
 

 

AIMS Mathematics, 9(11): 31317−31365. 

DOI: 10.3934/math.20241510 

Received: 01 September 2024 

Revised: 17 October 2024 

Accepted: 21 October 2024 

Published: 04 November 2024 

https://www.aimspress.com/journal/Math 

 

Research article 

Energy supplier selection using Einstein aggregation operators in an 

interval-valued q-rung orthopair fuzzy hypersoft structure 

Muhammad Saqlain1, Xiao Long Xin1,*, Rana Muhammad Zulqarnain2, Imran Siddique3,4, 

Sameh Askar5 and Ahmad M. Alshamrani5 

1 School of Mathematics, Northwest University, Xi’an, 710069, China 
2 Department of Mathematics, Saveetha School of Engineering, SIMATS Thandalam, Chennai – 

602105, Tamilnadu, India 
3 Department of Mathematics, University of Sargodha, Sargodha, 40100, Pakistan 
4 Mathematics in Applied Sciences and Engineering Research Group, Scientific Research Center, Al-

Ayen University, Nasiriyah, 64001, Iraq 
5 Department of Statistics and Operations Research, College of Science, King Saud University, P.O. 

Box 2455, Riyadh 11451, Saudi Arabia 

* Correspondence: Email: xlxin@nwu.edu.cn. 

Abstract: The selection of energy suppliers is important for sustainable energy management, as 

selecting the most appropriate suppliers reduces the environmental impact and improves resource 

optimization through sustainable practices. Our primary objective of this work was to develop a system 

for identifying energy suppliers by assessing various characteristics and their associated sub-attributes. 

Interval-valued q-rung orthopair fuzzy hypersoft sets (IVq-ROFHSS) originate by developing an 

association among interval-valued q-rung orthopair fuzzy sets and hypersoft sets. It is a crucial 

resource to handle unpredictable situations, mainly when presenting a component in a real-life scenario. 

IVq-ROFHSS is a new structure developed to manage the sub-parametric values of the alternatives. 

We developed the Einstein operational laws for IVq-ROFHSS and extended the Interval-valued q-rung 

ortho-pair fuzzy hypersoft Einstein weighted average (IVq-ROFHSEWA) and interval-valued q-rung 

ortho-pair fuzzy hypersoft Einstein weighted geometric (IVq-ROFHSEWG) operators. Moreover, we 

used the developed operators to formulate a multi-attribute group decision-making strategy to choose 

the ideal provider in sustainable energy management. The presented fuzzy robust approach reliably 

reiterated the challenged energy supplier selection in supply chain management to regular activities 

while alleviating overall expenses and promising stable reliability. 
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1. Introduction  

Energy supplier selection (ESS) is necessary for contemporary energy management and 

acquisition. The selection of an energy supplier may have significant ramifications, impacting both the 

financial aspects of energy consumption and the preservation of the environment. ESS ensures energy 

distribution aligns with environmentally conscious and environmentally friendly standards. Choosing 

the right energy supplier can maximize energy availability, minimize harmful emissions, and support 

a green and sustainable way to generate energy. During a time dominated by growing environmental 

concerns and the shift toward renewable energy alternatives, the precise and intelligent selection of 

energy distributors remains crucial for companies and people-oriented to healthier and more 

environmentally conscious energy choices. In actual situations, determining an object’s connection 

entails a complicated and unexpected procedure. Zadeh [1] proposed the fuzzy sets (FS), a tool for 

merging contradictory and uncertain data. Turksen [2] extended the interval-valued fuzzy sets (IVFS), 

where membership values are in intervals than single numbers. The technique performs an adequate 

task of capturing the unpredictable nature of complicated systems. IVFS is essential in fuzzy 

influencing, enabling precise decision-making in complex and uncertain situations. Even so, when 

assessing decision-making that involves non-membership degrees (NMD), conventional FS and IVFS 

have certain limitations. Atanassov [3] developed the theory of intuitionistic fuzzy sets (IFS) with a 

complex structure to tackle these deficiencies. Atanassov [4] upgraded this technique by integrating 

interval-valued intuitionistic fuzzy sets (IVIFS) into IFS. 

Yager [5] introduced the Pythagorean fuzzy set (PFS) as a potential elimination of the 

shortcomings that exist in fuzzy set (FS) models arising from inaccurate and unreliable facts by 

enhancing the fundamental criterion 𝒯 + 𝒥 ≤ 1 and reformulated it as 𝒯2 + 𝒥2 ≤ 1. Peng and Yang [6] 

expanded the PFS to encompass interval-valued Pythagorean fuzzy sets (IVPFS). This integration 

provided insight into the Pythagorean fuzzy sets (PFS) foundation. Yager [7] presented the concept of 

q-rung orthopair fuzzy sets (q-ROFS) and examined fundamental operations and properties of the 

framework by amending the condition 𝒯2 + 𝒥2 ≤  1 to 𝒯𝑞 + 𝒥𝑞 ≤  1, where 𝑞 >  2. Joshi et al. [8] 

put forward the interval-valued q-rung orthopair fuzzy sets (IVq-ROFS) by revising the specifications 

from (𝒯𝓊)2 + (𝒥𝓊)2 ≤  1 to (𝒯𝓊)𝑞 + (𝒥𝓊)𝑞 ≤  1, where 𝑞 > 2. While substantial advancements 

are anticipated, parametric chemistry remains challenged by issues related to irregularities and 

reliability. The complex interaction between variability and obscurity in parametric chemistry 

sometimes involves inconsistencies, deception, or impartiality, requiring the development of novel 

mathematical concepts and methodologies. The soft set (SS), designed by Molodtsov [9], facilitates 

the management of perplexing or ambiguous matters. Khizar et al. [10,11] introduced the type 2 soft 

sets with fundamental operations and bipolar soft sets in the union of two isomorphic hemi-rings. Jiang 

et al. [12] introduced a modification known as interval-valued IFSS (IVIFSS) to address 

inconsistencies and confusion in decision-making (DM) problems by offering essential protocols. As 

mentioned, the approach considers choice and non-preference information, leading to a more 

comprehensive assessment of alternatives. The Pythagorean fuzzy soft set (PFSS) is designed to 

address the ongoing examination of intellectual items. Peng et al. [13] created PFSS by combining PFS 
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and SS, which have advantageous characteristics. Zulqarnain et al. [14] developed aggregation 

operations for interval-valued Pythagorean fuzzy soft sets (IVPFSS) and proposed a multi-attribute 

group decision-making (MAGDM) method. 

Hussain et al. [15] developed weighted average aggregation operators in q-ROFSS, which is a 

prominent execution of PFSS. Yang et al. [16] developed the q-ROFSS methodology to IVq-ROFSS 

by including basic calculations and creating AOs and interaction AOs that utilize specific mathematical 

methods. Soft set (SS) structures are beneficial in decision-making (DM) problems due to their 

essential nature and reliance on a single parameter for evaluation. However, there are instances where 

it may be required to divide parameters into more specialized subcategories. One can incorporate many 

sub-parameters into the DM method by utilizing hypersoft sets (HSS) [17]. While SS frameworks may 

suit specific situations, they cannot discern between separate elements. To obtain precise outcomes, it 

is crucial to regard parameters as sub-parameters in various decision-making scenarios. Different 

strategies can be applied to handle difficult situations, each with its decision-making methods. Debnath [18] 

introduced fundamental procedures for the interval-valued intuitionistic fuzzy hypersoft set (IVIFHSS) 

to address MCDM challenges. Zulqarnain et al. [19] transformed the notion of intuitionistic fuzzy 

hypersoft sets (IFHSS) to Pythagorean fuzzy hypersoft sets (PFHSS). They also applied a multi-criteria 

decision-making (MCDM) approach to strengthen the aggregation operators (AOs) in the interval-

valued Pythagorean fuzzy hypersoft set (IVPFHSS) [20]. Khan et al. [21] developed algebraic 

operational rules for q-ROFHSS, extending the existing operational laws. Zulqarnain et al. [22] 

enhanced Einstein’s operational rules for q-ROFHSS by merging Einstein AOs with DM methods. 

The need to address scenarios in which decision-makers fail and alternatively provide multiple 

values for every factor prompted the alteration of q-ROFHSS to its interval form. Zulqarnain et al. [22] 

produced q-ROFHSS and exploited their Einstein AOs to tackle this problem. A new multiple attribute 

decision-making (MADM) method emerged utilizing these operators to evaluate the Bitcoin trade. The 

IVq-ROFHSS method delivers a more precise representation of unpredictability and imprecision in 

decision-making procedures and a comprehensive grasp of their operational principles. The integration 

of IVq-ROFHSS will enhance the reliability and pragmatism of decision-making by adeptly addressing 

inconsistencies and imprecisions encountered in real-world scenarios. 

Multiple necessary investigation inquiries will be evaluated to accomplish the specified objectives: 

What is the methodology for formulating the operational laws for Einstein aggregation in IVq-

ROFHSS? Can Einstein aggregation operators effectively employ IVq-ROFHSS datasets to establish 

a reliable multi-attribute group decision-making (MAGDM) technique? How does the proposed 

technique compare with conventional approaches for accuracy, sensitivity, and practicality for various 

decision-making categories? To what extent does the execution of the suggested methodology improve 

experts’ capacity to assess and rank alternatives, especially regarding the lack of clarity and fluctuation 

ingrained in IVq-ROFHSS data? 

1.1. Motivation 

A precise application of interval-valued q-rung orthopair fuzzy hypersoft sets is essential for 

decision-making under insufficient knowledge and inconsistency. The IVq-ROFHSS amalgamates the 

attributes of HSS and interval-valued q-rung orthopair fuzzy sets (IVq-ROFS), providing a robust 

framework for addressing ambiguity, inconsistencies, and inadequate data. IVq-ROFHSS has achieved 

notable advancements in tackling decision-making difficulties in ambiguous circumstances. While 

AOs are crucial in addressing DM problems, there is a scarcity of research that examines HSS and 

IVq-ROFS. The lack of study in the field suggests that the existing IVIFHSS [18] may encounter 
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difficulties when the condition 𝑀𝐷𝓊 + 𝑁𝑀𝐷𝓊 > 1 . IVPFHSS [20] can face challenges when 

evaluating a mixture of IVq-ROFHSNs or deliberately including them in situations where (𝑀𝐷𝓊)2 +
(𝑁𝑀𝐷𝓊)2 > 1. 

Although the Einstein AOs created for q-ROFHSS can solve this problem [22], they are not 

adequately equipped to handle the complexities of managing multi-sub-parametric values inside 

different intervals. The fact that Einstein AOs cannot be compatible with aggregation schemes relying 

on operational principles is highly significant. Furthermore, the model’s generated findings are 

constrained, and the underlying prejudice in presenting the various choices has not been corrected. 

Considering the constraints above, the specified limitations motivate developing a more robust approach 

that efficiently handles alternatives specified within interval expressions in parametric formulations. 

1.2. The contribution of the study 

We present a novel technique to address the difficulties in extracting data from the IVq-ROFSS, 

IVIFHSS, and IVPFHSS structures. This project aims to efficiently collect uncertain data by 

implementing Einstein aggregation operators in the IVq-ROFHSS framework. Incorporating these 

evaluation objectives into optimal methods enhances the decision-making capabilities of MAGDM 

processes concerning these factors. This method is a comprehensive statistical analysis that 

demonstrates its effectiveness. Moreover, the subsequent text clarifies the objectives that this research 

endeavors to accomplish. 

(1) We present Einstein operations for interval-valued q-rung orthopair fuzzy hypersoft set, which 

allow for formulating and verifying Einstein AOs specifically designed for IVq-ROFHSS. These AOs 

are usually known as IVq-ROFHSEWA and IVq-ROFHSEWG. We delve into the essential 

characteristics of these groundbreaking operators, including idempotency, boundedness, monotonicity, 

homogeneity, and shift-invariance. It is important to note that substantial research suggests that 

Einstein AOs are specifically designed to reduce ambiguity in the formal abilities that impact the 

decision-making process. 

(2) The IVq-ROFHSS Einstein AOs are used to construct a new MAGDM technique. There are 

essentially two stages to the systematic approach, and they are as follows: 

Integrating and merging separate pieces of data using IVq-ROFHSS Einstein AOs is the 

beginning step. The next step is determining the most cost-effective option by scoring the IVq-

ROFHSS structure. This method incorporates accepted decision-making principles and offers 

workable options for complex decision-making difficulties. 

(3) This systematic strategy will be applied to select the most advantageous provider in sustainable 

energy management. 

(4) A thorough examination of crucial decision-making strategies and approaches will demonstrate the 

validity and utility of this MAGDM method. 

This study is segmented into seven distinct sections. In the first section, we illustrate the 

significance of incorporating unpredictability and partial information into decision-making processes 

and emphasizes the constraints of commonly utilized Einstein AOs in resolving decision-making 

challenges. In Section 2, we summarize the essential ideas and concepts that drive the organizational 

formation follow-up study. This summary serves as a basis for comprehending the complexities of 

decision-making issues and the necessity for a more dependable and precise approach. Additionally, 

we present the interval-valued q-rung orthopair fuzzy hypersoft set along with its corresponding 

scoring function in the same section. In Section 3, we outline the operational principles proposed by 

Einstein and introduces the IVq-ROFHSEWA operator and its fundamental characteristics. In Section 4, 
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we also present the IVq-ROFHSEWG operator along with its respective features. In Section 5, we 

introduce a novel MAGDM approach that relies on Einstein’s AOs. In Section 6, we present a 

quantitative study that shows how the suggested approach can be used to identify the most suitable 

provider for sustainable energy management. In Section 7, we conduct a comparison analysis to assess 

the feasibility of the proposed model by comparing it to existing approaches in terms of accuracy and 

reliability. We further elucidate the benefits of the proposed approach in this section. 

1.3. Literature review 

In this section, we comprehensively assess the pertinent works on supplier selection and Einstein 

AOs in various fuzzy architectures. We investigate the underlying causes and achievements associated 

with its topic. 

1.3.1. Fuzzy MAGDM techniques in sustainable supplier selection 

As mentioned, the MAGDM technique is a highly effective approach for handling the 

complexities and uncertainties involved in supplier selection. Several academic studies have developed 

multiple models that use fuzzy MAGDM methodologies to address the issues of selecting suppliers in 

different industries. Samantra et al. [23] employed the VIKOR technique with fuzzy logic to address 

the MAGDM problem of supplier selection. The researchers tackled exciting aspects of their study. 

Zhang et al. [24,25] extended the Takagi‐Sugeno and discrete switched models for supply chain 

networks in a fuzzy control system. Yu et al. [26] presented a new method for group decision-making 

to identify sustainable suppliers by incorporating the extended TOPSIS technique into an IVPFS. The 

aim was to capture the viewpoints of various decision-makers and integrate incomplete information. 

Zhang et al. [27,28] presented a robust strategy and fuzzy emergency model for supply chain systems 

subject to disruptions. 

Gurmani et al. [29] developed a MAGDM method incorporating an interaction and feedback 

mechanism within a T-spherical fuzzy framework. The researchers implemented partitioned 

Bonferroni mean operators to blend expert evaluations in selecting emergency healthcare providers. 

Wang [30] presented a method for collective decision-making in the selection of sustainable vendors. 

The concept employs an improved additive ratio assessment method within the linguistic T-spherical 

fuzzy framework. Wu et al. [31] utilized a linguistic MAGDM approach to identify dependable vendors 

by integrating the DEMATEL and VIKOR methodologies. Diao and Zhang [32] proposed the decision 

tree technique to enhance the information gain rate. In their study, Wang et al. [33] examined the use 

of Hamy mean operators with IVq-ROFS. They developed a MAGDM model to demonstrate the 

supplier selection process in sustainable supply chain management (SCM). Ali et al. [34] extended the 

Aczel-Alsina AOs for intuitionistic fuzzy soft sets. In the PFSS context, Zulqarnain et al. [35,36] 

developed the technique for order of preference by similarity to the ideal solution (TOPSIS) technique 

and algebraic AOs and Einstein AOs. They aimed to ascertain the best supplier for green SCM. Zhang 

and Zhang [37] developed the fuzzy robust control to mitigate the bullwhip effect in the uncertain 

closed‐loop supply chain. Hussain et al. [38] devised the TOPSIS technique within an intricate fuzzy 

rough framework to identify the provider in sustainable energy management.  

Despite numerous research studies addressing supplier selection, sustainable energy management 

has not proposed a MAGDM technique to identify the best sustainable supplier by negotiating the IVq-

ROFHSS structures. This technique establishes a trustworthy evaluation of sustainable supplier 

selection using the weights of the qualities mentioned earlier. 
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1.3.2. Einstein aggregation operators for different MAGDM problems 

Multiple attempts of AOs were created and utilized to accurately assess different situations, 

resulting in significant interest and importance in this area of research. Wang and Liu [39,40] proposed 

using Einstein AOs in IFS to address complex MAGDM issues. Liu et al. [41] examined the efficacy 

of Einstein averaging aggregation operators in dealing with problems in MAGDM using IVIFS. 

Furthermore, Wang and Liu [42] extended the use of Einstein geometric AOs to include IVIFS and 

devised a decision-making approach to address issues related to MAGDM. Garg [43] introduced 

Einstein AOs for PFS. Asif et al. [44] developed the Hamacher aggregation operators in the PFS 

structure and used their presented operators in MADM problems. Rehman et al. [45,46] expanded a 

decision-making methodology to address MAGDM challenges and introduced Einstein AOs for IVPFS. 

Deveci et al. [47] have introduced a decision-making method that utilizes Einstein averaging AOs 

within a q-ROFS structure. Xu [48] extended the Einstein operations in the IVq-ROFS and developed 

an MCDM technique for bike-sharing recycling suppliers. This method is employed to assess safe 

tactics for using electric scooters. Zulqarnain et al. [49] explained Einstein’s operational rules for PFSS 

and proposed using Einstein AOs to tackle complex real-world problems. Zulqarnain et al. [50,51] 

introduced the Einstein AOs for q-ROFSS and their decision-making approaches. They also developed 

the Einstein aggregation operators for IVq-ROFSS [52].  

Sunthrayuth et al. [53] extended the MCDM model using the Einstein weighted average operator 

in the PFHSS structure. Zulqarnain et al. [54] proposed the Einstein-weighted geometric operator in 

the PFHSS framework and established a decision-making model for the material selection. Sajid et al. [55] 

developed several basic operations for intuitionistic fuzzy hypersoft sets. Huang et al. [56] adopted the 

multi-attribute grey target decision technique, merging a veto function with a hesitation zone, which is 

shown and utilized in a supplier selection problem for official cars, providing a pragmatic and efficient 

decision-making methodology. Saqlain [57] evaluated the complicated nature of decision-making in 

sustainable hydrogen production facilities with unpredictability, employing Intuitionistic Hypersoft 

Sets. Hamid and Abid [58] constructed a decision support system integrating the FHSS with machine 

learning methods to optimize the mobile phone selection procedure. 

After thoroughly analyzing the relevant works, there is a lack of research on implementing 

Einstein operations to generate creative operators using IVq-ROFHSS. Therefore, it is imperative to 

examine the execution of Einstein’s operations using IVq-ROFHSS data. The operational principles 

outlined and elucidated for IVq-ROFHSS provide a more precise evaluation of apprehension and 

inconsistency in the decision-making process. Given the prevalence of interval data in various 

industries such as economics, banking, hospitals, and engineering, it is essential to have the ability to 

utilize IVq-ROFHSS for analytical purposes.  

2. Preliminaries 

In this section, we review essential concepts such as SS, HSS, PFHSS, IVPFHSS, and q-ROFHSS. 

Furthermore, we present the interval-valued q-rung orthopair fuzzy hypersoft set with its score function 

and comparison laws. 

Definition 2.1. [9] Let 𝒰 and ℰ be the universe of discourse and attributes, respectively. Let 𝒫(𝒰) 
be the power set of 𝒰 and 𝒜 ⊆ ℰ. A pair (ℱ,𝒜) is called a soft set over 𝒰; its mapping is expressed 

as follows: 

ℱ:𝒜 → 𝒫(𝒰). 
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Also, it can be defined as follows: 

(ℱ,𝒜) = {ℱ(ℯ) ∈ 𝒫(𝒰): ℯ ∈ ℰ, ℱ(ℯ) =  ∅ 𝑖𝑓 ℯ ∉ 𝒜}. 

Definition 2.2. [10] Let 𝒰 and ℰ be a universe of discourse and set of attributes, respectively and 

ℱ(𝒰) be a power set of 𝒰. Let 𝒜 ⊆ ℰ, then (ℱ,𝒜) is a fuzzy soft set over 𝒰; its mapping can be 

stated as follows: 

ℱ:𝒜 → 𝒫(𝒰). 

Definition 2.3. [17] Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 

𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) and 𝐾𝑖 represented the set of attributes and their corresponding sub-attributes, 

such as 𝐾𝑖 ∩ 𝐾𝑗 = φ, where 𝑖 ≠ 𝑗 for each 𝑛 ≥ 1 and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Assume 𝐾1 × 𝐾2 × 𝐾3× … 

× 𝐾𝑛 = 𝒜 = {𝑑1ℎ × 𝑑2𝑘 ×⋯× 𝑑𝑛𝑙} is a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 

≤ 𝛽, and 1 ≤ 𝑙 ≤ 𝛾, and 𝛼, 𝛽, 𝛾 ∈ ℕ. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = (ℱ, 𝒜) is 

known as a hypersoft set and is defined as follows: 

ℱ:𝐾1 × 𝐾2 × 𝐾3 ×⋯× 𝐾𝑛 = 𝒜 → 𝒫(𝒰). 

It is also defined as  

(ℱ,𝒜) = {𝑑̌, ℱ𝒜(𝑑̌): 𝑑̌ ∈ 𝒜,ℱ𝒜(𝑑̌) ∈ 𝒫(𝒰)}. 

Definition 2.4. [21] Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 

𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) and 𝐾𝑖 represented the set of attributes and their corresponding sub-attributes, 

such as 𝐾𝑖 ∩ 𝐾𝑗 = φ, where 𝑖 ≠ 𝑗 for each 𝑛 ≥ 1 and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Assume 𝐾1 × 𝐾2 × 𝐾3× … 

× 𝐾𝑛 = 𝒜 = {𝑑1ℎ × 𝑑2𝑘 ×⋯× 𝑑𝑛𝑙} is a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 

≤ 𝛽, and 1 ≤ 𝑙 ≤ 𝛾, and 𝛼, 𝛽, 𝛾 ∈ ℕ. and 𝑞 − 𝑅𝑂𝐹𝑆𝒰 be a collection of all q-rung orthopair 

fuzzy subsets over 𝒰 . Then, the pair (ℱ , 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = (ℱ , 𝒜 ) is known as q-

ROFHSS and is defined as follows: 

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = 𝒜 → 𝑞 − 𝑅𝑂𝐹𝑆𝒰. 

It is also defined as  

(ℱ , 𝒜)  =  {(𝑑̌, ℱ𝒜(𝑑̌)): 𝑑̌ ∈ 𝒜, ℱ𝒜(𝑑̌)  ∈  𝑃𝐹𝑆
𝒰 ∈  [0, 1]} , where ℱ𝒜(𝑑̌)  = 

{〈𝛿, 𝒯ℱ(𝑑̌)(𝛿), 𝒥ℱ(𝑑̌)(𝛿)〉 : 𝛿 ∈ 𝒰}, where 𝒯ℱ(𝑑̌)(𝛿) and 𝒥ℱ(𝑑̌)(𝛿) signifies the MD and NMD values 

of the attributes:  

𝒯ℱ(𝑑̌)(𝛿), 𝒥ℱ(𝑑̌)(𝛿) ∈  [0, 1], and 0 ≤ (𝒯ℱ(𝑑̌)(𝛿))
𝑞

 + (𝒥ℱ(𝑑̌)(𝛿))
𝑞

 ≤ 1. 

A q-rung fuzzy hypersoft number (q-ROFHSN) can be stated as ℱ = {( 𝒯ℱ(𝑑̌)(𝛿), 𝒥ℱ(𝑑̌)(𝛿))}, where 

0 ≤ (𝒯ℱ(𝑑̌)(𝛿))
𝑞

 + (𝒥ℱ(𝑑̌)(𝛿))
𝑞

≤ 1. 

Definition 2.5. [20] Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 

𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) and 𝐾𝑖 represented the set of attributes and their corresponding sub-attributes, 

such as 𝐾𝑖 ∩ 𝐾𝑗 = φ, where 𝑖 ≠ 𝑗 for each 𝑛 ≥ 1 and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Assume 𝐾1 × 𝐾2 × 𝐾3× … 

× 𝐾𝑛 = 𝒜 = {𝑑1ℎ × 𝑑2𝑘 ×⋯× 𝑑𝑛𝑙} is a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 

≤  𝛽 , and 1 ≤  𝑙  ≤  𝛾 , and 𝛼 , 𝛽 , 𝛾  ∈  ℕ. and 𝐼𝑉𝑃𝐹𝑆𝒰  be a collection of all interval-valued 

Pythagorean fuzzy subsets over 𝒰. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = (ℱ, 𝒜) is known 
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as an interval-valued Pythagorean fuzzy hypersoft set and is defined as follows: 

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = 𝒜 → 𝐼𝑉𝑃𝐹𝑆𝒰. 

It is also defined as  

( ℱ , 𝒜 ) = {(𝑑̌, ℱ𝒜(𝑑̌)): 𝑑̌ ∈ 𝒜, ℱ𝒜(𝑑̌) ∈ 𝐼𝑉𝑃𝐹𝑆
𝒰 ∈ [0, 1]} , where ℱ𝒜(𝑑̌)  = 

{〈𝛿, 𝒯ℱ(𝑑̌)(𝛿), 𝒥ℱ(𝑑̌)(𝛿)〉 : 𝛿 ∈ 𝒰} , where 𝒯ℱ(𝑑̌)(𝛿) = [𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ]  and 𝒥ℱ(𝑑̌)(𝛿) = [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ] 

signifies the MD and NMD intervals of the sub-attributes and satisfies the following conditions 

𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 , 𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊  ∈ [0, 1], and 0 ≤ (𝒯𝑑̌𝑖𝑗
𝓊 )

2

+ (𝒥𝑑̌𝑖𝑗
𝓊 )

2

≤ 1. 

If the inequality (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

+ (𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞

> 1 , for 𝑞 > 2 , holds for a specific decision, then the 

IVIFHSS [18] and IVPFHSS [20] are insufficient for accurately representing this information. There 

are certain circumstances where the IVq-ROF and HSS combination is known as IVq-ROFHSS. With 

a more extensive structure than IVq-ROFSS, this hybrid structure is a modified form of IVIFHSS and 

IVPFHSS. Optimizing the precision and predictability of challenging data collections, the IVq-

ROFHSS method permits detailed analysis of fuzziness and resistivity. Due to its proven capacity to 

enhance the precision and uniformity of our strategy’s outcomes, the IVq-ROFHSS is a precious tool 

for mathematical analysis and decision-making. 

Definition 2.6. Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 

𝑘3,..., 𝑘𝑛},(n ≥ 1) and 𝐾𝑖 represented the set of attributes and their corresponding sub-attributes, such 

as 𝐾𝑖 ∩ 𝐾𝑗 = φ, where 𝑖 ≠ 𝑗 for each 𝑛 ≥ 1 and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Assume 𝐾1 × 𝐾2 × 𝐾3× … × 

𝐾𝑛 = 𝒜 = {𝑑1ℎ × 𝑑2𝑘 ×⋯× 𝑑𝑛𝑙} is a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 

𝛽, and 1 ≤ 𝑙 ≤ 𝛾, and 𝛼, 𝛽, 𝛾 ∈ ℕ. and 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝑆𝒰 be a collection of all interval-valued q-

rung orthopair fuzzy subsets over 𝒰. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = (ℱ, 𝒜) is known 

as an interval-valued q-rung orthopair fuzzy hypersoft set and is defined as follows: 

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = 𝒜 → 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝑆𝒰. 

It is also defined as  

( ℱ , 𝒜 ) = {(𝑑̌, ℱ𝒜(𝑑̌)): 𝑑̌ ∈ 𝒜, ℱ𝒜(𝑑̌) ∈ 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝑆𝒰 ∈ [0, 1]} , where ℱ𝒜(𝑑̌)  = 

{〈𝛿, 𝒯ℱ(𝑑̌)(𝛿), 𝒥ℱ(𝑑̌)(𝛿)〉 : 𝛿 ∈ 𝒰} , where 𝒯ℱ(𝑑̌)(𝛿) = [𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ]  and 𝒥ℱ(𝑑̌)(𝛿) = [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ] 

signifies the MD and NMD intervals of the sub-attributes and satisfies the following 

conditions𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 , 𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊  ∈ [0, 1], and 0 ≤ (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

+ (𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞

≤ 1. 

Remark 2.1.  

1) If (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

+ (𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞

≤  1 and (𝒯𝑑̌𝑖𝑗
𝓊 )

2

+ (𝒥𝑑̌𝑖𝑗
𝓊 )

2

≤  1 both are held. Then, IVq-ROFHSS 

reduce to IVPFHSS [20]. 

2) If (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

+ (𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞

≤ 1 and 𝒯𝑑̌𝑖𝑗
𝓊 + 𝒥𝑑̌𝑖𝑗

𝓊 ≤ 1 both are held. Then, IVq-ROFHSS reduce to 

IVIFHSS [18]. 

The earlier score function is ineffective in determining the optimum selection when the MD and NMD 

ranges are identical. Thus, we establish a more rigorous score mechanism for IVq-ROFHSNs to tackle 

such problems. 

Definition 2.7. Let 𝔗𝑑̌𝑘 = ([𝒯𝑑̌𝑘
𝑙 , 𝒯𝑑̌𝑘

𝓊] , [𝒥𝑑̌𝑘
𝑙 , 𝒥𝑑̌𝑘

𝓊 ])  be an IVq-ROFHSN. Then, its score can be 

defined as: 
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𝒮(𝔗𝑑̌𝑘) = [𝒯𝑑̌𝑘
𝑙 , 𝒯𝑑̌𝑘

𝓊]
𝑞

− [𝒥𝑑̌𝑘
𝑙 , 𝒥𝑑̌𝑘

𝓊 ]
𝑞

+ (
𝑒
[𝒯
𝑑̌𝑘

𝑙 ,𝒯
𝑑̌𝑘

𝓊 ]

𝑞

−[𝒥
𝑑̌𝑘

𝑙 ,𝒥
𝑑̌𝑘

𝓊 ]

𝑞

𝑒
[𝒯
𝑑̌𝑘

𝑙 ,𝒯
𝑑̌𝑘

𝓊 ]

𝑞

−[𝒥
𝑑̌𝑘

𝑙 ,𝒥
𝑑̌𝑘

𝓊 ]

𝑞

+1

−
1

2
) [𝜋𝑑̌𝑘

𝑙 , 𝜋𝑑̌𝑘
𝓊 ]

𝑞

   (2.1) 

where [𝜋𝑑̌𝑘
𝑙 , 𝜋𝑑̌𝑘

𝓊 ]
𝑞

, 𝒮(𝔗𝑑̌𝑘) ∈ [−1, 1] shows hesitancy and 𝑞 > 2. For readers’ appropriateness, the 

IVq-ROFHSN can be presented as 𝔗(𝑑̌𝑘) = {([𝒯𝑑̌𝑘
𝑙 , 𝒯𝑑̌𝑘

𝓊] , [𝒥𝑑̌𝑘
𝑙 , 𝒥𝑑̌𝑘

𝓊 ])}.  

Let 𝔗𝑑̌11 = (𝒯𝑑̌11 , 𝒥𝑑̌11) and 𝔗𝑑̌12 = (𝒯𝑑̌12 , 𝒥𝑑̌12) be two IVq-ROFHSNs. Then  

If 𝒮(𝔗𝑑̌11) > 𝒮(𝔗𝑑̌12), then 𝔗𝑑̌11 ≽ 𝔗𝑑̌12. 

If 𝒮(𝔗𝑑̌11) < 𝒮(𝔗𝑑̌12), then 𝔗𝑑̌11 ≼ 𝔗𝑑̌12. 

If 𝒮(𝔗𝑑̌11) = 𝒮(𝔗𝑑̌12), then 

If ℶ𝔍𝑑̌11
> ℶ𝔍𝑑̌12

, then 𝔗𝑑̌11 < 𝔗𝑑̌12 ; 

If ℶ𝔍𝑑̌11
𝑞

= ℶ𝔍𝑑̌12
𝑞

, then 𝔗𝑑̌11 = 𝔗𝑑̌12. 

So, to equate two IVq-ROFHSNs 𝔍𝑑̌𝑖𝑗  and 𝔗𝑑̌𝑖𝑗The subsequent comparison rules are demarcated. 

1) If 𝒮(𝔍𝑑̌𝑖𝑗) > 𝒮(𝔗𝑑̌𝑖𝑗), then 𝔍𝑑̌𝑖𝑗  > 𝔗𝑑̌𝑖𝑗. 

2) If 𝒮(𝔍𝑑̌𝑖𝑗) = 𝒮(𝔗𝑑̌𝑖𝑗), then 

o If 𝐻 (𝔍𝑑̌𝑖𝑗) > 𝐻 (𝔗𝑑̌𝑖𝑗), then 𝔍𝑑̌𝑖𝑗  > 𝔗𝑑̌𝑖𝑗; 

o If 𝐻(𝔍𝑑̌𝑖𝑗) = 𝐻(𝔗𝑑̌𝑖𝑗), then 𝔍𝑑̌𝑖𝑗  = 𝔗𝑑̌𝑖𝑗. 

The Einstein operational laws for IVq-ROFHSS are proposed in the subsequent section, drawing 

motivation from the Einstein operations of q-ROFHSS presented by Zulqarnain et al. [22]. 

3. Einstein weighted average operators for interval-valued q-rung orthopair fuzzy hypersoft 

numbers 

The following section requires the aggregation operators for the initial data collection stage. We 

are developing Einstein operational rules that aggregate and analyze IVq-ROFHSS data. The IVq-

ROFHSWA operator is introduced and examined in this scenario.  

3.1. Einstein operational laws for IVq-ROFHSNs 

Definition 3.1. Let 𝔗𝑑̌𝑘 = ([𝒯𝑑̌𝑘
𝑙 , 𝒯𝑑̌𝑘

𝓊] , [𝒥𝑑̌𝑘
𝑙 , 𝒥𝑑̌𝑘

𝓊 ]) , 𝔗𝑑̌11 = ([𝒯𝑑̌11
𝑙 , 𝒯𝑑̌11

𝓊 ] , [𝒥𝑑̌11
𝑙 , 𝒥𝑑̌11

𝓊 ]) , and 𝔗𝑑̌𝑘 =

([𝒯𝑑̌12
𝑙 , 𝒯𝑑̌12

𝓊 ] , [𝒥𝑑̌12
𝑙 , 𝒥𝑑̌12

𝓊 ])  be three interval-valued q-rung orthopair fuzzy hypersoft numbers, and 

𝛽 > 0. Then, the Einstein operational laws for IVq-ROFHSNs are defined as: 

1) 𝔗𝑑̌11 ⊕𝜀 𝔗𝑑̌12 =

(

 
 
 
 [

√(𝒯
𝑑̌11

𝑙 )
𝑞
+(𝒯

𝑑̌12

𝑙 )
𝑞𝑞

√1+(𝒯
𝑑̌11

𝑙 )
𝑞
(𝒯
𝑑̌12

𝑙 )
𝑞𝑞 ,

√(𝒯
𝑑̌11

𝓊 )
𝑞
+(𝒯

𝑑̌12

𝓊 )
𝑞𝑞

√1+(𝒯
𝑑̌11

𝓊 )
𝑞
(𝒯
𝑑̌12

𝓊 )
𝑞𝑞 ] ,

[
√2(𝒥

𝑑̌11

𝑙 )
𝑞
(𝒥

𝑑̌12

𝑙 )
𝑞𝑞

√1+(1−(𝒥
𝑑̌11

𝑙 )
𝑞
)(1−(𝒥

𝑑̌12

𝑙 )
𝑞
)

𝑞
,

√2(𝒥
𝑑̌11

𝓊 )
𝑞
(𝒥

𝑑̌12

𝓊 )
𝑞𝑞

√1+(1−(𝒥
𝑑̌11

𝓊 )
𝑞
)(1−(𝒥

𝑑̌12

𝓊 )
𝑞
)

𝑞
]

)
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2) 𝔗𝑑̌11 ⊗𝜀 𝔗𝑑̌12 =

(

 
 
 
 [

√2(𝒯
𝑑̌11

𝑙 )
𝑞
(𝒯
𝑑̌12

𝑙 )
𝑞𝑞

√1+(1−(𝒯
𝑑̌11

𝑙 )
𝑞
)(1−(𝒯

𝑑̌12

𝑙 )
𝑞
)

𝑞
,

√2(𝒯
𝑑̌11

𝓊 )
𝑞
(𝒯
𝑑̌12

𝓊 )
𝑞𝑞

√1+(1−(𝒯
𝑑̌11

𝓊 )
𝑞
)(1−(𝒯

𝑑̌12

𝓊 )
𝑞
)

𝑞
] ,

 [
√(𝒥

𝑑̌11

𝑙 )
𝑞
+(𝒥

𝑑̌12

𝑙 )
𝑞𝑞

√1+(𝒥
𝑑̌11

𝑙 )
𝑞
(𝒥

𝑑̌12

𝑙 )
𝑞𝑞
,
√(𝒥

𝑑̌11

𝓊 )
𝑞
+(𝒥

𝑑̌12

𝓊 )
𝑞𝑞

√1+(𝒥
𝑑̌11

𝓊 )
𝑞
(𝒥

𝑑̌12

𝓊 )
𝑞𝑞
]

)

 
 
 
 

 

3) 𝛽𝔗𝑑̌𝑘 =

(

 
 
 
 
 
 

[
 
 
 
 √(1+(𝒯

𝑑̌𝑘

𝑙 )
𝑞

)
𝛽

−(1−(𝒯
𝑑̌𝑘

𝑙 )
𝑞

)
𝛽𝑞

√(1+(𝒯
𝑑̌𝑘

𝑙 )
𝑞

)
𝛽

−(1−(𝒯
𝑑̌𝑘

𝑙 )
𝑞

)
𝛽𝑞
,

√(1+(𝒯
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽

−(1−(𝒯
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽𝑞

√(1+(𝒯
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽

−(1−(𝒯
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽𝑞

]
 
 
 
 

,

[
 
 
 
 √2((𝒥

𝑑̌𝑘

𝑙 )
𝑞

)
𝛽𝑞

√(2−(𝒥
𝑑̌𝑘

𝑙 )
𝑞

)
𝛽

+((𝒥
𝑑̌𝑘

𝑙 )
𝑞

)
𝛽𝑞
,

√2((𝒥
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽𝑞

√(2−(𝒥
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽

+((𝒥
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽𝑞

]
 
 
 
 

)

 
 
 
 
 
 

 

4) 𝔗
𝑑̌𝑘

𝛽
=

(

 
 
 
 
 
 

[
 
 
 
 √2((𝒯

𝑑̌𝑘

𝑙 )
𝑞

)
𝛽𝑞

√(2−(𝒯
𝑑̌𝑘

𝑙 )
𝑞

)
𝛽

+((𝒯
𝑑̌𝑘

𝑙 )
𝑞

)
𝛽𝑞
,

√2((𝒯
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽𝑞

√(2−(𝒯
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽

+((𝒯
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽𝑞

]
 
 
 
 

,

[
 
 
 
 √(1+(𝒥

𝑑̌𝑘

𝑙 )
𝑞

)
𝛽

−(1−(𝒥
𝑑̌𝑘

𝑙 )
𝑞

)
𝛽𝑞

√(1+(𝒥
𝑑̌𝑘

𝑙 )
𝑞

)
𝛽

−(1−(𝒥
𝑑̌𝑘

𝑙 )
𝑞

)
𝛽𝑞
,

√(1+(𝒥
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽

−(1−(𝒥
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽𝑞

√(1+(𝒥
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽

−(1−(𝒥
𝑑̌𝑘

𝓊 )
𝑞

)
𝛽𝑞

]
 
 
 
 

)

 
 
 
 
 
 

. 

We aim to use Einstein AOs designed explicitly for the IVq-ROFHSS context; nevertheless, this 

goal is contingent upon the previously mentioned Einstein operational laws. These operators 

systematically handle imprecise and unclear data within the framework of IVq-ROFHSS, 

strengthening the reliability of decision-making procedures. A rigorous evaluation of the proposed 

Einstein AOs will be carried out to ensure that these operators can address the unique challenges posed 

by the IVq-ROFHSS structure. 

Definition 3.2. Let 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  be a collection of interval-valued q-rung 

orthopair fuzzy hypersoft numbers. Then, the interval-valued q-rung orthopair fuzzy hypersoft Einstein 

weighted average operator is defined as: 

IVq-ROFHSEWA: ∆𝑛→ ∆ 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) = ⊕𝜀𝑗=1
𝑚 γ𝑗 (⊕𝜀𝑖=1

𝑛 Ω𝑖𝔗𝑑̌𝑖𝑗) 

where 𝑖 = 1,2, …… . 𝑛 and 𝑗 = 1,2, …… .𝑚. Also, Ω𝑖 and γ𝑗 be the weights of experts and multi 

sub-attributes such as Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, γ𝑗 > 0, ∑ γ𝑗

𝑚
𝑗=1  = 1. 

Theorem 3.3. 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  be a collection of interval-valued q-rung orthopair 

fuzzy hypersoft numbers. Then, the obtained aggregation value is also an IVq-ROFHSN and 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12
, … , 𝔗𝑑̌𝑛𝑚) == 
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(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

 (3.1) 

where 𝑖 = 1,2, …… . 𝑛 and 𝑗 = 1,2, …… .𝑚. Also, Ω𝑖 and γ𝑗 be the weights of experts and multi 

sub-attributes such as Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, γ𝑗 > 0, ∑ γ𝑗

𝑚
𝑗=1  = 1. 

Proof. The above-stated theorem will be proved using mathematical induction.  

For 𝑛 = 1, we get Ω𝑖 = 1. Then, 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌1𝑚
) = ⊕𝜀𝑗=1

𝑚 γ𝑗 (𝔗𝑑̌1𝑗
) ==

(

 
 
 
 
 
 

[
 
 
 √∏ (1+(𝒯

𝑑̌1𝑗

𝑙 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1 −∏ (1−(𝒯

𝑑̌1𝑗

𝑙 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1

𝑞

√∏ (1+(𝒯
𝑑̌1𝑗

𝑙 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1 +∏ (1−(𝒯

𝑑̌1𝑗

𝑙 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1

𝑞
,

√∏ (1+(𝒯
𝑑̌1𝑗

𝓊 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1 −∏ (1−(𝒯

𝑑̌1𝑗

𝓊 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1

𝑞

√∏ (1+(𝒯
𝑑̌1𝑗

𝓊 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1 +∏ (1−(𝒯

𝑑̌1𝑗

𝓊 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1

𝑞

]
 
 
 

,

[
 
 
 √2∏ (𝒥

𝑑̌1𝑗

𝑙 )

𝛾𝑗
𝑚
𝑗=1

𝑞

√∏ (2−(𝒥
𝑑̌1𝑗

𝑙 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1 +∏ ((𝒥

𝑑̌1𝑗

𝑙 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1

𝑞
,

√2∏ ((𝒥
𝑑̌1𝑗

𝓊 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1

𝑞

√∏ (2−(𝒥
𝑑̌1𝑗

𝓊 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1 +∏ ((𝒥

𝑑̌1𝑗

𝓊 )

𝑞

)

𝛾𝑗
𝑚
𝑗=1

𝑞

]
 
 
 

)

 
 
 
 
 
 

  

=

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
1
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 

For 𝑚 = 1, we get γ𝑗 = 1. Then, 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛1
) = ⊕𝜀𝑖=1

𝑛 Ω𝑖𝔗𝑑̌𝑖1 ==

(

 
 
 
 
 
 

[
 
 
 √∏ (1+(𝒯

𝑑̌𝑖1

𝑙 )
𝑞
)

Ω𝑖
𝑛
𝑖=1 −∏ (1−(𝒯

𝑑̌𝑖1

𝑙 )
𝑞
)

Ω𝑖
𝑛
𝑖=1

𝑞

√∏ (1+(𝒯
𝑑̌𝑖1

𝑙 )
𝑞
)

Ω𝑖
𝑛
𝑖=1 +∏ (1−(𝒯

𝑑̌𝑖1

𝑙 )
𝑞
)

Ω𝑖
𝑛
𝑖=1

𝑞
,

√∏ (1+(𝒯
𝑑̌𝑖1

𝓊 )
𝑞
)

Ω𝑖
𝑛
𝑖=1 −∏ (1−(𝒯

𝑑̌𝑖1

𝓊 )
𝑞
)

Ω𝑖
𝑛
𝑖=1

𝑞

√∏ (1+(𝒯
𝑑̌𝑖1

𝓊 )
𝑞
)

Ω𝑖
𝑛
𝑖=1 +∏ (1−(𝒯

𝑑̌𝑖1

𝓊 )
𝑞
)

Ω𝑖
𝑛
𝑖=1

𝑞

]
 
 
 

,

[
 
 
 √2∏ ((𝒥

𝑑̌𝑖1

𝑙 )
𝑞
)

Ω𝑖
𝑛
𝑖=1

𝑞

√∏ (2−(𝒥
𝑑̌𝑖1

𝑙 )
𝑞
)

Ω𝑖
𝑛
𝑖=1 +∏ ((𝒥

𝑑̌𝑖1

𝑙 )
𝑞
)

Ω𝑖
𝑛
𝑖=1

𝑞
,

√2∏ ((𝒥
𝑑̌𝑖1

𝓊 )
𝑞
)

Ω𝑖
𝑛
𝑖=1

𝑞

√∏ (2−(𝒥
𝑑̌𝑖1

𝓊 )
𝑞
)

Ω𝑖
𝑛
𝑖=1 +∏ ((𝒥

𝑑̌𝑖1

𝓊 )
𝑞
)

Ω𝑖
𝑛
𝑖=1

𝑞

]
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 

Equation (3.1) is satisfied for 𝑛 = 1 and 𝑚 = 1. 

For 𝑛 = 2 and 𝑚 = 1 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11
, 𝔗𝑑̌21

) = γ1(Ω1𝔗𝑑̌11
) ⊕𝜀 γ1(Ω2𝔗𝑑̌21

) 

γ1(Ω1𝔗𝑑̌11) =

(

 
 
 
 
 
 

[
 
 
 √((1+(𝒯

𝑑̌11

𝑙 )
𝑞
)
Ω1
)

𝛾1

−((1−(𝒯
𝑑̌11

𝑙 )
𝑞
)
Ω1
)

𝛾1𝑞

√((1+(𝒯
𝑑̌11

𝑙 )
𝑞
)
Ω1
)

𝛾1

+((1−(𝒯
𝑑̌11

𝑙 )
𝑞
)
Ω1
)

𝛾1𝑞
,

√((1+(𝒯
𝑑̌11

𝓊 )
𝑞
)
Ω1
)

𝛾1

−((1−(𝒯
𝑑̌11

𝓊 )
𝑞
)
Ω1
)

𝛾1𝑞

√((1+(𝒯
𝑑̌11

𝓊 )
𝑞
)
Ω1
)

𝛾1

+((1−(𝒯
𝑑̌11

𝓊 )
𝑞
)
Ω1
)

𝛾1𝑞

]
 
 
 

,

[
 
 
 √2(((𝒥

𝑑̌11

𝑙 )
𝑞
)
Ω1
)

𝛾1𝑞

√((2−(𝒥
𝑑̌11

𝑙 )
𝑞
)
Ω1
)

𝛾1

+(((𝒥
𝑑̌11

𝑙 )
𝑞
)
Ω1
)

𝛾1𝑞
,

√2(((𝒥
𝑑̌11

𝓊 )
𝑞
)
Ω1
)

𝛾1𝑞

√((2−(𝒥
𝑑̌11

𝓊 )
𝑞
)
Ω1
)

𝛾1

+(((𝒥
𝑑̌11

𝓊 )
𝑞
)
Ω1
)

𝛾1𝑞

]
 
 
 

)

 
 
 
 
 
 

  

γ1(Ω2𝔗𝑑̌21) =

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√((1+(𝒯

𝑑̌21

𝑙 )
𝑞
)

Ω1

)

𝛾1

−((1−(𝒯
𝑑̌21

𝑙 )
𝑞
)

Ω1

)

𝛾1𝑞

√((1+(𝒯
𝑑̌21

𝑙 )
𝑞
)

Ω1

)

𝛾1

+((1−(𝒯
𝑑̌21

𝑙 )
𝑞
)

Ω1

)

𝛾1𝑞

,

√((1+(𝒯
𝑑̌21

𝓊 )
𝑞
)
Ω1
)

𝛾1

−((1−(𝒯
𝑑̌21

𝓊 )
𝑞
)
Ω1
)

𝛾1𝑞

√((1+(𝒯
𝑑̌21

𝓊 )
𝑞
)
Ω1
)

𝛾1

+((1−(𝒯
𝑑̌21

𝓊 )
𝑞
)
Ω1
)

𝛾1𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2(((𝒥
𝑑̌21

𝑙 )
𝑞
)

Ω1

)

𝛾1𝑞

√((2−(𝒥
𝑑̌21

𝑙 )
𝑞
)

Ω1

)

𝛾1

+(((𝒥
𝑑̌21

𝑙 )
𝑞
)

Ω1

)

𝛾1𝑞

,

√2(((𝒥
𝑑̌21

𝓊 )
𝑞
)
Ω1
)

𝛾1𝑞

√((2−(𝒥
𝑑̌21

𝓊 )
𝑞
)
Ω1
)

𝛾1

+(((𝒥
𝑑̌21

𝓊 )
𝑞
)
Ω1
)

𝛾1𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

.  

Let 𝐿1 = ((1 + (𝒯𝑑̌11
𝑙 )

𝑞

)
Ω1
)

𝛾1

 ; 𝑀1 = ((1 − (𝒯𝑑̌11
𝑙 )

𝑞

)
Ω1
)

𝛾1

 ; 𝑁1 = ((1 + (𝒯𝑑̌11
𝓊 )

𝑞

)
Ω1
)

𝛾1

 ; 𝑂1 =

((1 − (𝒯𝑑̌11
𝓊 )

𝑞

)
Ω1
)

𝛾1

 ; 𝐿2 = ((1 + (𝒯𝑑̌21
𝑙 )

𝑞

)
Ω1
)

𝛾1

 ; 𝑀2 = ((1 − (𝒯𝑑̌21
𝑙 )

𝑞

)
Ω1
)

𝛾1

 ; 𝑁2 = ((1 +

(𝒯𝑑̌21
𝓊 )

𝑞

)
Ω1
)

𝛾1

 ; 𝑂2 = ((1 − (𝒯𝑑̌21
𝓊 )

𝑞

)
Ω1
)

𝛾1

 ; 𝐿1̃ = (((𝒥𝑑̌11
𝑙 )

𝑞

)
Ω1
)

𝛾1

 ; 𝑀1̃ = ((2 − (𝒥𝑑̌11
𝑙 )

𝑞

)
Ω1
)

𝛾1

 ; 

𝑁1̃ = (((𝒥𝑑̌11
𝓊 )

𝑞

)
Ω1
)

𝛾1

 ; 𝑂1̃ = ((2 − (𝒥𝑑̌11
𝓊 )

𝑞

)
Ω1
)

𝛾1

 ; 𝐿2̃ = (((𝒥𝑑̌21
𝑙 )

𝑞

)
Ω1
)

𝛾1

 ; 𝑀2̃ = ((2 −

(𝒥𝑑̌21
𝑙 )

𝑞

)
Ω1
)

𝛾1

; 𝑁2̃ = (((𝒥𝑑̌21
𝓊 )

𝑞

)
Ω1
)

𝛾1

; 𝑂2̃ = ((2 − (𝒥𝑑̌21
𝓊 )

𝑞

)
Ω1
)

𝛾1

. Then,  

γ1(Ω1𝔗𝑑̌11) = ([
√𝐿1−𝑀1
𝑞

√𝐿1+𝑀1
𝑞 ,

√𝑁1−𝑂1
𝑞

√𝑁1+𝑂1
𝑞 ] , [

√2𝐿1̃
𝑞

√𝑀1̃+𝐿1̃
𝑞 ,

√2𝑁1̃
𝑞

√𝑂1̃+𝑁1̃
𝑞 ]) and  

γ1(Ω2𝔗𝑑̌21) = ([
√𝐿2−𝑀2
𝑞

√𝐿2+𝑀2
𝑞 ,

√𝑁2−𝑂2
𝑞

√𝑁2+𝑂2
𝑞 ] , [

√2𝐿2̃
𝑞

√𝑀2̃+𝐿2̃
𝑞 ,

√2𝑁2̃
𝑞

√𝑂2̃+𝑁2̃
𝑞 ]). So,  
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𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌21) = γ1(Ω1𝔗𝑑̌11) ⊕𝜀 γ1(Ω2𝔗𝑑̌21)

= ([
√𝐿1𝐿2 −𝑀1𝑀2
𝑞

√𝐿1𝐿2 +𝑀1𝑀2
𝑞 ,

√𝑁1𝑁2 − 𝑂1𝑂2
𝑞

√𝑁1𝑁2 + 𝑂1𝑂2
𝑞 ] , [

√2𝐿1̃𝐿2̃
𝑞

√𝑀1̃𝑀2̃ + 𝐿1̃𝐿2̃
𝑞 ,

√2𝑁1̃𝑁2̃
𝑞

√𝑂1̃𝑂2̃ + 𝑁1̃𝑁2̃
𝑞 ]) 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌21) = γ1(Ω1𝔗𝑑̌11) ⊕𝜀 γ1(Ω2𝔗𝑑̌21) =

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
2
𝑖=1 )

𝛾𝑗

1
𝑗=1

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 

This shows that Eq (3.1) is held for 𝑛 = 2 and 𝑚 = 1. Let Eq (3.1) is true for 𝑛 = 𝛽1 and 𝑚 = 𝛽2. 

Then,  

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴 (𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌(𝛽1)(𝛽2)
) = ⊕𝜀𝑗=1

𝑙 𝛾𝑗 (⊕𝜀𝑖=1
𝑘 Ω𝑖𝔗𝑑̌𝑖𝑗

) =

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

+∏ (∏ (1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

+∏ (∏ (1−(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

+∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

+∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1
𝑖=1

)

𝛾𝑗
𝛽2
𝑗=1

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 

For 𝑛 = 𝛽1 + 1 and 𝑚 = 𝛽2 + 1. 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴 (𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌(𝛽1+1)(𝛽2+1)
) =  𝐼𝑉𝑞 −

𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴 (𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌(𝛽1)(𝛽2)
)⊕𝜀𝑗=1

𝑙 γ(𝛽2+1) (Ω(𝛽1+1)𝔗𝑑̌(𝛽1+1)(𝛽2+1)
)  

γ(𝛽2+1) (Ω(𝛽1+1)𝔗𝑑̌(𝛽1+1)(𝛽2+1)
) =

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√((1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)

−((1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)𝑞

√((1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)

+((1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)𝑞

,

√((1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)

−((1−(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)𝑞

√((1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)

+((1−(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2(((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)𝑞

√((2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)

+(((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)𝑞

,

√2(((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)𝑞

√((2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)

+(((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω(𝛽1+1)

)

𝛾(𝛽2+1)𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 

Let 𝐿1 = ∏ (∏ (1 + (𝒯𝑑̌𝑖𝑗
𝑙 )

𝑞

)
Ω𝑖𝛽1

𝑖=1 )

𝛾𝑗
𝛽2
𝑗=1  ; 𝑀1 = ∏ (∏ (1 − (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖𝛽1

𝑖=1 )

𝛾𝑗
𝛽2
𝑗=1  ; 𝑁1 =
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∏ (∏ (1 + (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

)
Ω𝑖𝛽1

𝑖=1 )

𝛾𝑗
𝛽2
𝑗=1  ; 𝑂1 = ∏ (∏ (1 − (𝒯𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖𝛽1

𝑖=1 )

𝛾𝑗
𝛽2
𝑗=1  ; 𝐿2 = ((1 +

(𝒯𝑑̌𝑖𝑗
𝑙 )

𝑞

)
Ω(𝛽1+1)

)

𝛾(𝛽2+1)

 ; 𝑀2 = ((1 − (𝒯𝑑̌𝑖𝑗
𝑙 )

𝑞

)
Ω(𝛽1+1)

)

𝛾(𝛽2+1)

 ; 𝑁2 = ((1 + (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

)
Ω(𝛽1+1)

)

𝛾(𝛽2+1)

 ; 

𝑂2 = ((1 − (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

)
Ω(𝛽1+1)

)

𝛾(𝛽2+1)

 ; 𝐿1̃ = ∏ (∏ ((𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

)
Ω𝑖𝛽1

𝑖=1 )

𝛾𝑗
𝛽2
𝑗=1  ; 𝑀1̃ = ∏ (∏ (2 −

𝛽1
𝑖=1

𝛽2
𝑗=1

(𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

)
Ω𝑖
)

𝛾𝑗

 ; 𝑁1̃ = ∏ (∏ ((𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞

)
Ω𝑖𝛽1

𝑖=1 )

𝛾𝑗
𝛽2
𝑗=1  ; 𝑂1̃ = ∏ (∏ (2 − (𝒥𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖𝛽1

𝑖=1 )

𝛾𝑗
𝛽2
𝑗=1  ; 𝐿2̃ =

(((𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

)
Ω(𝛽1+1)

)

𝛾(𝛽2+1)

 ; 𝑀2̃ = ((2 − (𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

)
Ω(𝛽1+1)

)

𝛾(𝛽2+1)

 ; 𝑁2̃ = (((𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞

)
Ω(𝛽1+1)

)

𝛾(𝛽2+1)

 ; 

𝑂2̃ = ((2 − (𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞

)
Ω(𝛽1+1)

)

𝛾(𝛽2+1)

. 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌(𝛽1+1)(𝛽2+1)
) =  𝐼𝑉𝑞 −

𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴 (𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌(𝛽1)(𝛽2)
)⊕𝜀𝑗=1

𝑙 γ(𝛽2+1) (Ω(𝛽1+1)𝔗𝑑̌(𝛽1+1)(𝛽2+1)
)  

= ([
√𝐿1−𝑀1
𝑞

√𝐿1+𝑀1
𝑞 ,

√𝑁1−𝑂1
𝑞

√𝑁1+𝑂1
𝑞 ] , [

√2𝐿1̃
𝑞

√𝑀1̃+𝐿1̃
𝑞 ,

√2𝑁1̃
𝑞

√𝑂1̃+𝑁1̃
𝑞 ])⊕𝜀 ([

√𝐿2−𝑀2
𝑞

√𝐿2+𝑀2
𝑞 ,

√𝑁2−𝑂2
𝑞

√𝑁2+𝑂2
𝑞 ] , [

√2𝐿2̃
𝑞

√𝑀2̃+𝐿2̃
𝑞 ,

√2𝑁2̃
𝑞

√𝑂2̃+𝑁2̃
𝑞 ])  

= ([
√𝐿1𝐿2−𝑀1𝑀2
𝑞

√𝐿1𝐿2+𝑀1𝑀2
𝑞 ,

√𝑁1𝑁2−𝑂1𝑂2
𝑞

√𝑁1𝑁2+𝑂1𝑂2
𝑞 ] , [

√2𝐿1̃𝐿2̃
𝑞

√𝑀1̃𝑀2̃+𝐿1̃𝐿2̃
𝑞 ,

√2𝑁1̃𝑁2̃
𝑞

√𝑂1̃𝑂2̃+𝑁1̃𝑁2̃
𝑞 ]) =

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1 )

𝛾𝑗

𝛽2+1
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1 )

𝛾𝑗

𝛽2+1
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1

)

𝛾𝑗

𝛽2+1
𝑗=1

+∏ (∏ (1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1

)

𝛾𝑗

𝛽2+1
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1 )

𝛾𝑗

𝛽2+1
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1 )

𝛾𝑗

𝛽2+1
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1

)

𝛾𝑗

𝛽2+1
𝑗=1

+∏ (∏ (1−(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1

)

𝛾𝑗

𝛽2+1
𝑗=1

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1

)

𝛾𝑗

𝛽2+1
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1

)

𝛾𝑗

𝛽2+1
𝑗=1

+∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1

)

𝛾𝑗

𝛽2+1
𝑗=1

𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1

)

𝛾𝑗

𝛽2+1
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1

)

𝛾𝑗

𝛽2+1
𝑗=1

+∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝛽1+1
𝑖=1

)

𝛾𝑗

𝛽2+1
𝑗=1

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 

Equation (3.1) is satisfied for 𝑛 = 𝛽1 + 1 and 𝑚 = 𝛽2 + 1. Thus, we can say that Eq (3.1) holds ∀ 

𝑛,𝑚 > 0. 

In Theorem 3.1, we claimed that the obtained result using IVq-ROFHSEWA operators is also an IVq-

ROFHSN, which can be proved as follows: 

We know 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  be the IVq-ROFHSN, and 0 ≤ 𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 , 𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ≤ 1 

and (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

+ (𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞

≤ 1, for 𝑞 ≥ 3.  

0 ≤

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≤ 1.  

Since 0 ≤ 𝒥𝑑̌𝑖𝑗
𝑙 ≤ 1, 0 ≤ (𝒥𝑑̌𝑖𝑗

𝑙 )
𝑞

≤ 1, 1 ≤ 2 − (𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

≤ 2, so, 0 ≤ (𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

≤ 2 − (𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

≤ 2.  

Hence, 



31331 

AIMS Mathematics  Volume 9, Issue 11, 31317–31365. 

0 ≤

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≤

√2∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

= 1. 

Similarly,  

0 ≤

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≤

√2∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

= 1. 

Since (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

+ (𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞

≤ 1 , so, ∏ (∏ ((𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 ≤ ∏ (∏ (1 − (𝒯𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1  , 

∏ (∏ (1 + (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 ≤ ∏ (∏ (2 − (𝒥𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 . Then  

(

 
 
 

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

)

 
 
 

𝑞

+

(

 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

)

 
 
 

𝑞

  

=
∏ (∏ (1 + (𝒯𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 −∏ (∏ (1 − (𝒯𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

∏ (∏ (1 + (𝒯
𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ (1 − (𝒯

𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

+
2∏ (∏ ((𝒥𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

∏ (∏ (2 − (𝒥
𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

 

≤

∏ (∏ (1 + (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞
)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 −∏ (∏ ((𝒥𝑑̌𝑖𝑗

𝓊 )
𝑞
)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

∏ (∏ (1 + (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞
)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ ((𝒥𝑑̌𝑖𝑗

𝓊 )
𝑞
)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

+

2∏ (∏ ((𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞
)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

∏ (∏ (1 + (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞
)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ ((𝒥𝑑̌𝑖𝑗

𝓊 )
𝑞
)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

 

= 1. 

Thus, it is proved that the obtained value is also an IVq-ROFHSN. 

Theorem 3.4. Let 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ]) be a collection of IVq-ROFSHNs. Then,  

𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) ≥ 𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚). 

Where, Ω𝑖 and 𝛾𝑗 be the experts and parameters weights, such as Ω𝑖, 𝛾𝑗 ∈ [0, 1], and ∑ Ω𝑖
𝑛
𝑖=1 = 1; 

∑ 𝛾𝑗
𝑚
𝑗=1 = 1 (𝑖 = 1, 2, 3, … ,𝑚; 𝑗 = 1, 2, 3, … , 𝑛). 

Proof. As we know 

√∏ (∏ (1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 −∏ (∏ (1 − (𝒯

𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

≤
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√∑ 𝛾𝑗
𝑚
𝑗=1 (∑ Ω𝑖 (1 + (𝒯

𝑑̌𝑖𝑗

𝑙 )
𝑞

)𝑛
𝑖=1 ) + ∑ 𝛾𝑗

𝑚
𝑗=1 (∑ Ω𝑖 (1 − (𝒯

𝑑̌𝑖𝑗

𝑙 )
𝑞

)𝑛
𝑖=1 )

𝑞

  

√∏ (∏ (1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ (1 − (𝒯

𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

≤

√∑ 𝛾𝑗
𝑚
𝑗=1 ∑ Ω𝑖 (1 + (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

)𝑛
𝑖=1 + ∑ 𝛾𝑗

𝑚
𝑗=1 ∑ Ω𝑖 (1 − (𝒯

𝑑̌𝑖𝑗

𝑙 )
𝑞

)𝑛
𝑖=1

𝑞

  

⇒ √∏ (∏ (1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ (1 − (𝒯

𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

≤ √2
𝑞

  

⇒

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≤ √1 − ∏ (∏ (1 − (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

. 

Similarly,  

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≤ √1 −∏ (∏ (1 − (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

. 

So,  

[
 
 
 
 
 
√∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

≤

[√1 − ∏ (∏ (1 − (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

, √1 − ∏ (∏ (1 − (𝒯𝑑̌𝑖𝑗
𝓊 )

𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

].     (3.2) 

Assume 

√∏ (∏ (2 − (𝒥
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

≤

√∑ 𝛾𝑗
𝑚
𝑗=1 (∑ Ω𝑖 (2 − (𝒥

𝑑̌𝑖𝑗

𝑙 )
𝑞

)𝑛
𝑖=1 ) + ∑ 𝛾𝑗

𝑚
𝑗=1 (∑ Ω𝑖 (𝒥𝑑̌𝑖𝑗

𝑙 )
𝑞

𝑛
𝑖=1 )

𝑞

  

⇒ √∏ (∏ (2 − (𝒥
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

≤

√∑ 𝛾𝑗
𝑚
𝑗=1 ∑ Ω𝑖 (2 − (𝒥𝑑̌𝑖𝑗

𝑙 )
𝑞

)𝑛
𝑖=1 +∑ 𝛾𝑗

𝑚
𝑗=1 ∑ Ω𝑖 (𝒥𝑑̌𝑖𝑗

𝑙 )
𝑞

𝑛
𝑖=1

𝑞

  

⇒ √∏ (∏ (2 − (𝒥
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

≤ √2
𝑞
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⇒

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≥ ∏ (∏ ((𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 . 

Similarly,  

⇒

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≥ ∏ (∏ ((𝒥𝑑̌𝑖𝑗
𝓊 )

𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 . 

Thus,  

[
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

≥

[∏ (∏ ((𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 , ∏ (∏ ((𝒥𝑑̌𝑖𝑗

𝓊 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 ].        (3.3) 

Let 𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) = 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  and 𝐼𝑉𝑞 −

𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴 (𝔗
𝑑̌11
̂ , 𝔗

𝑑̌12
̂ , … , 𝔗

𝑑̌𝑛𝑚
̂ ) = 𝔗

𝑑̌𝑖𝑗
̂ = ([𝒯

𝑑̌𝑖𝑗
̂
𝑙 , 𝒯

𝑑̌𝑖𝑗
̂
𝓊 ] , [𝒥

𝑑̌𝑖𝑗
̂
𝑙 , 𝒥

𝑑̌𝑖𝑗
̂
𝓊 ]) . Using the above 

inequalities (3.2) and (3.3), which can be expressed as 𝒯𝑑̌𝑖𝑗
𝑙 ≥ 𝒯

𝑑̌𝑖𝑗
̂
𝑙  and 𝒯𝑑̌𝑖𝑗

𝓊 ≥ 𝒯
𝑑̌𝑖𝑗
̂
𝓊  ⇒ [𝒯𝑑̌𝑖𝑗

𝑙 , 𝒯𝑑̌𝑖𝑗
𝓊 ] ≥

[𝒯
𝑑̌𝑖𝑗
̂
𝑙 , 𝒯

𝑑̌𝑖𝑗
̂
𝓊 ] . Also 𝒥𝑑̌𝑖𝑗

𝑙 ≤ 𝒥
𝑑̌𝑖𝑗
̂
𝑙   and 𝒥𝑑̌𝑖𝑗

𝓊 ≤ 𝒥
𝑑̌𝑖𝑗
̂
𝓊   ⇒ [𝒥𝑑̌𝑖𝑗

𝑙 , 𝒥𝑑̌𝑖𝑗
𝓊 ] ≤ [𝒥

𝑑̌𝑖𝑗
̂
𝑙 , 𝒥

𝑑̌𝑖𝑗
̂
𝓊 ] . So, 𝑆 (ℱϛ𝑖𝑗) =

[𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ]
𝑞

− [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ]
𝑞

+ (
e
[𝒯
𝑑̌𝑖𝑗

𝑙 ,𝒯
𝑑̌𝑖𝑗

𝓊 ]

𝑞

−[𝒥
𝑑̌𝑖𝑗

𝑙 ,𝒥
𝑑̌𝑖𝑗

𝓊 ]

𝑞

e
[𝒯
𝑑̌𝑖𝑗

𝑙 ,𝒯
𝑑̌𝑖𝑗

𝓊 ]

𝑞

−[𝒥
𝑑̌𝑖𝑗

𝑙 ,𝒥
𝑑̌𝑖𝑗

𝓊 ]

𝑞

+1

−
1

2
) [π𝑑̌𝑖𝑗

𝑙 , π𝑑̌𝑖𝑗
𝓊 ]

𝑞

≤ [𝒯
𝑑̌𝑖𝑗
̂
𝑙 , 𝒯

𝑑̌𝑖𝑗
̂
𝓊 ]

𝑞

−

[𝒥ϛ𝑖𝑗̃
ℓ , 𝒥ϛ𝑖𝑗̃

ひ
]
𝑞

+ (
e
[𝒯
𝑑̌𝑖𝑗
̂
𝑙 ,𝒯

𝑑̌𝑖𝑗
̂
𝓊 ]

𝑞

−[𝒥
𝑑̌𝑖𝑗
̂
𝑙 ,𝒥

𝑑̌𝑖𝑗
̂
𝓊 ]

𝑞

e
[𝒯
𝑑̌𝑖𝑗
̂
𝑙 ,𝒯

𝑑̌𝑖𝑗
̂
𝓊 ]

𝑞

−[𝒥
𝑑̌𝑖𝑗
̂
𝑙 ,𝒥

𝑑̌𝑖𝑗
̂
𝓊 ]

𝑞

+1

−
1

2
) [π

𝑑̌𝑖𝑗
̂
𝑙 , π

𝑑̌𝑖𝑗
̂
𝓊 ]

𝑞

. 

If 𝑆 (𝔗𝑑̌𝑖𝑗) > 𝑆 (𝔗
𝑑̌𝑖𝑗
̂ ), then 

𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) > 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗
𝑑̌11
̂ , 𝔗

𝑑̌12
̂ , … , 𝔗

𝑑̌𝑛𝑚
̂).  (3.4) 

If 𝑆 (𝔗𝑑̌𝑖𝑗) = 𝑆 ((𝔗
𝑑̌𝑖𝑗
̂ ) , ), then  

𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) > 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗
𝑑̌11
̂ , 𝔗

𝑑̌12
̂ , … , 𝔗

𝑑̌𝑛𝑚
̂).  (3.5) 

Using inequalities (3.4) and (3.5), we get  

𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) ≥ 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗
𝑑̌11
̂ , 𝔗

𝑑̌12
̂ , … , 𝔗

𝑑̌𝑛𝑚
̂). 
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Theorem 3.5. Let 𝔗𝑑̌𝑖𝑗 = 𝔗𝑑̌ = ([𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊], [𝒥𝑑̌
𝑙 , 𝒥𝑑̌

𝓊])  be a collection of interval-valued q-rung 

orthopair fuzzy hypersoft numbers. Where Ω𝑖  and γ𝑗  be the weights of experts and multi sub-

attributes such as Ω𝑖  >  0, ∑ Ω𝑖
𝑛
𝑖=1   = 1, γ𝑗  >  0, ∑ γ𝑗

𝑚
𝑗=1   = 1 ∀  𝑖 = 1,2, …… . 𝑛  and 𝑗 =

1,2, …… .𝑚. Then, 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) = 𝔗𝑑̌. 

Proof. As 𝔗𝑑̌𝑖𝑗 = 𝔗𝑑̌ = ([𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊], [𝒥𝑑̌
𝑙 , 𝒥𝑑̌

𝓊]) for any 𝑖 = 1,2, …… . 𝑛 and 𝑗 = 1,2, …… .𝑚. Then,  

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚
) = 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌, 𝔗𝑑̌, … , 𝔗𝑑̌) =

(

 
 
 
 
 
 

[
 
 
 √∏ (∏ (1+(𝒯

𝑑̌
𝑙)
𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌
𝑙)
𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌
𝑙)
𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌
𝑙)
𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞
,

√∏ (∏ (1+(𝒯
𝑑̌
𝓊)

𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌
𝓊)

𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌
𝓊)

𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌
𝓊)

𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

]
 
 
 

,

[
 
 
 √2∏ (∏ ((𝒥

𝑑̌
𝑙 )
𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌
𝑙 )
𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌
𝑙 )
𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞
,

√2∏ (∏ ((𝒥
𝑑̌
𝓊)

𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌
𝓊)

𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌
𝓊)

𝑞
)
Ω𝑖𝑛

𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

𝑞

]
 
 
 

)

 
 
 
 
 
 

  

=

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√((1+(𝒯

𝑑̌
𝑙)
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

−((1−(𝒯
𝑑̌
𝑙)
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

√((1+(𝒯
𝑑̌
𝑙)
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+((1−(𝒯
𝑑̌
𝑙)
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

,

√((1+(𝒯
𝑑̌
𝓊)

𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

−((1−(𝒯
𝑑̌
𝓊)

𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

√((1+(𝒯
𝑑̌
𝓊)

𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+((1−(𝒯
𝑑̌
𝓊)

𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2(((𝒥
𝑑̌
𝑙 )
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

√((2−(𝒥
𝑑̌
𝑙 )
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+(((𝒥
𝑑̌
𝑙 )
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

,

√2(((𝒥
𝑑̌
𝓊)

𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

√((2−(𝒥
𝑑̌
𝓊)

𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+(((𝒥
𝑑̌
𝓊)

𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 

We know ∑ Ω𝑖
𝑛
𝑖=1 = 1 and ∑ 𝛾𝑗

𝑚
𝑗=1 = 1. So,  

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴 (𝔗
𝑑̌11
̂ , 𝔗

𝑑̌12
̂ , … , 𝔗

𝑑̌𝑛𝑚
̂ ) = 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌ , 𝔗𝑑̌ , … , 𝔗𝑑̌)

=

(

 

[
 
 
 √(1 + (𝒯

𝑑̌
𝑙)
𝑞
) − (1 − (𝒯

𝑑̌
𝑙)
𝑞
)

𝑞

√(1 + (𝒯
𝑑̌
𝑙)
𝑞
) + (1 − (𝒯

𝑑̌
𝑙)
𝑞
)

𝑞
,
√(1 + (𝒯𝑑̌

𝓊)
𝑞
) − (1 − (𝒯𝑑̌

𝓊)
𝑞
)

𝑞

√(1 + (𝒯𝑑̌
𝓊)

𝑞
) + (1 − (𝒯𝑑̌

𝓊)
𝑞
)

𝑞

]
 
 
 

,

[
 
 
 √2((𝒥

𝑑̌
𝑙 )
𝑞
)

𝑞

√(2 − (𝒥
𝑑̌
𝑙 )
𝑞
) + ((𝒥

𝑑̌
𝑙 )
𝑞
)

𝑞
,

√2((𝒥𝑑̌
𝓊)

𝑞
)

𝑞

√(2 − (𝒥𝑑̌
𝓊)

𝑞
) + ((𝒥𝑑̌

𝓊)
𝑞
)

𝑞

]
 
 
 

)

  

= ([𝒯𝑑̌
𝑙 , 𝒯𝑑̌

𝓊], [𝒥𝑑̌
𝑙 , 𝒥𝑑̌

𝓊]) = 𝔗𝑑̌. 

Theorem 3.6. let 𝔗𝑑̌𝑖𝑗
− = ([𝑚𝑖𝑛 (𝒯𝑑̌𝑖𝑗

𝑙 ) ,𝑚𝑖𝑛 (𝒯𝑑̌𝑖𝑗
𝓊 )] , [𝑚𝑎𝑥 (𝒥𝑑̌𝑖𝑗

𝑙 ) ,𝑚𝑎𝑥 (𝒥𝑑̌𝑖𝑗
𝓊 )])  and 𝔗𝑑̌𝑖𝑗

+ =

([𝑚𝑎𝑥 (𝒯𝑑̌𝑖𝑗
𝑙 ) ,𝑚𝑎𝑥 (𝒯𝑑̌𝑖𝑗

𝓊 )] , [𝑚𝑖𝑛 (𝒥𝑑̌𝑖𝑗
𝑙 ) ,𝑚𝑖𝑛 (𝒥𝑑̌𝑖𝑗

𝓊 )]). Then 

𝔗𝑑̌𝑖𝑗
− ≤ 𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚)  ≤ 𝔗𝑑̌𝑖𝑗

+ . 

Proof. Let 𝑓(𝑡) =
1−𝑡

1+𝑡
 such as 𝑡 ∈ [0, 1]. Then, 𝑓 ˊ(𝑡) = −

2

(1+𝑡)2
⇒ 𝑓(𝑡) ≥ 𝑓 ˊ(𝑡) which shows that 

𝑓(𝑡) is decreasing. Let 𝑚𝑖𝑛 (𝒯𝑑̌𝑖𝑗
𝑙 ) =  𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗

𝑙 , 𝑚𝑎𝑥 (𝒯ϛ𝑖𝑗
ℓ ) = 𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗

𝑙 , thus, (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

≤ (𝒯𝑑̌𝑖𝑗
𝑙 )

𝑞

≤

(𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

, then 𝑓 ((𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

) ≤ 𝑓 ((𝒯𝑑̌𝑖𝑗
𝑙 )

𝑞

) ≤ 𝑓 ((𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

)  
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⇒

1 − (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

1 + (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞 ≤
1 − (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞 ≤

1 − (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

1 + (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞 

⇒

(

 
1 − (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

Ω𝑖

≤ (
1 − (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞)

Ω𝑖

≤

(

 
1 − (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

Ω𝑖

 

⇒∏

(

 
1 − (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

Ω𝑖
𝑛

𝑖=1

≤∏(
1− (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞)

Ω𝑖
𝑛

𝑖=1

≤∏

(

 
1− (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

Ω𝑖
𝑛

𝑖=1

 

⇒

(

 
 
∏

(

 
1 − (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

Ω𝑖
𝑛

𝑖=1

)

 
 

𝛾𝑗

≤ (∏(
1 − (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞)

Ω𝑖
𝑛

𝑖=1

)

𝛾𝑗

≤

(

 
 
∏

(

 
1 − (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

Ω𝑖
𝑛

𝑖=1

)

 
 

𝛾𝑗

 

⇒

(

 
 
∏

(

 
1 − (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

Ω𝑖
𝑛

𝑖=1

)

 
 

𝛾𝑗

≤ (∏(
1 − (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞)

Ω𝑖
𝑛

𝑖=1

)

𝛾𝑗

≤

(

 
 
∏

(

 
1 − (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

Ω𝑖
𝑛

𝑖=1

)

 
 

𝛾𝑗

 

⇒∏

(

 
 
∏

(

 
1 − (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

Ω𝑖
𝑛

𝑖=1

)

 
 

𝛾𝑗

𝑚

𝑗=1

≤∏(∏(
1 − (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞)

Ω𝑖
𝑛

𝑖=1

)

𝛾𝑗
𝑚

𝑗=1

≤∏

(

 
 
∏

(

 
1 − (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

Ω𝑖
𝑛

𝑖=1

)

 
 

𝛾𝑗

𝑚

𝑗=1

 

⇒

(

 
 

(

 
1 − (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

∑ Ω𝑖
𝑛
𝑖=1

)

 
 

∑ 𝛾𝑗
𝑚
𝑗=1

≤∏(∏(
1− (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞)

Ω𝑖
𝑛

𝑖=1

)

𝛾𝑗
𝑚

𝑗=1

≤

(

 
 

(

 
1 − (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

)

 

∑ Ω𝑖
𝑛
𝑖=1

)

 
 

∑ 𝛾𝑗
𝑚
𝑗=1

 

⇒

1 − (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

1 + (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞 ≤∏(∏(
1− (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞)

Ω𝑖
𝑛

𝑖=1

)

𝛾𝑗
𝑚

𝑗=1

≤

1 − (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

1 + (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞 

⇒
2

1 + (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞 ≤ 1 +∏(∏(
1 − (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞)

Ω𝑖
𝑛

𝑖=1

)

𝛾𝑗
𝑚

𝑗=1

≤
2

1 + (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞 

⇒

1 + (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

2
≤

1

1 +∏ (∏ (
1 − (𝒯

𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞)

Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

≤

1 + (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

2
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⇒ 1 + (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

≤
2

1 +∏ (∏ (
1 − (𝒯

𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞)

Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

≤ 1 + (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

 

⇒ (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

≤
2

1 + ∏ (∏ (
1 − (𝒯

𝑑̌𝑖𝑗

𝑙 )
𝑞

1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞)

Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

− 1 ≤ (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

 

⇒ (𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

≤

∏ (∏ (1 + (𝒯𝑑̌𝑖𝑗
𝑙 )

𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 −∏ (∏ (1 − (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

∏ (∏ (1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ (1 − (𝒯

𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

≤ (𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

 

⇒ 𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 ≤

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≤ 𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 .     (3.6) 

Similarly,  

⇒ 𝒯𝑚𝑖𝑥𝑑̌𝑖𝑗
𝓊 ≤

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≤ 𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝓊 .     (3.7) 

Let 𝑔(𝑢) =
2−𝑢

𝑢
 such as 𝑢 ∈ [0, 1]. Then, 𝑔ˊ(𝑢) = −

2

𝑢2
⇒ 𝑔(𝑢) ≥ 𝑔ˊ(𝑢) which shows that 𝑔(𝑢) 

is decreasing. Let 𝑚𝑖𝑛 (𝒥𝑑̌𝑖𝑗
𝑙 ) = 𝒥𝑚𝑖𝑛𝑑̌𝑖𝑗

𝑙  , 𝑚𝑎𝑥 (𝒥𝑑̌𝑖𝑗
𝑙 ) = 𝒥𝑚𝑎𝑥𝑑̌𝑖𝑗

𝑙  , thus, (𝒥𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

≤ (𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

≤

(𝒥𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

 , then 𝑔 ((𝒥𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

) ≤ 𝑔 ((𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

) ≤ 𝑔 ((𝒥𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

) , 

2−(𝒥𝑚𝑎𝑥
𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥𝑚𝑎𝑥
𝑑̌𝑖𝑗

𝑙 )

𝑞 ≤
2−(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞 ≤

2−(𝒥𝑚𝑖𝑛
𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥𝑚𝑖𝑛
𝑑̌𝑖𝑗

𝑙 )

𝑞 . Thus,  

⇒

(

 (
2−(𝒥𝑚𝑎𝑥

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥𝑚𝑎𝑥
𝑑̌𝑖𝑗

𝑙 )

𝑞 )

Ω𝑖

)

 

𝛾𝑗

≤ ((
2−(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞 )

Ω𝑖

)

𝛾𝑗

≤

(

 
 

(

 
2−(𝒥𝑚𝑖𝑛

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥𝑚𝑖𝑛
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

 

Ω𝑖

)

 
 

𝛾𝑗

  

⇒ ∏

(

 ∏ (
2−(𝒥𝑚𝑎𝑥

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥𝑚𝑎𝑥
𝑑̌𝑖𝑗

𝑙 )

𝑞 )

Ω𝑖

𝑛
𝑖=1

)

 

𝛾𝑗

𝑚
𝑗=1 ≤ ∏ (∏ (

2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞 )

Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 ≤ ∏

(

 
 
∏

(

 
2−(𝒥𝑚𝑖𝑛

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥𝑚𝑖𝑛
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

 

Ω𝑖

𝑛
𝑖=1

)

 
 

𝛾𝑗

𝑚
𝑗=1   
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⇒

(

 
 
(
2−(𝒥𝑚𝑎𝑥

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥𝑚𝑎𝑥
𝑑̌𝑖𝑗

𝑙 )

𝑞 )

∑ Ω𝑖
𝑛
𝑖=1

)

 
 

∑ 𝛾𝑗
𝑚
𝑗=1

≤ ∏ (∏ (
2−(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞 )

Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 ≤

(

 
 

(

 
2−(𝒥𝑚𝑖𝑛

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥𝑚𝑖𝑛
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

 

∑ Ω𝑖
𝑛
𝑖=1

)

 
 

∑ 𝛾𝑗
𝑚
𝑗=1

  

⇒
2−(𝒥𝑚𝑎𝑥

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥𝑚𝑎𝑥
𝑑̌𝑖𝑗

𝑙 )

𝑞 ≤ ∏ (∏ (
2−(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞 )

Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 ≤

2−(𝒥𝑚𝑖𝑛
𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥𝑚𝑖𝑛
𝑑̌𝑖𝑗

𝑙 )

𝑞   

⇒
2

(𝒥𝑚𝑎𝑥
𝑑̌𝑖𝑗

𝑙 )

𝑞 ≤ 1 + ∏ (∏ (
2−(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞 )

Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 ≤

2

(𝒥𝑚𝑖𝑛
𝑑̌𝑖𝑗

𝑙 )

𝑞  

⇒

(𝒥𝑚𝑖𝑛
𝑑̌𝑖𝑗

𝑙 )

𝑞

2
≤

1

1+∏

(

  
 
∏

(

 
 
2−(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

 
 

Ω𝑖

𝑛
𝑖=1

)

  
 

𝛾𝑗

𝑚
𝑗=1

≤
(𝒥𝑚𝑎𝑥

𝑑̌𝑖𝑗

𝑙 )

𝑞

2
  

⇒ (𝒥𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

≤
2

1+∏

(

  
 
∏

(

 
 
2−(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

 
 

Ω𝑖

𝑛
𝑖=1

)

  
 

𝛾𝑗

𝑚
𝑗=1

≤ (𝒥𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

  

⇒ (𝒥𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 )

𝑞

≤

2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

≤ (𝒥𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 )

𝑞

  

⇒ 𝒥𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 ≤

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≤ 𝒥𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 .        (3.8) 

Similarly, 

⇒ 𝒥𝑚𝑖𝑛𝑑̌𝑖𝑗
𝓊 ≤

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≤ 𝒥𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙 .        (3.9) 

Let 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) = 𝔗𝑑̌ = ([𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊], [𝒥𝑑̌
𝑙 , 𝒥𝑑̌

𝓊]) . Then, from 

inequalities (3.6) to (3.9), we get 𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 ≤ 𝒯𝑑̌𝑖𝑗

𝑙 ≤ 𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗
𝑙  , 𝒯𝑚𝑖𝑛𝑑̌𝑖𝑗

𝓊 ≤ 𝒯𝑑̌𝑖𝑗
𝓊 ≤ 𝒯𝑚𝑎𝑥𝑑̌𝑖𝑗

𝓊  , 𝒥𝑚𝑖𝑛𝑑̌𝑖𝑗
𝑙 ≤

𝒥𝑑̌𝑖𝑗
𝑙 ≤ 𝒥𝑚𝑎𝑥𝑑̌𝑖𝑗

𝑙 , 𝒥𝑚𝑖𝑛𝑑̌𝑖𝑗
𝓊 ≤ 𝒥𝑑̌𝑖𝑗

𝓊 ≤ 𝒥𝑚𝑎𝑥𝑑̌𝑖𝑗
𝓊 . Thus, 

𝑆(𝔗𝑑̌) = ([𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊])
𝑞
− ([𝒥𝑑̌

𝑙 , 𝒥𝑑̌
𝓊])

𝑞
+ (

𝑒
([𝒯

𝑑̌
𝑙,𝒯
𝑑̌
𝓊])

𝑞
−([𝒥

𝑑̌
𝑙 ,𝒥

𝑑̌
𝓊])

𝑞

𝑒
([𝒯

𝑑̌
𝑙,𝒯
𝑑̌
𝓊])

𝑞
−([𝒥

𝑑̌
𝑙 ,𝒥

𝑑̌
𝓊])

𝑞

+1

−
1

2
) ([𝜋𝑑̌

𝑙 , 𝜋𝑑̌
𝓊])

𝑞
≤
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(𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
[𝒯𝑑̌𝑖𝑗

𝑙 , 𝒯𝑑̌𝑖𝑗
𝓊 ])

𝑞

− (𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
[𝒥𝑑̌𝑖𝑗

𝑙 , 𝒥𝑑̌𝑖𝑗
𝓊 ])

𝑞

+ (
𝑒
(
𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖 [𝒯

𝑑̌𝑖𝑗

𝑙 ,𝒯
𝑑̌𝑖𝑗

𝓊 ])

𝑞

−(
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖 [𝒥

𝑑̌𝑖𝑗

𝑙 ,𝒥
𝑑̌𝑖𝑗

𝓊 ])

𝑞

𝑒
(
𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖 [𝒯

𝑑̌𝑖𝑗

𝑙 ,𝒯
𝑑̌𝑖𝑗

𝓊 ])

𝑞

−(
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖 [𝒥

𝑑̌𝑖𝑗

𝑙 ,𝒥
𝑑̌𝑖𝑗

𝓊 ])

𝑞

+1

−

 
1

2
)([𝜋𝑑̌𝑖𝑗

𝑙 , 𝜋𝑑̌𝑖𝑗
𝓊 ])

𝑞

= 𝑆 (𝔗𝑑̌𝑖𝑗
+ )  

⇒ 𝑆(𝔗𝑑̌) ≤  𝑆 (𝔗𝑑̌𝑖𝑗
+ ) and  

𝑆(𝔗𝑑̌) = ([𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊])
𝑞
− ([𝒥𝑑̌

𝑙 , 𝒥𝑑̌
𝓊])

𝑞
+ (

𝑒
([𝒯

𝑑̌
𝑙,𝒯
𝑑̌
𝓊])

𝑞
−([𝒥

𝑑̌
𝑙 ,𝒥

𝑑̌
𝓊])

𝑞

𝑒
([𝒯

𝑑̌
𝑙,𝒯
𝑑̌
𝓊])

𝑞
−([𝒥

𝑑̌
𝑙 ,𝒥

𝑑̌
𝓊])

𝑞

+1

−
1

2
) ([𝜋𝑑̌

𝑙 , 𝜋𝑑̌
𝓊])

𝑞
≥

(𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
[𝒯𝑑̌𝑖𝑗

𝑙 , 𝒯𝑑̌𝑖𝑗
𝓊 ])

𝑞

− (𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
[𝒥𝑑̌𝑖𝑗

𝑙 , 𝒥𝑑̌𝑖𝑗
𝓊 ])

𝑞

+ (
𝑒
(
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖 [𝒯

𝑑̌𝑖𝑗

𝑙 ,𝒯
𝑑̌𝑖𝑗

𝓊 ])

𝑞

−(
𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖 [𝒥

𝑑̌𝑖𝑗

𝑙 ,𝒥
𝑑̌𝑖𝑗

𝓊 ])

𝑞

𝑒
(
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖 [𝒯

𝑑̌𝑖𝑗

𝑙 ,𝒯
𝑑̌𝑖𝑗

𝓊 ])

𝑞

−(
𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖 [𝒥

𝑑̌𝑖𝑗

𝑙 ,𝒥
𝑑̌𝑖𝑗

𝓊 ])

𝑞

+1

−

 
1

2
)([𝜋𝑑̌𝑖𝑗

𝑙 , 𝜋𝑑̌𝑖𝑗
𝓊 ])

𝑞

= 𝑆 (𝔗𝑑̌𝑖𝑗
− )  

⇒ 𝑆(𝔗𝑑̌) ≥  𝑆 (𝔗𝑑̌𝑖𝑗
− ).  

If 𝑆(𝔗𝑑̌) <  𝑆 (𝔗𝑑̌𝑖𝑗
+ )  and 𝑆(𝔗𝑑̌) >  𝑆 (𝔗𝑑̌𝑖𝑗

− ), then  

𝔗𝑑̌𝑖𝑗
+ < 𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) < 𝔗𝑑̌𝑖𝑗

− .     (3.10) 

If 𝑆(𝔗𝑑̌) = 𝑆 (𝔗𝑑̌𝑖𝑗
+ ), then  

𝑆(𝔗𝑑̌) = ([𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊])
𝑞
− ([𝒥𝑑̌

𝑙 , 𝒥𝑑̌
𝓊])

𝑞
+ (

𝑒
([𝒯

𝑑̌
𝑙,𝒯
𝑑̌
𝓊])

𝑞
−([𝒥

𝑑̌
𝑙 ,𝒥

𝑑̌
𝓊])

𝑞

𝑒
([𝒯

𝑑̌
𝑙,𝒯
𝑑̌
𝓊])

𝑞
−([𝒥

𝑑̌
𝑙 ,𝒥

𝑑̌
𝓊])

𝑞

+1

−
1

2
) ([𝜋𝑑̌

𝑙 , 𝜋𝑑̌
𝓊])

𝑞
=

(𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
[𝒯𝑑̌𝑖𝑗

𝑙 , 𝒯𝑑̌𝑖𝑗
𝓊 ])

𝑞

− (𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
[𝒥𝑑̌𝑖𝑗

𝑙 , 𝒥𝑑̌𝑖𝑗
𝓊 ])

𝑞

+ (
𝑒
(
𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖 [𝒯

𝑑̌𝑖𝑗

𝑙 ,𝒯
𝑑̌𝑖𝑗

𝓊 ])

𝑞

−(
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖 [𝒥

𝑑̌𝑖𝑗

𝑙 ,𝒥
𝑑̌𝑖𝑗

𝓊 ])

𝑞

𝑒
(
𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖 [𝒯

𝑑̌𝑖𝑗

𝑙 ,𝒯
𝑑̌𝑖𝑗

𝓊 ])

𝑞

−(
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖 [𝒥

𝑑̌𝑖𝑗

𝑙 ,𝒥
𝑑̌𝑖𝑗

𝓊 ])

𝑞

+1

−

 
1

2
)([𝜋𝑑̌𝑖𝑗

𝑙 , 𝜋𝑑̌𝑖𝑗
𝓊 ])

𝑞

, we have 

[𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊] =  𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{[𝒯𝑑̌𝑖𝑗

𝑙 , 𝒯𝑑̌𝑖𝑗
𝓊 ]} , and [𝒥𝑑̌

𝑙 , 𝒥𝑑̌
𝓊] =  𝑚𝑖𝑛

𝑗
𝑚𝑖𝑛
𝑖
{[𝒥𝑑̌𝑖𝑗

𝑙 , 𝒥𝑑̌𝑖𝑗
𝓊 ]} . Hence, ([𝜋𝑑̌

𝑙 , 𝜋𝑑̌
𝓊])

𝑞
=

([𝜋𝑑̌𝑖𝑗
𝑙 , 𝜋𝑑̌𝑖𝑗

𝓊 ])
𝑞

. Then 

𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) = 𝔗𝑑̌𝑖𝑗
+ .       (3.11) 

If 𝑆(𝔗𝑑̌) = 𝑆 (𝔗𝑑̌𝑖𝑗
− ), then  

([𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊])
𝑞
− ([𝒥𝑑̌

𝑙 , 𝒥𝑑̌
𝓊])

𝑞
+ (

𝑒
([𝒯

𝑑̌
𝑙,𝒯
𝑑̌
𝓊])

𝑞
−([𝒥

𝑑̌
𝑙 ,𝒥

𝑑̌
𝓊])

𝑞

𝑒
([𝒯

𝑑̌
𝑙,𝒯
𝑑̌
𝓊])

𝑞
−([𝒥

𝑑̌
𝑙 ,𝒥

𝑑̌
𝓊])

𝑞

+1

−
1

2
) ([𝜋𝑑̌

𝑙 , 𝜋𝑑̌
𝓊])

𝑞
= (𝑚𝑖𝑛

𝑗
𝑚𝑖𝑛
𝑖
[𝒯𝑑̌𝑖𝑗

𝑙 , 𝒯𝑑̌𝑖𝑗
𝓊 ])

𝑞

−
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(𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
[𝒥𝑑̌𝑖𝑗

𝑙 , 𝒥𝑑̌𝑖𝑗
𝓊 ])

𝑞

+ (
𝑒
(
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖 [𝒯

𝑑̌𝑖𝑗

𝑙 ,𝒯
𝑑̌𝑖𝑗

𝓊 ])

𝑞

−(
𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖 [𝒥

𝑑̌𝑖𝑗

𝑙 ,𝒥
𝑑̌𝑖𝑗

𝓊 ])

𝑞

𝑒
(
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖 [𝒯

𝑑̌𝑖𝑗

𝑙 ,𝒯
𝑑̌𝑖𝑗

𝓊 ])

𝑞

−(
𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖 [𝒥

𝑑̌𝑖𝑗

𝑙 ,𝒥
𝑑̌𝑖𝑗

𝓊 ])

𝑞

+1

− 
1

2
)([𝜋𝑑̌𝑖𝑗

𝑙 , 𝜋𝑑̌𝑖𝑗
𝓊 ])

𝑞

. Then  

[𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊] =  𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{[𝒯𝑑̌𝑖𝑗

𝑙 , 𝒯𝑑̌𝑖𝑗
𝓊 ]} , and [𝒥𝑑̌

𝑙 , 𝒥𝑑̌
𝓊] =  𝑚𝑎𝑥

𝑗
𝑚𝑎𝑥
𝑖
{[𝒥𝑑̌𝑖𝑗

𝑙 , 𝒥𝑑̌𝑖𝑗
𝓊 ]} . Hence, ([𝜋𝑑̌

𝑙 , 𝜋𝑑̌
𝓊])

𝑞
=

([𝜋𝑑̌𝑖𝑗
𝑙 , 𝜋𝑑̌𝑖𝑗

𝓊 ])
𝑞

. Then 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) = 𝔗𝑑̌𝑖𝑗
− .       (3.12) 

From inequalities (3.10) to (3.12), it is proved that 

𝔗𝑑̌𝑖𝑗
− ≤ 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) ≤ 𝔗𝑑̌𝑖𝑗

+ . 

Theorem 3.7. Let 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  and 𝔗𝑑̌𝑖𝑗
∗ = ([𝒯𝑑̌𝑖𝑗

𝑙∗ , 𝒯𝑑̌𝑖𝑗
𝓊∗] , [𝒥𝑑̌𝑖𝑗

𝑙∗ , 𝒥𝑑̌𝑖𝑗
𝓊∗])  be the 

collections of two distinct IVq-ROFHSNs, such as if 𝔗𝑑̌𝑖𝑗 ≤ 𝔗𝑑̌𝑖𝑗
∗  ∀ 𝑖, 𝑗. Then 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) ≤ 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴 (𝔗𝑑̌11
∗ , 𝔗𝑑̌12

∗ , …… … ,𝔗𝑑̌𝑛𝑚
∗ ). 

Proof. Let 𝑢 = 𝑓(𝑡) = √
1−𝑡2

1+𝑡2

𝑞

 , where 𝑡 ∈ [0, 1] , then 𝑑

𝑑(𝑡)
(𝑓(𝑡)) = −

1

𝑞
(
1−𝑡𝑞

1+𝑡𝑞
)

1

𝑞
−1

{
𝑞𝑡2𝑞−1+𝑞𝑡2𝑞−1

(1+𝑡𝑞)2
} <

 0. This shows that 𝑓(𝑡) is decreasing on [0, 1]. If 𝔗𝑑̌𝑖𝑗 ≤ 𝔗𝑑̌𝑖𝑗
∗ , then 𝑓 (𝔗𝑑̌𝑖𝑗) ≤ 𝑓 (𝔗𝑑̌𝑖𝑗

∗ ). 

1 − 𝒯𝑑̌𝑖𝑗
𝑙∗ ≤ 1 − 𝒯𝑑̌𝑖𝑗

𝑙   

⇒ 1 − (𝒯𝑑̌𝑖𝑗
𝑙∗)

𝑞

≤ 1 − (𝒯𝑑̌𝑖𝑗
𝑙 )

𝑞

  

⇒ (1 + (𝒯𝑑̌𝑖𝑗
𝑙 )

𝑞

) − (1 − (𝒯𝑑̌𝑖𝑗
𝑙 )

𝑞

) ≤ (1 + (𝒯𝑑̌𝑖𝑗
𝑙∗)

𝑞

) − (1 − (𝒯𝑑̌𝑖𝑗
𝑙∗)

𝑞

)  

⇒
(1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)−(1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

(1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)+(1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

≤
(1+(𝒯

𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)−(1−(𝒯
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

(1+(𝒯
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)+(1−(𝒯
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

.  

Where, Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1 = 1 and 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
𝑗=1 = 1. So,  

⇒ (

 ((1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

))

∑ Ω𝑖
𝑛
𝑖=1

)

 

∑ 𝛾𝑗
𝑚
𝑗=1

−

(

 ((1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

))

∑ Ω𝑖
𝑛
𝑖=1

)

 

∑ 𝛾𝑗
𝑚
𝑗=1

(

 ((1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

))

∑ Ω𝑖
𝑛
𝑖=1

)

 

∑ 𝛾𝑗
𝑚
𝑗=1

+

(

 ((1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

))

∑ Ω𝑖
𝑛
𝑖=1

)

 

∑ 𝛾𝑗
𝑚
𝑗=1

≤ (

 ((1+(𝒯
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

))

∑ Ω𝑖
𝑛
𝑖=1

)

 

∑ 𝛾𝑗
𝑚
𝑗=1

−

(

 ((1−(𝒯
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

))

∑ Ω𝑖
𝑛
𝑖=1

)

 

∑ 𝛾𝑗
𝑚
𝑗=1

(

 ((1+(𝒯
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

))

∑ Ω𝑖
𝑛
𝑖=1

)

 

∑ 𝛾𝑗
𝑚
𝑗=1

+

(

 ((1−(𝒯
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

))

∑ Ω𝑖
𝑛
𝑖=1

)

 

∑ 𝛾𝑗
𝑚
𝑗=1
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⇒

∏ (∏ (1 + (𝒯𝑑̌𝑖𝑗
𝑙 )

𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 −∏ (∏ (1 − (𝒯𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

∏ (∏ (1 + (𝒯
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ (1 − (𝒯

𝑑̌𝑖𝑗

𝑙 )
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

≤

∏ (∏ (1 + (𝒯𝑑̌𝑖𝑗
𝑙∗)

𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 −∏ (∏ (1 − (𝒯𝑑̌𝑖𝑗

𝑙∗)
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

∏ (∏ (1 + (𝒯
𝑑̌𝑖𝑗

𝑙∗)
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1 +∏ (∏ (1 − (𝒯

𝑑̌𝑖𝑗

𝑙∗)
𝑞

)
Ω𝑖

𝑛
𝑖=1 )

𝛾𝑗
𝑚
𝑗=1

 

⇒

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≤

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

.  

Similarly,  

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

≤

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊∗)

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊∗)

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊∗)

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊∗)

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

. 

Thus,  

[
 
 
 
 
 
√∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

≤

[
 
 
 
 
 
√∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊∗)

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊∗)

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊∗)

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊∗)

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

. 

Let 𝑦 = 𝑔(𝑣) = √
2−𝑣𝑞

𝑣𝑞

𝑞

 , 𝑣 ∈ [0, 1] , then 
𝑑

𝑑𝑣
(𝑔(𝑣)) = −

1

𝑞
(
2−𝑣𝑞

𝑣𝑞
)

1

𝑞
−1

(
2

(𝑣𝑞)2
) < 0 . This shows that  

𝑔(𝑣) is decreasing on [0, 1]. If 𝔗𝑑̌𝑖𝑗 ≤ 𝔗𝑑̌𝑖𝑗
∗ , then 𝑔 (𝔗𝑑̌𝑖𝑗) ≤ 𝑔 (𝔗𝑑̌𝑖𝑗

∗ ).  

𝒥𝑑̌𝑖𝑗
𝑙 ≤ 𝒥ϛ𝑖𝑗

ℓ∗ ⇒ (𝒥𝑑̌𝑖𝑗
𝑙∗ )

𝑞

≤ (𝒥𝑑̌𝑖𝑗
𝑙∗ )

𝑞

. 

As Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1 = 1 and 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
𝑗=1 = 1. So,  

(((𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

≤ (((𝒥𝑑̌𝑖𝑗
𝑙∗ )

𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

  

⇒ 2(((𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

≤ 2(((𝒥𝑑̌𝑖𝑗
𝑙∗ )

𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

.   (3.13) 

As 𝒥𝑑̌𝑖𝑗
𝑙∗ ≤ 𝒥𝑑̌𝑖𝑗

𝑙   
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⇒ 2 − 𝒥𝑑̌𝑖𝑗
𝑙 ≤ 2 − 𝒥𝑑̌𝑖𝑗

𝑙∗   

⇒ (2 − 𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

≤ (2 − 𝒥𝑑̌𝑖𝑗
𝑙∗  )

𝑞

  

⇒ (2 − 𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

+ (𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

≤ (2 − 𝒥𝑑̌𝑖𝑗
𝑙∗ )

𝑞

+ (𝒥𝑑̌𝑖𝑗
𝑙∗ )

𝑞

  

⇒ (((2 − 𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+ (((𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

≤ (((2 − 𝒥𝑑̌𝑖𝑗
𝑙∗ )

𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+

(((𝒥𝑑̌𝑖𝑗
𝑙∗ )

𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

.      (3.14) 

Using inequalities (3.13) and (3.14). 

⇒

2(((𝒥𝑑̌𝑖𝑗
𝑙 )

𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

(((2 − 𝒥
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+ (((𝒥
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

≤

2(((𝒥𝑑̌𝑖𝑗
𝑙∗ )

𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

 

(((2 − 𝒥
𝑑̌𝑖𝑗

𝑙∗ )
𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+ (((𝒥
𝑑̌𝑖𝑗

𝑙∗ )
𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

 

⇒

√2(((𝒥
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

√(((2 − 𝒥
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+ (((𝒥
𝑑̌𝑖𝑗

𝑙 )
𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

≤

√2(((𝒥
𝑑̌𝑖𝑗

𝑙∗ )
𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

 
𝑞

√(((2 − 𝒥
𝑑̌𝑖𝑗

𝑙∗ )
𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+ (((𝒥
𝑑̌𝑖𝑗

𝑙∗ )
𝑞

)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

. 

Similarly,  

⇒

√2(((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

√(((2−𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+(((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

≤

√2(((𝒥
𝑑̌𝑖𝑗

𝓊∗ )

𝑞

)

∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

 

𝑞

√(((2−𝒥
𝑑̌𝑖𝑗

𝓊∗ )

𝑞

)

∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+(((𝒥
𝑑̌𝑖𝑗

𝓊∗ )

𝑞

)

∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

.  

So,  

[
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

≤

[
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊∗ )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

. 
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Hence,  

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) ≤ 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11
∗ , 𝔗𝑑̌12

∗ , …… … ,𝔗𝑑̌𝑛𝑚
∗ ). 

Theorem 3.8. Let 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  be a collection of IVq-ROFHSNs and 𝛽 > 0 . 

Then 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝛽𝔗𝑑̌11 , 𝛽𝔗𝑑̌12 , …… … , 𝛽𝔗𝑑̌𝑛𝑚) = 𝛽𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚). 

Proof. We know that 𝔗𝑑̌𝑖𝑗 represents the collection of IVq-ROFHSNs and 𝛽 > 0. then 

𝛽𝔗𝑑̌𝑖𝑗 =

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√((1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

−((1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

√((1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

+((1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

,

√((1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

−((1−(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

√((1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

+((1−(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2(((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

√((2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

+(((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

,

√2(((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

√((2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

+(((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

. 

So, 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝛽𝔗𝑑̌11 , 𝛽𝔗𝑑̌12 , …… … , 𝛽𝔗𝑑̌𝑛𝑚) =

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√((1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

−((1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

√((1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

+((1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

,

√((1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

−((1−(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

√((1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

+((1−(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2(((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

√((2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

+(((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

,

√2(((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

√((2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗

+(((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

𝛽Ω𝑖

)

𝛾𝑗𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

=  

(

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
√∏ ((∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1 −∏ ((∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1

𝑞

√∏ ((∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1 +∏ ((∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1

𝑞

,

√∏ ((∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1 −∏ ((∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1

𝑞

√∏ ((∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1 +∏ ((∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1

𝑞

]
 
 
 
 
 
 

,

[
 
 
 
 
 
 

√2∏ ((∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1

𝑞

√∏ ((∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1 +∏ ((∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1

𝑞

,

√2∏ ((∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1

𝑞

√∏ ((∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1 +∏ ((∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

)

𝛽

𝑚
𝑗=1

𝑞

]
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 

  

= 𝛽𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚
).  

Theorem 3.9. Let 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  be a collection of IVq-ROFHSVs and 𝔗𝑑̌ =
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([𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊], [𝒥𝑑̌
𝑙 , 𝒥𝑑̌

𝓊]) be an IVq-ROFHSV. Then 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 ⊕𝜀 𝔗𝑑̌, 𝔗𝑑̌12 ⊕𝜀 𝔗𝑑̌ , … , 𝔗𝑑̌𝑛𝑚 ⊕𝜀 𝔗𝑑̌) = 𝐼𝑉𝑞 −

𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) ⊕𝜀 𝔗𝑑̌. 

Proof. We know that 𝔗𝑑̌ and 𝔗𝑑̌𝑖𝑗  be two distinct IVq-ROFHSNs. Then, 

𝕿𝒅̌⊕𝜺 𝕿𝒅̌𝒊𝒋
==

(

 

[
 
 
 √(𝓣

𝒅̌𝒊𝒋

𝒍 )
𝒒

+(𝓣
𝒅̌
𝒍 )

𝒒𝒒

√𝟏+(𝓣
𝒅̌𝒊𝒋

𝒍 )
𝒒

(𝓣
𝒅̌
𝒍 )

𝒒𝒒
,

√(𝓣
𝒅̌𝒊𝒋

𝓾 )
𝒒

+(𝓣
𝒅̌
𝓾)

𝒒𝒒

√𝟏+(𝓣
𝒅̌𝒊𝒋

𝓾 )
𝒒

(𝓣
𝒅̌
𝓾)

𝒒𝒒

]
 
 
 

,

[
 
 
 √𝟐(𝓙

𝒅̌𝒊𝒋

𝒍 )
𝒒

(𝓙
𝒅̌
𝒍 )
𝒒𝒒

√𝟏+(𝟏−(𝓙
𝒅̌𝒊𝒋

𝒍 )
𝒒

)(𝟏−(𝓙
𝒅̌
𝒍 )
𝒒
)

𝒒
,

√𝟐(𝓙
𝒅̌𝒊𝒋

𝓾 )
𝒒

(𝓙
𝒅̌
𝓾)

𝒒𝒒

√𝟏+(𝟏−(𝓙
𝒅̌𝒊𝒋

𝓾 )
𝒒

)(𝟏−(𝓙
𝒅̌
𝓾)

𝒒
)

𝒒

]
 
 
 

)

 . 

From Eq (3.1), 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11 ⊕𝜀 𝔗𝑑̌, 𝔗𝑑̌12
⊕𝜀 𝔗𝑑̌, … , 𝔗𝑑̌𝑛𝑚 ⊕𝜀 𝔗𝑑̌) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  

∏

(

 
 
∏ (1+((𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

+(𝒯
𝑑̌
𝑙)
𝑞
))

Ω𝑖

𝑛
𝑖=1

)

 
 

𝛾𝑗

𝑚
𝑗=1 −∏

(

 
 
∏ (1−((𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

+(𝒯
𝑑̌
𝑙)
𝑞
))

Ω𝑖

𝑛
𝑖=1

)

 
 

𝛾𝑗

𝑚
𝑗=1

𝑞

√
  
  
  
  
  

∏

(

 
 
∏ (1+((𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

+(𝒯
𝑑̌
𝑙)
𝑞
))

Ω𝑖

𝑛
𝑖=1

)

 
 

𝛾𝑗

𝑚
𝑗=1 +∏

(

 
 
∏ (1−((𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

+(𝒯
𝑑̌
𝑙)
𝑞
))

Ω𝑖

𝑛
𝑖=1

)

 
 

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√
  
  
  
  
  

∏

(

 
 
∏ (1+((𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

+(𝒯
𝑑̌
𝓊)

𝑞
))

Ω𝑖

𝑛
𝑖=1

)

 
 

𝛾𝑗

𝑚
𝑗=1 −∏

(

 
 
∏ (1−((𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

+(𝒯
𝑑̌
𝓊)

𝑞
))

Ω𝑖

𝑛
𝑖=1

)

 
 

𝛾𝑗

𝑚
𝑗=1

𝑞

√
  
  
  
  
  

∏

(

 
 
∏ (1+((𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

+(𝒯
𝑑̌
𝓊)

𝑞
))

Ω𝑖

𝑛
𝑖=1

)

 
 

𝛾𝑗

𝑚
𝑗=1 +∏

(

 
 
∏ (1−((𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

+(𝒯
𝑑̌
𝓊)

𝑞
))

Ω𝑖

𝑛
𝑖=1

)

 
 

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 (((𝒥

𝑑̌
𝑙 )
𝑞
)
Ω𝑖
)

𝛾𝑗𝑞

√
  
  
  
  
  

∏

(

 
 
∏ (1+(1−(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)(1−(𝒥
𝑑̌
𝑙 )
𝑞
))

Ω𝑖

𝑛
𝑖=1

)

 
 

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 (((𝒥

𝑑̌
𝑙 )
𝑞
)
Ω𝑖
)

𝛾𝑗𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 (((𝒥

𝑑̌
𝓊)
𝑞
)
Ω𝑖
)

𝛾𝑗𝑞

√
  
  
  
  
  

∏

(

 
 
∏ (1+(1−(𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)(1−(𝒥
𝑑̌
𝓊)

𝑞
))

Ω𝑖

𝑛
𝑖=1

)

 
 

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 (((𝒥

𝑑̌
𝓊)

𝑞
)
Ω𝑖
)

𝛾𝑗𝑞

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
 

(

 
 
∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 ((1+(𝒯

𝑑̌
𝑙)
𝑞
)

∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

−∏ (∏ (1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

)

 
 
((1−(𝒯

𝑑̌
𝑙)
𝑞
)

∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

√
  
  
  
  
 

(

 
 
∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 ((1+(𝒯

𝑑̌
𝑙)
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+∏ (∏ (1−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

)

 
 
((1−(𝒯

𝑑̌
𝑙)
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

,

√
  
  
  
  
 

(

 
 
∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 ((1+(𝒯

𝑑̌
𝓊)

𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

−∏ (∏ (1−(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

)

 
 
((1−(𝒯

𝑑̌
𝓊)
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

√
  
  
  
  
 

(

 
 
∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 ((1+(𝒯

𝑑̌
𝓊)

𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+∏ (∏ (1−(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

)

 
 
((1−(𝒯

𝑑̌
𝓊)
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 (((𝒥

𝑑̌
𝑙 )
𝑞
)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 (1+(1−(𝒥

𝑑̌
𝑙 )
𝑞
)
Ω𝑖
)

∑ 𝛾𝑗
𝑚
𝑗=1

+∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 (((𝒥

𝑑̌
𝑙 )
𝑞
)
Ω𝑖
)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 (((𝒥

𝑑̌
𝓊)
𝑞
)
Ω𝑖
)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 (1+(1−(𝒥

𝑑̌
𝓊)
𝑞
)

∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1

+∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 (((𝒥

𝑑̌
𝓊)
𝑞
)

∑ Ω𝑖
𝑛
𝑖=1

)

∑ 𝛾𝑗
𝑚
𝑗=1𝑞

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√(1+(𝒯
𝑑̌
𝑙)
𝑞
)∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −(1−(𝒯

𝑑̌
𝑙)
𝑞
)∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√(1+(𝒯
𝑑̌
𝑙)
𝑞
)∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +(1−(𝒯

𝑑̌
𝑙)
𝑞
)∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√(1+(𝒯
𝑑̌
𝓊)

𝑞
)∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −(1−(𝒯

𝑑̌
𝓊)

𝑞
)∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√(1+(𝒯
𝑑̌
𝓊)

𝑞
)∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +(1−(𝒯

𝑑̌
𝓊)

𝑞
)∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√(𝒥
𝑑̌
𝑙 )
𝑞
2∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√(1+(1−(𝒥
𝑑̌
𝑙 )
𝑞
))∏ (∏ (2−(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +(𝒥

𝑑̌
𝑙 )
𝑞
∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√(𝒥
𝑑̌
𝓊)

𝑞
2∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√(1+(1−(𝒥
𝑑̌
𝓊)

𝑞
))∏ (∏ (2−(𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +(𝒥ϛ

ひ
)

𝑞

∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

=

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√∏ (∏ (1+(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√2∏ (∏ ((𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

  

⊕𝜀 ([
√(1+(𝒯

𝑑̌
𝑙)
𝑞
)−(1−(𝒯

𝑑̌
𝑙)
𝑞
)

𝑞

√(1+(𝒯
𝑑̌
𝑙)
𝑞
)+(1−(𝒯

𝑑̌
𝑙)
𝑞
)

𝑞
,
√(1+(𝒯

𝑑̌
𝓊)

𝑞
)−(1−(𝒯

𝑑̌
𝓊)

𝑞
)

𝑞

√(1+(𝒯
𝑑̌
𝓊)

𝑞
)+(1−(𝒯

𝑑̌
𝓊)

𝑞
)

𝑞
] , [

√2((𝒥
𝑑̌
𝑙 )
𝑞
)

𝑞

√(1+(1−(𝒥
𝑑̌
𝑙 )
𝑞
))+((𝒥

𝑑̌
𝑙 )
𝑞
)

𝑞
,

√2((𝒥
𝑑̌
𝓊)

𝑞
)

𝑞

√(1+(1−(𝒥
𝑑̌
𝓊)

𝑞
))+((𝒥

𝑑̌
𝓊)

𝑞
)

𝑞
])  
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= 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐴(𝔗𝑑̌11
, 𝔗𝑑̌12

, … , 𝔗𝑑̌𝑛𝑚) ⊕ 𝔗𝑑̌. 

4. Einstein weighted average operators for interval-valued q-rung orthopair fuzzy hypersoft 

numbers 

Considering Einstein’s operational laws defined in Definition 3.1, the IVq-ROFHSEWG operator 

is proposed and evaluated. 

Definition 4.1. Let  𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  be a collection of interval-valued q-rung 

orthopair fuzzy hypersoft numbers. Then, the IVq-ROFHSEWG operator is defined as 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐺(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) = ⊗𝑗=1
𝑚 (⊗𝑖=1

𝑛 (𝔗𝑑̌𝑖𝑗)
Ω𝑖
)
γ𝑗

 

where 𝑖 = 1,2, …… . 𝑛 and 𝑗 = 1,2, …… .𝑚. Also, Ω𝑖 and γ𝑗 be the weights of experts and multi 

sub-attributes such as Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, γ𝑗 > 0, ∑ γ𝑗

𝑚
𝑗=1  = 1. 

Theorem 4.2. Let 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  be a collection of IVq-ROFHSNs. Then, the 

obtained aggregation value is also an IVq-ROFHSN and 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐺(𝔗𝑑̌11
, 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) = 

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

√2∏ (∏ ((𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒯
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒯

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√2∏ (∏ ((𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (2−(𝒯
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ ((𝒯

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√∏ (∏ (1+(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒥
𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒥

𝑑̌𝑖𝑗

𝑙 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

,

√∏ (∏ (1+(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 −∏ (∏ (1−(𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

√∏ (∏ (1+(𝒥
𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1 +∏ (∏ (1−(𝒥

𝑑̌𝑖𝑗

𝓊 )

𝑞

)

Ω𝑖
𝑛
𝑖=1 )

𝛾𝑗

𝑚
𝑗=1

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

 (4.1) 

where 𝑖 = 1,2, …… . 𝑛 and 𝑗 = 1,2, …… .𝑚. Also, Ω𝑖 and γ𝑗 be the weights of experts and multi 

sub-attributes such as Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, γ𝑗 > 0, ∑ γ𝑗

𝑚
𝑗=1  = 1. 

Proof. Like Theorem 3.3. 

Theorem 4.3. Let 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ]) be a collection of IVq-ROFSHNs. Then  

𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝑊𝐺(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) ≤ 𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐺(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚). 

Where, Ω𝑖 and 𝛾𝑗 be the experts and parameters weights, such as Ω𝑖, 𝛾𝑗 ∈ [0, 1], and ∑ Ω𝑖
𝑛
𝑖=1 = 1; 

∑ 𝛾𝑗
𝑚
𝑗=1 = 1 (𝑖 = 1, 2, 3, … ,𝑚; 𝑗 = 1, 2, 3, … , 𝑛). 

Proof. Like Theorem 3.4. 

Theorem 4.4. Let  𝔗𝑑̌𝑖𝑗 = 𝔗𝑑̌ = ([𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊], [𝒥𝑑̌
𝑙 , 𝒥𝑑̌

𝓊])  be a collection of interval-valued q-rung 

orthopair fuzzy hypersoft numbers. Where Ω𝑖  and γ𝑗  be the weights of experts and multi sub-

attributes such as Ω𝑖  >  0, ∑ Ω𝑖
𝑛
𝑖=1   = 1, γ𝑗  >  0, ∑ γ𝑗

𝑚
𝑗=1   = 1 ∀  𝑖 = 1,2, …… . 𝑛  and 𝑗 =

1,2, …… .𝑚. Then, 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐺(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) = 𝔗𝑑̌. 

Proof. Like Theorem 3.5. 
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Theorem 4.5. Let 𝔗𝑑̌𝑖𝑗
− = ([𝑚𝑖𝑛 (𝒯𝑑̌𝑖𝑗

𝑙 ) ,𝑚𝑖𝑛 (𝒯𝑑̌𝑖𝑗
𝓊 )] , [𝑚𝑎𝑥 (𝒥𝑑̌𝑖𝑗

𝑙 ) ,𝑚𝑎𝑥 (𝒥𝑑̌𝑖𝑗
𝓊 )])  and 𝔗𝑑̌𝑖𝑗

+ =

([𝑚𝑎𝑥 (𝒯𝑑̌𝑖𝑗
𝑙 ) ,𝑚𝑎𝑥 (𝒯𝑑̌𝑖𝑗

𝓊 )] , [𝑚𝑖𝑛 (𝒥𝑑̌𝑖𝑗
𝑙 ) ,𝑚𝑖𝑛 (𝒥𝑑̌𝑖𝑗

𝓊 )]). Then 

𝔗𝑑̌𝑖𝑗
− ≤ 𝐼𝑉𝑞 −  𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐺(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚)  ≤ 𝔗𝑑̌𝑖𝑗

+ . 

Proof. Like Theorem 3.6. 

Theorem 4.6. Let 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  and 𝔗𝑑̌𝑖𝑗
∗ = ([𝒯𝑑̌𝑖𝑗

𝑙∗ , 𝒯𝑑̌𝑖𝑗
𝓊∗] , [𝒥𝑑̌𝑖𝑗

𝑙∗ , 𝒥𝑑̌𝑖𝑗
𝓊∗])  be the 

collections of two distinct IVq-ROFHSNs, such as if 𝔗𝑑̌𝑖𝑗 ≤ 𝔗𝑑̌𝑖𝑗
∗  ∀ 𝑖, 𝑗. Then 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐺(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) ≤ 𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐺 (𝔗𝑑̌11
∗ , 𝔗𝑑̌12

∗ , …… … ,𝔗𝑑̌𝑛𝑚
∗ ). 

Proof. Like Theorem 3.7. 

Theorem 4.7. Let 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  be a collection of IVq-ROFHSNs and 𝛽 > 0 . 

Then 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐺(𝛽𝔗𝑑̌11 , 𝛽𝔗𝑑̌12 , …… … , 𝛽𝔗𝑑̌𝑛𝑚) = 𝛽𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐺(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚). 

Proof. Like Theorem 3.8. 

Theorem 4.8. Let 𝔗𝑑̌𝑖𝑗 = ([𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ] , [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ])  be a collection of IVq-ROFHSVs and 𝔗𝑑̌ =

([𝒯𝑑̌
𝑙, 𝒯𝑑̌

𝓊], [𝒥𝑑̌
𝑙 , 𝒥𝑑̌

𝓊]) be an IVq-ROFHSV. Then, 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐺(𝔗𝑑̌11 ⊗𝜀 𝔗𝑑̌ , 𝔗𝑑̌12 ⊗𝜀 𝔗𝑑̌, … , 𝔗𝑑̌𝑛𝑚 ⊗𝜀 𝔗𝑑̌) = 

𝐼𝑉𝑞 − 𝑅𝑂𝐹𝐻𝑆𝐸𝑊𝐺(𝔗𝑑̌11 , 𝔗𝑑̌12 , … , 𝔗𝑑̌𝑛𝑚) ⊗𝜀 𝔗𝑑̌. 

Proof. Similar to Theorem 3.9. 

5. Proposed multi-attribute group decision-making technique based on Einstein aggregation 

operators in IVq-ROFHSS structure 

Let ℌ = {ℌ1, ℌ2, ℌ3, … , ℌ𝑛}  and ℵ = {ℵ1, ℵ2, ℵ3, … , ℵ𝑠}  be a collection of 𝑛  experts and 𝑠 

alternatives. The weights of experts can be represented by Ω = (Ω1, Ω2, … , Ω𝑛)
𝑇  such as Ω𝑖 > 0 , 

∑ Ω𝑖
𝑛
𝑖=1 = 1. Let Ϛ = {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑚} be a collection of attributes with their corresponding sub-

attributes, such as 𝔏′ = {(𝑑1𝜌 × 𝑑2𝜌 ×…× 𝑑𝑚𝜌) for all 𝜌 ∈ {1, 2, … , 𝑡} } . The weights of sub-

attributes can be represented by γ = (γ1𝜌, γ2𝜌, γ3𝜌, … , γ𝑚𝜌)
𝑇
 such as γ𝜌 > 0, ∑ γ𝜌

𝑡
𝜌=1 = 1. For the 

reader’s convenience, we can express the collection of sub-attributes, such as 𝔏′ = {𝑑̌𝜕: 𝜕 ∈

{1, 2, … ,𝑚}}. The team of experts {ℌ𝑖: 𝑖 =  1, 2, … , 𝑛} provides their preferences for each alternative 

{ℵ(𝑧): 𝑧 = 1, 2, … , 𝑠}  in IVq-ROFHSNs: (ℵ
𝑑̌𝑖𝑘

(𝑧)
)
𝑛×𝑚

= (𝒯𝑑̌𝑖𝑗 , 𝒥𝑑̌𝑖𝑗)𝑛×𝑚
 , where 𝒯𝑑̌𝑖𝑗 = [𝒯𝑑̌𝑖𝑗

𝑙 , 𝒯𝑑̌𝑖𝑗
𝓊 ] 

and 𝒥𝑑̌𝑖𝑗 = [𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ] such as 0 ≤ 𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 , 𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ≤ 1 and 𝒯𝑑̌𝑖𝑗
𝓊 + 𝒥𝑑̌𝑖𝑗

𝓊 ≤ 1, ∀ 𝑖, 𝑗 and 𝑞 > 2. 

The MAGDM model can be described in the following way. Our approach is consistent with 

several studies’ endeavors to address this issue. The data obtained from many sources, including our 

team of scientists, is combined using an aggregation method that can be applied across several channels. 

Figure 1 provides a summary of the diagram, which demonstrates the process that is under discussion. 

Analyzing this data aims to identify the most optimal alternatives to carry out the following actions: 
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Step 1. Construct the decision matrices with the corresponding sub-attributes for each alternative 

{ℵ𝑧: 𝑧 =  1, 2, … , 𝑠} in IVq-ROFHSNs. 

[ℵ
𝑑̌𝑖𝑗

(𝑧)
]
𝑛×m

=

ℌ1

ℌ2

⋮
ℌ𝑛

(

  
 

([𝒯𝑑̌11
𝑙 , 𝒯𝑑̌11

𝓊 ] , [𝒥𝑑̌11
𝑙 , 𝒥𝑑̌11

𝓊 ]) ([𝒯𝑑̌12
𝑙 , 𝒯𝑑̌12

𝓊 ] , [𝒥𝑑̌12
𝑙 , 𝒥𝑑̌12

𝓊 ]) ⋯ ([𝒯𝑑̌1𝑚
𝑙 , 𝒯𝑑̌1𝑚

𝓊 ] , [𝒥𝑑̌1𝑚
𝑙 , 𝒥𝑑̌1𝑚

𝓊 ])

([𝒯𝑑̌21
𝑙 , 𝒯𝑑̌21

𝓊 ] , [𝒥𝑑̌21
𝑙 , 𝒥𝑑̌21

𝓊 ]) ([𝒯𝑑̌22
𝑙 , 𝒯𝑑̌22

𝓊 ] , [𝒥𝑑̌22
𝑙 , 𝒥𝑑̌22

𝓊 ]) ⋯ ([𝒯𝑑̌2𝑚
𝑙 , 𝒯𝑑̌2𝑚

𝓊 ] , [𝒥𝑑̌2𝑚
𝑙 , 𝒥𝑑̌2𝑚

𝓊 ])

⋮ ⋮ ⋮ ⋮

([𝒯𝑑̌𝑛1
𝑙 , 𝒯𝑑̌𝑛1

𝓊 ] , [𝒥𝑑̌𝑛1
𝑙 , 𝒥𝑑̌𝑛1

𝓊 ]) ([𝒯𝑑̌𝑛2
𝑙 , 𝒯𝑑̌𝑛2

𝓊 ] , [𝒥𝑑̌𝑛2
𝑙 , 𝒥𝑑̌𝑛2

𝓊 ]) ⋯ ([𝒯𝑑̌𝑛𝑚
𝑙 , 𝒯𝑑̌𝑛𝑚

𝓊 ] , [𝒥𝑑̌𝑛𝑚
𝑙 , 𝒥𝑑̌𝑛𝑚

𝓊 ]))

  
 
. 

Step 2. To analyze the matrix [ℵ
𝑑̌𝑖𝑗

(𝑧)
]
𝑛×m

, the parameters are divided into two categories: costs and 

benefits. When the parameters are the same, there is no need for the normalization procedure. 

Normalization is necessary to classify judgments that have several characteristic characteristics. The 

following is a description of the normalization techniques in order: 

𝒽𝑖𝑗 = {
(ℵ

𝑑̌𝑖𝑗

(𝑧)
)
𝑐

= ([𝒥𝑑̌𝑖𝑗
𝑙 , 𝒥𝑑̌𝑖𝑗

𝓊 ] , [𝒯𝑑̌𝑖𝑗
𝑙 , 𝒯𝑑̌𝑖𝑗

𝓊 ]) ;  cost type parameter

ℵ
𝑑̌𝑖𝑗

(𝑧)
= ([𝒯𝑑̌𝑖𝑗

𝑙 , 𝒯𝑑̌𝑖𝑗
𝓊 ] , [𝒥𝑑̌𝑖𝑗

𝑙 , 𝒥𝑑̌𝑖𝑗
𝓊 ]) ;  benefit type parameter

. 

Step 3. Determine the cumulative values for each possibility using Eqs (3.1) or (4.1). 

Step 4. Determine the score values for every alternative using Eq (2.1). 

Step 5. The other options are arranged based on their scores to determine the most favorable 

alternative(s), with the greatest attainable value representing the preferred choice. 

Step 6. Rank the alternatives. 

 

Figure 1. Flow chart of the proposed MAGDM model. 

6. Application of the proposed MAGDM technique in energy 

Energy suppliers are essential for managing energy by facilitating effective distribution and 

Step 4: Find the score values for each 

alternative using Eq (2.1). 

Experts 

S
tep

 1 
Parameters  

Sub-parameters 

Alternatives  

Experts’ opinion in IVq-ROFHSN 

Step 2: Normalized the expert’s opinion 

using normalization rule, if different 

types of parameters involved 

Step 3: Compute the aggregated decision 

matrices using Eqs (3.1) or (4.1). 

Step 5: Optimal alternative with 

maximum score value 

Alternatives ranking 
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consumption. Energy intermediaries play a crucial role in connecting energy suppliers and customers, 

guaranteeing the reliable and cost-effective delivery of energy from different sources, including fossil 

fuels, nuclear power, and renewable resources. Energy providers play a crucial role in distributing 

energy and defining the energy market by providing various pricing plans, promoting competition, and 

encouraging innovation in energy solutions. Energy suppliers provide consumers with competitive rate 

structures and flexible contract terms, enabling them to make well-informed choices that align with 

their financial and operational requirements. By promoting the implementation of renewable energy 

sources and executing initiatives that minimize carbon footprints, energy suppliers are at the core of 

environmentally friendly activities. These inventions make demand-management tactics more efficient 

while also increasing energy efficiency. Their participation is necessary to create an energy system that 

is balanced, feasible, and efficient. 

6.1. Criteria description 

6.1.1. Reliability and service quality  

An energy supplier’s predictability and customer service are essential factors that significantly 

affect the consistency and stability of energy delivery to customers. A reliable renewable energy source 

that secures an adequate electrical supply, minimizing the frequency and duration of blackouts through 

sturdy structures and scheduled upkeep. The availability of the power supply is crucial for commercial 

and residential users since failures can lead to significant problems, operational failures, and monetary 

loss. Superb service level encompasses efficient and flexible client assistance that is easy to find to 

resolve queries and rectify complications, boosting client retention and credibility. Moreover, it is 

essential to obtain superior technical support to swiftly handle technological problems and ensure 

disruptions are effectively and quickly addressed. This assistance includes frequent revisions and 

transparent engagement during service disruptions or maintenance activities to ensure consumers are 

well-informed and prepared. Suppliers exhibiting remarkable reliability and service excellence often 

allocate substantial resources to advanced technologies such as smart grids and real-time monitoring 

systems. These technologies enhance the stability and efficiency of energy delivery. These attributes 

are crucial for forging a strong and dependable customer relationship, fostering enduring loyalty, and 

maintaining a competitive edge in the energy sector. 

6.1.2. Sustainability and environmental impact 

Modern energy providers are progressively concentrating on sustainability and reducing their 

environmental footprint, along with the global movement towards adopting more eco-friendly and 

liable energy techniques. Sustainable energy providers emphasize the integration of renewable energy 

sources, including solar, wind, and hydroelectric electricity, into their portfolios. This reduces reliance 

on fossil fuels and mitigates greenhouse gas emissions. This action contributes to alleviating climate 

change, promotes energy diversification, and strengthens security. Furthermore, numerous suppliers 

implement comprehensive strategies to reduce carbon emissions, including investments in energy-

efficient technology and participation in carbon offset schemes. Environmental certifications, such as 

Green-e, bolster the credibility of their commitment to sustainable practices, providing consumers with 

confidence in their environmentally responsible choices. Sustainable energy providers often engage in 

community and environmental activities, including reforestation projects, habitat restoration, and 

educational campaigns to promote environmental awareness. These suppliers enhance the conservation 
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of assets and safeguard ecosystems by emphasizing sustainability, thus securing a healthier earth for 

future generations. Their efforts also attract several ecologically conscious consumers seeking to align 

their energy consumption with their ecological values. Eventually, prioritizing sustainability and the 

environmental effects positions these suppliers as leaders in the energy sector and fosters a more 

resilient and sustainable energy system. 

6.1.3. Contract terms and flexibility 

Careful consideration of the agreement terms and mobility is required when selecting an energy 

provider; these factors directly affect the energy service’s adaptability and convenience. Individuals 

can choose contract lengths that work for them from shorter contracts, which offer customers greater 

leeway to switch providers to longer ones that usually provide cost savings and rate stability. 

Familiarity with the renewal regulations is critical. If the renewal terms are fair and transparent, 

customers are protected from being forced into less favorable terms when the initial contract expires. 

Also, it is easy to change energy needs or preferences because you can change or improve plans without 

paying a hefty penalty. Importantly, exit provisions outline the steps to end the contract early without 

spending a fortune. Businesses with fluctuating energy needs or people planning to find this flexibility 

particularly useful. Flexible payment options, such as prepayment plans, budget billing, or monthly 

billing cycles, allow customers to manage their money better, boosting customer satisfaction. Energy 

providers can foster deeper, longer-lasting relationships by emphasizing transparent and adaptable contract 

conditions. With this strategy, they can win customers' trust while catering to their unique requirements. 

6.1.4. Pricing and cost structures 

Pricing and cost structures influence energy supplier selection since they influence affordable and 

predictable energy usage. Energy providers often provide customers with a choice between different 

rate plans. One option is a fixed rate, which offers protection and stability from fluctuations in the 

market. The other is a variable rate, which can be more advantageous when prices are low. In addition 

to the base rate per kilowatt-hour, there may be additional charges for service fees, maintenance costs, 

and penalties for early termination. It’s important to understand the whole price structure. Consumers 

can better manage their budgets and avoid unexpected expenses when these prices are communicated 

clearly and openly. In addition, some providers may provide time-of-use or tiered pricing, which lets 

customers save money by adjusting their energy usage during off-peak times. Also, you can save 

money in the long run by taking advantage of sales and incentives, including rebates for energy-

efficient equipment or discounted rates for longer commitments. By offering flexible price plans and 

clear, up-front pricing structures, energy providers empower customers to make educated selections 

that match their budgetary needs and consumption habits. A comprehensive pricing strategy is essential 

in the cutthroat energy market since it fosters customer confidence and satisfaction. 

6.1.5. Reputation and track record  

An energy provider’s reliability, trustworthiness, and overall efficacy can be inferred from their 

track record and reputation, which are, therefore, essential factors to consider when making an 

evaluation. Over time, a solid reputation is built by reliably meeting or exceeding customer 

expectations, maintaining a steady flow of energy, and cultivating positive client relationships. You 

may learn a lot about a supplier’s strengths and potential weaknesses by reading reviews and 
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testimonials from current and previous customers. In addition, a supplier’s track record of reliably 

meeting customer demands and complying with ever-changing regulations often indicates their skill 

in this area. Consideration of regulatory compliance is vital because suppliers who have faithfully 

adhered to industry standards and laws are more likely to maintain operational integrity and ethical 

practices. Recognized for their commitment to innovation and excellence, suppliers are given 

credibility boosts through awards, certificates, and other industry accolades. Suppose customers 

choose an energy provider with a solid reputation and a track record of success. In that case, they can 

rest assured that their energy will be reliably supplied and they will receive excellent service. Increased 

happiness and loyalty from customers is the inevitable outcome. 

6.2. Numerical example  

Let ℌ = {𝐸𝑆𝐶1, 𝐸𝑆𝐶2, 𝐸𝑆𝐶3, 𝐸𝑆𝐶4, 𝐸𝑆𝐶5} be a collection of five energy supplier companies. 

Let ℵ = {ℵ1, ℵ2, ℵ3, ℵ4, ℵ5} be a team of five experts with the same weights (0.2, 0.2, 0.2, 0.2, 0.2)𝑇. 

Experts define the crucial factors to find the most appropriate energy supplier, such as Ϛ = {𝑑1 = 

reliability and service quality, 𝑑2 = sustainability and environmental impact, 𝑑3 = contract terms 

and flexibility, 𝑑4 = pricing and cost structures, 𝑑5= reputation and track record}. The sub-factors 

for these parameters are {𝑑1 : reliability and service quality = {𝑑11  = service availability, 𝑑12  = 

technical support }}, {𝑑2: sustainability and environmental impact = {𝑑21 = carbon footprint, 𝑑22 = 

certifications and compliance}}, {𝑑3: contract terms and flexibility = {𝑑31 = contract length, 𝑑32 = 

exit clauses}}, {𝑑4 : pricing and cost structures = {𝑑41  = incentives and discounts}}, and {𝑑5 : 

reputation and track record = {𝑑51 = customer reviews and testimonials}}. Let 𝔏′ = 𝑑1 × 𝑑2 × 𝑑3 ×
𝑑4 × 𝑑5  represents the multi- sub-factors such as 𝔏′ = 𝑑1 × 𝑑2 × 𝑑3 × 𝑑4 × 𝑑5 = {𝑑11, 𝑑12} ×
{𝑑21, 𝑑22} × {𝑑31, 𝑑32} × {𝑑41} × {𝑑51}  = { (𝑑11, 𝑑21, 𝑑31, 𝑑41, 𝑑51) , (𝑑11, 𝑑22, 𝑑31, 𝑑41, 𝑑51) , 

(𝑑11, 𝑑21, 𝑑32, 𝑑41, 𝑑51) , (𝑑11, 𝑑22, 𝑑32, 𝑑41, 𝑑51) , (𝑑12, 𝑑21, 𝑑31, 𝑑41, 𝑑51) , (𝑑12, 𝑑22, 𝑑31, 𝑑41, 𝑑51) , 
(𝑑12, 𝑑21, 𝑑32, 𝑑41, 𝑑51) , (𝑑12, 𝑑22, 𝑑32, 𝑑41, 𝑑51) } = {𝑑̌1, 𝑑̌2, 𝑑̌3, 𝑑̌4, 𝑑̌5, 𝑑̌6, 𝑑̌7, 𝑑̌8}  with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. After completing each component of the evaluation of 

these eight criteria, the stakeholders will select one of the five options per their views on IVq-

ROFHSNs; a visual illustration of the employed method is given in Figure 2. 

Implementing this technique makes it possible to deliver the solution that is ideally suitable under 

the specifications that have been stated. By evaluating these elements comprehensively, analysts may 

be able to provide the energy suppliers with the best and most ideal solution. IVq-ROFHSNs are used 

to transmit the expert opinions for each option presented in Table 1, which are then incorporated into 

the MAGDM approach. The Einstein AOs included in Sections 3 and 4 are used in this technique to 

determine which energy supplier is the most pragmatic in energy management. 
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Figure 2. Criteria selection for energy suppliers. 

6.2.1. Selection of energy supplier using the IVq-ROFHSEWA operator 

Step 1. Decision matrices with the corresponding sub-attributes for each alternative in the form of IVq-

ROFHSNs is given in Table 1. 

Step 2. Pricing and cost structures 𝑑4 be the cost type parameter with sub-criteria 𝑑41. The multi-

sub characteristics and sub-criteria are {𝑑̌1, 𝑑̌2, 𝑑̌3, 𝑑̌4, 𝑑̌5, 𝑑̌6, 𝑑̌7, 𝑑̌8}, as we are aware of. Since 𝑑41 

appears in all multi-sub attributes, showing that each characteristic includes cost type sub-criteria. 

Consequently, normalize the decision matrix by following the normalization rule. Table 2 displays the 

normalization choice matrix. 

  

Criteria’s for energy supplier selection 

Choose the most suitable supplier in energy management 

reliability and 

service quality 

sustainability and 

environmental 

contract terms and 

flexibility 

pricing and 

cost structures 

reputation and 

track record 

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

𝑑11 𝑑12 𝑑21 𝑑22 𝑑31 𝑑32 𝑑41 𝑑51 

𝐸𝑆𝐶1 𝐸𝑆𝐶2 𝐸𝑆𝐶3 𝐸𝑆𝐶4 𝐸𝑆𝐶5 

𝑑̌1 𝑑̌2 𝑑̌3 𝑑̌4 𝑑̌5 𝑑̌6 𝑑̌7 𝑑̌8 
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Table 1. Expert’s preferences for each alternative in IVq-ROFHNs. 

𝕳𝟏 𝒅̌𝟏 𝒅̌𝟐 𝒅̌𝟑 𝒅̌𝟒 𝒅̌𝟓 𝒅̌𝟔 𝒅̌𝟕 𝒅̌𝟖 

ℵ𝟏 (
[0.6,0.8],
[0.5,0.6]

) (
[0.1,0.2],
[0.4,0.6]

) (
[0.4,0.6],
[0.3,0.7]

) (
[0.1,0.8],
[0.4,0.6]

) (
[0.3,0.6],
[0.6,0.7]

) (
[0.2,0.7],
[0.3,0.6]

) (
[0.2,0.6],
[0.4,0.7]

) (
[0.2,0.5],
[0.5,0.8]

) 

ℵ𝟐 (
[0.5,0.6],
[0.4,0.7]

) (
[0.2,0.7],
[0.3,0.6]

) (
[0.2,0.5],
[0.5,0.8]

) (
[0.3,0.6],
[0.4,0.8]

) (
[0.1,0.6],
[0.5,0.8]

) (
[0.4,0.6],
[0.5,0.7]

) (
[0.3,0.5],
[0.2,0.8]

) (
[0.3, 0.6],
[0.4,0.6]

) 

ℵ𝟑 (
[0.6,0.7],
[0.2,0.7]

) (
[0.5,0.7],
[0.1,0.7]

) (
[0.2,0.5],
[0.1,0.3]

) (
[0.3,0.8],
[0.2,0.5]

) (
[0.7,0.8],
[0.4, .0.5]

) (
[0.3,0.5],
[0.6,0.8]

) (
[0.4,0.6],
[0.3,0.5]

) (
[0.5,0.7],
[0.4,0.6]

) 

ℵ𝟒 (
[0.1,0.4],
[0.4,0.6]

) (
[0.3,0.6],
[0.1,0.7]

) (
[0.1,0.8],
[0.3,0.5]

) (
[0.2,0.3],
[0.1,0.8]

) (
[0.7,0.8],
[0.5,0.6]

) (
[0.5,0.7],
[0.3,0.6]

) (
[0.4,0.6],
[0.3,0.7]

) (
[0.5,0.7],
[0.4,0.7]

) 

ℵ𝟓 (
[0.3,0.6],
[0.4,0.8]

) (
[0.3,0.7],
[0.4,0.6]

) (
[0.2,0.8],
[0.6,0.6]

) (
[0.3,0.6],
[0.5,0.8]

) (
[0.1,0.8],
[0.4,0.5]

) (
[0.5,0.8],
[0.3,0.5]

) (
[0.5,0.7],
[0.4,0.5]

) (
[0.3,0.6],
[0.2,0.5]

) 

𝕳𝟐         

ℵ𝟏 (
[0.2,0.5],
[0.5,0.8]

) (
[0.4,0.7],
[0.4,0.5]

) (
[0.4,0.9],
[0.1,0.4]

) (
[0.4,0.7],
[0.1,0.6]

) (
[0.6,0.7],
[0.2,0.6]

) (
[0.5,0.9],
[0.3,0.6]

) (
[0.6,0.7],
[0.3,0.6]

) (
[0.5,0.7],
[0.3,0.6]

) 

ℵ𝟐 (
[0.3, 0.6],
[0.4,0.6]

) (
[0.2,0.6],
[0.5,0.8]

) (
[0.5,0.7],
[0.5,0.7]

) (
[0.1,0.4],
[0.1,0.8]

) (
[0.6,0.9],
[0.3,0.4]

) (
[0.4,0.7],
[0.6,0.8]

) (
[0.2,0.4],
[0.5,0.8]

) (
[0.4,0.9],
[0.3,0.6]

) 

ℵ𝟑 (
[0.5,0.7],
[0.4,0.6]

) (
[0.2,0.8],
[0.3,0.4]

) (
[0.6,0.8],
[0.3,0.5]

) (
[0.3,0.4],
[0.5,0.5]

) (
[0.2,0.5],
[0.4,0.8]

) (
[0.5,0.8],
[0.4,0.7]

) (
[0.3,0.6],
[0.3,0.5]

) (
[0.2,0.7],
[0.5,0.8]

) 

ℵ𝟒 (
[0.5,0.7],
[0.4,0.7]

) (
[0.4,0.8],
[0.3,0.6]

) (
[0.2,0.5],
[0.6,0.7]

) (
[0.2,0.4],
[0.6,0.8]

) (
[0.3,0.8],
[0.5,0.7]

) (
[0.3,0.5],
[0.6,0.7]

) (
[0.4,0.7],
[0.3,0.6]

) (
[0.4,0.8],
[0.6,0.7]

) 

ℵ𝟓 (
[0.3,0.6],
[0.2,0.5]

) (
[0.3,0.9],
[0.5,0.6]

) (
[0.2,0.3],
[0.6,0.8]

) (
[0.2,0.4],
[0.5,0.9]

) (
[0.4,0.8],
[0.4,0.8]

) (
[0.4,0.6],
[0.6,0.8]

) (
[0.3,0.5],
[0.4,0.9]

) (
[0.3,0.7],
[0.5,0.8]

) 

𝕳𝟑         

ℵ𝟏 (
[0.5,0.7],
[0.3,0.8]

) (
[0.4,0.5],
[0.2,0.6]

) (
[0.5,0.9],
[0.3,0.5]

) (
[0.5,0.9],
[0.3,0.4]

) (
[0.2,0.5],
[0.5,0.8]

) (
[0.4,0.7],
[0.1,0.6]

) (
[0.6,0.7],
[0.2,0.6]

) (
[0.1,0.8],
[0.4,0.6]

) 

ℵ𝟐 (
[0.2,0.4],
[0.5,0.8]

) (
[0.4,0.9],
[0.3,0.6]

) (
[0.2,0.6],
[0.5,0.8]

) (
[0.6,0.8],
[0.3,0.4]

) (
[0.4,0.7],
[0.6,0.8]

) (
[0.1,0.4],
[0.1,0.8]

) (
[0.6,0.9],
[0.3,0.4]

) (
[0.3,0.6],
[0.4,0.8]

) 

ℵ𝟑 (
[0.3,0.6],
[0.3,0.5]

) (
[0.2,0.7],
[0.5,0.8]

) (
[0.2,0.8],
[0.3,0.4]

) (
[0.1,0.3],
[0.6,0.7]

) (
[0.5,0.8],
[0.4,0.7]

) (
[0.3,0.4],
[0.5,0.5]

) (
[0.2,0.5],
[0.4,0.8]

) (
[0.3,0.8],
[0.2,0.5]

) 

ℵ𝟒 (
[0.4,0.7],
[0.3,0.6]

) (
[0.4,0.8],
[0.6,0.7]

) (
[0.4,0.8],
[0.3,0.6]

) (
[0.3,0.8],
[0.4,0.6]

) (
[0.3,0.5],
[0.6,0.7]

) (
[0.2,0.4],
[0.6,0.8]

) (
[0.3,0.8],
[0.5,0.7]

) (
[0.2,0.3],
[0.1,0.8]

) 

ℵ𝟓 (
[0.3,0.5],
[0.4,0.9]

) (
[0.3,0.7],
[0.5,0.8]

) (
[0.3,0.9],
[0.5,0.6]

) (
[0.3,0.4],
[0.4,0.5]

) (
[0.4,0.6],
[0.6,0.8]

) (
[0.2,0.4],
[0.5,0.9]

) (
[0.4,0.8],
[0.4,0.8]

) (
[0.3,0.6],
[0.5,0.8]

) 

𝕳𝟒         

ℵ𝟏 (
[0.2,0.6],
[0.4,0.7]

) (
[0.2,0.5],
[0.5,0.8]

) (
[0.2,0.7],
[0.3,0.6]

) (
[0.3,0.6],
[0.6,0.7]

) (
[0.1,0.8],
[0.4,0.6]

) (
[0.4,0.6],
[0.3,0.7]

) (
[0.1,0.2],
[0.4,0.6]

) (
[0.6,0.8],
[0.5,0.6]

) 

ℵ𝟐 (
[0.3,0.5],
[0.2,0.8]

) (
[0.3, 0.6],
[0.4,0.6]

) (
[0.4,0.6],
[0.5,0.7]

) (
[0.1,0.6],
[0.5,0.8]

) (
[0.3,0.6],
[0.4,0.8]

) (
[0.2,0.5],
[0.5,0.8]

) (
[0.2,0.7],
[0.3,0.6]

) (
[0.5,0.6],
[0.4,0.7]

) 

ℵ𝟑 (
[0.4,0.6],
[0.3,0.5]

) (
[0.5,0.7],
[0.4,0.6]

) (
[0.3,0.5],
[0.6,0.8]

) (
[0.7,0.8],
[0.4, .0.5]

) (
[0.3,0.8],
[0.2,0.5]

) (
[0.2,0.5],
[0.1,0.3]

) (
[0.5,0.7],
[0.1,0.7]

) (
[0.6,0.7],
[0.2,0.7]

) 

ℵ𝟒 (
[0.4,0.6],
[0.3,0.7]

) (
[0.5,0.7],
[0.4,0.7]

) (
[0.5,0.7],
[0.3,0.6]

) (
[0.7,0.8],
[0.5,0.6]

) (
[0.2,0.3],
[0.1,0.8]

) (
[0.1,0.8],
[0.3,0.5]

) (
[0.3,0.6],
[0.1,0.7]

) (
[0.1,0.4],
[0.4,0.6]

) 

ℵ𝟓 (
[0.5,0.7],
[0.4,0.5]

) (
[0.3,0.6],
[0.2,0.5]

) (
[0.5,0.8],
[0.3,0.5]

) (
[0.1,0.8],
[0.4,0.5]

) (
[0.3,0.6],
[0.5,0.8]

) (
[0.2,0.8],
[0.6,0.6]

) (
[0.3,0.7],
[0.4,0.6]

) (
[0.3,0.6],
[0.4,0.8]

) 

𝕳𝟓         

ℵ𝟏 (
[0.5,0.7],
[0.3,0.6]

) (
[0.6,0.7],
[0.2,0.6]

) (
[0.5,0.9],
[0.3,0.6]

) (
[0.5,0.7],
[0.3,0.8]

) (
[0.4,0.9],
[0.1,0.4]

) (
[0.4,0.7],
[0.1,0.6]

) (
[0.5,0.9],
[0.3,0.6]

) (
[0.6,0.7],
[0.3,0.6]

) 

ℵ𝟐 (
[0.4,0.9],
[0.3,0.6]

) (
[0.6,0.9],
[0.3,0.4]

) (
[0.4,0.7],
[0.6,0.8]

) (
[0.2,0.4],
[0.5,0.8]

) (
[0.5,0.7],
[0.5,0.7]

) (
[0.1,0.4],
[0.1,0.8]

) (
[0.4,0.7],
[0.6,0.8]

) (
[0.2,0.4],
[0.5,0.8]

) 

ℵ𝟑 (
[0.2,0.7],
[0.5,0.8]

) (
[0.2,0.5],
[0.4,0.8]

) (
[0.5,0.8],
[0.4,0.7]

) (
[0.3,0.6],
[0.3,0.5]

) (
[0.6,0.8],
[0.3,0.5]

) (
[0.3,0.4],
[0.5,0.5]

) (
[0.5,0.8],
[0.4,0.7]

) (
[0.3,0.6],
[0.3,0.5]

) 

ℵ𝟒 (
[0.4,0.8],
[0.6,0.7]

) (
[0.3,0.8],
[0.5,0.7]

) (
[0.3,0.5],
[0.6,0.7]

) (
[0.4,0.7],
[0.3,0.6]

) (
[0.2,0.5],
[0.6,0.7]

) (
[0.2,0.4],
[0.6,0.8]

) (
[0.3,0.5],
[0.6,0.7]

) (
[0.4,0.7],
[0.3,0.6]

) 

ℵ𝟓 (
[0.3,0.7],
[0.5,0.8]

) (
[0.4,0.8],
[0.4,0.8]

) (
[0.4,0.6],
[0.6,0.8]

) (
[0.3,0.5],
[0.4,0.9]

) (
[0.2,0.3],
[0.6,0.8]

) (
[0.2,0.4],
[0.5,0.9]

) (
[0.4,0.6],
[0.6,0.8]

) (
[0.3,0.5],
[0.4,0.9]

) 
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Table 2. Normalized decision matrices. 

𝕳𝟏 𝒅̌𝟏 𝒅̌𝟐 𝒅̌𝟑 𝒅̌𝟒 𝒅̌𝟓 𝒅̌𝟔 𝒅̌𝟕 𝒅̌𝟖 

ℵ𝟏 (
[0.5,0.6],
[0.6,0.8]

) (
[0.4,0.6],
[0.1,0.2]

) (
[0.3,0.7],
[0.4,0.6]

) (
[0.1,0.8],
[0.4,0.6]

) (
[0.6,0.7],
[0.3,0.6]

) (
[0.3,0.6],
[0.2,0.7]

) (
[0.4,0.7],
[0.2,0.6]

) (
[0.5,0.8],
[0.2,0.5]

) 

ℵ𝟐 (
[0.4,0.7],
[0.5,0.6]

) (
[0.3,0.6],
[0.2,0.7]

) (
[0.5,0.8],
[0.2,0.5]

) (
[0.4,0.8],
[0.3,0.6]

) (
[0.5,0.8],
[0.1,0.6]

) (
[0.5,0.7],
[0.4,0.6]

) (
[0.2,0.8],
[0.3,0.5]

) (
[0.4,0.6],
[0.3, 0.6]

) 

ℵ𝟑 (
[0.2,0.7],
[0.6,0.7]

) (
[0.1,0.7],
[0.5,0.7]

) (
[0.1,0.3],
[0.2,0.5]

) (
[0.2,0.5],
[0.3,0.8]

) (
[0.4, .0.5],
[0.7,0.8]

) (
[0.6,0.8],
[0.3,0.5]

) (
[0.3,0.5],
[0.4,0.6]

) (
[0.4,0.6],
[0.5,0.7]

) 

ℵ𝟒 (
[0.4,0.6],
[0.1,0.4]

) (
[0.1,0.7],
[0.3,0.6]

) (
[0.3,0.5],
[0.1,0.8]

) (
[0.1,0.8],
[0.2,0.3]

) (
[0.5,0.6],
[0.7,0.8]

) (
[0.3,0.6],
[0.5,0.7]

) (
[0.3,0.7],
[0.4,0.6]

) (
[0.4,0.7],
[0.5,0.7]

) 

ℵ𝟓 (
[0.4,0.8],
[0.3,0.6]

) (
[0.4,0.6],
[0.3,0.7]

) (
[0.6,0.6],
[0.2,0.8]

) (
[0.5,0.8],
[0.3,0.6]

) (
[0.1,0.8],
[0.4,0.5]

) (
[0.3,0.5],
[0.5,0.8]

) (
[0.4,0.5],
[0.5,0.7]

) (
[0.2,0.5],
[0.3,0.6]

) 

𝕳𝟐         

ℵ𝟏 (
[0.5,0.8],
[0.2,0.5]

) (
[0.4,0.5],
[0.4,0.7]

) (
[0.1,0.4],
[0.4,0.9]

) (
[0.1,0.6],
[0.4,0.7]

) (
[0.2,0.6],
[0.6,0.7]

) (
[0.3,0.6],
[0.5,0.9]

) (
[0.3,0.6],
[0.6,0.7]

) (
[0.3,0.6],
[0.5,0.7]

) 

ℵ𝟐 (
[0.4,0.6],
[0.3, 0.6]

) (
[0.5,0.8],
[0.2,0.6]

) (
[0.5,0.7],
[0.5,0.7]

) (
[0.1,0.8],
[0.1,0.4]

) (
[0.3,0.4],
[0.6,0.9]

) (
[0.6,0.8],
[0.4,0.7]

) (
[0.5,0.8],
[0.2,0.4]

) (
[0.3,0.6],
[0.4,0.9]

) 

ℵ𝟑 (
[0.4,0.6],
[0.5,0.7]

) (
[0.3,0.4],
[0.2,0.8]

) (
[0.3,0.5],
[0.6,0.8]

) (
[0.5,0.5],
[0.3,0.4]

) (
[0.4,0.8],
[0.2,0.5]

) (
[0.4,0.7],
[0.5,0.8]

) (
[0.3,0.5],
[0.3,0.6]

) (
[0.5,0.8],
[0.2,0.7]

) 

ℵ𝟒 (
[0.4,0.7],
[0.5,0.7]

) (
[0.3,0.6],
[0.4,0.8]

) (
[0.6,0.7],
[0.2,0.5]

) (
[0.6,0.8],
[0.2,0.4]

) (
[0.5,0.7],
[0.3,0.8]

) (
[0.6,0.7],
[0.3,0.5]

) (
[0.3,0.6],
[0.4,0.7]

) (
[0.6,0.7],
[0.4,0.8]

) 

ℵ𝟓 (
[0.2,0.5],
[0.3,0.6]

) (
[0.5,0.6],
[0.3,0.9]

) (
[0.6,0.8],
[0.2,0.3]

) (
[0.5,0.9],
[0.2,0.4]

) (
[0.4,0.8],
[0.4,0.8]

) (
[0.6,0.8],
[0.4,0.6]

) (
[0.4,0.9],
[0.3,0.5]

) (
[0.5,0.8],
[0.3,0.7]

) 

𝕳𝟑         

ℵ𝟏 (
[0.3,0.8],
[0.5,0.7]

) (
[0.2,0.6],
[0.4,0.5]

) (
[0.3,0.5],
[0.5,0.9]

) (
[0.3,0.4],
[0.5,0.9]

) (
[0.5,0.8],
[0.2,0.5]

) (
[0.1,0.6],
[0.4,0.7]

) (
[0.2,0.6],
[0.6,0.7]

) (
[0.4,0.6],
[0.1,0.8]

) 

ℵ𝟐 (
[0.5,0.8],
[0.2,0.4]

) (
[0.3,0.6],
[0.4,0.9]

) (
[0.5,0.8],
[0.2,0.6]

) (
[0.3,0.4],
[0.6,0.8]

) (
[0.6,0.8],
[0.4,0.7]

) (
[0.1,0.8],
[0.1,0.4]

) (
[0.3,0.4],
[0.6,0.9]

) (
[0.4,0.8],
[0.3,0.6]

) 

ℵ𝟑 (
[0.3,0.5],
[0.3,0.6]

) (
[0.5,0.8],
[0.2,0.7]

) (
[0.3,0.4],
[0.2,0.8]

) (
[0.6,0.7],
[0.1,0.3]

) (
[0.4,0.7],
[0.5,0.8]

) (
[0.5,0.5],
[0.3,0.4]

) (
[0.4,0.8],
[0.2,0.5]

) (
[0.2,0.5],
[0.3,0.8]

) 

ℵ𝟒 (
[0.3,0.6],
[0.4,0.7]

) (
[0.6,0.7],
[0.4,0.8]

) (
[0.3,0.6],
[0.4,0.8]

) (
[0.4,0.6],
[0.3,0.8]

) (
[0.6,0.7],
[0.3,0.5]

) (
[0.6,0.8],
[0.2,0.4]

) (
[0.5,0.7],
[0.3,0.8]

) (
[0.1,0.8],
[0.2,0.3]

) 

ℵ𝟓 (
[0.4,0.9],
[0.3,0.5]

) (
[0.5,0.8],
[0.3,0.7]

) (
[0.5,0.6],
[0.3,0.9]

) (
[0.4,0.5],
[0.3,0.4]

) (
[0.6,0.8],
[0.4,0.6]

) (
[0.5,0.9],
[0.2,0.4]

) (
[0.4,0.8],
[0.4,0.8]

) (
[0.5,0.8],
[0.3,0.6]

) 

𝕳𝟒         

ℵ𝟏 (
[0.4,0.7],
[0.2,0.6]

) (
[0.5,0.8],
[0.2,0.5]

) (
[0.3,0.6],
[0.2,0.7]

) (
[0.6,0.7],
[0.3,0.6]

) (
[0.4,0.6],
[0.1,0.8]

) (
[0.3,0.7],
[0.4,0.6]

) (
[0.4,0.6],
[0.1,0.2]

) (
[0.5,0.6],
[0.6,0.8]

) 

ℵ𝟐 (
[0.2,0.8],
[0.3,0.5]

) (
[0.4,0.6],
[0.3, 0.6]

) (
[0.5,0.7],
[0.4,0.6]

) (
[0.5,0.8],
[0.1,0.6]

) (
[0.4,0.8],
[0.3,0.6]

) (
[0.5,0.8],
[0.2,0.5]

) (
[0.3,0.6],
[0.2,0.7]

) (
[0.4,0.7],
[0.5,0.6]

) 

ℵ𝟑 (
[0.3,0.5],
[0.4,0.6]

) (
[0.4,0.6],
[0.5,0.7]

) (
[0.6,0.8],
[0.3,0.5]

) (
[0.4, .0.5],
[0.7,0.8]

) (
[0.2,0.5],
[0.3,0.8]

) (
[0.1,0.3],
[0.2,0.5]

) (
[0.1,0.7],
[0.5,0.7]

) (
[0.2,0.7],
[0.6,0.7]

) 

ℵ𝟒 (
[0.3,0.7],
[0.4,0.6]

) (
[0.4,0.7],
[0.5,0.7]

) (
[0.3,0.6],
[0.5,0.7]

) (
[0.5,0.6],
[0.7,0.8]

) (
[0.1,0.8],
[0.2,0.3]

) (
[0.3,0.5],
[0.1,0.8]

) (
[0.1,0.7],
[0.3,0.6]

) (
[0.4,0.6],
[0.1,0.4]

) 

ℵ𝟓 (
[0.4,0.5],
[0.5,0.7]

) (
[0.2,0.5],
[0.3,0.6]

) (
[0.3,0.5],
[0.5,0.8]

) (
[0.4,0.5],
[0.1,0.8]

) (
[0.5,0.8],
[0.3,0.6]

) (
[0.6,0.6],
[0.2,0.8]

) (
[0.4,0.6],
[0.3,0.7]

) (
[0.4,0.8],
[0.3,0.6]

) 

𝕳𝟓         

ℵ𝟏 (
[0.3,0.6],
[0.5,0.7]

) (
[0.2,0.6],
[0.6,0.7]

) (
[0.3,0.6],
[0.5,0.9]

) (
[0.3,0.8],
[0.5,0.7]

) (
[0.1,0.4],
[0.4,0.9]

) (
[0.1,0.6],
[0.4,0.7]

) (
[0.3,0.6],
[0.5,0.9]

) (
[0.3,0.6],
[0.6,0.7]

) 

ℵ𝟐 (
[0.3,0.6],
[0.4,0.9]

) (
[0.3,0.4],
[0.6,0.9]

) (
[0.6,0.8],
[0.4,0.7]

) (
[0.5,0.8],
[0.2,0.4]

) (
[0.5,0.7],
[0.5,0.7]

) (
[0.1,0.8],
[0.1,0.4]

) (
[0.6,0.8],
[0.4,0.7]

) (
[0.5,0.8],
[0.2,0.4]

) 

ℵ𝟑 (
[0.5,0.8],
[0.2,0.7]

) (
[0.4,0.8],
[0.2,0.5]

) (
[0.4,0.7],
[0.5,0.8]

) (
[0.3,0.5],
[0.3,0.6]

) (
[0.3,0.5],
[0.6,0.8]

) (
[0.5,0.5],
[0.3,0.4]

) (
[0.4,0.7],
[0.5,0.8]

) (
[0.3,0.5],
[0.3,0.6]

) 

ℵ𝟒 (
[0.6,0.7],
[0.4,0.8]

) (
[0.5,0.7],
[0.3,0.8]

) (
[0.6,0.7],
[0.3,0.5]

) (
[0.3,0.6],
[0.4,0.7]

) (
[0.6,0.7],
[0.2,0.5]

) (
[0.6,0.8],
[0.2,0.4]

) (
[0.6,0.7],
[0.3,0.5]

) (
[0.3,0.6],
[0.4,0.7]

) 

ℵ𝟓 (
[0.5,0.8],
[0.3,0.7]

) (
[0.4,0.8],
[0.4,0.8]

) (
[0.6,0.8],
[0.4,0.6]

) (
[0.4,0.9],
[0.3,0.5]

) (
[0.6,0.8],
[0.2,0.3]

) (
[0.5,0.9],
[0.2,0.4]

) (
[0.6,0.8],
[0.4,0.6]

) (
[0.4,0.9],
[0.3,0.5]

) 
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Step 3. Determine the cumulative values for each possibility using Eq (3.1) for 𝑞 = 3 . Which 

generates ℶ1 =  ([0.35069,0.65458], [0.29671,0.63358]), ℶ2  = ([0.38897,0.66723], 

[0.30126,0.64717]), ℶ3  = ([0.37182,0.62027], [0.30101,0.63605]), ℶ4  = ([0.34067,0.64117], 

[0.25761,0.61134]), and ℶ5  = ([0.34911,0.64584], [0.30784,0.67697]). 

Step 4. Determine the score values for every alternative using Eq (2.1), such as 𝒮(ℶ1) = 0.50939, 

𝒮(ℶ2) = 0.51361, 𝒮(ℶ3) = 0.50384, 𝒮(ℶ4) = 0.51654, and 𝒮(ℶ5) = 0.49191. 

Step 5. The other options are arranged based on their scores to determine the most favorable alternative, 

such as 𝒮(ℶ4) > 𝒮(ℶ2) > 𝒮(ℶ1) > 𝒮(ℶ3) > 𝒮(ℶ5). Therefore, ℌ4 is the best energy supplier, and 

the alternatives ranking prescribed by the IVq-ROFHSEWA operator can be described as: ℌ4 > ℌ2 > 

ℌ1 > ℌ3 > ℌ5. 

6.2.2. Selection of energy supplier using the IVq-ROFHSEWG operator 

The computations in Steps 1 and 2 resemble those in the investigation outlined in Section 6.3.2. 

Step 3. Determine the cumulative values for each possibility using Eq. (4.1) for 𝑞 =  3. This produces 

ℶ1  = ([0.29138,0.62165], [0.37765,0.67284]), ℶ2  = ([0.32475, 0.62146], [0.36534,0.69495]), ℶ3  = 

([0.28198, 0.57671], [0.36014, 0.68786]), ℶ4 = ([0.25109, 0.61962], [0.33903, 0.64671]), and ℶ5 = 

([0.28602, 0.60792], [0.38589, 0.71652]). 

Step 4. Determine the score values for every alternative using Eq (2.1), such as 𝒮(ℶ1) = 0.47539, 

𝒮(ℶ2) = 0.47286, 𝒮(ℶ3) = 0.45717, 𝒮(ℶ4) = 0.48557, and 𝒮(ℶ5) = 0.45385.  

Step 5. The other options are arranged based on their scores to determine the most favorable alternative, 

such as 𝒮(ℶ4) > 𝒮(ℶ1) > 𝒮(ℶ2) > 𝒮(ℶ3) > 𝒮(ℶ5).  

Therefore, ℌ4  is the best energy supplier, and the alternatives ranking prescribed by the IVq-

ROFHSEWA operator is as follows: ℌ4 > ℌ1 > ℌ2 > ℌ3 > ℌ5.  

7. Sensitivity and comparative analysis 

In the following section, we investigate the sensitivity of our technique and compare our 

evaluations with those of past research.  

7.1. Impact of the IVq-ROFHSEWA operator’s “𝑞” deviation on alternate classifications 

Both alternatives ℌ4 and ℌ5 adhere to the corporation’s laws and regulations, with ℌ4 being the 

one of preference and ℌ4 be a most beneficial supplier in energy management. When 3 ≤ 𝑞 ≤ 12, as 

indicated in Table 3, the ranking of alternatives remains unchanged and resilient. Specifically, ℌ4 

regularly outperforms ℌ2, ℌ1, ℌ3, and ℌ5. The score values decrease as the numerical value of “𝑞” 

increases, illustrating the influence of the parameter “𝑞 ” on evaluation calculations. When the 

expression (𝑀𝐷𝓊)𝑞 + (𝑁𝑀𝐷𝓊)𝑞 > 1, if 𝑞 ≥ 3, both IVIFHSS [18] and IVPFHSS [20] are unable 

to refute this corroborating evidence. The versatility of the information extraction technique is 

contingent upon the specific value of the parameter “𝑞 ”. The research illustrates the benefits of 

organizing a parameter in a way that enables specialists to analyze it effectively. It provides guidance 

on how to determine parameter values based on individual preferences. 
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Table 3. The parameter “𝑞” of the IVq-ROFHSEWA operator has a significant impact on 

decision outcomes. 

Parameter Score value Ranking 

𝒒 = 𝟑 𝒮(ℶ1) = 0.50939, 𝒮(ℶ2) = 0.51361, 𝒮(ℶ3) = 0.50384, 𝒮(ℶ4) = 0.51654, 𝒮(ℶ5) = 0.49191 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟒 𝒮(ℶ1) = 0.50732, 𝒮(ℶ2) = 0.51259, 𝒮(ℶ3) = 0.50196, 𝒮(ℶ4) = 0.51456, 𝒮(ℶ5) = 0.48960 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟓 𝒮(ℶ1) = 0.50605, 𝒮(ℶ2) = 0.51169, 𝒮(ℶ3) = 0.50091, 𝒮(ℶ4) = 0.51351, 𝒮(ℶ5) = 0.48719 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟔 𝒮(ℶ1) = 0.50476, 𝒮(ℶ2) = 0.51112, 𝒮(ℶ3) = 0.49971, 𝒮(ℶ4) = 0.51222, 𝒮(ℶ5) = 0.48692 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟕 𝒮(ℶ1) = 0.50371, 𝒮(ℶ2) = 0.51006, 𝒮(ℶ3) = 0.49841, 𝒮(ℶ4) = 0.51192, 𝒮(ℶ5) = 0.48571 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟖 𝒮(ℶ1) = 0.50282, 𝒮(ℶ2) = 0.50948, 𝒮(ℶ3) = 0.49732, 𝒮(ℶ4) = 0.51140, 𝒮(ℶ5) = 0.48492 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟗 𝒮(ℶ1) = 0.50198, 𝒮(ℶ2) = 0.50893, 𝒮(ℶ3) = 0.49662, 𝒮(ℶ4) = 0.51059, 𝒮(ℶ5) = 0.48409 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟏𝟎 𝒮(ℶ1) = 0.50190, 𝒮(ℶ2) = 0.50848, 𝒮(ℶ3) = 0.49595, 𝒮(ℶ4) = 0.51031, 𝒮(ℶ5) = 0.48370 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟏𝟏 𝒮(ℶ1) = 0.50141, 𝒮(ℶ2) = 0.50799, 𝒮(ℶ3) = 0.49559, 𝒮(ℶ4) = 0.50993, 𝒮(ℶ5) = 0.48334 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟏𝟐 𝒮(ℶ1) = 0.50109, 𝒮(ℶ2) = 0.50730, 𝒮(ℶ3) = 0.49533, 𝒮(ℶ4) = 0.50956, 𝒮(ℶ5) = 0.48307 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

The technique offered improves the integration of dependable evidence, clarifying ambiguous or 

untrustworthy material and enhancing its quality. Table 5 outlines the conversion of various hybrid 

structures of FS into the specific example of IVq-ROFHSS. All these alterations take place when 

components adhere. Professionals can perform a more comprehensive behavior evaluation using 

parameter “𝑞 ”. Experts strongly recommended choosing the value of “𝑞 ” to identify and assess a 

continuous pattern or trend. Through this investigation and assessment process, it has been determined 

that the results generated by the proposed methodology are superior to those gained by alternative 

methods. The influence of the “𝑞” value on the obtained results is in Figure 3, displayed below. 

The presented strategy enhances the incorporation of reliable evidence, explaining unclear or 

unreliable data, making it better. As described in Table 5, different hybrid structures of FS are converted 

into the case of IVq-ROFHSS. All these modifications occur while particular components conform. 

Experts can execute a more detailed behavior assessment using the parameter “𝑞”. It is strongly advised 

that experts select the value of “𝑞” to recognize and evaluate an ongoing pattern or trend. Through this 

process of inquiry and evaluation, it is identified that the outcomes produced by the approach that has 

been offered are more effective than those achieved by different methods. The impact of the “𝑞” value 

on the results obtained is illustrated clearly in Figure 3, which can be seen below. 
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Figure 3. The impact of q (3 ≤ 𝑞 ≤ 12 ) on the ranking of alternatives using IVq-

ROFHSEWG operator. 

7.2. Impact of the IVq-ROFHSEWG operator’s “q” deviation on alternate classifications 

To determine how much the parameter “𝑞” affects the final evaluation outcome, we compared 

several values for 𝑞. The data analysis revealed two distinct ranking patterns: ℌ4 > ℌ1 > ℌ2 > ℌ3 >
ℌ5 (𝑞 = 3 − 6) and ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 (𝑞 = 7 − 12) see Table 4. This adjustment did not 

affect the ranking of the most advantageous and least advantageous selections, which is an important 

and noteworthy point to consider. Furthermore, the gradual decrease in score values for the alternatives, 

along with an increase in 𝑞, indicates a clear dependence of score values on the parameter’s value. 

During the preceding analysis, it became evident that altering the variable “𝑞 ” could impact the 

arrangement of options in terms of their structure. Experts can independently assign a value to “𝑞” to 

determine the most beneficial supplier. The study’s findings emphasize the importance of expert 

discourse on the significance of the “𝑞” parameter, even when the alternative rank remains consistent. 

Table 4. The parameter “𝑞” of the IVq-ROFHSEWG operator has a significant impact on 

decision outcomes. 

Parameter Score value Ranking 

𝒒 = 𝟑 𝒮(ℶ1) = 0.47539, 𝒮(ℶ2) = 0.47286, 𝒮(ℶ3) = 0.45717, 𝒮(ℶ4) = 0.48557, 𝒮(ℶ5) = 0.45385 ℌ4 > ℌ1 > ℌ2 > ℌ3 > ℌ5 

𝒒 = 𝟒 𝒮(ℶ1) = 0.47496, 𝒮(ℶ2) = 0.47126, 𝒮(ℶ3) = 0.45613, 𝒮(ℶ4) = 0.48478, 𝒮(ℶ5) = 0.45186 ℌ4 > ℌ1 > ℌ2 > ℌ3 > ℌ5 

𝒒 = 𝟓 𝒮(ℶ1) = 0.47269, 𝒮(ℶ2) = 0.47098, 𝒮(ℶ3) = 0.45497, 𝒮(ℶ4) = 0.48365, 𝒮(ℶ5) = 0.45114 ℌ4 > ℌ1 > ℌ2 > ℌ3 > ℌ5 

𝒒 = 𝟔 𝒮(ℶ1) = 0.47079, 𝒮(ℶ2) = 0.47022, 𝒮(ℶ3) = 0.45408, 𝒮(ℶ4) = 0.48291, 𝒮(ℶ5) = 0.45004 ℌ4 > ℌ1 > ℌ2 > ℌ3 > ℌ5 

𝒒 = 𝟕 𝒮(ℶ1) = 0.46950, 𝒮(ℶ2) = 0.46981, 𝒮(ℶ3) = 0.45371, 𝒮(ℶ4) = 0.48214, 𝒮(ℶ5) = 0.44968 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟖 𝒮(ℶ1) = 0.46881, 𝒮(ℶ2) = 0.46920, 𝒮(ℶ3) = 0.45308, 𝒮(ℶ4) = 0.48197, 𝒮(ℶ5) = 0.44883 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟗 𝒮(ℶ1) = 0.46841, 𝒮(ℶ2) = 0.46893, 𝒮(ℶ3) = 0.45280, 𝒮(ℶ4) = 0.48136, 𝒮(ℶ5) = 0.44821 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟏𝟎 𝒮(ℶ1) = 0.46809, 𝒮(ℶ2) = 0.46849, 𝒮(ℶ3) = 0.45208, 𝒮(ℶ4) = 0.48099, 𝒮(ℶ5) = 0.44790 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟏𝟏 𝒮(ℶ1) = 0.46805, 𝒮(ℶ2) = 0.46828, 𝒮(ℶ3) = 0.45190, 𝒮(ℶ4) = 0.48081, 𝒮(ℶ5) = 0.44751 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

𝒒 = 𝟏𝟐 𝒮(ℶ1) = 0.46787, 𝒮(ℶ2) = 0.46811, 𝒮(ℶ3) = 0.45169, 𝒮(ℶ4) = 0.48077, 𝒮(ℶ5) = 0.44723 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

Altering the parameter 𝑞  is crucial for exerting an impact on the reasoning behind available 
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alternative options. When conventional methods such as IVIFHSS and IVPFHSS are insufficient for 

handling the observed data, IVq-ROFHSS successfully addresses this limitation. Therefore, experts 

can assess the reliability of the information by establishing a suitable value for 𝑞. Professionals must 

meticulously evaluate suitable parameter values while creating reliable, top-notch alternatives. The 

IVq-ROFHSEWG operator preserves the logical sequence of options when 𝑞 ≥ 7 . Thus, in this 

scenario, experts have the option to select a value of 𝑞 ≥ 7. Figure 4 illustrates the influence of 𝑞 on 

the arrangement of choices. 

7.3. Comparison with different fuzzy structures 

We describe the approach to dealing with the challenges of creating a sustainable supplier in energy 

management. We offer a systematic approach to tackling MAGDM difficulties with the IVq-ROFHSS 

methodology. When it comes to handling MAGDM difficulties, the suggested approach provides better 

accuracy and adherence than the currently used ones. The framework’s versatility and 

comprehensiveness support predictable, stable, and customizable results. To cover various points of 

view, the proposed method can be modified to support several models with dynamic sequencing 

capabilities. We conducted thorough analytical analyses and assessments to show that our suggested 

strategy yields result similar to hybrid approaches. The proposed approach is adaptable and capable of 

converting various structures, including FS, IFS, PFS, and q-ROFS, into unique IVq-ROFHSS 

situations by adjusting specific configurations. This attribute allows for the intentional selection and 

future execution of object-specific particulars, making it ideal for incorporating unclear and conflicting 

information in decision-making processes. Based on thorough investigation and evaluation, the 

researchers have determined that their findings regarding the suggested technique have greater 

applicability compared to any other current organization. They recognize that the anticipated 

development of the data management system encompasses a broad spectrum of possibilities aimed at 

mitigating data-related problems in comparison to existing data management systems. In general, the 

proposed design is deemed efficient, versatile, and beneficial, surpassing current hybrid designs 

incorporating FS, IFS, PFS, and q-ROFS. Incorporating appropriate associations helps to resolve the 

integration issues that arise from upgrading IVq-ROFSS to IVq-ROFHSS. Applying periodic and 

vague assumptions to the existing framework is an unexpected yet favorable enhancement. This 

enhancement facilitates the methodical and suitable choice of well-being attributes. The DM technique 

in FS situations involves the combination of hypothetical and unpleasant aspects to surprise raise the 

relevance and complexity of the framework. Table 5 provides a comprehensive comparison of the 

features of the proposed and existing techniques. The proposed approach effectively addresses the 

challenges of establishing a sustainable energy provider and showcases flexibility and adaptability, 

making it a suitable tool for various decision-making objectives. 

The implementation of a new MAGDM technique is driven by the necessity to address the 

limitations of existing fuzzy frameworks. This proposed methodology is notable for its utilization of 

IVq-ROFHSS, which enables a comprehensive assessment of the MD and NMD sub-attributes. The 

current hybrid models, such as IVFS, IVIFS, IVPFS, IVFSS, IVIFSS, IVIFHSS, IVPFSS, and 

IVPFHSS, could not adequately provide a comprehensive understanding of the technique’s condition. 

The MAGDM methodology for IVq-ROFHSS is a dependable, accurate, versatile, and customizable 

method, suitable for many scenarios with varying levels of disparity, incongruities, and alteration. The 

research findings indicate that forthcoming technologies yield superior and more comprehensive 

results compared to present methods, as shown in Table 5. The proposed hybrid configuration of FS 

shows significant potential in various domains, including organizational studies, medical research, and 
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decision-making processes including the management of inaccurate and unclear information. The 

proposed technique of DM under IVq-ROFHSS offers a more effective and successful method for 

addressing MAGDM difficulties. 

Table 5. Comparative analysis of proposed structure with different fuzzy structures. 

 Set Parameters 
Sub-

parameters 
Advantages Limitations 

Turksen [2] IVFS × × Deals uncertainty 

using MD intervals 

Unable to handle 

NMD interval 

Atanassov [4] IVIFS × × Deals uncertainty 

using MD and NMD 

intervals 

Unable to handle 

𝑀𝐷ひ + 𝑁𝑀𝐷ひ

> 1 

Jiang et al. 

[12] 

IVIFSS ✓ × Deals uncertainty 

using MD and NMD 

intervals 

Unable to handle 

𝑀𝐷ひ + 𝑁𝑀𝐷ひ

> 1 

Debnath [18] IVIFHSS ✓ ✓ Deals uncertainty 

using MD and NMD 

intervals 

Unable to handle 

𝑀𝐷ひ + 𝑁𝑀𝐷ひ

> 1 

Peng & Yang 

[6] 

IVPFS × × Deals uncertainty 

using MD and NMD 

intervals 

Unable to handle 

(𝑀𝐷ひ)2

+ (𝑁𝑀𝐷ひ)2 > 1 

Zulqarnain et 

al. [14] 

IVPFSS ✓ × Deals uncertainty 

using MD and NMD 

intervals 

Unable to handle 

(𝑀𝐷ひ)2

+ (𝑁𝑀𝐷ひ)2 > 1 

Zulqarnain et 

al. [20] 

IVPFHSS ✓ ✓ Deals uncertainty 

using MD and NMD 

intervals 

Unable to handle 

(𝑀𝐷ひ)2

+ (𝑁𝑀𝐷ひ)2 > 1 

Joshi et al. [8] IVq-

ROFS 

× × Deals uncertainty 

using MD and NMD 

intervals 

Unable to handle 

(𝑀𝐷ひ)𝑞

+ (𝑁𝑀𝐷ひ)𝑞 > 1 

Yang et al. 

[16] 

IVq-

ROFSS 

✓ × Deals uncertainty 

using MD and NMD 

intervals 

Unable to handle 

(𝑀𝐷ひ)𝑞

+ (𝑁𝑀𝐷ひ)𝑞 > 1 

Proposed 

structure 

IVq-

ROFHSS 

✓ ✓ Deals uncertainty 

using MD and NMD 

intervals 

Unable to handle 

(𝑀𝐷ひ)𝑞

+ (𝑁𝑀𝐷ひ)𝑞 > 1 

7.4. Comparison with different fuzzy operators 

Experiments and studies provide evidence of the efficacy of the established MAGDM approach. 

The investigations demonstrate that the results from this approach align with those achieved through 

traditional methods. The proposed framework enables incorporating specific information regarding 

alternative parameters into different decision-making procedures and addressing deficiencies in the 

available data. This enhances credibility and is founded on examining factual details on objects, 

making it a valuable instrument for evaluating ambiguous and perplexing data in management. The 
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technique ensures data integrity by considering the interactions among the scores assigned to multiple 

components. This unique methodology surpasses previous methods by emphasizing perceptual 

understanding and coherence through clarifications, hence avoiding decisions influenced by erroneous 

preconceived notions. The proposed MAGDM technique thoroughly evaluates all options before 

choosing a supplier selection strategy in energy management. The model effectively handles these 

challenges and is thoroughly compared to current methodologies. The impacts of employing this 

approach in selecting a sustainable energy supplier are displayed in Table 6, demonstrating its 

effectiveness and reliability. When data is irrelevant or does not apply, it is represented as “n/a”. 

Table 6. Comparison of the suggested model with different operators. 

Operators Score value Ranking 

IVIFEWA [41] n/a n/a 

IVIFEWG [42] n/a n/a 

IVPFEWA [45] n/a n/a 

IVPFEWG [46] n/a n/a 

IVq-ROFEWA [48] n/a n/a 

IVq-ROFEWG [48] n/a n/a 

PFSEWA [49] n/a n/a 

PFSEWG [49] n/a n/a 

q-ROFSEWA [50] n/a n/a 

q-ROFSEWG [51] n/a n/a 

IVq-ROFSEWA [52] n/a n/a 

IVq-ROFSEWG [52] n/a n/a 

PFHSEWA [53] n/a n/a 

PFHSEWG [54] n/a n/a 

q-ROFHSEWA [22] n/a n/a 

q-ROFHSEWG [22] n/a n/a 

Proposed IVq-

ROFHSEWA 

0.50939 0.51361 0.50384 0.51654 0.49191 ℌ4 > ℌ2 > ℌ1 > ℌ3 > ℌ5 

Proposed IVq-

ROFHSEWA 

0.47539 0.47286 0.45717 0.48557 0.45385 ℌ4 > ℌ1 > ℌ2 > ℌ3 > ℌ5 

Table 6 demonstrates an evaluation matrix for analyzing multiple operators and their results. After 

assessing the data, it is apparent that the ℌ4 alternate is the best alternative for sustainable energy 

suppliers. Table 6 indicates deficiencies in previous studies, as stated in the literature [41,42,45,46,48], 

particularly concerning parametric modelling. Operators in the literature [49,50] manage the 

parametric values of alternatives, but these studies cannot manage the expert’s opinion in intervals 

form. The techniques described in [52] competently regulate the parametrized values linked to 

alternatives within the identified issue.  

Managing sub-attributes of alternatives is an obstacle for present methods. The PFHSEWA [53] and 

PFHSEWG [54] operators have specific expertise to assess the information. However, these 

aggregation operators cannot deal with the situation when (𝑀𝐷)2 + (𝑁𝑀𝐷)2 > 1. On the other hand, 

the q-ROFHSEWA [22] and q-ROFHSEWG [22] operators competently deal with the issues 

mentioned above. Plans have solved this problem by incorporating interval forms and sub-attributes, 

as demonstrated in structures such as IVIFHSS [46] and IVPFHSS [48]. However, these efforts may 
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not always be appropriate for any particular case. Whereas confident current aggregate operators can 

manage specific problems, there are situations where they are insufficient. The strategy suggested in 

this paper effectively tackles those issues, providing a more comprehensive and efficient solution for 

evaluating options. A comparative study assesses the proposed MAGDM model’s effectiveness 

compared to other existing operators. The order of the five finest alternatives shows that the novel 

approach is in line with the conventional strategy, demonstrating the reliability and productivity of the 

proposed technique, which may provide precise and trustworthy results in many situations. 

7.5. Limitations and future implications of the proposed structure 

Interval-valued q-rung orthopair fuzzy hypersoft sets have some of the shortcomings: 

(i) The mathematical structure may be challenging to recognize, especially for individuals 

unfamiliar with multifaceted fuzzy set ideas, thus impeding implementation. 

(ii) The algorithm’s performance is substantially reliant upon the reliability and specificity of its 

input data; inferior data may result in improper decisions. 

(iii)The IVq-ROFHSS analyses are computationally challenging, making them insufficient for 

immediate decision-making scenarios or operations involving extensive databases. 

(iv) However, intended to deal with incertitude, IVq-ROFHSS can fail to generally apply to all 

decision problems, particularly ones preferring an extra simplistic or direct technique. 

(v) Selecting suitable parameters for IVq-ROFHSS may be unreliable, resulting in multiple 

outcomes due to various interpretations. 

(vi) The conceptual basis of IVq-ROFHSS can be simpler than those of other fuzzy set ideas, 

impeding its acceptability into the broader research community. 

(vii) Whereas IVq-ROFHSS attempts to boost decision-making, its effectiveness relative to 

conventional fuzzy methods or different MCDM strategies remains adequately confirmed, 

necessary for more empirical studies. 

Managing such drawbacks in future studies may enhance the usefulness and stability of IVq-

ROFHSS in real-world decision scenarios. This research connects to the investigation of Sarwar and 

Li [59], as it evaluates the implementation of fuzzy theory in decision-making, especially as it relates 

to IVq-ROFHSS. Our plan of using Einstein aggregation operators to boost MAGDM resembles the 

strategies that Xia et al. [60] and Gao et al. [61] used to build controllers and stabilizing strategies 

using Takagi-Sugeno fuzzy structures. Integrating fuzzy logic into our selection algorithms is essential 

for adequately handling convoluted cases, and we resolve problems identical to those encountered by 

Ge and Zhang [62], who developed dynamic inventory controllers in unreliable circumstances. Since 

we focus on combining fuzzy logic and sophisticated control techniques to manage both uncertainty 

and complexity in decision-making infrastructure, it is influenced by the work of Zhang et al. [63], 

Sun et al. [64], and Duan et al. [65]. 

8. Conclusions 

The effectiveness of MAGDM appears to be hindered by the interplay of multiple opposing facets 

that constitute a crucial component of complex problem domains. The conceptual framework of 

MAGDM must effectively incorporate all potential improvements that appropriately represent aspects 

from the engineering, business, and health sectors. Our main purpose of this study is to construct 

effective decision-making methods within the broader context of IVq-ROFHSNs. We present the 

concept of Interval-valued q-rung orthopair fuzzy hypersoft sets, which incorporate Einstein's 
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operational laws. Based on these operational laws, we also suggest aggregation operators, namely IVq-

ROFHSEWA and IVq-ROFHSEWG operators. These operators possess basic characteristics. To 

showcase the benefits of this analytical methodology, we carried out an empirical inquiry to ascertain 

the most viable sustainable energy provider in energy management. The comparison analysis 

emphasizes the method’s effectiveness and longevity, demonstrating its ability to withstand challenges 

and assist decision-makers in the DM procedure. 

Further study will prioritize the examination of Einstein-ordered AOs, the analysis of similarity 

and distance metrics, and their associated attributes. To further study the practical use of IVq-

ROFHSNs in material selection, pattern identification, information fusion, medical diagnostics, and 

autonomous agriculture, we will investigate the integration of several MAGDM approaches. In 

addition, several ordered, algebraic, and topological structures for IVq-ROFHSNs will be proposed, 

focusing on their application in different DM techniques. 
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