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inspiration from neighborhood systems aimed at enhancing accuracy degree and satisfying the axioms
of traditional approximation spaces (TAS) that were initiated by Pawlak. This article proposes an
easy method to deal with information systems in most cases, wherein it introduces a new forming of
generalized approximation spaces, namely, cardinality rough neighborhoods. It is defined depending
on the cardinal number of the Nσ-neighborhoods of elements that are established under an arbitrary
relation. Their main features are investigated and the connections between them, as well as their
relationships with the preceding kinds of neighborhood systems, are uncovered with the aid of some
examples. Then, novel rough set paradigms induced by cardinality rough neighborhoods are displayed
that satisfy most properties of Pawlak’s paradigm. Next, a topological method to study these paradigms
is provided, wherein this method produces approximation operators similar to the given paradigms in
six cases that are proved. Additionally, both paradigms in a practical example concerning books and
the authors who authored them or participated in their authorship are applied. To illuminate the need
for the current concepts, we elaborate on their advantages from different views. Finally, a summary of
the obtained results and relationships and suggestions for some forthcoming work are offered.
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1. Introduction

As a fundamental framework for analyzing information systems containing imperfect or
ambiguous data, Pawlak [33] introduced traditional rough set theory (TRST). This theory begins
with an equivalence relation defined over the universe, forming the basis of granules (or blocks).
These granules are referred to as equivalence classes. To ascertain the nature of information derived
from rough datasets, TRST introduces the pivotal concepts of lower and upper approximations. To
provide further insight into the structure and comprehensiveness of knowledge derived, the concepts
of boundary regions and accuracy degrees have been proposed. These concepts inform us about the
quantity of uncertainty data and the nature of their structure.

We often encounter numerous practical challenges across various disciplines where an equivalence
relation does not accurately describe the relationship between the objects involved. This means that
we should relax the condition of TRST to successfully address these issues. Therefore, several authors
endeavored to set up novel rough set models that were defined via a nonequivalence relation such
as dominance [36], similarity [2, 43], and quasi-order [40]. In 1996, Yao [47] presented two kinds
of neighborhood systems, namely, right neighborhood and left neighborhood, and exploited them as
granules or blocks to construct new rough approximation operators. This paved the way for authors
and scholars to offer novel paradigms of rough set theory through different sorts of relations that
are not necessarily an equivalence relation. To look over some of these paradigms, Abu-Donia [4]
produced some rough set models by defining the previous neighborhoods by deal with a finite number
of relations rather than a single relation. Mareay [30] proposed four neighborhoods based on the
equality between the original neighborhoods and offered new rough approximation operators. He
scrutinized their main properties and elucidated their pros. Atef et al. [19] completed Mareay’s work
by introducing other paradigms following the same technique. Dai et al. [20] defined the maximal
right neighborhood over a similarity relation and put forward some rough set models. Newly, Al-shami
with co-authors have established novel paradigms generated from new forms of neighborhoods such
as intersection neighborhoods [14], containment neighborhoods [8], subset neighborhoods [12], and
maximal neighborhoods [11]. They have revealed their main characterizations and the interrelations
between them; also, they have illustrated how these paradigms are applied to prevent the spread of
COVID-19 and reduce the pressure on health facilities. Al-shami and Mhemdi [17] and Demiralp [21]
proposed a novel technique to study rough neighborhoods and their generalized approximation spaces
generated by the hybridization of the right and left neighborhoods as well as minimal right and minimal
left neighborhoods. Additionally, this theory has served as a valuable mechanism for characterizing
information content across various models and applications in numerous diverse fields; see [1, 25, 26].

Due to the similarities in the behaviors of topological and rough set concepts, rough set models
can be studied from a topological perspective. This matter was first noted by Skowron [44] who set
up its fundamentals. This approach has attracted many topologists who are interested in rough set
theory. To name a few, Lashin et al. [28] considered the original neighborhoods as a subbase for
topology and then linked between the concepts of topology and rough set theory. Zhang et al. [49]
discussed some topological concepts such as compactness and connectedness when the topology is
structured by a reflexive relation. Salama [37] provided a topological solution for the problem of
missing attribute values. Al-shami [9, 10] made use of two generalizations of open sets to describe
information systems. Al-shami and Mhemdi [16] employed subset rough neighborhoods to initiate
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topological spaces of rough set models. Güler et al. [24] and Mustafa et al. [32] introduced various
topological spaces of rough set models using containment rough neighborhoods. Moreover, some
authors employed supra topology [13], infra topology [15], nano-topology [27], and bitopology [38],
which are extensions of topology, to study generalized rough approximation spaces. Almarri and
Azzam [7] and El-Sharkasy [23] discussed these spaces via the minimal structures. Further studies can
be found in [29, 42, 45, 48].

For several reasons this manuscript was prepared. First, to present a novel technique, free from
an equivalence relation requirement, for addressing situations that focus on the cardinality number
of Nσ-neighborhoods, such as those encountered in social media or in categorizing applicants based
on the number of their qualities. Second, to retain most characteristics of the traditional rough set
model outlined in Proposition 2.3. Third, to address certain shortcomings in the properties of Nσ-
neighborhoods, which may necessitate updates to the formula used for calculating accuracy measures
or the imposition of additional condition(s) on the applied relations; refer to [22]. Fourth, to propose
an abstract method inspired by topology as an equivalent alternative for the proposed rough set models.

This manuscript is designed as follows. Following this introduction, we summon the definitions
and findings that are essential for understanding the content in Section 2. Then, in Section 3, we
suggest new forms of neighborhoods called cardinality rough neighborhoods and look at their primary
features with the assistance of several examples. In Section 4, we utilize these neighborhoods to
introduce various rough set paradigms and elucidate the fundamental features of their lower and upper
approximations. We devote Section 5 to building topological paradigms that are equivalent to the
forgoing ones in the cases of σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}, which helps a wide range of users to choose
the suitable methods with their expertise. We structure a practical example to clarify how the current
paradigms are applied and analyze the advantages and limitations of this work in Sections 6 and 7,
respectively. Finally, a summary of this manuscript and suggestions for future work are provided
in Section 8.

2. Preliminaries

This section is devoted to reviewing several key definitions and results. Also, the necessity to
introduce the idea of cardinal neighborhoods (Eσ-neighborhoods) will be justified.

2.1. Traditional approximation space (TAS)

Definition 2.1. [33] Let B denote a universe, defined as a nonempty finite set. A binary relation Ψ

on B is characterized as a subcollection of B × B. The pairing (α, β) ∈ Ψ is commonly expressed as
αΨβ. A relation Ψ on B is termed reflexive (resp., symmetric, transitive) if αΨα for any α ∈ B (resp.,
αΨβ ⇐⇒ βΨα, αΨδ when αΨβ and βΨδ). An equivalence relation is defined as one that is reflexive,
symmetric, and transitive. Furthermore, a comparable relation, denoted by Ψ, satisfies αΨβ or βΨα

for all α, β ∈ B.

Definition 2.2. [33] Let Ψ be an equivalence relation on B. Suppose W ⊆ B, so the lower, upper
approximations of W will be represented, respectively, as:

Ψ(W) =
⋃
{S ∈ B/Ψ | S ⊆ W}.

Ψ(W) =
⋃
{S ∈ B/Ψ | S

⋂
W , ∅}.
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The notation B/Ψ symbolizes the family comprising all equivalence classes induced by the relation Ψ.

The pair (B,Ψ) is henceforth referred to as an approximation space. W is characterized as rough
if Ψ(W) and Ψ(W) are not equal. Conversely, if the upper and lower approximations coincide, the set
is termed definable or exact.

The core features of the traditional rough set model are enumerated in the subsequent proposition.

Proposition 2.3. [33–35] Consider an equivalence relation Ψ defined on B. For sets S ,W, the next
characteristics hold:

(L1) Ψ(S ) ⊆ S (U1) S ⊆ Ψ(S )

(L2) Ψ(∅) = ∅ (U2) Ψ(∅) = ∅

(L3) Ψ(B) = B (U3) Ψ(B) = B

(L4) I f S ⊆ W, then Ψ(S ) ⊆ Ψ(W) (U4) I f S ⊆ W, then Ψ(S ) ⊆ Ψ(W)

(L5) Ψ(S ∩W) = Ψ(S ) ∩ Ψ(W) (U5) Ψ(S ∩W) ⊆ Ψ(S ) ∩ Ψ(W)

(L6) Ψ(S ) ∪ Ψ(W) ⊆ Ψ(S ∪W) (U6) Ψ(S ∪W) = Ψ(S ) ∪ Ψ(W)

(L7) Ψ(S c) = (Ψ(S ))c (U7) Ψ(S c) = (Ψ(S ))c

(L8) Ψ(Ψ(S )) = Ψ(S ) (U8) Ψ(Ψ(S )) = Ψ(S )

(L9) Ψ((Ψ(S ))c) = (Ψ(S ))c (U9) Ψ((Ψ(S ))c) = (Ψ(S ))c

(L10) Ψ(W) = W,∀W ∈ B/Ψ (U10) Ψ(W) = W,∀W ∈ B/Ψ

Traditional theory [33] has been generalized through diverse methodologies, with comprehensive
verification of the validity of these properties. Unfortunately, certain properties have been found to
be uncertain. Nevertheless, the acquisition of as many of these properties as feasible is regarded as
advantageous within these methodologies.

Also, rough sets can be described numerically by using the next two measures:

Definition 2.4. [34, 35] Consider an equivalence relation Ψ on B, the A-accuracy and R-roughness
criteria of W are determined as:

A(W) =
|Ψ(W)|
|Ψ(W)|

, | Ψ(W) |, 0.

R(W) = 1 − A(W).

In many positions, the equivalence relations are not attainable. Consequently, the classical
approach has been extended by employing weaker relations than full equivalence.

2.2. σ-Neighborhood space

Definition 2.5. [3,5,6,46,47] Consider an arbitrary relation Ψ on B. If σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉, u, 〈u〉},
then the σ-neighborhoods of κ ∈ B, symbolized by Nσ(κ), are identified as:

(i) Nr(κ) = {o ∈ B : κ Ψ o}.

(ii) Nl(κ) = {o ∈ B : o Ψ κ}.
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(iii)

N〈r〉(κ) =


⋂

κ∈Nr(o)
Nr(o) : ∃ Nr(o) involving κ,

∅ : Elsewise.

(iv)

N〈l〉(κ) =


⋂

κ∈Nl(o)
Nl(o) : ∃ Nl(o) involving κ,

∅ : Elsewise.

(v) Ni(κ) = Nr(κ)
⋂
Nl(κ).

(vi) Nu(κ) = Nr(κ)
⋃
Nl(κ).

(vii) N〈i〉(κ) = N〈r〉(κ)
⋂
N〈l〉(κ).

(viii) N〈u〉(κ) = N〈r〉(κ)
⋃
N〈l〉(κ).

Henceforward, unless otherwise specified, we will consider σ to belong to the set
{r, 〈r〉, l, 〈l〉, i, 〈i〉, u, 〈u〉}.

Definition 2.6. [39] Consider a relation Ψ onB and let ζσ denote a mapping fromB to 2B, associating
each member κ ∈ B with its σ-neighborhood in 2B. Consequently, the triple (B,Ψ, ζσ) is termed a σ-
neighborhood space, abbreviated as NσS.

The aforementioned types of neighborhoods were utilized to introduce novel variations of lower
and upper approximations, as well as accuracy (roughness) criteria. In the desire of enhancing
the quality of approximations and maximizing accuracy criteria, numerous comparisons among the
preceding types of neighborhoods were conducted.

Definition 2.7. [3, 5, 6, 46, 47] Given a relation Ψ on B, the lower and upper approximations of each
subset W regarding to the various kinds of neighborhoods are introduced as:

HNσ(W) = {κ ∈ B : Nσ(κ) ⊆ W},

HNσ(W) = {κ ∈ B : Nσ(κ) ∩W , ∅}.

Definition 2.8. [3, 5, 6, 47] Consider a relation Ψ on B. The ANσ-accuracy and RNσ-roughness
criteria of a nonempty set W in regard to Ψ are represented by :

ANσ(W) =
|HNσ(W)∩W |
|HNσ(W)∪W | , and

RNσ(W) = 1 − ANσ(W).

Definition 2.9. [34, 35] Consider two relations Ψ1 and Ψ2 on B such that Ψ1 ⊆ Ψ2. The
approximations derived from N-neighborhoods show the property of monotonicity in both accuracy
and roughness of any set if ANσ1(W) ≥ ANσ2(W) and, respectively, RNσ1(W) ≤ RNσ2(W).

Definition 2.10. [18,30] Consider a relation Ψ on B. For each σ, thef-neighborhoods of an element
κ of B is represented as:

(i) fr(κ) = {o ∈ B : Nr(κ) = Nr(o)}.
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(ii) fl(κ) = {o ∈ B : Nl(κ) = Nl(o)}.

(iii) fi(κ) = fr(κ) ∩fl(κ).

(iv) fu(κ) = fr(κ) ∪fl(κ).

(v) f〈r〉(κ) = {o ∈ B : N〈r〉(κ) = N〈r〉(o)}.

(vi) f〈l〉(κ) = {o ∈ B : N〈l〉(κ) = N〈l〉(o)}.

(vii) f〈i〉(κ) = f〈r〉(κ) ∩f〈l〉(κ).

(viii) f〈u〉(κ) = f〈r〉(κ) ∪f〈l〉(κ).

Definition 2.11. [8] Consider a relation Ψ on B. For each σ, the C-neighborhoods of a member κ of
B is represented as:

(i) Cr(κ) = {o ∈ B : Nr(o) ⊆ Nr(κ)}.

(ii) Cl(κ) = {o ∈ B : Nl(o) ⊆ Nl(κ)}.

(iii) Ci(κ) = Cr(κ) ∩ Cl(κ).

(iv) Cu(κ) = Cr(κ) ∪ Cl(κ).

(v) C〈r〉(κ) = {o ∈ B : N〈r〉(o) ⊆ N〈r〉(κ)}.

(vi) C〈l〉(κ) = {o ∈ B : N〈l〉(o) ⊆ N〈l〉(κ)}.

(vii) C〈i〉(κ) = C〈r〉(κ) ∩ C〈l〉(κ).

(viii) C〈u〉(κ) = C〈r〉(κ) ∪ C〈l〉(κ).

Definition 2.12. [12] Consider a relation Ψ on B. For each σ, the S-neighborhoods of a member κ of
B is represented as:

(i) Sr(κ) = {o ∈ B : Nr(κ) ⊆ Nr(o)}.

(ii) Sl(κ) = {o ∈ B : Nl(κ) ⊆ Nl(o)}.

(iii) Si(κ) = Sr(κ) ∩ Sl(κ).

(iv) Su(κ) = Sr(κ) ∪ Sl(κ).

(v) S〈r〉(κ) = {o ∈ B : N〈r〉(κ) ⊆ N〈r〉(o)}.

(vi) S〈l〉(κ) = {o ∈ B : N〈l〉(κ) ⊆ N〈l〉(o)}.

(vii) S〈i〉(κ) = S〈r〉(κ) ∩ S〈l〉(κ).

(viii) S〈u〉(κ) = S〈r〉(κ) ∪ S〈l〉(κ).
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3. Cardinality neighborhood systems

According to any binary relation, this section is consecrated to introduce the notion of cardinality
neighborhoods for any element in the universe. Their main properties will be explored and the
conditions under which some of them are identical will be determined. To support the gained results
and relationships, illustrative examples are included. The study of cardinality neighborhoods aspires
to improve the accuracy of approximations.

For any σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉, u, 〈u〉}, |Nσ(.)| denotes the cardinality of Nσ(.).

Definition 3.1. Consider a relation Ψ on B. For each σ, the cardinality neighborhoods of an element
κ of B (briefly, Eσ(κ)) are defined as:

(i) Er(κ) = {o ∈ B : |Nr(κ)| = |Nr(o)|}.

(ii) El(κ) = {o ∈ B : |Nl(κ)| = |Nl(o)|}.

(iii) Ei(κ) = Er(κ) ∩ El(κ).

(iv) Eu(κ) = Er(κ) ∪ El(κ).

(v) E〈r〉(κ) = {o ∈ B : |N〈r〉(κ)| = |N〈r〉(o)|}.

(vi) E〈l〉(κ) = {o ∈ B : |N〈l〉(κ)| = |N〈l〉(o)|}.

(vii) E〈i〉(κ) = E〈r〉(κ) ∩ E〈l〉(κ).

(viii) E〈u〉(κ) = E〈r〉(κ) ∪ E〈l〉(κ).

The next example will demonstrate the conduct of cardinal neighborhoods, assist us in displaying
the dealings amongst them, and bring to light the method of computing cardinal neighborhoods.

Example 3.2. Let’s consider Ψ = {(β, β), (α, β), (β, δ), (δ, κ)} as a relation on B = {α, β, δ, κ}.
Subsequently, the cardinality neighborhoods for all members of B will be calculated and presented
in Table 1.

Table 1. Nσ-neighborhoods and Eσ-neighborhoods for members of B.

α β δ κ

Nr {β} {β, δ} {κ} ∅

Nl ∅ {α, β} {β} {δ}

N〈r〉 ∅ {β} {β, δ} {κ}

N〈l〉 {α, β} {β} {δ} ∅

Er {α, δ} {β} {α, δ} {κ}

El {α} {β} {δ, κ} {δ, κ}

Ei {α} {β} {δ} {κ}

Eu {α, δ} {β} {α, δ, κ} {δ, κ}

E〈r〉 {α} {β, κ} {δ} {β, κ}

E〈l〉 {α} {β, δ} {β, δ} {κ}

E〈i〉 {α} {β} {δ} {κ}

E〈u〉 {α} {β, δ, κ} {β, δ} {β, κ}
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Proposition 3.3. (i) κ ∈ Ei(α) iff |Nr(κ)| = |Nr(α)| and |Nl(κ)| = |Nl(α)|.

(ii) κ ∈ Eu(α) iff |Nr(κ)| = |Nr(α)| or |Nl(κ)| = |Nl(α)|.

(iii) κ ∈ E〈i〉(α) iff |N〈r〉(κ)| = |N〈r〉(α)| and |N〈l〉(κ)| = |N〈l〉(α)|.

(iv) κ ∈ E〈u〉(α) iff |N〈r〉(κ)| = |N〈r〉(α)| or |N〈l〉(κ)| = |N〈l〉(α)|.

Proof. Follows from Definition 3.1. �

Corollary 3.4. If Ψ is a symmetric relation, then:

(i) Ei(α) = {o ∈ B : |Ni(α)| = |Ni(o)|}.

(ii) E〈i〉(α) = {o ∈ B : |N〈i〉(α)| = |N〈i〉(o)|}.

(iii) Eu(α) = {o ∈ B : |Nu(α)| = |Nu(o)|}.

(iv) E〈u〉(α) = {o ∈ B : |N〈u〉(α)| = |N〈u〉(o)|}.

In Example 3.2, one can remark that Ei(α) = E〈i〉(α) = {α}, whereas {o ∈ B : |Ni(α)| = |Ni(o)|} =

{α, δ, κ} and {o ∈ B : |N〈i〉(α)| = |N〈i〉(o)|} = {α, κ}. This confirms the necessity of a symmetric condition
of the above corollary. That is, we cannot replace the condition |Nr(α)| = |Nr(o)| and |Nl(α)| = |Nl(o)|
with |Ni(α)| = |Ni(o)| in general.

Proposition 3.5. Consider (B,Ψ, ζσ) as a σ-NS . If κ ∈ B, then Eσ(κ) , ∅ for each σ.

Proof. Follows from the fact that κ ∈ Eσ(κ) for each σ. �

The above result will be beneficial in the next section to provide a formulation of an accuracy
measure similar to the original one given by Pawlak without additional condition(s). That is, we
guarantee that the lower approximation of every set is always a subset of its upper approximation.

Proposition 3.6. Consider (B,Ψ, ζσ) as a σ-NS and κ ∈ B. Then, κ ∈ Eσ(α) iff α ∈ Eσ(κ), for each σ.

Proof. In the instances where σ ∈ {r, 〈r〉, l, 〈l〉}, we obtain κ ∈ Eσ(α) ⇐⇒ |Nσ(κ)| = |Nσ(α)| ⇐⇒
α ∈ Eσ(κ). The other cases of σ ∈ {i, 〈i〉, u, 〈u〉} follow directly from this fact. �

Proposition 3.7. Consider (B,Ψ, ζσ) as a σ-NS . If κ ∈ Eσ(α), α ∈ Eσ(β), then κ ∈ Eσ(β), for any
σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}.

Proof. In the instances where σ ∈ {r, 〈r〉, l, 〈l〉}, we obtain κ ∈ Eσ(α), α ∈ Eσ(β) iff |Nσ(κ)| = |Nσ(α)|,
|Nσ(α)| = |Nσ(β)|. This means that |Nσ(κ)| = |Nσ(β)|. Hence, κ ∈ Eσ(β). The cases of σ ∈ {i, 〈i〉}
follow directly from this fact. �

From the above propositions, the next corollaries are understandable.

Corollary 3.8. Consider (B,Ψ, ζσ) as a σ-NS and κ ∈ B. Then, κ ∈ Eσ(α) iff Eσ(κ) = Eσ(α), for any
σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}.

Corollary 3.9. For every σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}, the cardinality neighborhood of elements of B
constitute a partition of B, that is, the relation Ψ defined by

αΨκ ⇐⇒ α ∈ Eσ(κ),

is an equivalence relation for all σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}.
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Remark 3.10. If σ ∈ {u, 〈u〉}, then Proposition 3.7 and Corollaries 3.21, 3.9 need not to be valid as
both Example 3.2 and Table 1 illustrate.

The subsequent proposition indicates the relations between the various sorts of Eσ-neighborhoods.

Proposition 3.11. (i) Ei ⊆ Er ∩ El ⊆ Er ∪ El ⊆ Eu.

(ii) E〈i〉 ⊆ E〈r〉 ∩ E〈l〉 ⊆ E〈r〉 ∪ E〈l〉 ⊆ E〈u〉.

(iii) Er = El = Ei = Eu = E〈r〉 = E〈l〉 = E〈i〉 = E〈u〉, if Ψ is a symmetric relation on B.

Proof. Sentences (i),(ii) are directly proved. To prove (iii), one notes that Nr = Nl when Ψ is
symmetric, so Er = El = Ei = Eu and E〈r〉 = E〈l〉 = E〈i〉 = E〈u〉. It remains to show that Eσ = E〈σ〉
for one case of σ ∈ {r, l, i, u}. To do this, we proved that Er represents a partition for B, which means
that Er = E〈r〉. Thus, the desired outcome has been achieved. �

Corollary 3.12. If Ψ is a symmetric relation, then the cardinality neighborhood of elements of B
constitute a partition of B for each σ ∈ {u, 〈u〉}.

Example 3.2 illustrates that the converse of (i), (ii) of Proposition 3.11 is generally incorrect.
Additionally, it emphasizes the necessity of a symmetric relation in condition (iii).

Proposition 3.13. Nσ = N〈σ〉 for σ ∈ {r, l}, if Ψ is a reflexive and transitive relation on B.

Proof. Let σ = r and Ψ be reflexive. Then, N〈r〉(γ) ⊆ Nr(γ) for each γ. Conversely, let α ∈ Nr(γ);
that is, γΨα. Now, for each β ∈ B with γ ∈ Nr(β), we have, by the condition of transitive, βΨα, which
means that α ∈ Nr(β). Thus, Nr(γ) ⊆ N〈r〉(γ). Hence, the proof is complete. By following a similar
argument, the proof of σ = l follows. �

Corollary 3.14. Nσ = N〈σ〉 for σ ∈ {i, u}, if Ψ is a reflexive and transitive relation on B.

Proposition 3.15. Eσ = E〈σ〉 for σ ∈ {r, l, i, u}, if Ψ is a reflexive and transitive relation on B.

Proof. It immediately follows by Proposition 3.13 and Corollary 3.14. �

The next example shows that Eσ , E〈σ〉, σ ∈ {r, l, i, u} despite Ψ being a reflexive relation on B.

Example 3.16. Consider Ψ = N ∪ {(δ, α), (δ, β), (δ, κ), (κ, α), (κ, δ)} is a reflexive relation on B =

{α, β, δ, κ}. Then,
Nr(α) = {α}, Nr(β) = {β}, Nr(δ) = B, Nr(κ) = {α, δ, κ}.
Nl(α) = {α, δ, κ}, Nl(β) = {β, δ}, Nl(δ) = {δ, κ}, Nl(κ) = {δ, κ}.
N〈r〉(α) = {α}, N〈r〉(β) = {β}, N〈r〉(δ) = {α, δ, κ}, N〈r〉(κ) = {α, δ, κ}.
N〈l〉(α) = {α, δ, κ}, N〈l〉(β) = {β, δ}, N〈l〉(δ) = {δ}, N〈l〉(κ) = {δ, κ}.
Er(α) = {α, β}, Er(β) = {α, β}, Er(δ) = {δ}, Er(κ) = {κ}.
El(α) = {α}, El(β) = {β, δ, κ}, El(δ) = {β, δ, κ}, El(κ) = {β, δ, κ}.
Ei(α) = {α}, Ei(β) = {β}, Ei(δ) = {δ}, Ei(κ) = {κ}.
Eu(α) = {α, β}, Eu(β) = B, Eu(δ) = {β, δ, κ}, Eu(κ) = {β, δ, κ}.
E〈r〉(α) = {α, β}, E〈r〉(β) = {α, β}, E〈r〉(δ) = {δ, κ}, E〈r〉(κ) = {δ, κ}.
E〈l〉(α) = {α}, E〈l〉(β) = {β, κ}, E〈l〉(δ) = {δ}, E〈l〉(κ) = {β, κ}.
E〈i〉(α) = {α}, E〈i〉(β) = {β}, E〈i〉(δ) = {δ}, E〈i〉(κ) = {κ}.
E〈u〉(α) = {α, β}, E〈u〉(β) = {α, β, κ}, E〈u〉(δ) = {δ, κ}, E〈u〉(κ) = {β, δ, κ}.
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The following example demonstrates that Eσ , E〈σ〉, for σ ∈ {r, l, i, u}, even when Ψ is a
transitive relation on B.

Example 3.17. Consider Ψ = {(α, α), (α, β), (α, δ), (α, κ), (β, β), (β, κ), (δ, δ)} is a transitive relation on
B = {α, β, δ, κ}. So, the cardinality neighborhoods of all members of B will be computed in Table 2.

Table 2. Nσ-neighborhoods and Eσ-neighborhoods for members of B, when Ψ is transitive.

α β δ κ

Nr B {β, κ} {δ} ∅

Nl {α} {α, β} {α, δ} {α, β}

N〈r〉 B {β, κ} {δ} {β, κ}

N〈l〉 {α} {α, β} {α, δ} ∅

Er {α} {β} {δ} {κ}

El {α} {β, δ, κ} {β, δ, κ} {β, δ, κ}

Ei {α} {β} {δ} {κ}

Eu {α} {β, δ, κ} {β, δ, κ} {β, δ, κ}

E〈r〉 {α} {β, κ} {δ} {β, κ}

E〈l〉 {α} {β, δ} {β, δ} {κ}

E〈i〉 {α} {β} {δ} {κ}

E〈u〉 {α} {β, δ, κ} {β, δ} {β, κ}

Proposition 3.18. Consider (B,Ψ, ζσ) as a σ-NS . If κ ∈ B, then fσ(κ) ⊆ Eσ(κ), for each σ.

Proof. Assume that α ∈ fσ(κ). Hence, Nσ(κ) = Nσ(α), so |Nσ(κ)| = |Nσ(α)|, which means that
α ∈ Eσ(κ). �

As depicted in Table 1, it is evident that fσ(κ) = κ holds true for every σ. This observation
highlights the failure of the converse statement in the preceding proposition.

Proposition 3.19. Assume that α ∈ Eσ(κ). Hence, α ∈ fσ(κ) iff α ∈ Cσ(κ) iff α ∈ Sσ(κ), for every
σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}.

Proof. Let σ = r and α ∈ Eσ(κ). Then,

|Nr(κ)| = |Nr(α)|. (3.1)

If α ∈ Cσ(κ) or α ∈ Sσ(κ), then Nr(α) ⊆ Nr(κ) or Nr(α) ⊇ Nr(κ). From (3.1), it follows that
Nr(α) = Nr(κ), implying that α ∈ f(κ), as required. �

Remark 3.20. We call the reader’s attention to that the preceding kinds of neighborhoods, i.e., f-
neighborhoods [18,30], intersection neighborhoods [14], subset neighborhoods [12], and containment
neighborhoods [8], are equivalent to their counterparts of σ-neighborhoods when the relation is
equivalent. On the other hand, this characteristic is not satisfied for the current neighborhoods.

Remark 3.21. Consider a relation Ψ on B. Then, for each σ, there is no relationships between Eσ-
neighborhoods and Nσ-neighborhoods.
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4. New kinds of rough set models founded upon Eσ-neighborhoods

In this portion, novel approximations known as HEσ-lower and HEσ-upper approximations will
be presented. These approximations will be utilized to designate new regions and accuracy criteria for
any set.

Definition 4.1. Consider (B,Ψ, ζσ) as a σ-NS . Based on cardinality neighborhoods, the pair
(HEσ(W),HEσ(W)) represents the lower and upper approximations of a set W, respectively,
assigned as:

HEσ(W) = {α ∈ B : Eσ(α) ⊆ W} (called Eσ-lower approximation of W) and

HEσ(W) = {α ∈ B : Eσ(α) ∩W , ∅} (called Eσ-upper approximation of W).

Definition 4.2. The Eσ-boundary, Eσ-positive, and Eσ-negative regions of a subset W within a σ-NS
(B,Ψ, ζσ) are identified, respectively, as:

BEσ(W) = HEσ(W) \ HEσ(W),

POS Eσ(W) = HEσ(W),

NEGEσ(W) = B \ HEσ(W).

Further, rough sets by cardinality neighborhoods can be characterized numerically by utilizing the
following two criterions:

Definition 4.3. The Eσ-accuracy and Eσ-roughness criteria of W , ∅ of a σ-NS (B,Ψ, ζσ) are,
respectively, endowed by:

AEσ(W) =
|HEσ(W)|
|HEσ(W)| , | H

Eσ(W) |, 0.

REσ(W) = 1 − AEσ(W).

To illustrate the computation of the defined approximations, boundary regions, and accuracy
criteria for all σ, the following example will be offered.

Example 4.4. Continued from Example 3.2. Suppose W = {α, δ} as a subset of aσ-NS (B,Ψ, ζσ). Then,

(i) if σ ∈ {r, 〈r〉, i, 〈i〉}, thenHEσ(W) = {α, δ},HEσ(W) = {α, δ}, BEσ = ∅, and AEσ(W) = 1.

(ii) if σ ∈ {l, u}, thenHEσ(W) = {α},HEσ(W) = {α, δ, κ}, BEσ = {δ, κ}, and AEσ(W) = 1
3 .

(iii) if σ ∈ {〈l〉, 〈u〉}, thenHEσ(W) = {α},HEσ(W) = {α, β, δ}, BEσ = {β, δ}, and AEσ(W) = 1
3 .

The forthcoming results will investigate which of Pawlak’s properties are maintained by Eσ-lower
and Eσ-upper approximations.

Theorem 4.5. For each σ, consider (B,Ψ, ζσ) as a σ-NS . If S ,W ⊆ B, then the next statements
hold true.

(i) HEσ(W) ⊆ W.
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(ii) HEσ(∅) = ∅.

(iii) HEσ(B) = B.

(iv) If S ⊆ W, thenHEσ(S ) ⊆ HEσ(W).

(v) HEσ(S ∩W) = HEσ(S ) ∩HEσ(W).

(vi) HEσ(Wc) = (HEσ(W))c.

(vii) HEσ(HEσ(W)) = HEσ(W) for each σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}.

(ix) HEσ(HEσ(W)) ⊆ HEσ(W) for each σ ∈ {u, 〈u〉}.

(x) Let z ∈ B. Then,HEσ(Eσ(z)) = Eσ(z), for each σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}.

(xi) Let z ∈ B. Hence,HEσ(Eσ(z)) ⊆ Eσ(z), for each σ ∈ {u, 〈u〉}.

Proof. (i) From the fact α ∈ Eσ(α) for each α ∈B, we obtainHEσ(W) ⊆ W.

(ii) Obvious.

(iii) Given that α ∈ Eσ(α) ⊆ B for every α ∈ B, it follows thatHEσ(B) = B.

(iv) If S ⊆ W, thenHEσ(S ) = {α ∈ B : Eσ(α) ⊆ S } ⊆ {α ∈ B : Eσ(α) ⊆ W} = HEσ(W).

(v) This can be inferred from (iv) thatHEσ(S ∩W) ⊆ HEσ(S )∩HEσ(W). Conversely, let α ∈ HEσ(S )∩
HEσ(W). Then, α ∈ HEσ(S ) and α ∈ HEσ(W). This implies that Eσ(α) ⊆ S and Eσ(α) ⊆ W.
Consequently, Eσ(α) ⊆ S ∩W. Thus, α ∈ HEσ(S ∩W), and soHEσ(S )∩HEσ(W) ⊆ HEσ(S ∩W).

(vi) α ∈ HEσ(Wc)⇐⇒ Eσ(α) ⊆ Wc

⇐⇒ Eσ(α) ∩W = ∅

⇐⇒ α < HEσ(W)

⇐⇒ α ∈ (HEσ(W))c.

(vii) It follows from (i) and (iv) that HEσ(HEσ(W)) ⊆ HEσ(W). For the other side, let α ∈ HEσ(W),
which implies that Eσ(α) ⊆ W. Let κ ∈ Eσ(α), hence |Eσ(κ)| = |Eσ(α)|, for each κ ∈ Eσ(α).
Therefore, Eσ(κ) ⊆ W, for each κ ∈ Eσ(α). Then, κ ∈ HEσ(W), for each κ ∈ Eσ(α), and so
α ∈ HEσ(HEσ(W)). Consequently,HEσ(W) ⊆HEσ(HEσ(W)). So,HEσ(HEσ(W)) = HEσ(W).

(ix) Obvious.

(x) Obvious.

(xi) Obvious.
�

Corollary 4.6. Consider (B,Ψ, ζσ) as a σ-NS . Then HEσ(S ) ∪ HEσ(W) ⊆ HEσ(S ∪ W) for any
S ,W ⊆ B.

Theorem 4.7. For each σ, consider (B,Ψ, ζσ) as a σ-NS . Let S ,W ⊆ B, then the next statements
hold true.
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(i) W ⊆ HEσ(W).

(ii) HEσ(∅) = ∅.

(iii) HEσ(B) = B.

(iv) If S ⊆ W, thenHEσ(S ) ⊆ HEσ(W).

(v) HEσ(S ∪W) = HEσ(S ) ∪HEσ(W).

(vi) HEσ(Wc) = (HEσ(W))c.

(vii) HEσ(HEσ(W)) = HEσ(W) for each σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}.

(ix) HEσ(HEσ(W)) ⊇ HEσ(W) for each σ ∈ {u, 〈u〉}.

Proof. The proof closely resembles that of Theorem 4.5. �

Corollary 4.8. Consider (B,Ψ, ζσ) as a σ-NS . Then, HEσ(S ∩ W) ⊆ HEσ(S ) ∩ HEσ(W) for every
S ,W ⊆ B.

The converses of items (iv) and (ix) of Theorem 4.5, as well as items (iv) and (ix) of Theorem 4.7
and Corollaries 4.6, 4.8, are determined to be invalid, as demonstrated by the following example.

Example 4.9. Consider a σ-NS (B,Ψ, ζσ) as described in Example 3.2.

(i) Consider S = {α, δ} and W = {β, κ}. Hence, HEu(S ) = {α} and HEu(W) = {β, δ, κ}, but
HEu(HEu(S )) = ∅ andHEu(HEu(W)) = B.
So,HEu(HEu(W)) , HEu(W) andHEu(HEu(W)) , HEu(W).

(ii) Consider S = {α} and W = {δ}. Hence, HEu(S ∪ W) = {α} ⊃ ∅ = HEu(S ) ∪ HEu(W). Also,
HEu(S ∩W) = ∅ ⊂ {α, δ} = HEu(S ) ∩HEu(W).
So,HEσ(S ∪W) * HEσ(S ) ∪HEσ(W), andHEσ(S ) ∩HEσ(W) * HEσ(S ∩W).

(iii) Consider S = {α, β} and W = {β, κ}. Hence,HEu(S ) = HEu(W) = {β}. Also,HEu(S ) = HEu(W) =

{α, δ, κ}. However, neither S * W nor W * S .

Proposition 4.10. Consider (B,Ψ, ζσ) as a σ-NS . If W ⊆ B, then

(i) HEu(W) ⊆ HEr(W) ∩HEl(W) ⊆ HEr(W) ∪HEl(W) ⊆ HEi(W).

(ii) HEi(W) ⊆ HEr(W) ∩HEl(W) ⊆ HEr(W) ∪HEl(W) ⊆ HEu(W).

(iii) HE〈u〉(W) ⊆ HE〈r〉(W) ∩HE〈l〉(W) ⊆ HE〈r〉(W) ∪HE〈l〉(W) ⊆ HE〈i〉(W).

(iv) HE〈i〉(W) ⊆ HE〈r〉(W) ∩HE〈l〉(W) ⊆ HE〈r〉(W) ∪HE〈l〉(W) ⊆ HE〈u〉(W).

Proof. Following from Proposition 3.11 and Definition 4.1. �

Corollary 4.11. Consider (B,Ψ, ζσ) as a σ-NS . If W ⊆ B, then

(i) AEu(W) ≤ AEr(W) ≤ AEi(W).

(ii) AEu(W) ≤ AEl(W) ≤ AEi(W).
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(iii) AE〈u〉(W) ≤ AE〈r〉(W) ≤ AE〈i〉(W).

(iv) AE〈u〉(W) ≤ AE〈l〉(W) ≤ AE〈i〉(W).

Proof. Only result (i) will be demonstrated, and the remaining results can be proven using a similar
approach. SinceHEu(W) ⊆ HEr(W) ⊆ HEi(W),

| HEu(W) |≤| HEr(W) |≤| HEi(W) | . (4.1)

ConsideringHEi(W) ⊆ HEr(W) ⊆ HEu(W), | HEi(W) |≤| HEr(W) |≤| HEu(W) |. Given the assumption
that W is nonempty, it follows that | HEσ(W) |> 0 for all σ. Therefore,

1
| HEu(W) |

≤
1

| HEr(W) |
≤

1
| HEi(W) |

. (4.2)

In view of (4.1) and (4.2),

| HEu(W) |
| HEu(W) |

≤
| HEr(W) |
| HEr(W) |

≤
| HEi(W) |
| HEi(W) |

.

Thus, the desired results are attained. �

To demonstrate the failure of the converse aspect of Proposition 4.10 and Corollary 4.11, we
compute the approximation operators and accuracy criteria for all subsets utilizing the data provided
in Example 3.2. The results are presented in Tables 3 and 4.
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Remark 4.12. It is worth noting that if (B,Ψ1, ζσ), (B,Ψ2, ζσ) are σ-NS with Ψ1 ⊆ Ψ2, then the
concepts of E1σ(κ) and E2σ(κ) are independent of each other for some κ ∈ B and each σ, that is, the
cardinality neighborhoods lose the property of monotonicity.

The following two propositions are obvious and, hence, their proofs are omitted.

Proposition 4.13. If W is a nonempty subset of B, 0 ≤ AEσ(W) ≤ 1 for any σ.

Proposition 4.14. AEσ(B) = 1 for each σ-NS (B,Ψ, ζσ).

We call a subset W Eσ-exact if AEσ(W) = 1. Otherwise, W is called Eσ-rough.
Ultimately, Algorithm 1 is built to determine whether a set is Eσ-exact or Eσ-rough.

Algorithm 1: Determination whether a subset is Eσ-exact or Eσ-rough

Input : The universal set B under consideration.
Output: Specify a category of each subset: Eσ-exact or Eσ-rough.

1 Give a relation Ψ over B;
2 Select a type of σ;
3 for all α ∈ B do
4 Compute Nσ(α)
5 end
6 for all α ∈ B do
7 Compute Eσ(α)
8 end
9 for each subset W , ∅ of B do

10 ComputeHEσ(W) (Eσ-lower approximation);
11 ComputeHEσ(W) (Eσ-upper approximation);
12 if HEσ(W) = HEσ(W) then
13 return a subset W is Eσ-exact
14 else
15 a subset W is Eσ-rough
16 end
17 end

The next example shows how one applies Algorithm 1 to determine whether a subset is Eσ-exact
or Eσ-rough in the case of σ = l.

Example 4.15. Take anσ-NS (B,Ψ, ζl) introduced in Example 3.2. To examine subsets W1 = {β, κ} and
W2 = {δ, κ} of B in terms of Eσ-exactness and Eσ-roughness, we first remark that step 1 of Algorithm
1 is given in Example 3.2. Then, we choose σ = l. The computations of Nl and El, for each element of
B, are made in Example 3.2. Now, we calculate El-lower and El-upper approximations for subsets W1

and W2:
HEl(W1) = {β} andHEl(W1) = {β, κ, δ}.

HEl(W2) = {δ, κ} = W2 andHEl(W2) = {δ, κ} = W2.
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Accordingly, HEl(W2) = HEl(W2), so W2 is an El-exact subset whereas HEl(W1) , HEl(W1), so
W1 is an El-rough subset.

5. Topologies generated by cardinality neighborhoods

Via cardinal neighborhoods, one can originate different topologies. The next theorem will
explain that.

Theorem 5.1. Let (B,Ψ, ζσ) be a σ-NS. For each σ, the family >Eσ = {W ⊆ B : Eσ(κ) ⊆ W,∀ κ∈W}
constitutes a topology on B.

Proof. At the beginning, suppose Wι∈>Eσ, for each ι∈∆. Let κ∈∪ι∈∆Wι, then there is an ι0∈∆ s.t., κ∈Wι0

and Eσ(κ) ⊆ Wι0 ⊆ ∪ι∈∆Wι. Therefore, ∪ι∈∆Wι∈>Eσ.
Second, let W1,W2 be members of >Eσ and κ belongs to the intersection of W1 and W2. Then,

Eσ(κ) ⊆ W1 and Eσ(κ) ⊆ W2. Hence, Eσ(κ) ⊆ W1 ∩W2. This means that W1∩W2∈>Eσ.
Finally, it is easy to see that ∅,B∈>Eσ, for each σ. Consequently, >Eσ is a topology on B. �

A subset W is named a >Eσ-open set, if W∈>Eσ, and its complement is named a ⊥Eσ-closed set,
where ⊥Eσ = {F : Fc ∈ >Eσ}.

Example 5.2. Continuing from Example 3.2.
>Nr = {∅,B, {κ}, {δ, κ}, {β, δ, κ}}.
>N l = {∅,B, {α}, {α, β}, {α, β, δ}}.
>N〈r〉 = {∅,B, {α}, {β}, {κ}, {β, κ}, {α, κ}, {α, β}, {β, δ}, {α, β, δ}, {α, β, κ}, {β, δ, κ}}.
>N〈l〉 = {∅,B, {δ}, {β}, {κ}, {β, κ}, {α, β}, {δ, κ}, {β, δ}, {α, β, δ}, {α, β, κ}, {β, δ, κ}}.
>Er = {∅,B, {β}, {κ}, {β, κ}, {α, δ}, {α, β, δ}, {α, δ, κ}} = ⊥Er.
>El = {∅,B, {β}, {α}, {δ, κ}, {α, β}, {β, δ, κ}, {α, δ, κ}} = ⊥El.
>Ei = 2B = ⊥Ei.
>Eu = {∅,B, {β}, {α, δ, κ}} = ⊥Eu.
>E〈r〉 = {∅,B, {α}, {δ}, {β, κ}, {α, δ}, {α, β, κ}, {β, δ, κ}} = ⊥E〈r〉.
>E〈l〉 = {∅,B, {α}, {κ}, {α, κ}, {β, δ}, {α, β, δ}, {β, δ, κ}} = ⊥E〈l〉.
>E〈i〉 = 2B = ⊥E〈i〉.
>E〈u〉 = {∅,B, {α}, {β, δ, κ}} = ⊥E〈u〉.

Theorem 5.3. The following properties hold for the topologies generated by
cardinality neighborhoods:

(i) >Eu ⊆ >Er ∩ >El ⊆ >Er ∪ >El ⊆ >Ei.

(ii) >E〈u〉 ⊆ >E〈r〉 ∩ >E〈l〉 ⊆ >E〈r〉 ∪ >E〈l〉 ⊆ >E〈i〉.

Proof. Obvious, by using Proposition 3.11. �

Example 5.2 displays that >Ei , >Er, >Ei , >El, >Eu , >Er, >Eu , >El, and >Ei , >Eu.

>E〈i〉 , >E〈r〉, >E〈i〉 , >E〈l〉, >E〈u〉 , >E〈r〉, >E〈u〉 , >E〈l〉, and >E〈i〉 , >E〈u〉.
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Definition 5.4. Let >Eσ denote the topology generated by cardinality neighborhoods. The lower and
upper approximations, as well as the accuracy criteria, of any set W in B, are endowed by: Tσ(W) =

intEσ(W), Tσ(W) = clEσ(W), and ATσ(W) =
|Tσ(W)|
|Tσ(W)|

, | Tσ(W) |, 0.

It is clear that 0 ≤ ATσ ≤ 1. If ATσ(W) = 1, hence W is referred to as an Eσ-exact set. Elsewise,
W is termed an Eσ-rough set.

Referring to Definition 5.4, one can prove the following results utilizing the characteristics of
interior and closure topological operators. It is worth noting that some properties that are missing
for HEσ-approximation and HEσ-approximation are still valid for the Tσ-approximation and Tσ-
approximation, such as item (ix) of Theorems 4.5 and 4.7.

Theorem 5.5. For each σ, consider (B,Ψ, ζσ) as a σ-NS. If S ,W ⊆ B, then the next statements
are valid:

(i) Tσ(W) ⊆ W.

(ii) Tσ(∅) = ∅.

(iii) Tσ(B) = B.

(iv) If S ⊆ W, then Tσ(S ) ⊆ Tσ(W).

(v) Tσ(S ∩W) = Tσ(S ) ∩ Tσ(W).

(vi) Tσ(Wc) = (Tσ(W))c.

(vii) Tσ(Tσ(W)) = Tσ(W) for each σ.

Corollary 5.6. Consider (B,Ψ, ζσ) as a σ-NS. Then, Tσ(S )∪Tσ(W) ⊆ Tσ(S ∪W) for any S ,W ⊆ B.

Theorem 5.7. For each σ, consider (B,Ψ, ζσ) as a σ-NS. If S ,W ⊆ B, then the next statements
are valid:

(i) W ⊆ Tσ(W).

(ii) Tσ(∅) = ∅.

(iii) Tσ(B) = B.

(iv) If S ⊆ W, then Tσ(S ) ⊆ Tσ(W).

(v) Tσ(S ∪W) = Tσ(S ) ∪ Tσ(W).

(vi) Tσ(Wc) = (Tσ(W))c.

(vii) Tσ(Tσ(W)) = Tσ(W) for each σ.

Corollary 5.8. Consider (B,Ψ, ζσ) as a σ-NS. Then, Tσ(S ∩W) ⊆ Tσ(S )∩Tσ(W) for any S ,W ⊆ B.

Proposition 5.9. If W is a nonempty subset of B, 0 ≤ ATσ(W) ≤ 1 for any σ.

Proposition 5.10. For each σ-NS (B,Ψ, ζσ), ATσ(B) = 1 .

Proposition 5.11. Consider (B,Ψ, ζσ) as a σ-NS. If W ⊆ B, then
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(i) Tu(W) ⊆ Tr(W) ∩ Tl(W) ⊆ Tr(W) ∪ Tl(W) ⊆ Ti(W).

(ii) Ti(W) ⊆ Tr(W) ∩ Tl(W) ⊆ Tr(W) ∪ Tl(W) ⊆ Tu(W).

(iii) T〈u〉(W) ⊆ T〈r〉(W) ∩ T〈l〉 ⊆ T〈r〉(W) ∪ T〈l〉(W) ⊆ T〈i〉(W).

(iv) T〈i〉(W) ⊆ T〈r〉(W) ∩ T〈l〉(W) ⊆ T〈r〉(W) ∪ T〈l〉(W) ⊆ T〈u〉(W).

Corollary 5.12. Let (B,Ψ, ζσ) be a σ-NS. If W is a nonempty subset of B, then

(i) ATu(W) ≤ ATr(W) ≤ ATi(W).

(ii) ATu(W) ≤ ATl(W) ≤ ATi(W).

(iii) AT〈u〉(W) ≤ AT〈r〉(W) ≤ AT〈i〉(W).

(iv) AT〈u〉(W) ≤ AT〈l〉(W) ≤ AT〈i〉(W).

Now, we will compare the approximations and accuracy criteria presented here based on
topological structures with their analogues introduced in the preceding section. To facilitate this
comparison, we begin by the following lemma.

Lemma 5.13. Let (B,Ψ, ζσ) be a σ-NS. Then, Eσ(κ) is a member of >Eσ for all κ ∈ B and σ ∈

{r, 〈r〉, l, 〈l〉, i, 〈i〉}.

Proof. Let α ∈ Eσ(κ) and σ be as given. Then, by Corollary 3.21, we have Eσ(α) = Eσ(κ). This means,
according to Definition 5.1, that Eσ(κ) ∈ >Eσ, as required. �

Proposition 5.14. For σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}, consider (B,Ψ, ζσ) as a σ-NS. If W ⊆ B, then

(i) Tσ(W) = HEσ(W), and

(ii) Tσ(W) = HEσ(W).

Proof. To prove (i), let α ∈ Tσ(W). There exists a subset V ∈ >σ such that α ∈ V ⊆ W. This implies
that α ∈ Eσ(α) ⊆ V ⊆ W. Thus, α ∈ HEσ(W); hence, Tσ(W) ⊆ HEσ(W). Conversely, let α ∈ HEσ(W).
Then, α ∈ Eσ(α) ⊆ W. By Lemma 5.13, Eσ(α) ∈ >σ, so α ∈ Eσ(α) ⊆ intEσ(W) = Tσ(W). Thus,
HEσ(W) ⊆ Tσ(W). Thus, the proof is concluded.

Using a similar approach, one can establish (ii). �

Corollary 5.15. For σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}, consider (B,Ψ, ζσ) as a σ-NS. If W ⊆ B, then

ATσ(W) = AEσ(W).

Based on the aforementioned results, it is evident that the topological approximations and
measures coincide with their counterparts introduced in the preceding section for σ ∈ r, 〈r〉, l, 〈l〉, i, 〈i〉.
However, differences arise for σ ∈ u, 〈u〉, as elucidated in the subsequent results and examples.

Proposition 5.16. For σ ∈ {u, 〈u〉}, consider (B,Ψ, ζσ) as a σ-NS. If W ⊆ B, then

(i) Tσ(W) ⊆ HEσ(W), and

(ii) HEσ(W) ⊆ Tσ(W).
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Proof. (i) Similar to the proof of necessary part of (i) of Proposition 5.14.
(ii) Suppose α < Tσ(W). Then, there is a subset S ∈ >σ containing α s.t. S ∩ W = ∅. Since
α ∈ Eσ(α) ⊆ S , it follows that Eσ(α) ∩ W = ∅. Consequently, α < HEσ(W), thus establishing the
desired result. �

Corollary 5.17. For σ ∈ {u, 〈u〉}, consider (B,Ψ, ζσ) as a σ-NS. If W ⊆ B, then

ATσ(W) ≤ AEσ(W).

The converse of Proposition 5.16 and Corollary 5.17 may not hold true, as demonstrated in the
following counterexample

Example 5.18. Continuing from Examples 3.2 and 5.2, consider W = {β, δ, κ} and S = {α, κ}. The
following observations can be made

(i) Tu(W) = {β}, Tu(W) = B and ATu(W) = 1
4 whereasHEu(W) = {β, κ},HEu(W) = B, and AEu(W) =

1
2 .

(ii) T〈u〉(S ) = {α}, T〈u〉(S ) = B and AT〈u〉(S ) = 1
4 whereas HE〈u〉(S ) = {α}, HE〈u〉(S ) = {α, β, κ}, and

AE〈u〉(S ) = 1
3 .

6. Practical example

Here, we provide a practical example of how we can apply the present neighborhoods to describe
a real situation and extract its unapparent information. Let X = {a1, a2, a3, a4, a5, a6} be a set of authors
who authored some books or participate in the authority of them; and let the set of books be Y =

{b1, b2, b3, b4, b5, b6, b7, b8, b9}. In Table 5, we associate each author with the books who authored them
or participated in their authority using the mapping F of X into the power set of Y defined by F(a) =

the books authored by the author “a” partially or completely.

Table 5. Information system of authors and their books.

Authors a1 a2 a3 a4 a5 a6 a7

Books {b3, b5} {b1, b7, b8, b9} {b3, b4, b5} {b1, b9} {b2, b3, b7} {b2, b7} {b3, b5}

Now, we determine the relation between the authors by the following formula:

xΨy⇐⇒ F(x) ⊆ F(y).

Accordingly, we have Ψ = {(a1, a1), (a2, a2), (a3, a3),(a4, a4), (a5, a5), (a6, a6),(a7, a7), (a1, a3),(a1, a7),
(a7, a1),(a4, a2), (a6, a5), (a7, a3)}. It is evident that Ψ is reflexive and transitive, so by Proposition 3.15,
Eσ = E〈σ〉 for σ ∈ {r, l, i, u}. But it is not symmetry, so we cannot utilize the traditional rough set model
to deal with this system. In Table 6, we build the systems ofNσ-neighborhoods and Eσ-neighborhoods
of each element in X.
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Table 6. Nσ-neighborhoods and Eσ-neighborhoods of all members in X.
a1 a2 a3 a4 a5 a6 a7

Nr {a1, a3, a7} {a2} {a3} {a2, a4} {a5} {a5, a6} {a1, a3, a7}

Nl {a1, a7} {a2, a4} {a1, a3, a7} {a4} {a5, a6} {a6} {a1, a7}

N〈r〉 {a1, a3, a7} {a2} {a3} {a2, a4} {a5} {a5, a6} {a1, a3, a7}

N〈l〉 {a1, a7} {a2, a4} {a1, a3, a7} {a4} {a5, a6} {a6} {a1, a7}

Er, E〈r〉 {a1, a7} {a2, a3, a5} {a2, a3, a5} {a4, a6} {a2, a3, a5} {a4, a6} {a1, a7}

El, E〈l〉 X \ {a3, a4, a6} X \ {a3, a4, a6} {a3} {a4, a6} X \ {a3, a4, a6} {a4, a6} X \ {a3, a4, a6}

Ei, E〈i〉 {a1, a7} {a2, a5} {a3} {a4, a6} {a2, a5} {a4, a6} {a1, a7}

Eu, E〈u〉 X \ {a3, a4, a6} X \ {a4, a6} {a2, a3, a5} {a4, a6} X \ {a4, a6} {a4, a6} X \ {a3, a4, a6}

Take subsets W = {a1, a2, a3, a7} and V = {a1, a2, a3, a5} of X. Then, the information that can be
extracted from this subset is outlined in the following:

• In cases of σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}, the approximations and accuracy criteria computed with respect
to both rough set models of Sections 4 and 5 are identified as we proved in Proposition 5.14 and
Corollary 5.15. For the sake of brevity, we compute them for σ = r:

(i) Tr(W) = HEr(W) = {a1, a7}.
(ii) Tr(W) = HEr(W) = X \ {a4, a6}.
(iii) ATr(W) = AEr(W) = 2

5 .

• In cases of σ = u, the approximations and accuracy computed with respect to both rough set
models of Sections 4 and 5 are, respectively, calculated in the following:

(i) Tu(V) = ∅, Tu(V) = X \ {a4, a6}, and ATu(V) = 0.
(ii) HEu(V) = {a3},HEu(V) = X \ {a4, a6}, and AEu(V) = 1

5 .

It can be seen that the computations given above are in agreement with the obtained results
in Proposition 5.14, Corollary 5.15, Proposition 5.16, and Corollary 5.17. That is, the lower and
upper approximations and accuracy measures of subsets obtained from rough set models founded
upon Eσ-neighborhoods (in Section 4) are better than their topological counterparts (in Section 5)
in the cases of σ ∈ {u, 〈u〉}. Also, these approximations and accuracy measures are equal in cases of
σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}.

7. Discussions: Strengths and limitations

In this part, we discuss, in detail, the pros and cons of the proposed rough set models.

• Strengths

(i) There is no condition on the binary relation used to establish Eσ-neighborhoods and their
approximation operators. In Pawlak model, it was imposed as an equivalence relation, also,
some other rough neighborhoods and their paradigms were introduced under specific types
of relations such as reflexive and similarity relations; see, [2, 3, 20, 43].

(ii) Every Eσ-neighborhood presented herein is not empty for any element in the universal set,
whereas some existing neighborhoods in literature are empty for some elements. This
matter gives rise to deficiencies in the properties of these neighborhoods, which require
some updates for the formula used to calculate the accuracy measures or impose further
condition(s) of the applied relations; see, [22].
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(iii) Most characteristics of the original rough set model given in Proposition 2.3 are still valid
for the present rough set models as investigated in Propositions 4.5 and 4.7.

(iv) The neighborhood systems and rough set models suggested in this work provide an efficient
instrument to address some real situations and they focus on the cardinality number of
Nσ-neighborhoods, such as those are applied in the social media or used to categorize the
applicants according to the number of their qualities.

(v) The topological rough set models debated in the previous section are equivalent to their
counterparts introduced in Section 4 in the cases of σ ∈ {r, 〈r〉, l, 〈l〉, i, 〈i〉}, which helps
a wide range of users to choose the suitable methods with their expertise. That is, users
with abstract backgrounds prefer to deal with the topological approach because of the ease
of computing the approximation operators from their corresponding interior and closure
topological operators.

• Limitations

(i) The efficiency of the present rough set models is less than the rough paradigms produced
by f-neighborhoods [30] in terms of enlarging the upper approximation and shrinking the
lower approximation.

(ii) The current topological models produce less accuracy measures than their counterparts
induced by Eσ-neighborhoods in cases of σ ∈ {u, 〈u〉}.

8. Conclusions

One of the effective methods for extracting information from incomplete systems is a rough set
introduced in 1983 by Pawlak. Since its appearance, it has been developed in several ways, one of
them being neighborhood systems inspired by specific or arbitrary relations.

In this manuscript, we have offered the notion of cardinality rough neighborhoods, which is
utilized to originate novel kinds of generalized approximation spaces. We have searched the major
properties of these neighborhoods and spaces and provided some examples to clarify their relationships
among each other, as well as their connections with the preceding ones. In this regard, we have
demonstrated that all Eσ-neighborhoods are equivalent under a symmetric relation, and Eσ = E〈σ〉
for σ ∈ {r, l, i, u} under a reflexive and transitive relation. We have proved that all characteristics of
Pawlak that are given in Proposition 2.3 have been acquired for the approximationsHEσ,HEσ, except
properties L8 and U8 are partially losing whenever σ = u or 〈u〉. Also, we have discussed a topological
approach to study the given paradigms and demonstrated that this approach produces approximation
operators similar to the given paradigms in six cases, which helps to deal with information systems
in most cases by different ways. A practical example concerning manuscripts and the authors who
authored them or participated in their authorship have been given.

There are some merits of the proposed types of neighborhoods and rough paradigms such as
working without the rigorous condition of an equivalence relation, overcoming the shortcomings of
some previous neighborhoods concerning the way of calculating the accuracy measures, and some
subsets are not contained by its lower approximation; also, we simulate the original model of Pawlak by
keeping its basic properties. On the other hand, we face a limitation regarding the size of approximation
operators of some subsets compared to f-neighborhoods.
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In the next points, we suggest some ideas that can be researched as possible forthcoming works.

• hybridize the system of Eσ-neighborhoods with ideal structures to minimize the upper
approximation and maximize the lower approximation;
• investigate the characteristics of rough set models that are defined by the following types

of neighborhoods.

(i) E?i (κ) = {o ∈ B : |Ni(κ)| = |Ni(o)|}.
(ii) E?u (κ) = {o ∈ B : |Nu(κ)| = |Nu(o)|}.
(v) E?

〈i〉(κ) = {o ∈ B : |N〈i〉(κ)| = |N〈i〉(o)|}.
(vi) E?

〈u〉(κ) = {o ∈ B : |N〈u〉(κ)| = |N〈u〉(o)|}.

It should be observed that the aforementioned neighborhoods and Eσ-neighborhoods (σ ∈

{i, u, 〈i〉, 〈u〉}) are independent of each other.
• explore the notions presented herein in the frames of fuzzy and soft settings [26, 31, 41].
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