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Abstract: In this study, we applied the Riccati-Bernoulli sub-ODE method and Bäcklund
transformation to analyze the time-space fractional Oskolkov equation for kink solutions by matching
the coefficients and optimal series parameters. The time-space fractional Oskolkov equation is used to
analyze the behavior of solitons for different applications such as fluid dynamics and viscoelastic flow.
The kink solutions derived have important consequences for stability analysis and interaction dynamic
in these systems, and these are useful in controlling the physical behaviour of systems described by this
equation. Such effects are illustrated by 2D and 3D plots, showing that the proposed model can handle
both fractional and integer-order solitons with different but equally efficient outcomes. This research
contributes to a valuable analytical method that can determine and manage processes in diversified
systems based on fractional differential equations. This work provides a basis for subsequent analysis
in other branches of science and technology in which the fractional Oskolkov model is used.
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1. Introduction

Over the last few decades, nonlinear partial differential equations (NLPDEs) have emerged as
a major field of interest in the study of mathematical sciences. Since the natural world is highly
complex, the interconnection between its two components is fascinating; many authors believe
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that, while studying the nonlinear science true triumphs of the human mind, one gets the greatest
opportunity to understand the basics of specific physical laws. Countless physical behaviors and
scientific disciplines including engineering, climatology, applied mathematics, biologic, and chemical
reactions are described through the help of NLPDEs [1, 2]. In this context of evaluated systems
to comprehend these evaluated systems, solving NLPDEs and finding the numerical as well as the
analytical solutions proves to be of significant importance. Numerous researchers have developed
various methods to obtain solitary wave solutions for the non-linear PDEs [3, 4]. These include the lie
group method [5], exp(−φ(x))-expansion method [6], extended direct algebraic method [7], variational
iteration method [8], unified method [9], (G′/G2)-expansion method [10], sine-Gordon expansion
method [11], tanh-coth method [12], homotopy analysis method [13], auxiliary ordinary differential
equation (ODE) method [14], and tanh function method [15].

Fractional derivatives are widely used in mathematics, with the focus being put on the non-
integer order derivatives [16–18]. These derivatives are crucial when the system under investigation
is characterized by power-law processes and memory. In recent years, a large number of scientists
have introduced fractional derivatives to analyze the characteristics of the stability of solitons in
various fields [19–21]. Many researches have been devoted to seeking solitary wave solutions
of diverse nonlinear PDEs and these have become an essential part of the development of our
thoughts on these systems [22–24]. In order to increase the precision of the model, several forms
of the fractional have been built. For example, fractional derivatives have been used in signal
systems [25], plasma physics models [26], fractional epidemiologic models [27] and different models
involving fractional derivatives. In this context, the Riccati-Bernoulli sub-ODE method with Bäcklund
transformation [28–30] was used on the truncated time-space fractional Oskolkov equation. In
this method, one can succeed in the systematic simplification of complicated fractional PDEs into
ODEs and obtain explicit exact solutions. This method is very useful in the presence of nonlinear
techniques and is very flexible with respect of the type of equation used. Also, it yields precise
solutions, and such solutions are good predictors that give additional understanding of the behavior
of the system in question relative to numerical or strictly approximate approaches. It is crucial to
substitute the conventional Oskolkov equation with the equation of its fractional analogue because
the description of phenomena involving some memory and non-locality, which are quite common
in numerous applications, is impossible with assistance from the standard approach. The fractional
differential parameter (α) provides an opportunity to approximate the intricacy of diffusion and wave
propagation that the simple Oskolkov equation cannot consider. This is quite suitable in areas like
fluid dynamics and plasma physics since the fractional model is much more detailed in the description
of such processes as viscoelastic flow and fractal dispersion. These phenomena can be described
more thoroughly using the fractional Oskolkov equation, which provides the researchers and engineers
a more accurate approach to investigate complex systems which demonstrate the fractional-order
behavior. Hence to ensure that the phenomena under consideration correspond to real-life occurrences,
this model was examined in its fractional form [31–33]:

∂ f
∂t
− β

∂

∂t

(
∂2 f
∂x2

)
− γ

∂2 f
∂x2 + f

(
∂ f
∂x

)
= 0. (1.1)

This equation is helpful in the calculation of dimensions and geometry of thin-walled pressure
vessels like tanks and reactors and is used extensively across the field of chemical and mechanical
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engineering. It is particularly useful in the design of pressure vessels for high pressure and
high-temperature severe service environments. The Oskolkov equation is in fact a major model
for viscoelastic, non-Newtonian fluids, capable of approximating major manifestations of the flow
behavior such as shear-thinning and viscoelasticity [34]. Hence, incorporating fractional derivatives,
the fractional Oskolkov equation also covers such behaviors as memory effects and non-local
interactions inherent in non-Newtonian media. This extension expands the applicability of this method
to various real-life situations such as polymer solutions and biological fluids. Also, the Oskolkov
equation is used in estimating mechanical properties like stress and strain of pressure vessels. Still,
many authors studied soliton solutions of similar models by employing significance approaches. For
instance, different approaches were used to investigate solitonic wave solutions of the Oskolkov
equation. The MSE scheme was used in [35], and another approach was used by the authors of [36].
The modified exp−(−φ(ζ))-expansion function was given in [37] and the (Φ,Ψ) expansion method was
also studied in [38]. In addition the Sine-Gordon expansion method was used in [39]. Altogether these
investigations have helped in put into place various solitonic wave solutions. Current trends of study
also involve optical solitons [40], wave propagation in plasma [41], and nonparaxial solitons [42],
including both fractional as well as traditional approaches to vibrations of cross kink solitons [43].

To construct solitonic wave solutions, several approaches have been employed in previous studies
to examine the soliton solutions of models similar to the present one. These investigations span various
applications, which include optical solitons, wave propagation in plasma, and discrete as well as
fractional approaches. Nevertheless, in this work, we provide a new approach to this problem by using
the Riccati-Bernoulli sub-ODE method in combination with the Bäcklund transformation to study the
fractional version of the Oskolkov equation. This method offers fresh perspectives on the behavior of
solitonic waves and describes some exciting kink characteristics in the fractional Oskolkov model. In
this context, the presentation of our analysis concerns the way that fractional parameters affect these
solitonic solutions and uses 2D as well as 3D plots to visualize the dependence of these parameters.
This contribution stretches the area of application of the fractional Oskolkov equation and provides
deeper arguments to further investigate soliton solutions in fractional models.

Further, the operator integrating α-derivatives of powers agrees exactly to the idea of conformable
fractional derivatives [44] for W(φ) of order α ∈ (0, 1) and for t > 0 is defined as:

Dα
φW(φ) = lim

i→0

W(i(φ)i−α −W(φ))
i

, 0 < α ≤ 1, (1.2)


Dα
φφ

p = pφp−α,

Dα
φ (p1η(φ) ± p2t(φ)) = p1Dα

φ(η(φ)) ± m2Dα
φ(t(φ)),

Dα
φ

[
f ◦ g

]
= φ1−αg (φ) Dα

φ f (g(φ)) .

(1.3)

For smooth functions, the derivative simplifies to Dα f (t) = t1−α d f (t)
dt . One of the major benefits as

to the proposed conformable derivative is that it does generalize the classical derivative in a manner as
elementary as the concept itself. Indeed, when α = 1, it returns the standard derivative, thus making a
transition from fractional derivation to classical derivation rather smooth.

Unlike Caputo and Riemann-Liouville derivatives, the conformable derivative does not use complex
integral formulations, which makes it more easy to utilize when finding the derivative of differential
equations, yet the conformable derivative keeps a lot of characteristics in fractional calculus. In
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our analyses, the defined conformable fractional derivative is incorporated to present the time-space
fractional Oskolkov equation to describe the fluid flow and other processes with better accuracy as
compared to the conventional integer order. This derivative will help us incorporate memory and
hereditary properties in the system, which is very important in fractional models.

Section 2 gives a brief overview of the method that has been used here, which will be explained in
detail in Section 3 by providing the solution of the new fractional Oskolkov system. In Section 4, results
and discussion are provided and some graphical illustrations are given. Finally, Section 5 provides the
conclusion of our work.

2. Algorithm

Here, for the clear understanding of the working procedure of the mentioned process, let us explain
it broadly.

Step 1. Consider nonlinear PDEs in the following form:

P1

(
R1,Dα

t (R1),Dα
q1

(R1),Dα
q2

(R1),R1Dα
q1

(R1), . . .
)

= 0, 0 < α ≤ 1, (2.1)

where R1 = R(t, q1, q2, q3, . . . , qk) is a function of (t, q1, q2, q3, . . . , qk) and its partial derivatives.

Step 2. This transformation changes Eq (2.1) into a nonlinear ODE of the following form:

Q1
(
F, F′(φ), F′′(φ), FF′(φ), . . .

)
= 0. (2.2)

Step 3. Let us suppose that Eq (2.2) has the following solution:

G(φ) =

n∑
j=−n

s jg(φ) j, (2.3)

where s j are constants and g(φ) is obtained from the Bäcklund transformation,

g(φ) =
−ζp2 + p1Z(φ)

p1 + p2Z(φ)
.

Here, (ζ), (p1), and (p2) are constants such that p2 , 0 and Z(φ) is the solution of the following ODE:

dZ
dφ

= ζ + Z(φ)2. (2.4)

The Ricatti Eq (2.4) possess the following general solutions [45]:

Z(φ) =

−
√
−ζ tanh(

√
−ζφ), as ζ < 0,

−
√
−ζ coth(

√
−ζφ), as ζ < 0,

Z(φ) = −
1
ψ
, as ζ = 0,

Z(φ) =


√
ζ tan(

√
ζφ), as ζ > 0,

−
√
ζ cot(

√
ζφ), as ζ > 0.

(2.5)
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Step 4. Solving for the homogeneous balance of the largest nonlinear term and the highest-order
derivative in Eq (2.2) gives the positive integer (n) as presented in Eq (2.3). First, it has to be noted
that the balance number of a processor can be calculated as follows [46]:

D
[
dm f
dψm

]
= n + m, D

[
f J dm f

dψm

]w

= nJ + w(m + n). (2.6)

Step 5. Next, we replace the same function with the help of Eq (2.3) into Eq (2.2) or into the expression
which appears after integration of Eq (2.2), and collect all terms containing g(φ). The coefficients of the
polynomial are then set equal to zero and a system of algebraic equations in (si) and other parameters
are obtained.

Step 6. These equations are solved using the Maple computational tool and, in the end, the solitary
wave solutions are provided for Eq (2.1).

3. Problem execution

By applying the considered model with the Riccati-Bernoulli sub-ODE, we get the wave solutions.
The (1 + 1)-dimensional fractional Oskolkov equation in its fractional form is given by

Dα
t ( f ) − βDα

t

(
D2α

x ( f )
)
− γ

(
D2α

x ( f )
)

+ f
(
Dα

x ( f )
)

= 0. (3.1)

Equation (3.1) encompasses the temporal evolution of viscoelastic fluids where the material memory
and the refractive index both play pertinent roles. The term Dα

t ( f ) represents the time fractionality,
expressing the fact that the current state of the fluid depends on its prior behavior. The second
term, therefore, includes fractional temporal and spatial derivatives and is used to capture dispersive
effects that depend on the spatial distribution. The dissipation term −

(
D2α

x ( f )
)

is used to express the
generalized diffusion processes and the nonlinear interface f

(
Dα

x ( f )
)

depicts how solitons and wave
patterns interact and stay preserved while travelling. This equation is very important in modeling this
behavior of fluids where conventional models fail to capture the behavior well. Here, β and γ are
constants and f (x, t) represents an unknown wave front. Therefore, f (x, t) = F(ψ) and ψ = λxα

α
− ω tα

α

are used to change Eq (3.1). It is converted into the following ordinary differential system:

2λ2ωβ
d2F
dψ2 − 2γλ2 dF

dψ
− 2ωF + λF2 = 0. (3.2)

We use the proposed approach that takes advantage of properties that exist inherently in the system
balancing equations to reduce and solve for wave structures. In this way, integrating specific terms, it
is possible to extract the individual characteristics of the primary components of wave phenomena. By
substituting Eqs (2.3) and (2.4) into Eq (3.2) and then collecting the coefficients of Z(φ), we derive the
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following system of equations:

− 12 λ2ωβ s−2 p2
8ζ2 − λ s−2

2 p2
8 = 0,

4 λ2ωβ s−1 p2
8ζ3 + 2 λ s−2 p2

8s−1ζ + 4 λ2γ s−2 p2
8ζ2 = 0,

− 16 λ2ωβ s−2 p2
8ζ3 + 2ω s−2 p2

8ζ2 − λ s−1
2 p2

8ζ2 − 2 λ s−2 p2
8s0ζ

2 − 2 λ2γ s−1 p2
8ζ3 = 0,

− 2ω s−1 p2
8ζ3 + 4 λ2γ s−2 p2

8ζ3 + 4 λ2ωβ s−1 p2
8ζ4 + 2 λ s−1 p2

8s0ζ
3 + 2 λ s−2 p2

8s1ζ
3 = 0,

− 2 λ s−1 p2
8s1ζ

4 − 4 λ2ωβ s2 p2
8ζ6 − 2 λ2γ s−1 p2

8ζ4 + 2 λ2γ s1 p2
8ζ5

− 2 λ s−2 p2
8s2ζ

4 + 2ω s0 p2
8ζ4 − λ s0

2 p2
8ζ4 − 4 λ2ωβ s−2 p2

8ζ4 = 0,
− 2ω s1ζ

5 p2
8 + 2 λ s0s1ζ

5 p2
8 − 4 λ2γ s2 p2

8ζ6 + 4 λ2ωβ s1 p2
8ζ6 + 2 λ s−1 p2

8s2ζ
5 = 0,

2ω s2ζ
6 p2

8 − λ s1
2ζ6 p2

8 − 16 λ2ωβ s2 p2
8ζ7 − 2 λ s0s2ζ

6 p2
8 + 2 λ2γ s1 p2

8ζ6 = 0,
4 λ2ωβ s1 p2

8ζ7 + 2 λ s1ζ
7 p2

8s2 − 4 λ2γ s2 p2
8ζ7 = 0,

− λ s2
2ζ8 p2

8 − 12 λ2ωβ s2 p2
8ζ8 = 0.

(3.3)

This give us the algebraic equations by setting Z(φ) = 0. The solutions of this system of algebraic
equations obtained from Maple are:

Set 1.

s0 = 3/10

√
6γ
√
β
, s1 = 2

√
6
√
βω, s−1 = 0, s−2 = 0,

s2 = −10

√
6β3/2ω2

γ
, ζ = −

1
100

γ2

ω2β2 , λ = 5/6

√
6
√
βω

γ
, ω = ω.

(3.4)

Set 2.

s0 = 1/4

√
6γ
√
β
, s1 = 2

√
6
√
βω, s−1 =

1
200

√
6γ2

β3/2ω
, s−2 = −

1
16000

√
6γ3

β5/2ω2 ,

s2 = −10

√
6β3/2ω2

γ
, ζ = −

1
400

γ2

ω2β2 , λ = 5/6

√
6
√
βω

γ
, ω = ω.

(3.5)

Solution Group 1. For Set 1 (ζ < 0) provided that ω = −1
10 , we obtain the following set of solutions for

Eq (3.1), where in this case

ζ = −
1

100
γ2

ω2β2 , ψ = 5/6

√
6
√
βω xα

γ α
−
ω tα

α
,

f1(x, t) = 3/10

√
6γ
√
β

+ 2
√

6
√
βω

(
1

100
γ2 p2

ω2β2 − p1

√
−ζ tanh

( √
−ζψ

)) (
p1 − p2

√
−ζ tanh

( √
−ζψ

))−1

− 10
√

6β3/2ω2
(

1
100

γ2 p2

ω2β2 − p1

√
−ζ tanh

( √
−ζψ

))2

γ−1
(
p1 − p2

√
−ζ tanh

( √
−ζψ

))−2

(3.6)
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or

f2(x, t) = 3/10

√
6γ
√
β

+ 2
√

6
√
βω

(
1

100
γ2 p2

ω2β2 − p1

√
−ζ coth

( √
−ζψ

)) (
p1 − p2

√
−ζ coth

( √
−ζψ

))−1

− 10
√

6β3/2ω2
(

1
100

γ2 p2

ω2β2 − p1

√
−ζ coth

( √
−ζψ

))2

γ−1
(
p1 − p2

√
−ζ coth

( √
−ζψ

))−2
.

(3.7)

Solution Group 2. For Set 1 (ζ > 0) provided that ω = −1
10 , we obtain the following set of solutions for

Eq (3.1):

f3(x, t) = 3/10

√
6γ
√
β

+ 2
√

6
√
βω

(
1

100
γ2 p2

ω2β2 + p1

√
ζ tan

( √
ζψ

)) (
p1 + p2

√
ζ tan

( √
ζψ

))−1

− 10
√

6β3/2ω2
(

1
100

γ2 p2

ω2β2 + p1

√
ζ tan

( √
ζψ

))2

γ−1
(
p1 + p2

√
ζ tan

( √
ζψ

))−2
(3.8)

or

f4(x, t) = 3/10

√
6γ
√
β

+ 2
√

6
√
βω

(
1

100
γ2 p2

ω2β2 − p1

√
ζ cot

( √
ζψ

)) (
p1 − p2

√
ζ cot

( √
ζψ

))−1

− 10
√

6β3/2ω2
(

1
100

γ2 p2

ω2β2 − p1

√
ζ cot

( √
ζψ

))2

γ−1
(
p1 − p2

√
ζ cot

( √
ζψ

))−2
.

(3.9)

Solution Group 3. For Set 1 (ζ = 0), we obtain the following set of solutions for Eq (3.1):

f5(x, t) = 3/10

√
6γ
√
β

+ 2
√

6
√
βω

(
1

100
γ2 p2

ω2β2 −
p1

ψ

) (
p1 −

p2

ψ

)−1

− 10
√

6β3/2ω2
(

1
100

γ2 p2

ω2β2 −
p1

ψ

)2

γ−1
(
p1 −

p2

ψ

)−2

.

(3.10)

Solution Group 4. For Set 2 (ζ < 0) provided that ω = −1
20 , we obtain the following set of solutions for

Eq (3.1), where in this case

ζ = −
1

400
γ2

ω2β2 , ψ = 5/6

√
6
√
βω xα

γ α
−
ω tα

α
,

f6(x, t) = s−2

(
p1 − p2

√
−ζ tanh

( √
−ζψ

))2
(

1
400

γ2 p2

ω2β2 − p1

√
−ζ tanh

( √
−ζψ

))−2

+ s−1

(
p1 − p2

√
−ζ tanh

( √
−ζψ

)) ( 1
400

γ2 p2

ω2β2 − p1

√
−ζ tanh

( √
−ζψ

))−1

+ s0 + 2
√

6
√
βω

(
1

400
γ2 p2

ω2β2 − p1

√
−ζ tanh

( √
−ζψ

)) (
p1 − p2

√
−ζ tanh

( √
−ζψ

))−1

+ s2ω
2β

(
1

400
γ2 p2

ω2β2 − p1

√
−ζ tanh

( √
−ζψ

))2 (
p1 − p2

√
−ζ tanh

( √
−ζψ

))−2

(3.11)
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or

f7(x, t) = s−2

(
p1 − p2

√
−ζ coth

( √
−ζψ

))2
(

1
400

γ2 p2

ω2β2 − p1

√
−ζ coth

( √
−ζψ

))−2

+ s−1

(
p1 − p2

√
−ζ coth

( √
−ζψ

)) ( 1
400

γ2 p2

ω2β2 − p1

√
−ζ coth

( √
−ζψ

))−1

+ s0 + 2
√

6
√
βω

(
1

400
γ2 p2

ω2β2 − p1

√
−ζ coth

( √
−ζψ

)) (
p1 − p2

√
−ζ coth

( √
−ζψ

))−1

+ s2ω
2β

(
1

400
γ2 p2

ω2β2 − p1

√
−ζ coth

( √
−ζψ

))2 (
p1 − p2

√
−ζ coth

( √
−ζψ

))−2
.

(3.12)

Solution Group 5. For Set 2 (ζ > 0) provided that ω = −1
20 , we obtain the following set of solutions for

Eq (3.1):

f8(x, t) = s−2

(
p1 + p2

√
ζ tan

( √
ζψ

))2
(

1
400

γ2 p2

ω2β2 + p1

√
ζ tan

( √
ζψ

))−2

+ s−1

(
p1 + p2

√
ζ tan

( √
ζψ

)) ( 1
400

γ2 p2

ω2β2 + p1

√
ζ tan

( √
ζψ

))−1

+ s0 + 2
√

6
√
βω

(
1

400
γ2 p2

ω2β2 + p1

√
ζ tan

( √
ζψ

)) (
p1 + p2

√
ζ tan

( √
ζψ

))−1

+ s2ω
2β

(
1

400
γ2 p2

ω2β2 + p1

√
ζ tan

( √
ζψ

))2 (
p1 + p2

√
ζ tan

( √
ζψ

))−2

(3.13)

or

f9(x, t) = s−2

(
p1 − p2

√
ζ cot

( √
ζψ

))2
(

1
400

γ2 p2

ω2β2 − p1

√
ζ cot

( √
ζψ

))−2

+ s−1

(
p1 − p2

√
ζ cot

( √
ζψ

)) ( 1
400

γ2 p2

ω2β2 − p1

√
ζ cot

( √
ζψ

))−1

+ s0 + 2
√

6
√
βω

(
1

400
γ2 p2

ω2β2 − p1

√
ζ cot

( √
ζψ

)) (
p1 − p2

√
ζ cot

( √
ζψ

))−1

+ s2ω
2β

(
1

400
γ2 p2

ω2β2 − p1

√
ζ cot

( √
ζψ

))2 (
p1 − p2

√
ζ cot

( √
ζψ

))−2
.

(3.14)

Solution Group 6. For Set 2 (ζ = 0), we obtain the following set of solutions for Eq (3.1):

f10(x, t) = s−2

(
p1 −

p2

ψ

)2 (
1

400
γ2 p2

ω2β2 −
p1

ψ

)−2

+ s−1

(
p1 −

p2

ψ

) (
1

400
γ2 p2

ω2β2 −
p1

ψ

)−1

+ s0 + 2
√

6
√
βω

(
1

400
γ2 p2

ω2β2 −
p1

ψ

) (
p1 −

p2

ψ

)−1

+ s2ω
2β

(
1

400
γ2 p2

ω2β2 −
p1

ψ

)2 (
p1 −

p2

ψ

)−2

.

(3.15)
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4. Results and discussion

In this work, we have used the Riccati-Bernoulli sub-ODE approach in conjunction with the
Bäcklund transformation to obtain explicit solitonic solutions of the fractional Oskolkov equation.
Although finding these solutions was possible due to the use of computational tools such as Maple,
the emphasis is much more than just writing down these solutions. The solutions offer essential
information on the nonlinear dynamics determined by the fractional differential operator (α), especially
for the description of solitonic phenomena in multiscale systems. Thus, we build a strong theoretical
background by the detailed analysis of the fractional order and the proper consideration of the results
for the fluid dynamics and the wave propagation. This framework also aided in improving knowledge
about the fractional Oskolkov equation as well as providing assessment of the concepts in fractional
calculus and real-world applications of fractional phenomena. The novelty of this work is to connect
these solutions to the physical systems and, thus, to the field of applied mathematics and theory of
nonlinear waves. In the next section, we discuss the spatial visualization of wave solutions attained
through the fractional Oskolkov equation. The identified solution types, trigonometric, hyperbolic,
and rational, are shown in the following figures in 3D and 2D views Figures 1–4. This equation
turns out to be extremely useful in arriving at the dimensions and geometry of thin-walled pressure
vessels like tanks and reactors and hence forms a part of the standard tools used by chemical and
mechanical engineers. In particular, it contributes to such vessels’ design, which are destined to
operate at elevated pressure and temperature, typical for severe service conditions [47]. Moreover,
to predict the mechanical properties, stresses, and strains of those pressure vessels, one makes use of
the Oskolkov equation. Table 1 has been created to presents side by side comparison between solutions
achieved in this study and those obtained using modified Kudryashov method in other study. This table
presents the difference and advantage of the current approach and shows how our work deviates from
the previous method used in similar issue.

The solution for an anti-kink wave is depicted in Figure 1. Thus, one may claim that as the value
of the fractional order parameter (α) increases, the wave propagation features change dramatically.
More particularly, the amplitude of the solution increases manifold in the medium in which the wave
propagates.

The graphical solutions presented in Figure 1 can be discussed distinguishing some characteristics
that can be significant considering wave propagation, especially in areas of fluid dynamics. Such
large amplitude solutions indicate large coupling within the medium which is again important for
quantifying the wave phenomena in different systems. This understanding proves very useful in areas
of engineering, particularly in the estimation and design of thin-walled pressure vessels. In chemical
and mechanical engineering, these designs have to be optimized with significant awareness of wave
behavior at different pressures and temperatures. For instance, the solutions proffered out of the
time-space fractional Oskolkov equation are instrumental in estimating stress, strain, and mechanical
characteristics of materials toward enhancing the design effectiveness and reliability of engineered
structures.

Figure 2 plots the fuzziness diagnostic of the soliton solution kink type provided in this paper
with the deterioration of the fractional-order derivative parameter (α). The deviation, as a result, with
an application of the fractional order parameter with reduced values aligns to Figure 1 below. In
the physical sense, this implies that smaller fractional orders for the reduced order model can have
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a beneficial effect on the dynamic characteristics of the system. In particular, the increase in the
amplitudes for α = 0.99 and α = 0.98 compared to α = 1 hints at the possibility that the interior force
within the nuclear matter could be boosted by minimal fractions. Such enhancement can, therefore,
result in deeper kink formations, implying improved angular density, and hence, sharper and profound
state transition during the fission and fusion process inherent in nuclear reactions.

In detail, Figure 3 illustrates the dependence of the amplitude of a kink-type solitary solution on the
fractional operator parameter (α). When varying the fractional parameter, a noticeable decline of the
amplitude is observed in the bottom zones, whereas the amplitude in the top zones does not get altered.
Such selectiveness indicates that (α) affects the solution energy distribution in a differential manner.
At a physical level, it could be the manifestation, within this model, of the selective impact of the
fractional parameter on the energy of the system. The trough in the lower energy state fluctuates more
due to the memory effect and the strength of the nuclei matter. On the other hand, the crests which are a
location of the higher energy states are left unscathed hence there is a sense of nuclear transitions in the
fission and fusion at these locations to be stable and uninterfered with. This understanding could have
crucial implications for the analysis of energy interactions across behaviors, especially in structural and
dynamic nuclear physical systems and engineering where wave properties impact the structure stability
and energy changes.

It is clearly seen from Figure 4 that the effect of an increase in the fractional order parameter (α)
is uniform and is manifested through the decrease in the amplitude of the kink-type solitary solution
at all points. From this plot, one can infer that with the decrease in memory effects and interaction
strengths in nuclear matters, the total strength of the kink-type solution decreases. From a physical
perspective, it shows that lesser fractional weights negatively affect the solution by providing a weaker
bend. Also, notable behavior is essential for enhancing thin-wall pressure vessels utilized in high-
pressure and high-temperature susceptible applications. It is useful in predicting mechanical properties
such as stress and strain by applying the Oskolkov equation, thereby guaranteeing high performance
and reliability, especially in operations involving fluids and nuclear- related processes.

(a) 3D graphical representation for the integer order
derivative parameter.

(b) 2D graphical representation for the fractional order
derivative parameter α.

Figure 1. Different variation analysis of the derivative parameter (α) of the solution f1(x, t).
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(a) 3D graphical representation for the integer order
derivative parameter.

(b) 2D graphical representation for the fractional order
derivative parameter α.

Figure 2. Different variation analysis of the derivative parameter (α) of the solution f4(x, t).

(a) 3D graphical representation for the integer order
derivative parameter.

(b) 2D graphical representation for the fractional order
derivative parameter α.

Figure 3. Different variation analysis of the derivative parameter (α) of the solution f6(x, t).

(a) 3D graphical representation for the integer order
derivative parameter.

(b) 2D graphical representation for the fractional order
derivative parameter α.

Figure 4. Different variation analysis of the derivative parameter (α) of the solution f10(x, t).
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Table 1. Comparison of the Riccati-Bernaoulli sub-ODE along with Bäcklund transformation with the modified Kudryashov
method [47].

Present method Modified Kudryashov method
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5. Conclusions

Here we considered the spatial nature and dynamic properties of the solutions obtained from the
fractional Oskolkov equation, and especially the solitons of the kink type. It is shown that by applying
systematic Bäcklund transformation and the sub-ODE of the given Riccati-Bernoulli equation, the
types of different solutions derived and discussed include trigonometric, hyperbolic, and rational forms.

As shown in our results depicted in Figures 1–4, a considerable difference in the amplitude
and propagation of solutions is distinguished when the value of the fractional order parameter is
changed. Reduction of the fractional order also improves the dynamic characteristics of the system
that increases its strength within the nuclear matter and, therefore, sharpens the kink formations.
These ideas have great relevance to the generation and modeling of thin-walled pressure vessels in
chemical and mechanical engineering. Owing to the Oskolkov equation, it is possible to precisely
forecast and regulate mechanical characteristics, including stress and strain, to increase the efficiency
within high-pressure and high-temperature conditions. The given approach based on the Bäcklund
transformation with the use of the Riccati-Bernoulli sub-ODE method is a solid platform for further
detailed examination of emerging wave solutions in the context of fractional systems.

The study is beneficial for developing the quantitative descriptions on the realistic wave systems
with potential applications in hydrodynamics, plasma physics, and nonlinear optics. Applying
conformable fractional derivatives, the work provides an enriched insight into the behavior of dynamic
waves and the significance of the use of fractional-order models for a better description of the
nonlocal phenomena and memory of the physical processes. It is noteworthy that the aforementioned
analysis and the two proposed methods, namely the Riccati-Bernoulli sub-ODE method and Bäcklund
transformation, provide efficient ways of obtaining the exact solutions for the time-space fractional
Oskolkov equation. For instance, the solutions that have been found are limited by the range of
fractional orders, and how these solutions might behave when the orders transcend beyond these stated
limits has not been explained. Also, it must be noted that the model is still simplified and deals with
the concepts of an idealized environment, and the effects of turbulence, the higher-order effects, or the
interactions between multiple solitons have not been fully considered. Also it was found that using
two and three dimensionals plots can help us understand the solitonic behavior of the analytically
computed solutions but the experimental confirmation of these theoretical findings has been left for
another future work. These limitations present the scope for coming up with additional research to
enhance this approach. Future work could include looking at the theoretical and experimental results
of this work and making comparisons with other nonlinear models and an in-depth analysis of boundary
layers. This will further strengthen the usage as well as the relialibility of the models presented here.
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