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Abstract: Manifold regularization semi-supervised learning is a powerful graph-based semi-
supervised learning method. However, the performance of semi-supervised learning methods based
on manifold regularization depends to some extent on the quality of the manifold graph and unlabeled
samples. Intuitively speaking, the quality of the graph directly affects the final classification
performance of the model. In response to the above problems, this paper first proposed an adaptive
safety semi-supervised learning framework. The framework implements the weight assignment of
the self-similarity graph during the model learning process. In order to adapt to the learning needs,
accelerate the learning speed, and avoid the impact of the curse of dimensionality, the framework
also optimizes the features of each sample point through an automatic weighting mechanism to
extract effective features and eliminate redundant information in the learning task. In addition, the
framework defines an adaptive risk measurement mechanism for the uncertainty and potential risks of
unlabeled samples to determine the degree of risk of unlabeled samples. Finally, a new adaptive safe
semi-supervised extreme learning machine was proposed. Comprehensive experimental results across
various class imbalance scenarios demonstrated that our proposed method outperforms other methods
in terms of classification accuracy, and other critical performance metrics.

Keywords: semi-supervised learning; adaptive learning; risk degree; feature extraction; manifold
regularization
Mathematics Subject Classification: 68T10, 91C20

1. Introduction

Semi-supervised learning (SSL) has emerged as a remarkable framework, achieving notable success
in both theoretical and applied domains over the past decade, as evidenced in [1, 2]. A pivotal
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factor contributing to its prevalence lies in the often arduous and expensive process of acquiring
labeled samples, contrasted with the relative ease and cost-effectiveness of collecting unlabeled data in
numerous practical scenarios. SSL ingeniously leverages a diverse array of assumptions, including
smoothness, clustering, and the manifold assumption, to forge connections between labeled and
unlabeled data instances [1, 2]. Among these, the manifold assumption stands out as one of the most
prevalent and influential, as highlighted in [1]. For instance, Belkin et al. [1] introduced the Laplacian
regularized least squares (Lap-RLS) and support vector machines (Lap-SVM) algorithms, empirically
demonstrating that the manifold regularization approach adeptly harnesses the rich information latent
in unlabeled samples, thereby enhancing the overall learning performance.

It is universally acknowledged that the construction of a manifold graph is paramount to the
efficacy of manifold regularization (MR). A well-designed graph, capable of facilitating subsequent
classification tasks, can significantly enhance classification performance [3]. Conversely, an
inadequately constructed graph may fail to contribute or even detract from classification accuracy.
Notably, the graph is typically predefined and remains static throughout the learning process, posing
a challenge as assessing its performance beforehand is virtually impossible. Consequently, parameter
tuning within the manifold graph becomes crucial, yet in the context of semi-supervised learning with
scarce label information, parameter selection remains an unresolved challenge. Building an optimal
graph prior to classification is exceedingly difficult, further complicating the graph construction process
for MR. Recently, some excellent graph learning methods have been proposed [4–6]. For example,
Kang et al. [4] proposed an innovative and robust graph learning scheme, which effectively addresses
the challenges of real-world noisy data by dynamically eliminating noise and errors present in the raw
data.

To date, most advancements in MR have focused on optimizing regularization parameters or
enhancing MR efficiency, with limited attention given to graph construction. Recent studies have
cautioned that unlabeled samples may harbor risks and potentially compromise SSL performance [7–
9]. This limitation underscores the need for a safe semi-supervised learning (SaSSL) approach that
guarantees performance no worse than its supervised learning (SL) counterpart using solely labeled
samples [10,11]. In recent years, numerous innovative SaSSL methods have been introduced [12–20].
Among them, the semi-supervised extreme learning machine (SS-ELM), a novel single hidden layer
feed-forward network (SLFN) algorithm proposed by Huang et al. [21], stands out. However, SS-ELM
lacks robust safety mechanisms when leveraging unlabeled samples, as their inclusion can occasionally
diminish its performance. To address this issue, She et al. [22] introduced the safe semi-supervised
extreme learning machine (Safe-SSELM). Experimental findings underscore the robustness of Safe-
SSELM, with its performance rarely falling significantly below that of ELM utilizing only labeled
samples. This development represents a significant step forward in ensuring the safe and effective
utilization of unlabeled data in semi-supervised learning frameworks.

Semi-supervised learning has garnered significant attention and widespread application in the
realm of machine learning, with numerous remarkable algorithms emerging, particularly graph-based
approaches that have yielded impressive results [23, 24]. For example, Xu et al. proposed a new
tensor-based semi-supervised classifier, namely the graph-embedded low-rank tensor learning machine
(GELRTLM). By implementing the multi-sensor signal fusion strategy, GELRTLM is effectively
applied to mechanical diagnosis tasks and deeply explored. Among these, manifold regularization
semi-supervised learning stands out as a highly effective graph-based method. Nevertheless, the
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performance of such methods is inherently tied to the quality of the manifold graph and the unlabeled
samples. Specifically, the graph’s quality exerts a direct influence on the model’s ultimate classification
performance. To address these challenges, this paper introduces an innovative adaptive safety semi-
supervised learning framework. This framework innovatively incorporates self-adaptive manifold
graph weights into the model learning process, enabling it to dynamically adjust to the learning
dynamics. Furthermore, to expedite the learning process and mitigate the impact of dimensionality
curses, the framework employs automatic weighting to learn the salient features of each sample
point, extracting essential information while discarding redundant features that are detrimental to
the learning task. Moreover, the framework introduces an adaptive risk assessment mechanism that
quantifies the uncertainty and potential risks associated with unlabeled samples, thereby determining
their risk level. This mechanism ensures that the learning process is guided by a nuanced understanding
of the data’s inherent risks. Based on this framework, we present a specific model tailored for
semi-supervised classification tasks: The adaptive safe semi-supervised extreme learning machine
(ASSELM). Experimental evaluations conducted on diverse datasets demonstrate the efficacy and
robustness of the proposed ASSELM algorithm.

The structure of the remainder of this paper is as follows. In Section 2 provides a concise
overview of related work, encompassing ELM and SS-ELM, to establish the context and position
of our work within the broader research landscape. In Section 3, we delve into the specifics of our
proposed algorithm, outlining its key components and novel contributions in detail. In Section 5
presents the experimental outcomes, accompanied by a thorough analysis of the results, showcasing the
effectiveness and advantages of our approach. Finally, Section 6 concludes the paper by summarizing
our key findings and outlining directions for future research.

2. Background

2.1. ELM

The extreme learning machine (ELM) method stands out as a formidable learning tool in the realms
of machine learning and pattern recognition [25, 26]. By randomly initializing the input weights and
biases of its hidden layer, ELM boasts a streamlined structure, minimal computational overhead, and
remarkable versatility when compared to conventional neural network algorithms. Furthermore, ELM
transcends the limitations inherent in traditional neural networks, such as the proclivity towards local
minima, imprecise learning rates, and sluggish convergence rates, thereby offering a more robust and
efficient learning paradigm.

Let Tl = {xi, yi}
l
i=1 represent the training set, where l denotes the total number of training samples,

with each xi ∈ R
n representing an input vector, and yi ∈ {−1,+1}(i = 1, . . . , l) indicating the

corresponding binary label. Assuming there is a hidden layer comprising L neurons, the output function
of the ELM can be expressed as follows:

Y = Hβ (2.1)

where β = [β1, β2, . . . , βL]T denotes the vector of output weights connecting the hidden layer, consisting
of L nodes, to the output node. The vector Y = [y1, y2, . . . , yl]T represents the target outputs for the
training samples. Additionally, H signifies the hidden layer output matrix, which encapsulates the
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activations of the hidden layer nodes for the given input samples:

H =


h1(x1) · · · hL(x1)
...

...
...

h1(xl) · · · hL(xl)


where hi(x) = G(ai, bi, x) = ai · x + bi for i = 1, . . . , L, represents the activation function of the i-th
hidden node. Here, ai and bi are the input weights and bias, respectively, of the i-th hidden node. Both
ai and bi can be randomly generated from a continuous probability distribution, embodying the essence
of ELM’s simplicity and efficiency in terms of model initialization.

The regularization ELM framework can be formulated as:

min
β

Γ(β) = C‖Hβ − Y‖2 + ‖β‖2 (2.2)

where C serves as a penalty coefficient for the training errors, balancing the trade-off between
minimizing the training error and the complexity of the model. Subsequently, the output weight vector
β is derived based on the Moore-Penrose pseudoinverse principle, ensuring an optimal solution that
satisfies the given constraints.

Thus, we can obtain the output weight vector β via

β∗ =

{
(HT H + IL

C )−1HT Y, l ≥ L,
HT (HHT + Il

C )−1Y, l ≤ L,
(2.3)

where IL is an identity matrix of dimension L and Il is an identity matrix of dimension l.

2.2. SS-ELM

While ELMs have garnered significant popularity across various domains, their primary application
has been confined to supervised learning tasks, particularly classification and regression, thereby
limiting their versatility [25, 26]. In practical scenarios, acquiring labeled data samples is often a
challenging and costly endeavor, whereas gathering abundant unlabeled samples is comparatively
straightforward and economical [1]. To address the limitation of supervised ELMs in leveraging
unlabeled data, Huang et al. introduced the semi-supervised ELM (SS-ELM), which incorporates
manifold regularization, enabling the utilization of both labeled and unlabeled samples for enhanced
learning performance.

Let T = Tl∪Tu = {xi, yi}
l
i=1∪{xi}

l+u
i=l+1 represent the semi-supervised learning training dataset, where

xi ∈ R
n and yi ∈ {−1,+1} for labeled samples, Tl denotes labeled sample set with l, and Tu denotes

an unlabeled sample set with u; hence, the total number of samples is n = l + u. Assuming a general
decision function f , the overarching SS-ELM learning framework can be formulated as the following
optimization problem:

min
β

Ψ(β) = C‖Hlβ − Y‖2 + ‖β‖2 + λTr(βT HT
n LHnβ) (2.4)

where L = D − W represents the graph Laplacian, constructed using both labeled and unlabeled
samples. Here, D is a diagonal matrix, and W denotes the similarity matrix that captures the
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relationships between sample. The parameters C and λ serve as regularization coefficients, balancing
the trade-off between minimizing the empirical risk and the complexity of the model, respectively. The
notation Tr(·) denotes the trace of a matrix, which is a measure of the sum of the diagonal elements of
the matrix.

Thus, we have

β∗ =

{
(Il + HT

l CHl + λHT
n LHn)−1HT

l CY, n ≥ L
HT

l (In + CHlHT
l + λLHnHT

n )−1CY, n ≤ L
(2.5)

where Il represents an identity matrix of dimension l, and C is a diagonal matrix with entries defined
as C j j = C

lt j
, where lt j denotes the count of training samples belonging to class j, with j ranging from 1

to l. Additionally, In is an identity matrix of dimension n, where n = l+u is the total number of samples
including both labeled and unlabeled instances.

3. Adaptive safe semi-supervised learning framework

In this section, we introduce the adaptive safe semi-supervised learning framework. The schematic
diagram illustrating the proposed methodology is shown in Figure 1.

Unlabeled samples

Learning

Risk measures for 
unlabeled samples

Labeled samples

Adaptive weighted local 
structure optimal graph

Semi-supervised learning data

 New Unlabeled 
samples

Labeled 
samples

New semi-supervised learning data Decision Training 
Model

Figure 1. The schematic diagram illustrating the proposed methodology.

3.1. Adaptive feature weighted local structure optimal graph

In manifold learning, the exploitation of local structural information, which possesses advantages
over global structural considerations, has driven the development of numerous semi-supervised
learning approaches rooted in the manifold hypothesis [27–29]. However, a pivotal limitation lies
in the reliance of these methods on a fixed similarity matrix, which determines the weight map
and, consequently, impacts the subsequent learning and decision-making processes to a significant
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extent [30–32]. Specifically, the manifold is preconstructed prior to classification and remains static
throughout the learning phase, with the similarity matrix derived solely from the original data. This
rigidity results in suboptimal graph learning as the original data often contains noise and redundant
information, thereby hindering the effectiveness of the learned graph [33, 34].

In recent years, extensive research has underscored the paramount importance of graph quality
in influencing the generalization performance of algorithms. Notably, the selection of the number
of nearest neighbors plays a pivotal role in determining the ultimate performance, yet traditional
methods often rely on suboptimal approaches such as k-nearest neighbors or ε-nearest neighbors
to construct graphs. A more intuitive assumption is that the proximity between samples should be
inversely proportional to their distance, implying that closer samples should have greater weights.
Additionally, in graph-based semi-supervised learning (SSL), the manifold graph is formulated based
on both relevant and irrelevant features of the samples. To this end, constructing the similarity
matrix from a carefully selected set of primary features has the potential to yield a superior similarity
matrix. This, in turn, can enhance the quality of the graph and subsequently boost the classification
performance of the model. By focusing on the most informative features, we can mitigate the impact of
noise and redundant information, leading to more effective graph representation and improved learning
outcomes.

Drawing upon the aforementioned analysis, this paper introduces an innovative approach by
proposing an adaptive weighted local structure optimal graph that builds upon previous research. This
model aims to dynamically learn the optimal mapping tailored to the given sample set. The specific
framework of this model is outlined as follows:

min
Θ,W

Υ(Θ,W) =
∑n

i, j=1

(
‖Θxi − Θx j‖

2
2wi j + λw2

i j

)
s.t. wT

i 1 = 1, 0 ≤ wi j ≤ 1
1Tθ = 1, θ ≥ 0
Θ = diag(θ)
rank(LW) = n − c

(3.1)

where λ denotes the regularization parameter, which necessitates careful adjustment. xi represents the
i-th sample, while wi j signifies the similarity between the i-th and j-th samples within the similarity
matrix W, which is subject to learning. Θ represents the sparse automatic weighting matrix that
is also a target of the learning process. The inclusion of the regularization term serves to prevent
the emergence of trivial solutions; in the absence of this term, the optimal solution would trivially
assign a probability of 1 to the adjacency of the two closest samples. Furthermore, the rank constraint
imposes a condition such that if rank(LW) = n− c, then the similarity matrix W inherently comprises c
connected components. Consequently, the similarity matrix W derived from solving the optimization
problem (3.1) precisely contains c connected components, enhancing its capability to capture more
precise local structural information.

Pursuant to Ky Fan’s seminal theorem,

c∑
i=1

σi(LW) = min
FT F=I

Tr(FT LW F) (3.2)

where I is the identity matrix.
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As a consequence, the aforementioned optimization problem (3.1) can be formulated as

min
Θ,W,F

Υ(Θ,W, F) =
(∑n

i, j=1(‖Θxi − Θx j‖
2
2wi j + λw2

i j)
)

+ αTr(FT LW F)

s.t. wT
i 1 = 1, 0 ≤ wi j ≤ 1

1Tθ = 1, θ ≥ 0
Θ = diag(θ)
FT F = I

(3.3)

where LW = D − (WT +W)
2 represents the Laplacian matrix, D ∈ Rn×n denotes a diagonal matrix, with its

diagonal elements being the sum of
∑

j
(wi j+w ji)

2 over all j.

3.2. Adaptive risk measurement mechanism for unlabeled samples

In the context of semi-supervised learning, unlabeled samples are typically regarded as benign and
not detrimental to the overall performance. However, recent studies have revealed that these unlabelled
samples possess dual properties, namely harmfulness and usefulness [7,8]. In this section, we propose
a safety mechanism aimed at evaluating the risk associated with unlabeled samples, which enhances
the efficacy of semi-supervised learning algorithms to some extent. Notably, the risk attributed to
unlabeled samples is often fixed, remaining constant throughout the learning phase. Nonetheless, the
impact of this risk varies, influencing the performance of semi-supervised classifiers differently.

To address this, we introduce an adaptive safety mechanism designed to harness unlabeled samples
more effectively. This mechanism operates on two main principles: (1) it enables the semi-supervised
classifier to utilize all unlabeled samples while constraining their predictions to align closely with
those of the supervised classifier, thereby mitigating the risk posed by unlabeled data; (2) it adaptively
assigns distinct risk levels to each unlabeled sample, ensuring that samples deemed safe exhibit lower
risk levels compared to those identified as risky. Consequently, the safety mechanism establishes a
safety-driven trade-off between supervised and semi-supervised learning. In this manner, the adaptive
risk assessment for unlabeled samples proposed herein integrates aspects of both supervised and semi-
supervised learning, with the trade-off factor incorporated into the objective function of the semi-
supervised learning framework.

The primary objective of this section is to develop an adaptive security mechanism designed to
evaluate the security of each unlabeled sample and assign varying degrees of security accordingly.
This evaluation is achieved through the application of an entropy maximization criterion. The details
are presented as follows:

Definition 1. Let f (x) denote a semi-supervised classifier and g(x) denote a supervised classifier. Thus,
the adaptive risk measure mechanism for unlabelled samples can be defined as:

min
r j

Ξ(r j) =
∑n

j=l+1 r j‖ f (x j) − g(x j)‖2 +
∑n

j=l+1 r j ln(r j)

s.t.
∑n

j=l+1 r j = 1,
0 < ri ≤ 1,∀i = l + 1, . . . , n,

(3.4)

where r j describes the degree of safety of the unlabelled samples. The first term in the (3.4) objective
function represents the risk of the semi-supervised and supervised classifier trade-offs for the different
unlabeled samples. The second term represents the regularisation term whose role is to prevent the
emergence of a tame solution.
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Remark 1. For unlabeled samples, the degree of safety remains uncertain. This section aims to
quantify the risk associated with these unlabeled samples in a specific manner. It is widely recognized
that the values of random variables are inherently uncertain. Prior to conducting the randomized
test, only the probability distribution of the values is available; however, following the test, the
values become known with certainty, thereby eliminating uncertainty. Through this randomized trial,
information is acquired, and the amount of this information is precisely equivalent to the entropy of
the random variable. Consequently, we can utilize entropy as an informative measure. Information
entropy, also referred to as Shannon entropy, serves to reflect the level of disorder (or orderliness)
within a system: The more ordered a system is, the lower its information entropy, and vice versa. In
the context of unlabeled samples, a safer unlabeled sample corresponds to a lower level of risk, while
a less secure unlabeled sample is indicative of higher risk.

3.3. Adaptive safety semi-supervised learning framework

Given the comprehensive dataset T = Tl ∪ Tu = {xi, yi}
l
i=1 ∪ {xi}

l+u
i=l+1, where xi ∈ R

n represents
the feature vectors and yi ∈ {−1,+1} denotes the corresponding binary labels for the labeled subset
Tl comprising l instances. Conversely, Tu signifies the unlabeled subset containing u instances, for
which the labels are unknown. Notably, in the realm of fully supervised learning, the unlabeled subset
vanishes, i.e., u = 0.

Drawing inspiration from the prevalent regularized term in semi-supervised learning frameworks
and adhering to the principle of structural risk minimization, we propose an innovative adaptive
safety semi-supervised learning framework. This framework is designed to leverage both labeled and
unlabeled data in an efficient and robust manner, as outlined in the subsequent sections.

min
Θ,W,F,R

∑l
i=1( f (xi) − y j)2 + λ1‖ f ‖2H + Υ(Θ,W, F) + λ2Ξ(ri)

s.t. wT
i 1 = 1, 0 ≤ wi j ≤ 1

1Tθ = 1, θ ≥ 0
θ = diag(θ), FT F = I∑n

j=l+1 r j = 1,
0 < ri ≤ 1,∀i = l + 1, . . . , n,

(3.5)

where λ1 and λ2 are the regularization parameters. r j describes the security of the unlabelled sample x j.
Within this framework, the flow graphs and their corresponding parameters undergo optimization
during the learning process, rather than being pre-determined or statically defined. This dynamic
approach ensures that the model adapts to the intrinsic characteristics of the data. Furthermore, the
safety level of individual unlabeled samples is meticulously calculated and assigned in an adaptive
manner, thereby enhancing the robustness and accuracy of the learning process.

(1) The first component of (3.5) encapsulates the empirical risk, quantifying the extent to which the
model aligns with the training samples. It serves as a metric for assessing the goodness-of-fit between
the model predictions and the observed data.

(2) The second term in (3.5) represents the structural risk, which aims to ensure the model’s
generalization capability and mitigate the risk of overfitting. By incorporating this term, the model
is encouraged to learn patterns that generalize well to unseen data.
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(3) The third term of (3.5) constitutes the joint regularization term, which leverages both
discriminative information and the local geometric properties of new samples to enhance classification
performance. In joint regularization (JR), samples residing in close proximity within the data manifold
are encouraged to share the same class label if they belong to the same class, or to possess distinct labels
otherwise. This approach harnesses the inherent structure of the data to further refine the classification
boundaries.

(4) Lastly, the fourth term of (3.5) introduces risk-based regularization, which governs the balance
between supervised and semi-supervised learning. The risk degrees play a pivotal role in determining
the manner in which unlabeled samples are utilized during the learning process. By adjusting this term,
the model can dynamically allocate weights to the labeled and unlabeled data, optimizing the overall
learning strategy.

4. Adaptive safe semi-supervised extreme learning machine

4.1. AS3ELM

In this section, we introduce a novel semi-supervised extreme learning algorithm tailored for
pattern classification, grounded in the adaptive safe semi-supervised learning framework. We term
this innovative approach the adaptive safe semi-supervised extreme learning machine (AS3ELM). The
specific formulation of this model is outlined as follows:

min
β,wi j,r j,θi

∑l
i=1((h(xi)β − y j)2 + ‖β‖2 + Υ(Θ,W, F) + λ2Ξ(ri)

s.t. wT
i 1 = 1, 0 ≤ wi j ≤ 1

1Tθ = 1, θ ≥ 0
Θ = diag(θ), FT F = I∑n

j=l+1 r j = 1,
0 < ri ≤ 1,∀i = l + 1, . . . , n.

(4.1)

In order to solve the above problem, the model is solved by alternating iterative methods as follows:
Step 1. Fix variables wi j, r j, and θi, find output weights β, and obtain the S3ELM:

min
β

Γ(β) = C‖Hlβ − Y‖2 + ‖β‖2 + λ1Tr(βT HT
n L

Hnβ) + λ2

l+u∑
j=l+1

r j‖ f (x j) − g(x j)‖2. (4.2)

Within the AS3ELM framework, C, λ1 and λ2 serve as regularization parameters, governing the
complexity and learning behavior of the model. The matrix Hl represents the hidden layer output for
the labeled samples, while Hn encompasses the hidden layer output for the entire dataset, comprising
both labeled and unlabeled samples. The Laplacian matrix L, computed across all samples, captures
the geometric relationships and intrinsic manifold structure within the data. The first three terms of the
AS3ELM objective function jointly define the semi-supervised classifier, where λ1 and λ2 facilitate the
integration of structural and joint regularization, respectively. This collaboration enables the model to
leverage both labeled and unlabeled data effectively, enhancing its classification performance. The last
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term, controlled by C, meticulously balances the influence of ELM and SS-ELM, allowing for a smooth
transition between fully supervised and semi-supervised learning modalities. Herein, f (x) symbolizes
the semi-supervised classifier instantiated through ELM, leveraging both labeled and unlabeled data.
Conversely, g(x) denotes the supervised classifier realized by SS-ELM, primarily relying on labeled
data. The interplay between f (x) and g(x) within the AS3ELM framework underscores the adaptability
and versatility of the proposed algorithm in handling complex pattern classification tasks.

A further simple mathematical collation gives

min
β

Γ(β) = C‖Hlβ − Y‖2 + ‖β‖2 + λ1Tr(βT HT
n LHnβ)

+ λ2(Huβ − HuβELM)T R(Huβ − HuβELM). (4.3)

In the context of the AS3ELM framework, βELM represents the optimal solution derived from the
ELM optimization process. This optimal solution encapsulates the weights that best map the hidden
layer representations of the labeled data to their corresponding output labels. Additionally, Hu denotes
the output matrix of the hidden layer specifically for the unlabeled samples, providing a rich feature
space that can be leveraged in a semi-supervised manner. Furthermore, R is introduced as a diagonal
matrix, playing a pivotal role in the regularization strategy employed within the AS3ELM algorithm.
By incorporating R into the optimization objective, the algorithm is able to impose specific constraints
or weights on the unlabeled samples, thereby enhancing the robustness and generalization capability of
the resulting semi-supervised classifier. The careful design and utilization of R contribute significantly
to the adaptive and safe nature of the AS3ELM approach.

The above problem (4.3) with respect to β is obtained by taking the partial derivative:

∂Γ

∂β
= β + HT

l C(Hlβ − Y) + λ1(HT
n LHnβ)

+ λ2HT
u R(Huβ − HuβELM). (4.4)

By setting (4.4) to 0, the optimal solution for β can be obtained as

β∗ = (HT
l CHl + I + λ1HT

n LI Hn + λ2HT
u RHu)−1 · (HT

l CY + λ2HT
u RHuβELM) (4.5)

where Il represents an identity matrix of dimension l, and C is a diagonal matrix with entries defined
as C j j = C

lt j
, where lt j denotes the count of training samples belonging to class j, with j ranging from

1 to l. Additionally, In is an identity matrix of dimension n, where n = l + u is the total number of
samples including both labeled and unlabeled instances.

Given a test set Xnew, we first meticulously compute its corresponding hidden layer output matrix,
denoted as Hnew. This step transforms the input features of the test samples into a high-dimensional
space, where they can be effectively classified using the learned decision boundary. Subsequently,
we utilize the optimal solution obtained from the AS3ELM framework, denoted as β∗, to derive the
prediction results. Specifically, the prediction for each test sample in Xnew is given by:

Y = Hnewβ
∗. (4.6)

This formulation encapsulates the essence of the AS3ELM approach, leveraging both labeled and
unlabeled data during the training phase to construct a robust classifier that can accurately predict the
labels of unseen test samples.
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Step 2. Fix β, wi j, and θi to optimise r j. Thus, the following optimization problem can be obtained:

min
r j

Ξ(ri) = λ2
∑n

j=l+1 r j‖ f (x j) − g(x j)‖2

+
∑n

j=l+1 r j ln(r j)
s.t.

∑n
j=l+1 r j = 1,

0 < ri ≤ 1,∀i = l + 1, . . . , n.

(4.7)

The Lagrangian function corresponding to the optimization problem (4.7) is

L = λ2

n∑
j=l+1

r j‖ f (x j) − g(x j)‖2 +

n∑
j=l+1

r j ln(r j) − αi(
n∑

j=l+1

r j − 1). (4.8)

The partial derivative of the above Lagrangian function L with respect to r j gives

∂L
∂r j

= λ2‖ f (x j) − g(x j)‖2 + (1 + ln r j) − αi. (4.9)

Therefore
r j = expαi−λ2‖ f (x j)−g(x j)‖2 . (4.10)

Also,
∑n

j=l+1 r j = 1, and therefore

expαi =

n∑
j=l+1

expλ2‖ f (x j)−g(x j)‖2 . (4.11)

From (4.10) and (4.11), we have

r j =
exp−λ2‖ f (x j)−g(x j)‖2∑n

j=l+1 exp−λ2‖ f (x j)−g(x j)‖2
. (4.12)

As derived from (4.12), the discrepancy between f (x j) and g(x j) serves as an indicator of the safety
level of the unlabeled sample x j. Specifically, when the difference f (x j) − g(x j) is minimal, it implies
that the predictions made by the semi-supervised classifier f (x) and the supervised classifier g(x) are
in close agreement for sample x j. Consequently, x j is likely to be a safe sample, and its corresponding
safety score r j should be high. In such cases, unlabeled samples with high safety scores exert a more
significant influence on enhancing the performance of the semi-supervised learning process compared
to those deemed risky. Conversely, if the difference f (x j) − g(x j) is substantial, it indicates a potential
disagreement between the predictions of the two classifiers for sample x j. This discrepancy suggests
that x j may not be a safe sample, and hence, its safety score r j should be low. By assigning lower
weights to such risky unlabeled samples, the prediction for unlabeled data is effectively biased toward
the supervised learning algorithm’s prediction, thereby mitigating the potential risks introduced by
uncertain or outlier unlabeled samples.
Step 3. Fixed β, wi jm and r j to optimize θi.

min
Θ

∑n
i, j=1 ‖Θxi − Θx j‖

2wi j

s.t. 1Tθ = 1, θ ≥ 0
Θ = diag(θ).

(4.13)
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Further, the optimization problem (4.13) can be rewritten as

min
Θ

Tr(ΘT XT LW XΘ)

s.t. 1Tθ = 1, θ ≥ 0
Θ = diag(θ).

(4.14)

Let M = XT LW X, and then the question (4.14) can be further written as follows:

min
Θ

Tr(ΘT MΘ)

s.t. 1Tθ = 1, θ ≥ 0
Θ = diag(θ).

(4.15)

Let the i diagonal element of the matrix M be mii, and set qi = mii. The above problem (4.15) can
be simplified to

min
θi

∑d
i=1 θ

2
i qi

s.t. 1Tθ = 1, θ ≥ 0.
(4.16)

Assume that the matrix Q is a diagonal matrix and the diagonal elements are qi. Therefore, the
problem (4.16) can be written in vector form as:

min
θ

θT Qθ

s.t. 1Tθ = 1, θ ≥ 0.
(4.17)

The Lagrangian function of the above problem (4.17) can be written as

L(θ, ρ) = θT Qθ − ρ(1Tθ − 1) (4.18)

where ρ is the Lagrangian multiplier.
The above problem (4.18) is equal to 0 with respect to θ, which gives

2Qθ − ρ1 = 0. (4.19)

Since 1Tθ = 1, it follows that

θi =
1

qi
∑d

j=1
1
q j

. (4.20)

Step 4. Fix β, θi, and r j optimize wi j.

min
W

∑n
i, j=1

(
‖Θxi − Θx j‖

2wi j + λw2
i j

)
+ α

∑n
i, j=1 ‖ fi − f j‖

2
2wi j

s.t. wT
i 1 = 1, 0 ≤ wi j ≤ 0.

(4.21)

Let dx
i j = ‖xi − x j‖

2, dθx
i j = ‖θxi − θx j‖

2, and d f
i j = ‖ fi − f j‖

2. Let di j = dθx
i j + αd f

i j, and we denote
di ∈ R

n×1 as a vector by the jth element. Then, the above problem (4.21) is written as
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min
wT

i 1=1,0≤wi j≤0

n∑
j=1

(λw2
i j + di jwi j)︸                                ︷︷                                ︸ (4.22)

m

min
wT

i 1=1,0≤wi j≤0

n∑
j=1

(
w2

i j +
1
λ

di jwi j +
1

4λ2 d2
i j

)
︸                                              ︷︷                                              ︸ (4.23)

m

min
wT

i 1=1,0≤wi j≤0
‖wi +

1
2λ

di‖
2︸                         ︷︷                         ︸ . (4.24)

For each i, the Lagrangian function for the problem (4.22) can be written as

L(wi, η, δi) =
1
2
‖wi +

1
2λ

di‖
2 − η(wT

i 1 − 1) − δiwi (4.25)

where η and δi are Lagrangian multipliers.
According to the KKT condition, the optimal solution wi of the problem (4.21) can be expressed as

wi j =

(
−

di j

2λ
+ η

)
+

(4.26)

where η =
(

1
k + 1

2kλ

∑k
j=1 di j

)
, k is the number of nearest neighbors, and λ = 1

n

∑n
i=1

(
k
2dx

i,k+1 −
1
2

∑k
j=1 dx

i j

)
.

Based on the above discussion, the following algorithm is give.

Algorithm 1 AS3ELM algorithm

Input: Input: Semi-supervised learning datasets T = Tl ∪ Tu = {xi, yi}
l
i=1 ∪ {xi}

l+u
i=l+1 represent the

semi-supervised learning training dataset, where xi ∈ R
n and yi ∈ {−1,+1} for labeled samples, Tl

denotes the labeled samples set with l, and Tu denotes the unlabeled samples set with u;
1: Parameters Set: Hidden nodes L, regularization parameters λ1, λ2 and α; maximum number of

iterations T . .
Output: Output: Weight vector β;

2: Initialization: Set t=0, β0 = 0, and random initialization parameters w j and b j ( j = 1, 2, . . . , L);
3: Compute βELM by having labeled samples;
4: Fix the variables wi j, r j, and θi, and find the output weight β by the Eq (4.5);
5: Fix β, wi j, and θi, optimizing r j by Eq (4.12);
6: Fix β, wi j, and r j, optimizing θi by Eq (4.20);
7: Fix β, θi, and r j, optimizing wi j by the Eq (4.26);
8: Termination criterion: When t > T , the program terminates;
9: Output: Weight vector β∗.
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4.2. Computational complexity analysis

In our proposed algorithm, the overarching computational complexity is predominantly attributed
to four key operations: Updating the matrix R, refining the weight vector β, constructing the graph
Laplacian L, and identifying the k-nearest neighbors (k-NN). Specifically, the primary computational
bottleneck within a single iteration of the algorithm stems from the O(L3) computational load
associated with updating the current weight vector β, where L denotes a relevant dimensionality.
Regarding the updated matrix R, its computational complexity scales as O((l + u)2), with l and u
representing specific dimensions pertinent to the matrix’s dimensions or indices. The construction
of the graph Laplacian matrix L, which encapsulates the topological structure of the data, involves
a complexity of O((l + u)2 log(l + u)), primarily due to the efficient implementation of algorithms
for constructing sparse matrices. Furthermore, the computational requirement for determining the
adjacency matrix leveraging the k-nearest neighbor approach is O(l + u)2, highlighting the quadratic
dependence on the combined dimensions l and u. This complexity underscores the significance of
efficient k-NN search algorithms in minimizing the overall computational overhead, particularly for
large-scale datasets.

Hence, the overall computational complexity of the AS3ELM algorithm can be approximately
formulated as O(T · (L3 + (l + u)2 log(l + u) + 2(l + u)2))), where T denotes the number of iterations
required for the algorithm to converge. Based on our experimental findings, a value of T = 10
has been empirically demonstrated to yield satisfactory performance, indicating that the algorithm
can effectively converge within a reasonable number of iterations. This observation underscores
the practical feasibility and efficiency of the AS3ELM algorithm, especially when dealing with
moderate to large-scale datasets. Collectively, these computational complexities underscore the need
for optimization strategies and efficient algorithmic designs to facilitate the practical implementation of
our algorithm, particularly in the context of high-dimensional data and large-scale graph constructions.

5. Experiments

In order to evaluate the performance of the proposed AS3ELM, this section systematically compares
AS3ELM with other good methods, including: ELM [25], SS-ELM [21], and SASSELM [22], where
the MATLAB source code for the algorithms ELM and SS-ELM The source code is available in [21] *.
The activation function of 1/(1 + exp(−(w · x + b))) (w, b is randomly generated) was used in the ELM,
SS-ELM, SASSELM, and AS3ELM algorithms. Also, to measure the classification performance of all
algorithms, the conventional accuracy classification precision (ACC) was used:

ACC =
T P + T N

T P + FN + T N + FP
(5.1)

where T P and T N denote true positives and true negatives, respectively, and FN and FP denote false
negatives and false positives, respectively. In addition, the learning time is also used to indicate the
computational efficiency of each algorithm.

Parameters have a significant impact on the performance of a model. Therefore, it is necessary to
choose the parameters of the algorithm in a reasonable way to improve the performance of the model.
The parameters of the algorithm involved in this experiment were chosen in the following range.

*http://www.ntu.edu.sg/home/egbhuang/elm.html
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• C ∈ {10−5, 10−5, . . . , 104, 105}

• λ1 ∈ {10−2, 10−1, 100, 101, 102, 103, 104, 105}

• λ2 ∈ {10−4, 10−3, . . . , 104}

• α ∈ {10−2, 10−1, 100, 101, 102, 103, 104, 105}

• L ∈ {100, 200, 300, 400, 500, 600, 700, 800, 1000, 1500, 2000}

To ensure a rigorous and valid comparison among the various methods evaluated, this experiment
employed a rigorous 10-fold cross-validation framework coupled with a grid search technique. This
comprehensive approach aimed to obtain a robust estimate of the average classification accuracy,
serving as the primary metric for assessing the performance of the algorithms under investigation. To
further strengthen the reliability of our findings, this process was reiterated ten times, and the arithmetic
mean of the results from these ten independent experiments was adopted as the definitive performance
measure. Moreover, to mitigate potential biases and ensure the objectivity of our experimental
outcomes, all datasets underwent a normalization process, transforming their values into the unified
interval of [0, 1]. This standardization step facilitated a fair comparison among algorithms, as it
eliminated any scaling-related disparities that might otherwise skew the results. All experiments were
meticulously conducted on a dedicated personal computer, equipped with MATLAB 2014a software
running on a Windows 10 operating system. The computational hardware consisted of an Intel(R)
Core(TM) i7-8700 processor, clocked at 3.40 GHz, complemented by 16 GB of RAM, ensuring
sufficient resources for the smooth execution of the experiments and the timely processing of the data.

5.1. Experimental results on UCI dataset

To rigorously assess the efficacy of the proposed methodology, we sourced nine benchmark datasets
from the prestigious UCI Machine Learning Repository†. To ensure a fair and unbiased comparison,
these datasets underwent a normalization process, scaling their features to a uniform range of [0, 1].
This standardization step facilitated the analysis and interpretation of the results, eliminating any
potential biases introduced by varying scales of the features. The comprehensive details of these
datasets, including their characteristics and dimensions, are systematically presented in Table 1.

Table 1. Information description of UCI datasets.

ID Datasets Samples Dimension

1 Austra 690 14
2 Balance 576 4
3 Banknote 1372 4
4 Ionosp 350 34
5 Pima 768 8
6 QSAR 1055 41
7 Vote 432 16
8 WDBC 569 30
9 Wholesale 440 7

†http://archive.ics.uci.edu/ml/datasets.html
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First, a meticulous experimental design was formulated to rigorously validate the classification
performance of the method introduced in this chapter, utilizing nine diverse datasets sourced from
the UCI Machine Learning Repository. This validation process involved varying the proportion of
labeled samples across the datasets to assess the robustness and adaptability of the proposed method.
Specifically, for each dataset, 70% of the samples from each class were randomly allocated to form a
comprehensive training set, while the remaining 30% constituted the test set for evaluation purposes.
Within the training sets, distinct labeling scenarios were created by labeling different proportions of
samples, namely 10% and 30%, respectively. This approach enabled us to evaluate the sensitivity of
the method to varying degrees of supervision during the learning phase. To ensure reproducibility
and comprehensiveness, the outcomes of all experiments were reported in terms of the average
classification accuracy (ACC), accompanied by the standard deviation (S), denoted as ACC ± S . This
notation provides insights into both the central tendency and the variability of the results, thereby
facilitating a nuanced understanding of the method’s performance. The comprehensive results from
these exhaustive experiments are systematically tabulated in Tables 2 and 3, offering a clear and concise
overview of the method’s classification capabilities across various benchmark datasets and labeling
scenarios.

As can be seen from Tables 2 and 3, the performance of all the algorithms improves as the number
of labeled samples increases. In addition, it can be seen that the proposed method AS3ELM shows
comparable performance in most of the datasets compared to the other algorithms. Specifically, SS-
ELM outperforms ELM on the QSAR, Vote, and Wholesale datasets in 10% of cases. AS3ELM
outperforms ELM in 10% of cases, except for QSAR and Wholesale. Furthermore, SS-ELM
outperforms ELM in 10% of cases. In addition, the proposed algorithm AS3ELM achieves comparable
results to SS-ELM in the case where SS-ELM outperforms ELM. This indicates that the security
mechanism used in our algorithm is effective and reduces the risk of untagged samples. In contrast
to the SASSELM method, the method obtains optimal graphs and security measures through adaptive
graph construction and adaptive security measures, respectively. This brings the performance of our
method in line with that of SASSELM on most datasets. In contrast to SS-ELM, the approach in
this paper incorporates risk level to control the trade-off between supervised and semi-supervised
learning. Supervised learning is performed on high-risk unlabeled data, and semi-supervised learning
is performed on low-risk data.
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Table 2. Learning results of the four algorithms on UCI datasets with 10% labeled samples.

ELM SS-ELM SASSELM AS3ELM

Datasets ACC±S(%) ACC±S(%) ACC±S(%) ACC± S(%)

Australian 83.97±2.34 86.36±2.49 88.57±2.77 89.74±2.12
Balance 94.55±2.09 96.42±2.01 96.37±2.09 96.75±1.78
Banknote 81.75±1.63 91.70±1.74 90.67±1.49 88.89±1.67
Ionosp 78.24±1.39 76.99±1.41 76.38±1.57 78.79±1.46
Pima 70.79±1.35 75.37±1.58 76.44±1.78 75.85±1.94
QSAR 85.87±1.42 81.25±1.51 83.94±1.82 77.72±1.37
Vote 95.00±2.26 92.11±2.71 94.44±2.11 96.15±2.78
WDBC 91.96±1.33 96.55±1.39 96.67±1.51 94.14±1.05
Wholesale 90.23±2.38 86.37±2.43 86.66±2.27 86.89±2.57

Table 3. Learning results of the four algorithms on UCI datasets with 30% labeled samples.

ELM SS-ELM SASSELM AS3ELM

Australian 84.12±2.08 88.16±2.51 89.42±2.68 89.74±2.09
Balance 94.48±2.17 97.00±2.13 97.33±2.51 98.95±1.55
Banknote 87.96±1.63 92.68±1.57 92.84±1.66 90.67±1.67
Ionosp 77.06±1.39 82.47±1.48 82.68±1.55 82.94±1.26
Pima 75.13±1.42 82.76±1.33 82.83±1.58 81.46±1.39
QSAR 85.87±1.35 87.51±1.33 87.79±1.41 86.36±1.34
Vote 95.71±2.32 95.38±2.72 97.26±2.59 98.04±2.56
WDBC 94.11±1.18 98.85±1.79 98.86±1.84 98.29±1.78
Wholesale 87.67±2.22 90.91±2.29 91.05±2.25 94.70±2.16

5.2. Image dataset experimental results

In order to better validate the performance of the proposed method, a series of experiments are
conducted on four image datasets in this subsection. The descriptions and information of the four
image datasets are as follows.

• ORL‡: 10 different images of each of the 40 different subjects. For some subjects, images
were taken at different times, varying lighting, facial expression (eyes open/closed, smiling/not
smiling), and facial details (glasses on/not wearing glasses). All photographs were taken against
a dark uniform background with the subject in a frontal upright position (with some side shifts
tolerated). A preview image of the face database is available. Each pixel has 256 grey levels.
The database was used for a face recognition project in collaboration with the Speech, Vision and
Robotics Group at the University of Cambridge Engineering Department.

‡http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att faces.tar.Z
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• YaleB§: Yale contains 165 grayscale images of 15 people in GIF format. Each subject has 11
images, each with a different facial expression or configuration: central light, with glasses, happy,
left light, without glasses, normal, right light, sad, sleepy, surprised, and blinking. For YaleB,
we simply used the cropped images and resized them to 32 × 32 pixels. This dataset now has 38
individuals and about 64 near-frontal images of individuals under different lighting conditions.
• COIL20 ¶: It contains 20 objects. The images of each object are taken at a distance of 5 degrees as

the object is rotated on a turntable, giving 72 images per object. The size of each image is 32×32
pixels, with 256 gray levels per pixel. Thus, each image is represented by a 1024-dimensional
vector. In this experiment, the first 10 objects in COIL20 are classified as 1 and the remaining
objects are classified as 2.
• USPST ‖: The USPST dataset is a collection of handwritten digits from the USPS postal system.

Each digit image is represented by a grayscale value of 16 × 16 pixels. It was constructed in this
experiment by grouping the first 5 digits into class 1 and the remaining digits into class 2.

This experiment tested the performance of the four algorithms involved with different proportions
of labeled samples, with the proportion of labeled samples in the training set taken to be 10%, 30%,
50%, 70%, and 90%, respectively. All the experimental results are presented in Figure 2. As shown
in Figure 2, the performance of all four algorithms tends to increase when the proportion of labelled
samples increases. Furthermore, it can be seen that the overall performance of the proposed method
is comparable to the other three algorithms on the four datasets, and some satisfactory results are
obtained. Details of the above dataset are given in Table 4.

Table 4. Description of the dataset.

Datasets Dimension Samples Class

USPST 256 2007 9
ORL 1024 400 40
YaleB 1024 2414 38
COIL20 1024 1440 20

§http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
¶https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
‖https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html
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Figure 2. Comparison of the performance of the four algorithms on image datasets with
different scales of labeled samples.

5.3. Experimental results on large datasets

To demonstrate and evaluate the effectiveness of our method, we conducted a systematic comparison
with other mainstream semi-supervised classification techniques. We used the standard accuracy rate
(ACC) as the metric to measure the classification efficiency of all algorithms. In our experiments,
we randomly selected 30% of the samples from each NDC dataset (refer to the “Description of NDC
Datasets” in Table 5) to establish the training set, while the remaining 70% constituted the test set.
Furthermore, we divided the training set into labeled and unlabeled samples in a 2:8 proportion.
We repeated the experiment ten times and computed the average classification accuracy. All the
experimental results are presented in Table 6. Particularly, for certain algorithms, due to the shortage
of computer memory, we halted the computation and substituted the results with NaN. From Table 6,
it can be seen that our algorithm consistently achieved higher classification accuracy than the other
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algorithms in all instances. Obviously, due to memory limitations, the ELM and SS-ELM algorithms
performed poorly on the NDC-31 and NDC-51 datasets.

Table 5. Description of NDC datasets.

Dataset Samples Features Dataset Samples Features

NDC-5k 5000 32 NDC-10k 10000 32
NDC-11 100000 32 NDC-31 300000 32
NDC-51 500000 32

Table 6. Experimental results on large datasets.

ELM SS-ELM SASSELM AS3ELM

Datasets ACC % ACC % ACC % ACC%

NDC-5k 82.01 84.45 85.19 86.67

NDC-10k 83.26 84.17 84.21 85.36

NDC-11 72.04 73.08 74.11 76.73

NDC-3l NaN NaN 71.48 73.21

NDC-51 NaN NaN 65.03 67.18

5.4. Ablation study experiments and results

To verify the performance of the proposed method, we conducted an ablation study. Specifically,
AS3ELM1: AS3ELM without adaptive feature weighted local structure optimal graph, and AS3ELM2:
AS3ELM without adaptive risk measurement mechanism for unlabeled samples. The experimental
results are presented in Table 7.

Table 7. Ablation study experiments and results.

AS3ELM AS3ELM1 AS3ELM2

Datasets ACC % ACC % ACC %

NDC-5k 86.67 81.04 83.29

NDC-10k 85.36 79.58 81.36

NDC-11 76.73 69.33 71.05

Through Table 7, we can see that on all three datasets, AS3ELM achieves better classification
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accuracy than both AS3ELM1 and AS3ELM2. This observation is particularly noteworthy as it
indicates a consistent performance advantage across diverse data environments. The results suggest
that the proposed method not only enhances the model’s ability to classify instances correctly but
also implies an improvement in its generalization performance. Generalization performance refers
to a model’s capability to perform well on unseen data, which is crucial for practical applications
where models are deployed in real-world scenarios. By outperforming its counterparts, AS3ELM
demonstrates a robust learning mechanism that likely incorporates effective feature extraction
or optimization techniques tailored for each datasets unique characteristics. Furthermore, this
enhancement could be attributed to various factors inherent in the design of AS3ELM. For instance,
it may utilize advanced algorithms or architectures that allow for more efficient processing of input
features or leverage ensemble methods that combine multiple learning strategies effectively. Such
improvements are essential for developing machine learning models capable of adapting to new
challenges while maintaining high accuracy levels. In summary, the findings presented in Table 7
provide compelling evidence supporting the efficacy of the proposed method over existing alternatives
within this study framework. This reinforces the notion that ongoing research into innovative modeling
approaches can yield significant advancements in classification tasks across different domains and
datasets.

5.5. Parameter sensitivity analysis

In general, parameters correspond to optimal output results. In order to investigate the effect of the
parameters λ1 and λ1 on the performance of the AS3ELM algorithm, this section conducts a series
of experiments on four image datasets. Empirical values of L = 500 were used for the hidden layer
nodes, which were fixed in the experiments, and the parameters λ1 and λ1 were varied over the ranges
λ1 ∈ {10−2, 10−1, 101, 102, 103} and λ2 ∈ {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104, 105}. The
experimental results are presented in Figure 3. As shown in Figure 3, it can be seen that the proposed
algorithm AS3ELM does not fluctuate much in classification accuracy under different parameters and
is relatively stable. This indicates that the proposed method is insensitive to parameters and has
good generalization performance. The graph in Figure 3(d) displays significant fluctuations, which
can be attributed to the adaptive learning of these parameters during the process of evaluating the
risk associated with unlabeled samples and constructing the most localized structural graph in our
proposed method. This adaptability allows our model to dynamically adjust its parameters based on
the characteristics of each sample, resulting in a more accurate representation of the underlying data
distribution. By continuously updating and refining these parameters, our method is able to capture
intricate patterns and relationships within the dataset. The fluctuations observed in the graph reflect this
ongoing learning process as it iteratively refines its understanding of geometric distribution information
from both labeled and unlabeled samples. This acquisition of geometric distribution information plays
a crucial role in improving the performance of our proposed method. By incorporating this knowledge
into our model’s decision-making process, we are able to make more informed predictions about
unseen data points. This not only enhances accuracy but also enables better generalization capabilities
when applied to real-world scenarios. Furthermore, by constructing a localized structural graph that
adapts to each sample’s risk evaluation, we ensure that important local dependencies are captured
effectively. This localization helps prevent overgeneralization or underestimation by considering
specific neighborhood structures for each data point. In summary, through adaptive parameter learning
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and the construction of a localized structural graph, our proposed method acquires valuable geometric
distribution information from both labeled and unlabeled samples. These fluctuations observed in
Figure 3(d) represent an ongoing refinement process that ultimately leads to improved accuracy and
generalization capabilities for predicting unseen data points.
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Figure 3. Performance analysis of the algorithm AS3ELM under different parameters.

6. Conclusions

In this paper, we embark on the construction of an innovative adaptive feature-weighted local
structure optimal graph. This graph not only facilitates adaptive learning of graph weights during
both model training and prediction phases but also adeptly extracts pertinent features from individual
data points through automatic weighting mechanisms. This process effectively prunes redundant
features, thereby accelerating the learning process, mitigating the risk of dimensional catastrophe,
and enhancing the overall efficiency of the learning task. Furthermore, we introduce an adaptive

AIMS Mathematics Volume 9, Issue 11, 31444–31469.



31466

risk measure, which meticulously quantifies the degree of unlabeled risk in relation to the inherent
uncertainty and potential hazards associated with unlabeled samples. This measure provides a
nuanced understanding of the risk landscape, enabling more informed decision-making during the
learning process. Subsequently, we develop and implement an adaptive safety semi-supervised
learning framework tailored to a specific model. Within this framework, we propose an adaptive
safety semi-supervised limit learning machine tailored for pattern classification tasks. This machine
leverages an alternating iteration approach to solve the model, ensuring convergence and stability.
Experimental evaluations conducted on diverse datasets demonstrate the competitiveness and efficacy
of our proposed method in comparison to other related algorithms. However, it is acknowledged that
in terms of time efficiency, our model does not exhibit a marked advantage over its counterparts. This
limitation primarily stems from the alternating iteration strategy employed, which necessitates iterative
updates of four variables, thereby increasing computational overhead. To address this challenge, future
research endeavors should focus on devising efficient algorithms that can solve the model without
compromising on classification accuracy. Such endeavors hold the promise of enhancing the practical
applicability and scalability of our adaptive safety semi-supervised learning framework.
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