (2.40), we obtain

∥∇(ρ̃k+1 − ρ̃k)∥20 + ∆t2∥∇ρ̃k+1∥20 + ∆t2∥ρ̃k+1∥20 ⩽ c∆t6 exp(ck∆t) ⩽ c∆t6, 1 ⩽ k ⩽ K − 1. (2.41)

Thereupon, we obtain

∥∇(φ(tk) − φk)∥0 + ∥φ(tk) − φk∥0 ⩽ c∆t4, 1 ⩽ k ⩽ K − 1. (2.42)

Combining (2.37) with (2.42) yields (2.6). Theorem 1 is proved. □

Remark 1. Theorem 1 shows that the TSDMCN solutions are stable and their H1 norm error estimates
can reach second-order accuracy, which is the optimal order error estimates.

3. The TGCNMFE method

In order to construct the TGCNMFE format, it is necessary further to discretize the spatial variables
in Problem 3 by using the two-grid MFE method. To this end, we assume that ℑH is a coarse grid
of quasi-uniform partition on Ω̄, which is formed by two-dimensional triangles or quadrangles and
three-dimensional tetrahedrons or hexahedrons, and H denotes the maximum diameter of all elements
in ℑH. Thus, the FE space defined on the coarse grids is expressed by

WH =
{
vH ∈ C(Ω̄) ∩W : vH |E ∈ Pl(E), ∀E ∈ ℑH

}
,

where Pl(E) (l ⩾ 1) denotes the space of polynomials with degree ⩽ l defined on the coarse grid
element E ∈ ℑH.

Further, we assume thatℑh is a fine grid of quasi-uniform partition on Ω̄ and h denotes the maximum
diameter of all elements in ℑh (h ≪ H). Likewise, the FE space defined on the fine grids ℑh is denoted
by

Wh =
{
vh ∈ C(Ω̄) ∩W : vh|e ∈ Pl(e), ∀e ∈ ℑh

}
.

Thereupon, a new TGCNMFE formulation can be created as follows.

Problem 4. Step 1. Find
(ϖk

H, φ
k
H) ∈WH ×WH (1 ⩽ k ⩽ K)

defined on the coarse grid ℑH, satisfying the nonlinear system of equations:

(ϖk+1
H − 2ϖk

H +ϖ
k−1
H , υH) +

∆t2

2
(∇(φk+1

H + φk−1
H ),∇υH) +

∆t2

2
(φk+1

H + φk−1
H , υH)

=
∆t
2

( f (ϖk+1
H ) + f (ϖk−1

H ), υH),∀υH ∈WH, 1 ⩽ k ⩽ K − 1,(
∇ϖk

H,∇ϑH

)
= (φk

H, ϑH), ∀ϑH ∈WH, 0 ⩽ k ⩽ K,

ϖ0
H = RHϖ0, ϖ

1
H = RHϖ1, φ

0
H = RHφ

0, φ1
H = RHφ

1, in Ω.

(3.1)
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Step 2. Find
(ϖk

h, φ
k
h) ∈Wh ×Wh (1 ⩽ k ⩽ K)

defined on the fine grid ℑh, satisfying the linear system of equations:

(
ϖk+1

h − 2ϖk
h +ϖ

k−1
h , υh

)
+
∆t
2

(∇(φk+1
h + φk−1

h ),∇υh) +
∆t
2

(φk+1
h + φk−1

h , υh)

=
∆t
2

( f (ϖk+1
H ) + f ′(ϖk+1

H )(ϖk+1
h −ϖk+1

H ) + f (ϖk−1
h ), υh), ∀υh ∈Wh, 1 ⩽ k ⩽ K − 1,(

∇ϖk
h,∇ϑh

)
= (φk

h, ϑh), ∀ϑh ∈Wh, 0 ⩽ k ⩽ K,

ϖ0
h = Rhϖ0, ϖ

1
h = Rhϖ1, φ

0
h = Rhφ

0, φ1
h = Rhφ

1, in Ω.

(3.2)

The above operators Rδ: W → Wδ (δ = H, h) denote the Ritz projection; i.e., for any φ ∈ W, there
exist two unique Rδφ ∈Wδ satisfying

(∇(φ − Rδφ),∇ϑδ) = 0, ∀ϑδ ∈Wδ, δ = H, h, (3.3)

and the following error estimates:

|φ − Rδφ|r ⩽ Cδl+1−r, if φ ∈W ∩ Hl+1(Ω), δ = H, h, r = −1, 0, 1. (3.4)

For Problem 4, we obtain the following results:

Theorem 2. Problem 4 has a unique set of solutions

{(ϖk
H, φ

k
H)}Kk=1 ⊂WH ×WH

defined on the coarse grid ℑH and a unique set of solutions

{(ϖk
h, φ

k
h)}Kk=1 ⊂Wh ×Wh

defined on the fine grid ℑh, respectively, meeting the following unconditional boundness, i.e.,
unconditional stability:

∥ϖk
H∥1 + ∥ϖ

k
h∥1 + ∥φ

k
H∥0 + ∥φ

k
h∥0 ⩽ c(∥ϖ0∥1 + ∥ϖ1∥1), 1 ⩽ k ⩽ K. (3.5)

The c that appears here and after is also a positive constant independent of H, h, and ∆t. Further,
when

h = O(H1+1/l),

they meet the following error estimates:

∥ϖ(tk) −ϖk
H∥0 + ∥φ(tk) − φk

H∥0 + H∥∇(ϖ(tk) −ϖk
H)∥0 + H∥∇(φ(tk) − φk

H)∥0 ⩽ c(∆t2 + Hl+1), (3.6)
∥ϖ(tk) −ϖk

h∥0 + ∥φ(tk) − φk
h∥0 + h∥∇(ϖ(tk) −ϖk

h)∥0 + h∥∇(φ(tk) − φk
h)∥0 ⩽ c(∆t2 + hl+1), (3.7)

where 1 ⩽ k ⩽ K.
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Proof. The demonstration of Theorem 2 consists of the following two parts:

(1) Prove the existence and unconditional stability of TGCNMFE solutions.

(i) Consider the existence and unconditional stability of the TGCNMFE solutions defined on the
coarse grid ℑH.

Noting that the system of Eq (3.1) has the same form as the system of Eq (2.4), by using the same
approach as proving Theorem 2, we can demonstrate that the nonlinear system of Eq (3.1) has a unique
set of solutions

{(ϖk
H, φ

k
H)}Kk=1 ⊂WH ×WH,

satisfying

∥∇ϖk
H∥0 + ∥∇φ

k
H∥0 ⩽ c(∥ϖ0∥1 + ∥ϖ1∥1), 1 ⩽ k ⩽ K. (3.8)

(ii) Consider the existence and unconditional stability of the TGCNMFE solutions defined on the
fine grid ℑh.

Let

A((ϖ, φ), (ϑ, υ)) = (ϖ, υ) − (φ, ϑ) + (∇ϖ,∇ϑ) +
∆t2

2
(∇φ,∇υ) −

∆t2

2
( f ′(ϖk+1

H )ϖ, υ) +
∆t2

2
(φ, υ),

F(υ, ϑ) =
(
2ϖk

h −ϖ
k−1
h , υ

)
−
∆t2

2
(∇φk−1

h ,∇υ) −
∆t2

2
(φk−1

h , υ)

+
∆t2

2
( f (ϖk+1

H ) − f ′(ϖk+1
H )ϖk+1

H + f (ϖk−1
h ), υ).

The linear system of equations (3.2) can be rewritten into as follows:
Find

(ϖk
h, φ

k
h) ∈Wh ×Wh (1 ⩽ k ⩽ K)

satisfying the following linear system of equations: A((ϖk+1
h , φ

k+1
h ), (ϑh, υh)) = F(ϑh, υh), ∀(ϑh, υh) ∈Wh ×Wh, 1 ⩽ k ⩽ K − 1,

ϖ0
h = Rhϖ0(x), ϖ1

h = Rhϖ1(x), φ0
h = Rhφ

0(x), φ1
h = Rhφ

1(x), x∈Ω.
(3.9)

By Poincaré’s inequality, we claim that there is a constant θ0 > 0 such that

∥ϑ∥0 ⩽ ∥ϑ∥1 ⩽ θ0∥∇ϑ∥0 (∀ϑ ∈W = H1
0(Ω))

and
| f ′(ϖk+1

H )| = | − cos(ϖk+1
H )| ⩽ 1.

Thereupon, when ∆t is adequately small meeting

∆t2θ0 < 4,

there exists a constant
α0 = min{∆t2/2, 1 − ∆t2θ0/4}/θ20
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satisfying

A((ϖ, φ), (ϖ, φ)) = (ϖ, φ) − (φ,ϖ) + (∇ϖ,∇ϖ) +
∆t2

2
(∇φ,∇φ) +

∆t2

2
(φ, φ) −

∆t2

2
(cos(ϖk

H)ϖ, φ)

⩾

(
1 −
∆tθ0

4

)
∥∇ϖ∥20 +

∆t
2
∥∇φ∥20 +

∆t
2
∥φ∥20 −

∆t
4
∥φ∥20

⩾ α0∥(ϖ, φ)∥21, ∀(ϖ, φ) ∈Wh ×Wh, (3.10)

where
∥(ϖ, φ)∥1 = (∥ϖ∥21 + ∥φ∥

2
1)1/2

is the norm in W × W. Thus, A((ϖ, φ), (ϑ, υ)) is positive definite, and the bilinear functional
A((ϖ, φ), (ϑ, υ)) and the linear functional F(υ, ϑ) are evidently bounded in Wh ×Wh for given ϖk+1

H ,
ϖk

h, ϖk−1
h , and φk−1

h . Thereupon, by the Lax-Milgram theorem (see [5, Theorem 1.2.1]), we assert that
the linear system of Eq (3.9), namely Step 2 for Problem 4, has a unique set of solutions{

(ϖk
h, φ

k
h)
}K

k=1
⊂Wh ×Wh

satisfying

∥∇ϖk
h∥0 + ∥∇φ

k
h∥0 ⩽ c(∥ϖ0∥1 + ∥ϖ1∥1), 1 ⩽ k ⩽ K. (3.11)

This signifies that the series of solutions

{(ϖk
h, φ

k
h)}Kk=1 ⊂Wh ×Wh

for Problem 4 defined on the fine grid ℑh is unconditionally bounded, namely it is unconditionally
stable. Combining (3.8) with (3.11) yields (3.5).

(2) Estimate the errors of the TGCNMFE solutions of Problem 4.
(a) Estimate the errors of the solutions {(ϖk

H, φ
k
H)}Kk=1 of Problem 4 defined on ℑH.

By subtracting (3.1) from (2.4), and taking

υ = υH and ϑ = ϑH,

as well as setting

Ek
H = ϖ

k −ϖk
H, ρ

k
H = ϖ

k − RHϖ
k, ϱk

H = RHϖ
k −ϖk

H, Ẽk
H = φ

k − φk
H, ρ̃

k
H = φ

k − RHφ
k

and
ϱ̃k

H = RHφ
k − φk

H,

we obtain

1
∆t2 (Ek+1

H − 2Ek
H + Ek−1

H , υH) +
1
2

(∇(Ẽk+1
H + Ẽk−1

H ),∇υH) +
1
2

(Ẽk+1
H + Ẽk−1

H , υH)

=
1
2

( f (ϖk+1) − f (ϖk+1
H ) + f (ϖk−1) − f (ϖk−1

H ), υH), ∀υH ∈WH, 1 ⩽ k ⩽ K − 1, (3.12)
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(∇Ek
H,∇ϑH) = (Ẽk

H, ϑH), ∀ϑH ∈WH, 1 ⩽ k ⩽ K, (3.13)
E0

H = ϖ0 − RHϖ0, E1
H = ϖ1 − RHϖ1, Ẽ0

H = φ0 − RHφ0, Ẽ1
H = φ1 − RHφ1. (3.14)

By (3.2)–(3.4), (3.12), (3.13), Taylor’s formula, LDMF, and the Hölder and Cauchy inequalities,
when

h = O(H1+1/l),

we obtain
1
∆t2 (∥∇(Ek+1

H − Ek
H)∥20 − ∥∇(Ek

H − Ek−1
H )∥20) +

1
2

(∥∇Ẽk+1
H ∥

2
0 − ∥∇Ẽk−1

H ∥
2
0)

+
1
2

(∥Ẽk+1
H ∥

2
0 − ∥Ẽ

k−1
H ∥

2
0) =

1
∆t2 (∇(ρk+1

H − 2ρk
H + ρ

k−1
H ),∇(ρk+1

H − ρk−1
H ))

+
1
∆t2 (Ẽk+1

H − 2Ẽk
H + Ẽk−1

H , ϱ
k+1
H − ϱk−1

H )

+
1
2

(∇(ρ̃k+1
H + ρ̃k−1

H ),∇(ρ̃k+1
H − ρ̃k−1

H )) +
1
2

(∇(Ẽk+1
H + Ẽk−1

H ),∇(ϱ̃k+1
H − ϱ̃k−1

H ))

+
1
2

(Ẽk+1
H + Ẽk−1

H , ρ̃
k+1
H − ρ̃k−1

H ) +
1
2

(Ẽk+1
H + Ẽk−1

H , ϱ̃
k+1
H − ϱ̃k−1

H )

=
1
∆t2 (∇(ρk+1

H − 2ρk
H + ρ

k−1
H ),∇(ρk+1

H − ρk−1
H ))

+
1
2

(∇(ρ̃k+1
H + ρ̃k−1

H ),∇(ρ̃k+1
H − ρ̃k−1

H )) +
1
2

(Ẽk+1
H + Ẽk−1

H , ρ̃
k+1
H − ρ̃k−1

H )

+
1
2

( f (ϖk+1) − f (ϖk+1
H ) + f (ϖk−1) − f (ϖk−1

H ), ϱ̃k+1
H − ϱ̃k−1

H )

⩽
1
∆t

(∥∇(Ek+1
H − Ek

H)∥20 + ∥∇(Ek
H − Ek−1

H )∥20) + c∆tH2l

+ c∆t(∥Ẽk+1
H ∥

2
0 + ∥Ẽ

k−1
H ∥

2
0), 1 ⩽ k ⩽ K − 1. (3.15)

By summing (3.15) from 1 to k (k ⩽ K − 1), and using (3.4) and (3.14), we obtain

1
∆t2 ∥∇(Ek+1

H − Ek
H)∥20 +

1
2

(∥∇Ẽk+1
H ∥

2
0 + ∥∇Ẽk

H∥
2
0) +

1
2

(∥Ẽk+1
H ∥

2
0 + ∥Ẽ

k
H∥

2
0)

⩽
c
∆t

k∑
i=0

∥∇(Ei+1
H − Ei

H)∥20 + cH2l + c∆t
k∑

i=0

∥Ẽi+1
H ∥

2
0, 1 ⩽ k ⩽ K − 1. (3.16)

Thus, when ∆t is adequately small, satisfying c∆t ⩽ 1/4, by simplifying (3.16), we get

1
∆t2 ∥∇(Ek+1

H − Ek
H)∥20 + ∥∇Ẽk+1

H ∥
2
0 + ∥Ẽ

k+1
H ∥0

⩽
c
∆t

k−1∑
i=0

∥∇(Ei+1
H − Ei

H)∥20 + cH2l + c∆t
k−1∑
i=0

∥Ẽi+1
H ∥

2
0, 1 ⩽ k ⩽ K − 1. (3.17)

By applying Gronwall’s inequality to (3.17), we obtain

1
∆t2 ∥∇(Ek+1

H − Ek
H)∥20 + ∥∇Ẽk+1

H ∥
2
0 + ∥Ẽ

k+1
H ∥

2
0 ⩽ cH2l exp(ck∆t), 1 ⩽ k ⩽ K − 1. (3.18)
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Thereupon, we obtain

∥∇Ẽk
H∥0 + ∥Ẽ

k
H∥0 ⩽ cHl, 1 ⩽ k ⩽ K. (3.19)

By the Nitsche technique (see [5, Theorem 1.3.9]) and (3.19), we immediately obtain the following
error estimates:

∥φk − φk
H∥0 + H∥∇(φk − φk

H)∥0 ⩽ cHl+1, 1 ⩽ k ⩽ K. (3.20)

Further, by (3.2), (3.3), (3.12), (3.13), Taylor’s formula, the LDMF, the Hölder and Cauchy
inequalities, we obtain

1
∆t2 (∥Ek+1

H − Ek
H∥

2
0 − ∥E

k
H − Ek−1

H ∥
2
0) +

1
2

(∥Ẽk+1
H ∥

2
0 − ∥Ẽ

k−1
H ∥

2
0) +

1
2

(∥∇Ek+1
H ∥

2
0 − ∥∇Ek−1

H ∥
2
0)

=
1
∆t2 (Ek+1

H − 2Ek
H + Ek−1

H , ρ
k+1
H − ρk−1

H ) +
1
∆t

(Ek+1
H − 2Ek

H + Ek−1
H , ϱ

k+1
H − ϱk−1

H )

+
1
2

(Ẽk+1
H + Ẽk−1

H , ρ̃
k+1
H − ρ̃k−1

H ) +
1
2

(∇(ρk
H + ρ

k−1
H ),∇(ρk+1

H − ρk−1
H ))

+
1
2

(Ẽk+1
H + Ẽk−1

H , ϱ̃
k+1
H − ϱ̃k−1

H ) +
1
2

(∇(Ek
H + Ek−1

H ),∇(ϱk+1
H − ϱk−1

H ))

=
1
∆t2 (Ek+1

H − 2Ek
H + Ek−1

H , ρ
k+1
H − ρk−1

H ) +
1
2

(∇(ρk
H + ρ

k−1
H ),∇(ρk+1

H − ρk−1
H ))

+
1
2

(∇(ρk
H + ρ

k−1
H ),∇(ρk+1

H − ρk−1
H )) +

1
2

( f (ϖk) − f (ϖk
H) + f (ϖk−1) − f (ϖk−1

H ), ϱk
H − ϱ

k−1
H )

⩽
c
∆t

(∥Ek+1
H − Ek

H∥
2
0 + ∥E

k
H − Ek−1

H ∥
2
0) + c∆tH2l + c∆t(∥Ẽk+1

H ∥
2
0 + ∥Ẽ

k−1
H ∥

2
0), 1 ⩽ k ⩽ K − 1. (3.21)

By summing (3.21) from 1 to k, and using (3.4) and (3.14), we obtain

1
∆t2 ∥E

k+1
H − Ek

H∥
2
0 +

1
2

(∥Ẽk+1
H ∥

2
0 + ∥Ẽ

k
H∥

2
0) +

1
2

(∥∇Ek+1
H ∥

2
0 + ∥∇Ek

H∥
2
0)

⩽
c
∆t

k∑
i=0

∥Ei+1
H − Ei

H∥
2
0 + cH2l + c∆t

k∑
i=0

∥Ẽi+1
H ∥

2
0, 1 ⩽ k ⩽ K − 1. (3.22)

Thus, when ∆t is adequately small, satisfying c∆t ⩽ 1/4, by simplifying (3.22), we get

1
∆t2 ∥E

k+1
H − Ek

H∥
2
0 + ∥Ẽ

k+1
H ∥

2
0 + ∥∇Ek+1

H ∥
2
0

⩽
c
∆t

k−1∑
i=0

∥Ei+1
H − Ei

H∥
2
0 + cH2l + c∆t

k−1∑
i=0

∥Ẽi+1
H ∥

2
0, 1 ⩽ k ⩽ K − 1. (3.23)

By applying Gronwall’s inequality to (3.23), we obtain

1
∆t2 ∥E

k+1
H − Ek

H∥
2
0 + ∥Ẽ

k+1
H ∥

2
0 + ∥∇Ek+1

H ∥
2
0 ⩽ cH2l exp(ck∆t), 1 ⩽ k ⩽ K − 1. (3.24)

Thereupon, we obtain

∥∇(ϖk −ϖk
H)∥0 ⩽ cHl, 1 ⩽ k ⩽ K. (3.25)
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Further, by the Nitsche technique, we can obtain the following error estimates:

∥ϖk −ϖk
H∥0 + H∥∇(ϖk −ϖk

H)∥0 ⩽ cHl+1, 1 ⩽ k ⩽ K. (3.26)

Combining (3.20) and (3.26) with Theorem 1 yields (3.6).

(b) Estimate the errors of solutions (ϖk
h, φ

k
h) (1 ⩽ k ⩽ K) of Problem 4 defined on the fine grid ℑh.

Subtracting (3.2) from (2.4), taking

υ = υh and ϑ = ϑh,

and setting

Ek
h = ϖ

k −ϖk
h, ρ

k
h = ϖ

k − Rhϖ
k, ϱk

h = Rhϖ
k −ϖk

h, Ẽk
h = φ

k − φk
h, ρ̃

k
h = φ

k − Rhφ
k

and
ϱ̃k

h = Rhφ
k − φk

h,

we obtain

1
∆t2 (Ek+1

h − 2Ek
h + Ek−1

h , υh) +
1
2

(∇(Ẽk+
h + Ẽk−1

h ),∇υh) +
1
2

(Ẽk+1
h + Ẽk−1

h , υh)

=
1
2

( f (ϖk+1) − f (ϖk+1
H ) + f (ϖk−1) − f (ϖk−1

h ) − f ′(ϖk+1
H )(ϖk

hk + 1 −ϖk+1
H ), υh),

∀υh ∈Wh, 1 ⩽ k ⩽ K − 1, (3.27)
(∇Ek

h,∇ϑh) = (Ẽk
h, ϑh), ∀ϑH ∈Wh, 1 ⩽ k ⩽ K, (3.28)

E0
h = ϖ0 − Rhϖ0, E1

h = ϖ1 − Rhϖ1, Ẽ0
h = φ0 − Rhφ0, Ẽ1

h = φ
1 − Rhφ

1. (3.29)

By (3.3), (3.4), (3.27), (3.28), Taylor’s formula, the LDMF, the Hölder and Cauchy inequalities,
and (3.6) or (3.26), when

h = O(H1+1/l),

we obtain

1
∆t2 (∥∇(Ek+1

h − Ek
h)∥20 − ∥∇(Ek

h − Ek−1
h )∥20) +

1
2

(∥∇Ẽk+1
h ∥

2
0 − ∥∇Ẽk−1

h ∥
2
0) +

1
2

(∥Ẽk+1
h ∥

2
0 − ∥Ẽ

k−1
h ∥

2
0)

=
1
∆t2 (∇(ρk+1

h − 2ρk
h + ρ

k−1
h ),∇(ρk+1

h − ρk−1
h )) +

1
2

(∇(ρ̃k+1
h + ρ̃k−1

h ),∇(ρ̃k
h − ρ̃

k−1
h ))

+
1
2

(Ẽk+1
h + Ẽk−1

h , ρ̃
k+1
h − ρ̃k−1

h ) +
1
∆t2 (Ẽk+1

h − 2Ẽk
h + Ẽk−1

h , ϱ
k+1
h − ϱk−1

h )

+
1
2

(∇(Ẽk+1
h + Ẽk−1

h ),∇(ϱ̃k+1
h − ϱ̃k−1

h )) +
1
2

(∇(Ẽk
h + Ẽk−1

h ),∇(ϱ̃k+1
h − ϱ̃k−1

h ))

=
1
∆t2 (∇(ρk+1

h − 2ρk
h + ρ

k−1
h ),∇(ρk+1

h − ρk−1
h )) +

1
2

(∇(ρ̃k+1
h + ρ̃k−1

h ),∇(ρ̃k
h − ρ̃

k−1
h ))

+
1
2

(Ẽk+1
h + Ẽk−1

h , ρ̃
k+1
h − ρ̃k−1

h ) −
1
2

( f ′(ϖk+1
H )(ϖk+1

h −ϖk+1
H ), ϱ̃k+1

h − ϱ̃k−1
h )

+
1
2

( f (ϖk+1) − f (ϖk+1
H ) + f (ϖk−1) − f (ϖk−1

h ), ϱ̃k+1
h − ϱ̃k−1

h )
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⩽
2
∆t

(∥∇(Ek+1
h − Ek

h)∥20 + ∥∇(Ek
h − Ek−1

h )∥20) + c∆th2l

+ c∆t(∥Ẽk+1
h ∥

2
0 + ∥Ẽ

k−1
h ∥

2
0), 1 ⩽ k ⩽ K − 1. (3.30)

By summing (3.30) from 1 to k (k ⩽ K − 1), and using (3.4) and (3.29), we obtain

1
∆t2 ∥∇(Ek+1

h − Ek
h)∥20 +

1
2

(∥∇Ẽk+1
h ∥

2
0 + ∥∇Ẽk

h∥
2
0) +

1
2

(∥Ẽk+1
h ∥

2
0 + ∥Ẽ

k
h∥

2
0)

⩽
2
∆t

k∑
i=0

∥∇(Ei+1
h − Ek

h)∥20 + cH2l+2 + c∆t
k∑

i=0

∥Ẽi+1
h ∥

2
0, 1 ⩽ k ⩽ K − 1. (3.31)

Thus, when ∆t is adequately small, satisfying c∆t ⩽ 1/4, by simplifying (3.31), we obtain

1
∆t2 ∥∇(Ek+1

h − Ek
h)∥20 + ∥∇Ẽk+1

h ∥
2
0 + ∥Ẽ

k+1
h ∥

2
0

⩽
2
∆t

k−1∑
i=0

∥∇(Ei+1
h − Ek

h)∥20 + cH2l+2 + c∆t
k−1∑
i=0

∥Ẽi+1
h ∥

2
0, 1 ⩽ k ⩽ K − 1. (3.32)

By applying Gronwall’s inequality to (3.32), we obtain

1
∆t2 ∥∇(Ek+1

h − Ek
h)∥20 + ∥∇Ẽk+1

h ∥
2
0 + ∥Ẽ

k+1
h ∥

2
0 ⩽ ch2l exp(ck∆t) ⩽ ch2l, 1 ⩽ k ⩽ K − 1. (3.33)

Thereupon, we obtain

∥∇(φk − φk
h)∥0 ⩽ chl, 1 ⩽ k ⩽ K. (3.34)

By the Nitsche technique (see [5, Theorem 1.3.9]), we easily obtain the following error estimates:

∥φk − φk
h∥0 + h∥∇(φk − φk

h)∥0 ⩽ chl+1, 1 ⩽ k ⩽ K. (3.35)

Further, by (3.3), (3.27), (3.28), Taylor’s formula, the LDMF, the Hölder and Cauchy inequalities,
and (3.6) or (3.26), we get

1
∆t2 (∥Ek+1

h − Ek
h∥

2
0 − ∥E

k
h − Ek−1

h ∥
2
0) +

1
2

(∥Ẽk+1
h ∥

2
0 − ∥Ẽ

k−1
h ∥

2
0) +

1
2

(∥∇Ek+1
h ∥

2
0 − ∥∇Ek−1

h ∥
2
0)

=
1
∆t2 (Ek+1

h − 2Ek
h + Ek−1

h , ρ
k+1
h − ρk−1

h ) +
1
2

(Ẽk+1
h + Ẽk−1

h , ρ̃
k+1
h − ρ̃k−1

h )

+
1
2

(∇(ρk
h + ρ

k−1
h ),∇(ρk+1

h − ρk−1
h )) +

1
∆t2 (Ek+1

h − 2Ek
h + Ek−1

h , ϱ
k+1
h − ϱk−1

h )

+
1
2

(Ẽk+1
h + Ẽk−1

h , ϱ̃
k+1
h − ϱ̃k−1

h ) +
1
2

(∇(Ek+1
h + Ek−1

h ),∇(ϱk+1
h − ϱk−1

h ))

=
1
∆t2 (Ek+1

h − 2Ek
h + Ek−1

h , ρ
k+1
h − ρk−1

h ) +
1
2

(Ẽk+1
h + Ẽk−1

h , ρ̃
k+1
h − ρ̃k−1

h )

+
1
2

(∇(ρk
h + ρ

k−1
h ),∇(ρk+1

h − ρk−1
h )) −

1
2

( f ′(ϖk+1
H )(ϖk+1

h −ϖk+1
H ), ϱk+1

h − ϱk−1
h )
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+
1
2

( f (ϖk+1) − f (ϖk+1
H ) + f (ϖk−1) − f (ϖk−1

h ), ϱk+1
h − ϱk−1

h )

⩽
c
∆t

(∥Ek+1
H − Ek

H∥
2
0 + ∥E

k
H − Ek−1

H ∥
2
0) + c∆th2l + c∆t(∥Ẽk+1

h ∥
2
0 + ∥Ẽ

k−1
h ∥

2
0), 1 ⩽ k ⩽ K − 1. (3.36)

By summing (3.36) from 1 to k (k ⩽ K − 1), and using (3.4) and (3.29), we obtain

1
∆t2 ∥E

k+1
h − Ek

h∥
2
0 +

1
2

(∥Ẽk+1
h ∥

2
0 + ∥Ẽ

k
h∥

2
0) +

1
2

(∥∇Ek+1
h ∥

2
0 + ∥∇Ek

h∥
2
0)

⩽
c
∆t

k∑
i=0

∥∇(Ei+1
h − Ek

h)∥20 + cH2l+2 + c∆t
k∑

i=0

∥Ẽi+1
h ∥

2
0, 1 ⩽ k ⩽ K − 1. (3.37)

Thus, when ∆t is adequately small, satisfying c∆t ⩽ 1/4, by simplifying (3.37), we obtain

1
∆t2 ∥∇(Ek+1

h − Ek
h)∥20 + ∥∇Ek+1

h ∥
2
0 + ∥Ẽ

k+1
h ∥

2
0

⩽
c
∆t

k−1∑
i=0

∥∇(Ei+1
h − Ek

h)∥20 + cH2l+2 + c∆t
k−1∑
i=0

∥Ẽi+1
h ∥

2
0, 1 ⩽ k ⩽ K − 1. (3.38)

By applying Gronwall’s inequality to (3.38), we obtain

1
∆t2 ∥∇(Ek+1

h − Ek
h)∥20 + ∥∇Ek+1

h ∥
2
0 + ∥Ẽ

k+1
h ∥

2
0 ⩽ ch2l exp(ck∆t) ⩽ ch2l, 1 ⩽ k ⩽ K − 1. (3.39)

Thereupon, we obtain

∥∇(ϖk −ϖk
h)∥0 ⩽ chl, 1 ⩽ k ⩽ K. (3.40)

By the Nitsche technique (see [5, Theorem 1.3.9]), we easily deduce the following error estimates

∥ϖk −ϖk
h∥0 + h∥∇(ϖk −ϖk

h)∥0 ⩽ chl+1, 1 ⩽ k ⩽ K. (3.41)

Thereupon, inequality (3.7) is obtained by combining (3.35) and (3.41) with Theorem 1. This
completes the proof for Theorem 2. □

Remark 2. Theorem 2 shows that the TGCNMFE solutions are unconditionally stable and their
theoretical errors reach optimal order. In Section 4, we use the numerical tests to verify the
correctness of the obtained theoretical error estimates.

4. Two sets of numerical experiments

In this section, we provide two sets of numerical experiments to verify the correctness of our
theoretical results and show the superiorities of the TGCNMFE method.
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4.1. Two-dimensional numerical experiments

For the two-dimensional case, we take

Ω̄ = [0, 1] × [0, 1] ⊂ R2

and the initial functions
ϖ0(x) = ϖ1(x) = 4 sin(πx1) sin(πx2)

in the NFOSG equation (i.e., Problem 1), in which it may be considered that there is an earthquake
focus at center (0.5, 0.5) of the region Ω.

The fine grid division ℑh is composed of squares with diagonal

h =
√

2/1000

and all squares parallel to the coordinate axis. When l = 1, in order to satisfy

h = O(H1+1/l),

i.e.,
h = O(H2),

the coarse grid division ℑH is composed of the squares with diagonal

H =
4√
2/
√

1000

and all squares also parallel to the coordinate axis. According to Theorem 2, the L2 norm error
estimates of the TGCNMFE solutions of the NFOSG equation can theoretically reach O(10−6) when

∆t = 1/1000.

We first find the TGCNMFE solutions ϖk
h and φk

h by the TGCNMFE format at t = 10, and their
contours are respectively shown in Figures 1a and 2a.

In order to show the advantages of the TGCNMFE format, we also find single-grid CNMFE
(SGCNMFE) solutions ϖ̂k

h and φ̂k
h at t = 10 by the following SGCNMFE format, and their contours

are respectively shown in Figures 1b and 2b.

(a) (b)

Figure 1. (a) The contour of the TGCNMFE solution of ϖ at t = 10; (b) The contour of the
SGCNMFE solution of ϖ at t = 10.

AIMS Mathematics Volume 9, Issue 11, 31470–31494.



31489

(a) (b)

Figure 2. (a) The contour of the TGCNMFE solution of φ at t = 10; (b) The contour of the
SGCNMFE solution of φ at t = 10.

Problem 5. Find
(ϖ̂k

h, φ̂
k
h) ∈Wh ×Wh (1 ⩽ k ⩽ K)

defined on the single fine grid ℑh, satisfying the nonlinear system of equations:

(
ϖ̂k+1

h − 2ϖ̂k
h + ϖ̂

k−1
h , υh

)
+
∆t
2

(∇(φ̂k+1
h + φ̂k−1

h ),∇υh) +
∆t
2

(φ̂k+1
h + φ̂k−1

h , υh)

=
∆t
2

( f (ϖ̂k+1
h ) + f (ϖ̂k−1

h ), υh), ∀υh ∈Wh, 1 ⩽ k ⩽ K − 1,(
∇ϖ̂k

h,∇ϑh

)
= (φ̂k

h, ϑh), ∀ϑh ∈Wh, 0 ⩽ k ⩽ K,

ϖ̂0
h = Rhϖ0(x), φ̂0

h = Rhφ
0, ϖ̂1

h = Rhϖ1(x), x∈Ω.

(4.1)

By comparing the contours of each pair of graphs in Figures 1 and 2, it can be easy to see that the
TGCNMFE solutions are very close to the SGCNMFE solutions at t = 10.

To truly showcase the benefits of the TGCNMFE format, we record the CPU running time for
finding the TGCNMFE and SGCNMFE solutions and their errors when t = 2.0, 4.0, 6.0, 8.0, and 10.0,
where errors are estimated respectively by ∥ϖk

h−ϖ
k−1
h ∥0+ ∥φ

k
h−φ

k−1
h ∥0 and ∥ϖ̂k

h− ϖ̂
k−1
h ∥0+ ∥φ̂

k
h− φ̂

k−1
h ∥0,

shown in Table 1.

Table 1. The errors of the SGCNMFE and TGCNMFE solutions and CPU running-time at
t = 2, 4, 6, 8, and 10.

t SGCNMFE solutions TGCNMFE solutions SGCNMFE method TGCNMFE method
errors errors CPU running-time CPU running-time

2.0 2.2316 × 10−6 3.0273 × 10−6 215.332 s 112.056 s
4.0 2.4187 × 10−6 3.1438 × 10−6 216.662 s 113.112 s
6.0 2.5665 × 10−6 3.2662 × 10−6 217.153 s 114.224 s
8.0 2.7782 × 10−6 3.3861 × 10−6 218.709 s 115.451 s
10.0 2.8864 × 10−6 3.4861 × 10−6 219.618 s 116.872 s

The data in Table 1 show that the numerical errors of TGCNMFE and SGCNMFE solutions reach
O(10−6) when t = 2.0, 4.0, 6.0, 8.0, and 10.0, which coincide with the obtained theoretical errors, but

AIMS Mathematics Volume 9, Issue 11, 31470–31494.



31490

the CPU running time for finding SGCNMFE solutions is almost twice as long as that for finding
SGCNMFE solutions. Therefore, the TGCNMFE method is visibly superior to the
SGCNMFE method, and the TGCNMFE method is feasible and effective to solve the NFOSG
equation.

4.2. Three-dimensional numerical experiments

For the three-dimensional NFOSG equation, we take

Ω̄ = [0, 1] × [0, 1] × [0, 1] ⊂ R3

and the initial functions

ϖ0(x) = ϖ1(x) = sin(πx1) sin(πx2) sin(πx3),

where it may be considered that there is an earthquake focus at center (0.5, 0.5, 0.5) of the region Ω.
The fine grid division ℑh is composed of cubes with diagonal

h =
√

3/1000

and all cubes parallel to the coordinate axis. When l = 1, in order to satisfy

h = O(H1+1/l),

i.e.,

h = O(H2),

the coarse grid division ℑH is composed of cubes with diagonal

H =
4√
3/
√

1000

and all cubes also parallel to the coordinate axis. According to Theorem 2, the L2 norm errors of the
TGCNMFE solutions of the NFOSG equation can also theoretically reach O(10−6) when

∆t = 1/1000.

We find the TGCNMFE solutionsϖk
h and φk

h by the TGCNMFE format at t = 1, and their contours are
respectively shown in Figures 3a and 4a.

To show that the TGCNMFE method is superior to the SGCNMFE method, we also find the
SGCNMFE solutions ϖ̂k

h and φ̂k
h at t = 1 by the SGCNMFE format above (Problem 5), which are

respectively shown in Figures 3b and 4b.
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(a) (b)

Figure 3. (a) The TGCNMFE solution of ϖ at t = 1. (b) The SGCNMFE solution of ϖ at
t = 1.

(a) (b)

Figure 4. (a) The TGCNMFE solution of φ at t = 1. (b) The SGCNMFE solution of φ at
t = 1.

By comparing the each pair of graphs in Figures 3 and 4, it can also be easy to see that the
TGCNMFE solutions are almost same as the SGCNMFE solutions at t = 1.

To truly showcase the benefits of the TGCNMFE format, we also record the CPU running time for
finding the TGCNMFE and SGCNMFE solutions and their errors when t = 0.2, 0.4, 0.6, 0.8, and 1.0,
where errors are also respectively estimated by ∥ϖk

h−ϖ
k−1
h ∥0+∥φ

k
h−φ

k−1
h ∥0 and ∥ϖ̂k

h−ϖ̂
k−1
h ∥0+∥φ̂

k
h−φ̂

k−1
h ∥0,

shown in Table 2.
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Table 2. The errors of the SGCNMFE and TGCNMMFE solutions and CPU running-time
at t = 0.2, 0.4, 0.6, 0.8, and 1.0.

t SGCNMFE solutions TGCNMFE solutions SGCNMFE method TGCNMFE method
errors errors CPU running-time CPU running-time

0.2 2.5781 × 10−6 3.1563 × 10−6 422.562 s 211.731 s
0.4 2.6436 × 10−6 3.2253 × 10−6 424.826 s 212.813 s
0.6 2.7841 × 10−6 3.3265 × 10−6 426.716 s 213.832 s
0.8 2.8862 × 10−6 3.4453 × 10−6 428.261 s 214.764 s
1.0 2.9631 × 10−6 3.5626 × 10−6 429.142 s 215.635 s

The data in Table 2 also show that when t = 0.2, 0.4, 0.6, 0.8, and 1.0, the numerical errors of the
SGCNMFE and TGCNMFE solutions coincide with the theoretical errors O(10−6), but the CPU
running time for finding SGCNMFE solutions is also almost twice as long as that for finding
SGCNMFE solutions. It is further shown that the TGCNMFE method is indeed better than the
SGCNMFE method, and the TGCNMFE method is indeed feasible and effective to solve the NFOSG
equation.

5. Conclusions and prospect

Above, we have proposed a new NFOSG equation, a new TSDMCN scheme, and a new TGCNMFE
method for the NFOSG equation, and have strictly proved the existence, stability, and error estimates
of the TSDMCN and TGCNMFE solutions theoretically. We have also employed the two sets of
numerical experiments to confirm the correctness of the obtained theoretical results and showed the
superiorities for the TGCNMFE method. The TSDMCN scheme and the TGCNMFE method for the
NFOSG equation are first proposed in this paper. They are completely different from the existing
methods in [10–12]. Therefore, they are original and indeed fire-new.

Although we only study the TGCNMFE method for the NFOSG equation, the method of this
paper can be extended to the more complex nonlinear PDEs, for example, the nonlinear Cahn-Hilliard
equation and the Schrödinger equation in [19, 20], in addition to the actual engineering nonlinear
problems. Therefore, the TGCNMFE method has a wide range of applications.

Although the TGCNMFE method here can greatly simplify calculation, save CPU operating-time,
and improve computational efficiency, when it is applied to settling practical engineering computations,
it usually contains many (often more than tens of millions) unknowns and needs to take a long-time to
obtain results on a computer. Thus, after a long computer operating time, owing to the accumulation
of computing errors, the obtained TGCNMFE solutions could deviate from right solutions, or could
even generate floating-point overflow, resulting in erroneous calculation results. Hence, in future study,
we will use a proper orthogonal decomposition method (see [5, 21, 22]) to lessen the unknowns of the
TGCNMFE method and develop some new reduced-dimensionality methods for the NFOSG equation.
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