AIMS Mathematics, 9(11): 30939-30971.
DOI: 10.3934/math.20241493
AIMS Mathematics Received: 29 July 2024

Revised: 23 October 2024

Accepted: 24 October 2024
https://www.aimspress.com/journal/Math Published: 30 October 2024

Research article

Developing a Grover’s quantum algorithm emulator on standalone FPGAs:
optimization and implementation

Seonghyun Choi and Woojoo Lee*

Department of Intelligent Semiconductor Engineering, Chung-Ang University 84, Heukseok-ro,
Dongjak-gu, Seoul 06974, Korea

* Correspondence: Email: space @cau.ac kr.

Abstract: Quantum computing (QC) leverages superposition, entanglement, and parallelism to solve
complex problems that are challenging for classical computing methods. The immense potential
of QC has spurred explosive interest and research in both academia and industry. However, the
practicality of QC based on large-scale quantum computers remains limited by issues of scalability
and error correction. To bridge this gap, QC emulators utilizing classical computing resources have
emerged, with modern implementations employing FPGAs for efficiency. Nevertheless, FPGA-based
QC emulators face significant limitations, particularly in standalone implementations required for low-
power, low-performance devices like IoT end nodes, embedded systems, and wearable devices, due
to their substantial resource demands. This paper proposes optimization techniques to reduce resource
requirements and enable standalone FPGA implementations of QC emulators. We specifically focused
on Grover’s algorithm, known for its excellent performance in searching unstructured databases. The
proposed resource-saving optimization techniques allow for the emulation of the largest possible
Grover’s algorithm within the constrained resources of FPGAs. Using these optimization techniques,
we developed a hardware accelerator for Grover’s algorithm and integrated it with a RISC-V
processor architecture. We completed a standalone Grover’s algorithm-specific emulator operating on
FPGAs, demonstrating significant performance enhancements and resource savings afforded by the
proposed techniques.

Keywords: Quantum computing (QC); QC emulator; Grover’s algorithm; system-on-Chip platform;
FPGA prototyping; optimization; design automation
Mathematics Subject Classification: 68Q12, 65D17, 94C30

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241493

30940

1. Introduction

Over the past few decades, relentless research in quantum computing (QC) has borne fruit in the
form of remarkable advancements in the QC industry. These developments have garnered significant
attention from both academic [1-3] and industrial [4—7] spheres, establishing QC as a focal point of
contemporary research and development. QC, which harnesses the principles of superposition,
entanglement, and parallelism to perform computations, promises substantial advantages over
classical computing in specific problem domains such as discrete logarithm calculation, integer
factorization, eigenvalue estimation, and problems involving fractals and fractional calculus [8-10].
The proliferation of various quantum algorithms [11-14] has further accelerated the expansion of QC
applications across diverse fields.

However, the current state of QC devices has yet to reach the level of practical, large-scale
quantum computers and quantum networks due to scalability and error correction issues. These
challenges remain significant obstacles in QC research. To address this gap, there has been a surge in
research and development aimed at emulating quantum algorithms using classical computing
resources [15]. These QC emulators serve a critical role in bridging the gap until fully operational QC
devices become available. More in detail, QC emulators enable rapid experimentation and
prototyping of quantum circuits, algorithms, and applications. Traditionally, classical QC emulators
have relied on large-scale, resource-intensive, and expensive emulation platforms [16, 17]. In contrast,
contemporary QC emulators are increasingly utilizing Field-Programmable Gate Arrays (FPGAs) for
more efficient, scalable, and cost-effective hardware-accelerated quantum algorithm
emulation [12, 15, 18, 19]. The inherent cost-effectiveness, high performance, and reconfigurability of
FPGAs make them an attractive choice for this purpose.

Despite these advantages, significant challenges remain in implementing FPGA-based QC
emulators, mainly due to the limited resources of FPGAs relative to the high demands of QC
emulators. Quantum states and operations in quantum computers, represented as vectors and matrices,
respectively, scale exponentially with the number of qubits [20]. This exponential growth necessitates
substantial computational resources for storage and processing, making it impractical for
low-performance (low-end) FPGAs. While high-performance (high-end) FPGAs with extensive
resources are available, they are costly and still have limited capacity. Furthermore, as the
advancement of various quantum algorithms is expected to extend QC applications into low-power,
low-performance devices such as IoT end nodes, embedded systems, and wearable devices, current
FPGA-based QC emulators, which are typically used as accelerator modules in systems with external
high-performance CPUs and large memories, are not suitable for these compact devices. These
devices require a compact, standalone solution that can execute QC without relying on external CPUs
or large memory resources. Therefore, research focused on creating a fully self-contained system,
integrating a CPU, memory, peripherals, and a QC-specific accelerator into a single compact
platform, is essential to meet these requirements.

To address these challenges, the goal of this paper is to propose resource optimization techniques
for QC emulators and to realize a standalone QC emulator on FPGAs by applying these techniques.
To achieve the goal, we first select Grover’s quantum algorithm [21] as the target application, as it is
expected to be highly active in embedded systems among the various existing QC algorithms.
Grover’s algorithm performs unstructured data searches on quantum computers. In contrast to

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30941

classical computers, where searching a dataset of size N requires O(N) function calls, Grover’s
algorithm on a quantum computer can accomplish the search in O(VN) calls. This represents a
quadratic reduction in the number of operations compared to classical computers, making it the most
optimal search algorithm [22]. Therefore, this algorithm is expected to significantly enhance the
utility of quantum computers by enabling the search of large datasets that are impractical for classical
computers, such as finding specific shapes or features within fractal structures and accelerating
calculations for finding specific solutions in fractional calculus using quantum algorithms [10,23-27].

Next, in this study, we develop optimization techniques to emulate Grover’s algorithm with
minimal resources. Based on the fact that the fast searching efficiency of the Grover’s algorithm is
proportional to the size of the system implementing the algorithm, the resource optimization
algorithm makes a significant contribution to enhancing the performance of the emulator by enabling
the implementation of the largest possible Grover’s algorithm system using limited resources.
Specifically, Grover’s search progresses by repeatedly applying a specific operation, represented by
matrix G, to an initial state vector. We discovered that by leveraging the characteristics of G, we can
reduce both the computational load and resource requirements when emulating Grover’s algorithm.
First, G represents real-number operations, ensuring that the resulting values remain real for initial
state vectors within the real range. Additionally, G can be decomposed into the product of an Oracle
matrix and a Diffusion matrix. The application of the diffusion matrix to any vector can be computed
using simpler basic operations rather than full matrix-vector multiplication. Furthermore, the vector
resulting from repeated applications of G can have a dominant basis state close to 1, allowing for
approximate probability calculations. Alongside these Grover-specific optimizations, we propose
overall optimization techniques that include the application of fixed-point representation to further
reduce the emulator’s resource demands. Ultimately, the optimization techniques tailored to Grover’s
algorithm are realized through the synergistic combination of four detailed steps.

Finally, we design a hardware IP, termed the Grover accelerator, to incorporate the proposed
optimization techniques and develop a system-on-chip (SoC) platform to achieve the targeted
standalone Grover’s algorithm emulator on FPGAs. We designed the Grover accelerator to perform
the algorithm approximately 191 times faster than a software implementation for a 4-qubit system. By
integrating this accelerator with a RISC-V processor, we developed the emulator and programmed it
onto a high-performance and resource-rich Kintex Ultrascale+ FPGA. As a result, while traditional
methods could implement a maximum of 4-qubit emulators on this FPGA, our optimized techniques
enabled the implementation of a 6-qubit emulator. Additionally, we programmed the emulator on a
low-performance and resource-limited Arty A7 FPGA. The results showed that, compared to the
traditional method’s limit of a 2-qubit emulator, our optimization techniques enabled the
implementation of up to a 4-qubit emulator, thereby demonstrating the superior resource-saving
effectiveness of the proposed techniques.

The remainder of the paper is organized as follows. Section 2 introduces the fundamental concepts
of QC states and operations, and based on these, briefly explains the principles of the Grover’s
algorithm. Section 3 proposes resource optimization techniques for emulation derived from the
operational characteristics of the Grover’s algorithm. Section 4 describes in detail the design and
implementation of the hardware emulator applying the proposed techniques. Section 5 evaluates the
resource-saving superiority and performance enhancement of the proposed techniques using various
developed FPGA prototype emulators. Section 6 is dedicated to providing the conclusions of

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30942

this study.
2. Quantum computing and quantum search algorithm: a preliminary

2.1. Qubit and quantum gate

Just as classical computing uses bits as the basic unit of information, QC uses quantum bits, or
qubits, as their fundamental unit. However, while a bit in a classical computer can only be in one of
two states, 0 or 1, a qubit can exist in both the states |0) and |1),which are called basis states of the single
qubit quantum system, simultaneously. This phenomenon is known as superposition in QC and is a key
property that gives quantum computers their superiority over classical computers. The superposed state
of a qubit can be represented as a column vector |¢/) with |0) and |1) as basis states:

) = a|0) + I1) = [Z] 2.1)

where @ and B are arbitrary complex numbers such that the sum of the squares of their Euclidean norm
is equal to 1.

The state of a system comprising multiple qubits can also be defined. When n qubits are arranged in
sequence to form a single system, each qubit can be in one of two basis states, |0) and |1). Consequently,
the total number of basis states for the system defined by n qubits is N = 2". The general expression
representing the superposition of all basis states in such a system is given by:

@
N-1 @
=Y aliy=| . |, (2.2)
i=0 :
an-1

where g, a1, . .., @y- are complex numbers that satisfy w/ZZBl > = 1.

Meanwhile, the coefficients (@;) of each basis state in the system represent the probability of
measuring that specific basis state. When a system in a superposition of multiple basis states is
measured, it ’collapses’ to one of the basis states. That is, the state of the system is randomly
determined to be one of the possible basis states. The probability of each basis state
liy i = 0,1,...N — 1) being determined from an arbitrary state |¢) is given by [(ijy)[>, where (ily)
represents the inner product between |i) and |y). If the coefficient «; is known, the same probability
can be calculated by squaring the amplitude of the coefficient, which is ||a;||*, the Euclidean norm of
a;. Thus, the probability can be expressed as shown below:

P(lyry — 1) = Kilp)P = llasll. (2.3)

Therefore, due to the properties of probabilities, the following equation is satisfied:

N-1) N-1 N-1 N—1
Il = J Dl = JZII%H)IIZ = JZnainz = JZP(IW — =1 24
i=0 i=0 i=0 i=0

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30943

Next, the basic operations applied to qubits in QC can be represented by unitary matrices. Therefore,
the result of applying an operation to a system in a specific state can be calculated as a matrix-vector
multiplication. Table 1 shows some of the commonly used basic operations for one and two qubits
along with their matrix representations.

Table 1. Key quantum gates for single and two-qubit systems.

Gate Symbol Matrix
S
1
Hadamard H vl -1
¥ 0 1
' 1 0
Pauli]
v 0 —i
0
1 0
Z 0 -1
g 1 0
Phase-shift 0 i
1 0
T [0 ein/4]
1 00O
0100
Controlled-NOT CNOT 000 1
0010

If U; denotes a single-qubit quantum gate applied to the i-th qubit (i = 1,2,...,n), the matrix
representation U of the operation on an n-qubit system, resulting from the simultaneous application of
Ui, U,,...,U, tothe n qubits, is obtained using the Kronecker product as follows:

U=U,0U,® - -®U,. (2.5)

2.2. Grover’s quantum searching algorithm

Grover’s algorithm performs data search on a quantum computer to find the value of x that satisfies
f(x) =1 for a given function f(x), as follows:

ifx=s

1
= 2.6
S {0 ifx#s 2.6)

where s is the unique value that satisfies f(s) = 1.
In a system of n qubits, the G operation is repeatedly applied k times to the initial state where all
basis states are uniformly superposed. Here, k is determined by n and is derived from the following

equation:
. [n ﬂ

) 2.7)

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30944

where the notation |] means the number rounded to the nearest integer. As a result, the coefficient of
the basis state |s) corresponding to the value x that satisfies f(x) = 1 (x = s) becomes large, while
the coefficients of the other basis states approach zero. Therefore, by measuring the state of the system
after completing the Grover iterations, the value of x that satisfies f(x) = 1 can be obtained with very
high probability.

Next, the operations of Grover’s algorithm can be expressed as follows [28]:

) = G*H®'|0"), where G = (H'Z,,H*")(Z)), (2.8)

where |0") denotes the basis state where all n qubits of the system are in the |0) state, and H®" represents
the operation of applying the Hadamard gate H to all n qubits simultaneously.

The G operation consists of the Oracle gate, represented by Z¢, and the Diffusion gate, represented
by H®*"Z, H®". The Oracle gate inverts the phase of the basis state |s) for which f(s) = 1, while
the Diffusion gate inverts the coefficients of all basis states about the average of the coefficients. The
operation of the Oracle gate Z; can be expressed as follows:

—|xy ifx =s,
= (=1 Py = 2.
Zslxy = (=1)""]x) {|x> . (2.9)

In addition, the operation of the Diffusion gate H®*"Z, H®" can be expressed with the notation |n)
which refers to a uniform superposition state. Specifically, it represents an equal superposition of all
computational basis states, where each basis state |i) (i = 0,1,...,N — 1) is included with an equal
probability amplitude. Mathematically, this can be written as:

1 N-1
= H®0" = —— i 2.10
In) 10" e ZO liy (2.10)

where |0") represents the quantum state in which all n qubits are in |0) states. With this notation, and
(n| = |n)", where T means conjugate transpose, the equation for the Diffusion gate is given as follows:

2—n+l . 2—n+l
H®'Z,,H®" = 2ln)(n| - I, = N (2.11)
2—n+l o 2—n+1
—lx) ifx#0,
where Z,,|x)= 2|0"X0" - I, =) (2.12)
lxy ifx=0.

3. Resource optimization techniques for the Grover’s algorithm emulator

The parallel hardware computation structure of FPGAs is well-suited to mimic the natural
parallelism arising from the superposition and entanglement phenomena in quantum mechanics.
Additionally, the high cost-efficiency and reconfigurability of FPGAs provide a foundation for
extending the realm of QC into the domain of embedded systems. However, as the number of qubits
in the quantum computer being emulated increases, the number of basis states that the emulator must
store and process grows exponentially. Consequently, the traditional approach of representing

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30945

quantum states and operations as vectors and matrices becomes highly constrained within the
resource limits of an FPGA.

To address this issue, we propose techniques to optimize resources and reduce computational
overhead for FPGAs, specifically targeting Grover’s algorithm. The proposed techniques consist of
four detailed sub-techniques.

3.1. Efficient real number representation

In a quantum system, the coeflicients of the superposed basis states are generally expressed in the
complex number domain. To represent these coeflicients as complex numbers in a QC emulator, register
blocks must be allocated to store the real and imaginary parts of the coeflicients, which are represented
as real numbers. This doubles the consumption of register resources compared to using real numbers
alone. Consequently, the required register resource amount for the emulator also doubles.

Additionally, the number of real number operations required for addition and multiplication of
complex numbers is greater than for operations involving real numbers only. In the case of complex
addition, as shown in Figure la, two real additions are required: one for the real parts and one for
the imaginary parts. For complex multiplication, calculating the real and imaginary parts requires two
real multiplications and one real addition for each part, as illustrated in Figures 1b and 1c. When
calculating the real part, the real and imaginary parts of one complex number are each multiplied
by the corresponding parts of the other complex number. For the imaginary part, each part of one
complex number is multiplied by the counterpart of the other complex number. The resulting pairs of
real numbers from these multiplications are then added (or subtracted) to produce the final real and
imaginary parts of the complex multiplication result.

(b) (©

Figure 1. Multiple real additions and multiplications for calculating complex numbers.
Figures describe real arithmetic for (a) the real and imaginary parts in complex addition, (b)
the real part in complex multiplication, and (c) the imaginary part in complex multiplication.

ADD _Original and MULT_ORIGINAL in Algorithm 1 are algorithms for complex-based addition
and multiplication. We can clearly confirm that ADD_Original requires 2 real number additions, while

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30946

MULT_ORIGINAL requires 4 real number multiplications and 2 real number additions. The

correctness of Algorithm 1 is as follows:

Algorithm 1 Addition and multiplication of complex numbers for the coefficients of the quantum state.

1: procedure ADD_ORIGINAL(e, 8)

2: @ge,Lre : real parts of each complex numbers to
add

3: @B : imaginary parts of each complex
numbers to add

4: Ypes Wi - result of addition

S5: YRe < QRe t+ PBre

6: wlm — apy +ﬁ1m

7: end procedure

1: procedure MULT_ORIGINAL(a,)
2: ge,fre : real parts of each complex numbers to add

3: @, B - imaginary parts of each complex numbers
to add

4: Yre, Yy : result of addition

50 Wre <« Are X Bre = ¥m X Bim

6: l/’lm — Re Xﬁ]m + ay, XﬁRe

7: end procedure

Required number of operations
real addition : 2

Required number of operations
real multiplication : 4

real addition : 2

Theorem 1. Correctness of Algorithm 1
Let « = ag, + iay, and B = Pgre + iBn be two complex numbers where ag., @, Bre>Pim € R.
ADD _ORIGINAL and MULT_ORIGINAL correctly computes the addition and multiplication of two

complex numbers in terms of their real and imaginary parts.

Proof. For addition, let = a + . The real and imaginary parts of the sum are computed as:

wRe = Re +ﬁRea l/’lm = U +ﬁ1m

ADD_ORIGINAL correctly performs this computation by independently summing the real and
imaginary parts. Therefore, the correctness of the addition is guaranteed by the definition of complex
number addition.

For multiplication, let ¢ = a - 8. Using the formula for complex multiplication:

l//Re = QRe 'IBRe — Ay 'IBIma lr//[m = ARe 'Blm + Qi 'IBRe

MULT_ORIGINAL correctly computes these values by performing two real multiplications and one

real addition for each part, following the standard procedure for complex number multiplication.
Thus, the algorithm follows the mathematically correct method for complex number addition and

multiplication, ensuring that the results are correct. O

To perform operations on coefficients expressed as complex numbers in the emulator, more
operations and thus more clock cycles are required compared to real number operations. Arranging
the real number operation hardware in parallel to reduce clock cycles increases the resource
requirements of the FPGA, which is not suitable for the design of the compact emulator targeted in
this paper. Specifically, in the case of Grover’s algorithm, the coefficients of the states remain real
throughout all operations. The complex coeflicients only have phases of 0 or n, which can be
represented as the sign of the real-valued coefficients [29]. Therefore, the imaginary part of the
coeflicients can be disregarded in Grover’s search. This is possible because the basic operations

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30947

constituting the G operation of Grover’s algorithm-H (cf. Table 1), Z,, in Eq (2.12), and Z; in
Eq (2.9)-all have real matrix coeflicients. As a result, reducing the coefficients to real numbers in the
emulator for Grover’s algorithm does not lead to any loss of information.

Therefore, to achieve resource optimization for the emulator, we propose adopting a real
representation of the coefficients of the basis states, considering the characteristics of Grover’s
algorithm. Unlike an universal QC emulator, which allocates register blocks for both the real and
imaginary parts of each coefficient and performs complex arithmetic, we propose excluding the
imaginary part registers and retaining only the real parts. ADD_PROPOSED and MULT_PROPOSED
in Algorithm 2 demonstrate addition and multiplication performed solely with real numbers. The
correctness of Algorithm 2 can be stated as follows:

Algorithm 2 Addition and multiplication for the coefficients of the quantum state using the proposed
real number representation.

procedure ADD_PROPOSED(«,) procedure MULT_PROPOSED(«,)

1: 1:
2: @,f:real numbers to add 2 a, 3 : real numbers to add
3: ¢ :result of addition 3: y :result of addition
4 Ye—a+p 4 Yy e—axp
5: end procedure 5: end procedure
Required number of operations Required number of operations
real addition : 1 real multiplication : 1

real addition : 0

Theorem 2. Correctness of Algorithm 2
Let a and B be real numbers. ADD_PROPOSED and MULT_PROPOSED correctly computes the
addition of real numbers a + 8 and the multiplication of real numbers a X 3, respectively.

Proof. ADD_PROPOSED adds a and § directly as ¢ = a + 8, and MULT_PROPOSED multiplies «
and S directly as ¢ = a X . Since the addition and multiplication of real numbers are well-defined
operations in O(1), these prove the correctness of the addition and multiplication operation in
Algorithm 2. O

ADD_PROPOSED requires only a single real addition, and MULT_PROPOSED requires only one
real multiplication, significantly reducing the computational load compared to ADD_ORIGINAL and
MULT_ORIGINAL. While both Algorithms 1 and 2 have a time complexity of O(1), the proposed
method focuses not on reducing time complexity, but rather on minimizing the number of
fundamental operations required for each arithmetic task, thereby reducing the overall computational
load of the emulator. This approach not only reduces the hardware resources needed for arithmetic
units but also shortens the execution time of the emulator’s operations without consuming additional
hardware resources like registers. By using real arithmetic for all operations in Grover’s algorithm, we
aim to achieve faster execution times while maintaining the integrity of the basis state information,
without increasing the use of resources such as arithmetic units and registers.

3.2. Fixed-point expression

Applying the proposed Efficient Real Number Representation, we can consider representing the
coefficients using single precision floating-point format [30], as shown in Figure 2. However,

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30948

floating-point arithmetic incurs significant overhead. When performing operations between two
floating-point numbers, normalization must adjust the mantissa and exponent of the operands to
enable the operation. Additionally, exceptions must be handled, and the result must be appropriately
rounded according to the standard. More specifically, Algorithm 3 presents the algorithms for
Floating-point addition (FLOAT_ADD) and multiplication (FLOAT_MULT) for the coefficients of the
quantum state. The following theorem proves correctness of Algorithm 3:

Algorithm 3 Floating-point arithmetics for the coefficients of the quantum state.

1: procedure FLOAT_ADD(a,b) 1: procedure FLOAT _MULT(q, b)

2: (float,, floaty) — 2: (float,, float,) —
FLOAT _BIT REPRES ENT(a,b) FLOAT _BIT _REPRES ENT (a,b)
3: (signg, signy) «— GET_SIGN(float,, float,) 3. (signg, signy) «— GET_SIGN(float,, floaty)
4: (expy,expp) — 4: (expg,expy) <« GET_EXPONENT (float,, floaty)
GET_EXPONENT (float,, floaty)
5: (mant,, manty) — 5. (mant,, manty) —
GET_MANTIS S A(float,, float,) GET_MANTIS S A(float,, floaty)
6: # Exponent alignment 6:
7: if exp, > exp, then 7: # Sign calculation
8 manty, < mant, >> (exp, — expy) 8: sign,.s « sign, XOR sign,
9: expy < exp, 9: # Exponent addition
10: else 10: expyes < (exp, + exp, — BIAS)
11: mant, «— mant, >> (exp, — exp,) 11: # Mantissa multiplication
12: exp, < expy 12: mant,,; < mant, X mant,,
13: endif 13: # Normalization
14: # Significand addition/subtraction 14: if overflow occurs in mantissa then
15: if sign, = sign, then mant,,; «— mant, + mant, 15: Mant,.s <— mant,.s >> 1
16: exp, «— exp, + 1
16: else mant,.; < mant, — mant, 17: else
17: endif 18: while highest bit of mant,,;, = 0 do
18: # Normalization 19: Mant,es <— Mant,.; << 1
19: if overflow occurs in mantissa then 20: exp, «— exp, — 1
20: MaNt g <— Mant,.; >> 1 21: end while
21: exp, <« exp, + 1 22: endif
22: else 23: # Rounding
23: while highest bit of mant,.; = 0 do 24: if rounding needed then
24: Mant,es < mant,,; << 1 25: mant,,s <— mant,es + 1
25: exp, «— exp, — 1 26: endif
26: end while 27: # Combine Result
27: endif 28: result «— COMBINE(sign,, exp,, mant,,)

28: # Rounding
29: if rounding needed then mant,,; < mant,.; + 1

29: end procedure

30: endif

31: # Combine Result

32: result «— COMBINE(sign,, exp,, mant,,y)
33: end procedure

Required number of operations Required number of operations

real addition : 4
comparison : 4

real addition : 4
real multiplication : 1

bit shift : 3 comparison : 4
bit shift : 2
XOR : 1
AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30949

31 30 23 22 0

a; S Exponent (E) Mantissa (M)

a; = (—1)s>< ZE_127 X (1.m22m21 ...mlmo)

Figure 2. Floating-point expression of a real value, where m; denotes the i-th bit of the
mantissa block.

Theorem 3. Correctness of Algorithm 3
Addition: Let a and b be two floating-point numbers represented by their sign, exponent, and mantissa:

a = (=1)"8" x mant, X 2P b = (—1)"" x mant, x 2°.

Theorem 3.1. FLOAT_ADD correctly computes the addition of floating-point numbers a + b.
Proof. The algorithm extracts the sign, exponent, and mantissa for a and b, aligning the exponents by
shifting the mantissa of the smaller exponent:

mant, < mant, >> (exp, — expy) if exp, > exp,
or vice versa. The mantissas are added or subtracted depending on the signs of a and b:
mant,.; < mant, + mant, if sign, = sign,

mant,,; < mant, — mant, otherwise.

After normalization (shifting the mantissa and adjusting the exponent if necessary), the result is
obtained. Since addition of floating-point numbers is well-defined, this proves the correctness of the
algorithm for floating-point addition.

Multiplication: Let a and b be two floating-point numbers.
Theorem 3.2. FLOAT_MULT correctly computes the multiplication of floating-point numbers a X b.
Proof. The sign of the result is calculated as:

SigNyes < Sign, @ sign,
where @ represents the XOR operation. The exponents are added:
eXPres < exp, + exp, — BIAS
and the mantissas are multiplied:
mant,.s < mant, X manty,.

Normalization ensures the mantissa is adjusted so that the most significant bit is set. In case of overflow,
the mantissa is shifted and the exponent incremented. The final result is formed by combining the
sign, exponent, and mantissa. Thus, Algorithm 3 correctly computes the multiplication of floating-point
numbers, proving its correctness for floating-point multiplication.

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30950

Through Algorithm 3, we can observe that floating-point operations involve several steps, including
the manipulation of exponents and mantissas, normalization, and rounding. In addition to multiple
real number additions, comparison operations for conditional branches (if-else) and bit shifts are also
required during this process. This ultimately leads to increased execution time and resource demands
for the emulator.

As an alternative, a fixed-point representation of real numbers can be adopted. In fixed-point
representation, the bit string used to represent an integer (excluding the sign bit, S) is divided into an
integer part (int.) and a fractional part (fraction) to represent real numbers. Given the total number of
bits allocated for int. and fraction, the range and resolution of the represented real numbers are
determined by the number of bits assigned to each part. Allocating more bits to int. allows for
representing a wider range of real numbers, while allocating more bits to fraction allows for
representing real numbers with higher resolution. These two aspects are in a trade-off relationship, so
bits are assigned appropriately to each part based on the needs. Then, from Eq (2.3), we know that the
absolute value of the coefficient of a basis state in a QC emulator is less than or equal to 1. Therefore,
only one bit may be enough for inf. to represent the coefficient in fixed-point format, allowing
relatively more bits to be allocated to fraction. Consequently, representing coefficients in fixed-point
format can allow for storing and processing them with high accuracy without loss of information
within the representable range of real numbers.

Meanwhile, fixed-point representation can have significant advantages over floating-point
representation, especially for multiplication by powers of two. Multiplication is an operation that
causes considerable overhead in hardware design. The simplest serial multiplier requires i clock
cycles to perform addition operations for multiplying i-bit integers. To optimize execution time of
such multiplier, the hardware complexity of the multiplier must be increased. Multiplication of real
numbers represented in floating-point format also involves integer multiplication to obtain the
mantissa, along with additional hardware and clock cycles for normalization, rounding, and exception
handling. Thus, multiplication of floating-point numbers is evidently a high-overhead operation.

As an alternative, we can consider replacing the multiplication of arbitrary integers by powers of
two with bit-shift operations. The bit-shift operation shifts the bit string stored in a register block left
or right by a certain distance /, resulting in multiplying (left shift) or dividing (right shift) the integer
represented by the bit string by 2'. Bit-shift operations are implemented very simply through wiring
changes and can be completed within a single clock cycle, thus offering high execution speed.

Finally, we propose applying fixed-point representation to express coefficients in the emulator and
replacing multiplications by powers of two with bit-shift operations during the G operations.
Specifically, as shown in Figure 3, the emulator represents coefficients by allocating 1 bit each to S
and Int., and the remaining 30 bits to the fractional part. This approach ensures high resolution
of 273%(=~ 107) while reducing the computational overhead compared to floating-point representation.
Algorithm 4 presents the proposed fixed-point addition (FIXED_ADD) and multiplication

(FIXED_-MULT_2_EXP) algorithms. The proof of the algorithm is as follows:
31 30 29 0

a; S Int. fraction

30 bits

Figure 3. Fixed-point expression for the coefficients of each basis state.

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30951

Algorithm 4 Fixed-point arithmetics for the coefficients of the quantum state.

1: procedure FIXED_ADD(a,b) 1: procedure FIXED_MULT_2_EXP(a, 2¥)
2: fixed, < INTEGER_BIT _REPRESENT (I'a * 230]) 2: fixed, < INTEGER_BIT _REPRESENT (|'a * 230])
3: fixed, < INTEGER_BIT _REPRESENT (I'b * 230]) 3: exp, « log,(2F)
4: result « fixed, << exp;
4: result « fixed, + fixed, 5: end procedure
5: end procedure
Required number of operations Required number of operations
real addition : 1 bit shift : 1

Theorem 4. Correctness of Algorithm 4

Addition: Let a and b be real numbers.

Theorem 4-1. FIXED _ADD correctly computes the fixed-point addition of real numbers a and b.
Proof. The algorithm converts the real numbers a and b to fixed-point representations,
fixed, = [a X 2301 and fixed, = [b X 230—‘. The fixed-point representations are then added directly as:

result = fixed, + fixed,

Since addition of fixed-point numbers is equivalent to integer addition after scaling, the algorithm
correctly computes the addition of the real numbers a and b in fixed-point form.

Multiplication: Let a be a real number and 2* represent a power of two.
Theorem 4-2. FIXED_MULT _2_EXP correctly computes the fixed-point multiplication of a and 2*.
Proof. The algorithm first converts the real number a to a fixed-point representation:

fixed, = [a X 230-|

It then multiplies by 2* using a bit-shift operation, which is equivalent to multiplying by a power of
two:

result = fixed, << log,(2")

This correctly computes the multiplication of a by 2% in fixed-point representation. Since bit-shift
operations are computationally efficient, the algorithm correctly performs the multiplication with
minimal computational complexity.

From Algorithm 4, fixed-point operations only require a single real number operation, making them
significantly more resource-efficient compared to the number of operations required in Algorithm 3.
Similar to the Real Number Representation method introduced earlier, while the complexity of both
Algorithms 3 and 4 is O(1), the aim of the proposed Fixed Point Expression method is not to reduce
time complexity but to lower the number of basic operations required for each computation. This
approach is intended to reduce the overall computational load of the emulator when performing these
operations repeatedly.

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30952

3.3. Matrix-vector multiplication decomposition

Matrix-vector multiplication is another well-known overhead-intensive operation. For the
emulation of an n-qubit QC with N = 2" distinct states, the multiplication of an N X N matrix by an
N x 1 vector required for a single quantum gate involves N2 real multiplications and N(N — 1) real
additions. Notably, as n increases, N grows exponentially, leading to a single quantum gate operation
exhibiting a complexity of O(2?"). This complexity is calculated under the assumption that real
multiplications have a complexity of O(1) compared to additions, implying that the actual
computational overhead will escalate even more sharply. Furthermore, in the case of Grover’s
algorithm, the G operation composed of four quantum gates must be repeated k times as per Eq (2.7),
further increasing the total computational complexity of the emulator.

In Algorithm 5, CONV_MATRIX_VECTOR_MULT demonstrates the matrix-vector multiplication
algorithm for a single G operation, the correctness of which can be proven as follows:

Algorithm 5 Conventional and proposed arithmetics for the G operation.

1: procedure CONV_MATRIX_VECTOR_MULT 1: procedure PROPOSED_DECOMP_G_OPERATION

2: m[N][N]: N by N matrix representing arbitrary 2: v[N]:N by 1 vector representing quantum state
single quantum gate 3 result{N] « 0

3: v[N]: N by 1 vector representing quantum state 4: acc 0

4: resultiN] < 0 5:

5: 6: fori=0toN—-1do

6: fori=0toN-1do 7 acc « acc +v[i]

7: for j=0toN—1do 8: end for

8: result[i] « result[i] + m[i][j] X v[/] 9: acc—acc>>m-1)

9: end for 10: fori=0toN—1do

10: end for 11: result[i] « acc — v[i]

11: end procedure 12: end for

13: end procedure
Operations required for a single diffusion gate Operations required for a single diffusion gate

real addition : 3N(N — 1) real addition : 2N
real multiplication : 3N? real multiplication : O
bit shift : 0 bit shift : 1

Theorem 5. Correctness of the conventional matrix-vector multiplication in the G operation

Proof. Let M be an N x N matrix representing an arbitrary single quantum gate, where N = 2", and let
v be an N X 1 vector representing the quantum state. The matrix-vector multiplication is defined as:

N-1

result[i] = Z M1 xvIjl, VYielo,1,...,N—1}.
i=0

The matrix-vector multiplication proceeds by iterating over each row i of the matrix and computing the
dot product of the i-th row of M with the vector v. Specifically, for each i, we compute:

N-1
resulti] = Y MIil[j1 X vLj].
Jj=0

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30953

This is a well-defined operation in linear algebra and ensures that the multiplication of the matrix M
with the vector v produces the expected output vector. Each element result[i] is the result of summing
the products of corresponding elements from row i of the matrix and the vector v. By iterating through
all N rows, CONV_MATRIX_VECTOR_MULT correctly computes the result of the matrix-vector
multiplication. Thus, the algorithm satisfies the correctness condition for matrix-vector
multiplication. O

As shown in Algorithm 5, CONV_MATRIX_VECTOR_MULT requires matrix-vector
multiplication for the three basic quantum gates (two Hadamard gates and one Z,,) that make up the G
operation. As a result, the total number of real addition and multiplication operations required
is 3N(N — 1) and 3N?, respectively, and this computational load increases exponentially with the
number of qubits, i.e., the complexity is O(N?). In other words, implementing a general-purpose
emulation framework based on matrix-vector multiplication on a standalone FPGA-based QC
emulator is almost impossible.

As an alternative, we leverage the properties of the diffusion matrix in Grover’s algorithm to
express matrix-vector multiplication as a datapath model [31], thereby decomposing the complex
matrix-vector multiplication into simpler operations. The diffusion gate in the G operation can be
expanded as Eq (2.11). Using this equation, the application of the G operation to an arbitrary state |y)
can be decomposed as follows:

2—n+1 o 2—n+l Zf\:)l ﬂi ,80
Gly) = H"Z,H"i¢y = | . i |lpy=lgy =27 =+ |- : (3.1)
o-n+l - g-n+d Zfi?)l Bi Vo1

T
where, |¢) = Z¢ly) = [,80 e ,BN_l] .
In Eq (3.1), the first term on the right-hand side can be computed through accumulation (3, 8;)
T

and bit-shift (27*!), followed by subtraction with the second term (i.e., — [ﬁo .. ﬁN_l]) to
ultimately obtain the set of coefficients for G|). Therefore, the matrix multiplication H*"Z, H®"
required to emulate the diffusion gate can be decomposed into basic operations, as shown in Figure 4.
These decomposed basic operations consist solely of real additions and bit-shifts. As discussed in
Section 3.2, additions and bit-shifts for fixed-point real numbers are less demanding in terms of
computational requirements and hardware resources compared to multiplications.

o

Accumulation z Bi

AN

Bit-shift 27t

| A —

Bo
subtraction —|

D

N

Figure 4. Decomposed diffusion multiplication into more hardware-efficient arithmetic
operations.

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30954

Finally, Algorithm 5’s PROPOSED_DECOMP_G_OPERATION presents the proposed algorithm
for a single G operation. The correctness of this algorithm can be stated as follows:

Theorem 6. Correctness of the proposed decomposition in the G operation

Proof. In the conventional matrix-vector multiplication for Grover’s algorithm, the G operation
requires multiplying an N x N matrix by an N x 1 vector, which results in N2 real multiplications and
N(N — 1) real additions. Given that N = 2" for an n-qubit quantum system, the computational
complexity is O(2%"). The proposed decomposition leverages the structure of the G operation to
reduce the computational load. Instead of performing direct matrix-vector multiplication, the
algorithm computes the sum of all vector elements and then adjusts each element accordingly.
Let v[i] be the i-th element of the input vector. The decomposition works as follows:
(1). Compute the accumulator:

N-1

acc = Z v[i].
i=0

This requires N real additions.
(2). For each v[i], compute:

result[i] = aNE —v[i].

This involves one division and N real subtractions.
As a result, the total number of operations consists of i) N real additions for the accumulator, ii) one
division, and iii) N real subtractions. This reduces the complexity from O(N?) of
CONV_MATRIX_VECTOR MULT to O(N), as the proposed decomposition avoids the need for N?
multiplications and N(N — 1) additions. Thus, the correctness of the proposed decomposition is
proven, and the significant reduction in computational complexity is established. O

Through Algorithm 5, we can confirm that it requires only 2N addition operations and a single bit
shift, which demonstrates significant resource savings and execution speed improvements compared to
CONV_MATRIX_VECTOR_MULT. Therefore, for the purpose of achieving the compact emulator we
aim for, we propose a matrix-vector multiplication decomposition based on Eq (3.1).

3.4. Resource-efficient measurement approximation

The Grover’s algorithm is completed by measuring the state of the system after iterative G
operations. To emulate the measurement of the system state, we need to square the coeflicients of
each basis state according to Eq (2.3) to obtain the cumulative distribution of measurement
probabilities for all basis states. However, due to limited FPGA resources, performing parallel
multiplication for the coefficients of N basis states in the emulator is highly constrained. To tackle this
issue, we propose an approximation method for squaring the coeflicient values and their cumulative
distribution. This approach achieves acceptable error levels while consuming fewer FPGA resources
and computational requirements.

3.4.1. Approximation of the probability of measuring the state

For a function f(x) with a single solution s, the coefficients of the state |s) become close to 1 after
repeated G operations. The probability of measuring the state |s), that is, the approximate squared

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30955

Euclidean norm of the coefficients of the state |s), ﬂbz\sﬂ/z, can be obtained through linear approximation
as follows:
ol = 1+ 2(llasll = 1) = 2llall - 1. (3.2)

This approximation can be computed using only bit-shift and subtraction operations.

After repeated G operations, the coefficients a,, (Where w # s) of the remaining N — 1 basis states
|w), which are not in the state |s), approach 0 and have the same value. Therefore, using Equations (2.4)
and (3.2), the probability of the state |w) can be obtained as follows:

/_/2
1 —lal]

N1 (3.3)

2

lull” =
However, this requires division by N — 1. In general, the integer division is an overhead-intensive
operation. Therefore, we need to reduce the overhead by division, which can be done by following
approximation:

1 ’ 1
ETRIbT (3.4)
—~——. —~— P 1
w2: 1- 52 — 3.5
lla P = (||a||>;N, (3.5)

where, p = 1,2,3,...1s an arbitrary approximation order that determines the degree of approximation.
Since N = 2", division by N’ can be replaced with a bit-shift operation. Thus, by using the above
approximation, we replace division operations with bit-shift and addition operations, thereby reducing
computational overhead.

Meanwhile, the relative error €. when using this approximation can be obtained through the
following equations:

1 |
€= ——F — —
N-1 &N
1 NPV NPZ4 41
N-1 NP
NP (NP -1)
~ NP(N-1)
1
- - 3.6
NP(N = 1) (3.6)
€ 1
= —— = —. 3.7
“TUN-1) Nv S

In a 4-qubit emulation (N = 16) using an approximation of p = 3, €, becomes 0.4%.

3.4.2. Construction of cumulative probability distribution

To emulate the measurement based on the previously calculated probability of measuring the state
|s), a weighted random number generator that generates random numbers according to a probability

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30956

distribution formed based on the input weights is required. This random number generator operates
by obtaining the cumulative probability distribution from the array of probabilities received as input.
For this purpose, we can consider serial accumulation performed over N — 1 clock cycles, as shown
in Figure 5. However, as the number of qubits increases, the number of clock cycles required for
accumulation increases exponentially, making effective measurement emulation difficult.

To address this issue, we propose a parallel accumulation method and architecture as shown in
Figure 6, and apply it to the emulation of measurement operations. The proposed parallel accumulation
is performed over a total of log N(= n) stages for N basis states, with operations at each stage conducted
in parallel. More specifically, during the k-th stage (k = 0, 1,...,n—1), the values stored in the registers
containing the coefficients of all basis states are updated as follows:

(1) The value of the i-th register (i = 2%,2% + 1,2+ 2,..., N — 1) is updated by adding the value of
the (i — 2)-th register to it, respectively, and storing the result back in the i-th register. This is
performed in parallel for all possible i values at the given stage.

(2) Once a stage is completed, the registers corresponding to the coefficients of the 0-th basis state to
the (2*! — 1)-th one will contain their respective cumulative probability values. By repeating this
process up to the (n — 1)-th stage, all registers will eventually contain the cumulative probability
values for their respective basis states.

hd

0 01 2 3 4 5 6 7
0 01 012 3 4 5 6 7
0 01 012 | 0123 4 5 6 7

Figure 5. Conventional serial accumulation of measurement probabilities.

0 1 2 3 4 5 6 7
acc_stage 0
0 01 12 23 34 45 56 67
acc_stage 1 | I l
0 01 012 0123 |1234 |2345 |3456 |4567
acc_stage 2 [{ }
[
0 01 012 0123 (0123 (0123 (0123 (0123
4 45 456 4567

Figure 6. Proposed parallel accumulation of measurement probabilities.

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30957

Algorithm 6 presents the SERIAL_ACC and PROPOSED_PARALLEL_ACC algorithms for serial
accumulation and the proposed parallel accumulation, respectively. The correctness of each algorithm
can be proven as follows:

Algorithm 6 Conventional and proposed methods for constructing cumulative probability distribution

1: procedure SERIAL_ACC 1: procedure PROPOSED_PARALLEL_ACC
2: v[N] : N by 1 vector containing probability 2: v[N] : N by 1 vector containing probability
distrubution distrubution
3: result[N] « v[N] : stores cumulative probability 3: result[N] <« v[N] : stores cumulative probability
distribution distribution
4: 4.
5: fori=1toN—-1do 5: # Parallelism applied for the inner loop
6: result[i] < result[i — 1] + result[i] 6: fori=0ton—1do
7: end for 7: for j=2"to N -1do
8: end procedure 8: result] j] « result[j — 2] + result[j]
9: end for
10: end for

11: end procedure

Time complexity of the algorithm Time complexity of the algorithm
= O(N) = 0(2") = O(log, N) = O(n)

Theorem 7. Correctness of SERIAL ACC in Algorithm 6

Proof. Let v[i] be the probability distribution at index i, where 0 < i < N. SERIAL_ACC computes the
cumulative probability distribution, which is defined as:

resultli] = Y vijl, Vi€{0,1,...,N~1}.
=0
The algorithm starts with result[0] = v[0], and for each subsequent index i, it adds result[i — 1] to
result[i]:
result[i] = result[i — 1] +v[i], Vie{l,2,...,N—-1}L

This operation correctly computes the cumulative sum of the distribution up to the i-th index. Since
each index i is processed sequentially, the correctness is guaranteed by induction: - Base Case: i = 0,
result[0] = v[0], which is trivially correct. - Inductive Step: Assume the algorithm correctly computes
result[i—1] = Zj;}) v[j] for i—1. Then, result[i] = result[i—1]+v[i] = Zi-:o v[j1, proving the inductive
step. Thus, the algorithm computes the cumulative probability distribution correctly for all indices. O

Theorem 8. Correctness of PROPOSED PARALLEL ACC in Algorithm 6

Proof. PROPOSED_PARALLEL_ACC computes the cumulative probability distribution using parallel
processing. The algorithm uses the following parallel step:

result[j] = result[j — 2'] + result[j]l, Yje{2,...,N—1}, i=0,1,...,log,(N)—1.

The algorithm ensures that for every step, it updates the cumulative sum by adding the corresponding
previous sums from earlier stages. The correctness can be proven by induction on i: i) Base Case: For

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30958

i = 0, each result[j] is updated with result[j — 1], which mimics the behavior of the serial algorithm,
ensuring the correctness for the first step, and ii) Inductive Step: Assume the cumulative sum is
correctly computed for the i-th step. For the (i + 1)-th step, the algorithm updates each result[j] by
adding result[j — 2117 to the current result[j]. This process continues for all steps until the final
cumulative sum is achieved for all indices.Therefore, the algorithm correctly computes the cumulative
probability distribution in parallel. O

SERIAL_ADD operates by sequentially adding the value of each previous register to the next
register, consuming a total of N — 1 clock cycles as it iterates through the for loop. This results in a
time complexity of O(N) = O(2"). As the number of qubits, n, increases, the clock cycles required for
SERIAL_ADD grow exponentially, leading to a significant increase in overall execution time. In
contrast, PROPOSED_PARALLEL_ACC executes the inner loop in parallel, completing the operation
in just n clock cycles. With a time complexity of O(log, N) = O(n), this algorithm is far more efficient
than SERIAL_ADD, and as the number of qubits increases, the difference in the number of clock
cycles required by the two algorithms becomes even more pronounced. In addition, based on the
cumulative probability distribution stored in the registers, a weighted random number generator
(WRNG) can be used to emulate the measurement.

4. Emulator design and implementation

4.1. Architecture and design automation

To implement the Grover’s quantum algorithm emulator on standalone FPGAs, we have designed
a RISC-V SoC platform based on the architecture depicted in Figure 7. The RISC-V core used is the
ORCA core [32], which is well-regarded for its low power consumption, making it suitable for IoT/
edge devices. The architecture includes several key components: a 256K SRAM as the main memory,
Flash memory for non-volatile storage, a lightweight Network-on-Chip (uNoC [33]) for system
interconnect, a control module for boot and reset functions, and standard external I/O interface
modules such as UART, SPI, and I°C. For the RTL design of the SoC platform, we utilized the EDA
tool RISC-V eXpress (RVX) [34], which is widely used for the lightweight RISC-V processor
development [35-39], and engineered the emulator to operate at a clock frequency of 50MHz. Most
importantly, we have developed a dedicated hardware, the Grover Accelerator, which incorporates the
proposed resource optimization techniques for Grover’s algorithm processing, and embedded it into
the SoC platform as shown in the figure.

Based on the developed SoC platform, we have modified RVX to develop QC Emulator eXpress
(QEX), which automatically generates the RTL code of the emulator according to the target number
of qubits. QEX accepts the number of qubits for the target emulator as an input parameter NUM_QUBIT
from the user and automatically generates the emulator RTL code. More specifically, once NUM_QUBIT
is defined, QEX first determines the number of blocks for the register amp_state to store the
coeflicients of the basis states processed by the emulator and the number of iterations of the diffusion
gate operation. These are defined as local parameters NUM_STATE and MAX ITERATION, respectively.
QEX then configures the registers and computation units of the Grover Accelerator according to these
parameter values. Subsequently, QEX generates the RTL code of the SoC platform depicted in
Figure 7 and provides it as an output to the user.

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30959

Grover
Accelerator
APB

System Interconnect (micro-NoC)

P NEE
SRAM A S
H

Figure 7. The RISC-V SoC platform used to implement the proposed QC emulator, including
the Grover Accelerator.

UART
JTAG
FLASH

Additionally, we have developed a C-language API for the Grover Accelerator in the emulator.
This API consists of two main commands: 1) the set_oracle command, which sets the s value
indicating which basis’s phase the Oracle should invert before executing the algorithm, and ii) the
activate_grover command, which sends the activation signal to the Grover Accelerator to start the
algorithm. The emulator operates by storing an application, implemented using this API, in the
SRAM as instructions, which are then executed by the ORCA core. Upon completion of the
emulation, the Grover Accelerator returns the results of the Grover search to the ORCA core, allowing
the user to verify the success of the Grover search.

4.2. Grover Accelerator

First, we designed a finite state machine (FSM) that uses the basic operational steps of the
Grover’s algorithm, described in Section 2.2, as its states to facilitate the operating mechanism of the
Grover accelerator. Figure 8 illustrates this FSM, which consists of five states: IDLE, INIT, ORACLE,
DIFFUSION, and MEASURE. The DIFFUSION state is further divided into two sub-states:
DIFF_mac and DIFF_sub. Each state of the FSM executes the operations using the proposed
optimization techniques introduced in Section 3. The transitions between the states of the FSM are
triggered by the activation commands received from the ORCA core via an API or the iteration count
of the G operation, provided that specific conditions are met.

a)

iteration <=0 iteration++
_" ORACLE '—

T

activate == 1

iteration <
MAX_ITERATE DIFF_mac

iteration ==
Search done MAX_ITERATE
MEASURE ¢ DIFF_sub

- /
G operator

Figure 8. Finite state machine of the Grover Accelerator.

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30960

In this section, we provide a detailed explanation of each state, using a 2-qubit target emulation as
an example to facilitate understanding. We also include register-level circuit diagrams corresponding
to the operations performed in each state, as shown in Figure 9. Based on this example, readers can
extend the emulation to an n-qubit target, applying operations to N = 2" registers.

reg func_table

10] — 1/WN o]
0

[0] 1 [0]
[——— 1N 1— :

=1)
2] ————————— 1N 27

— {5}

3—O—
B3l —————— VN Bl _{D_ Bl
reg amp_state reg amp_state
(a) INIT (b) ORACLE

[0] [0] [0]

m| 1]
j:‘+
R — N 2]
Accumulator Right reg acc_result
Bit-shift

by n-1
Bl i Bl

]

121

reg acc_result

SJ&ILTL]

Bl

reg amp_state reg amp_state

(¢) DIFF_mac (d) DIFF_sub

Figure 9. Register-level schematics of the states of the finite state machine for the proposed
2-qubit QC emulator.

INIT In this state, initialization for performing the Grover’s algorithm is carried out. Upon
receiving the Activate_grover command, as shown in Figure (9a), all elements of amp_state are
initialized to the value corresponding to the initial state of the Grover’s algorithm, |n) = H|0"). At this
stage, all elements of amp_state have equal positive values, which, due to the characteristic of QC
expressed in Equation (2.4), 1s 1/ VN.

Calculating this initial value requires the computation of a square root, which is a computationally
expensive operation. Therefore, it is necessary to replace it with a lighter computation. For this purpose,
we express the initial value 1/ VN =1/ V2" in terms of n as follows:

L B {llx 2,,%,1 %fn ?s even, @.1)
VN - X 7 if n is odd.

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30961

Using Eq (4.1), we can determine 1/ VN by dividing a constant by a power of 2, where the constant
and exponent depend on whether 7 is even or odd. Based on this, we derived the following algorithm
to define the initialization value init_coefficient for amp_state relative to NUM_QUBIT.

init_coefficient = (NUM_QUBIT % 2 == 0) ?
(0x4000_0000 >> (NUM_QUBIT / 2))
(0x2D41_3CCE >> ((NUM_QUBIT - 1) / 2));

In the above conditional statement, it is determined whether NUM_QUBIT is even or odd. If
NUM_QUBIT is even, the bit string 0x4000_0000, representing 1 in the fixed point representation
proposed in the optimization technique (cf. Figure 3), is bit-shifted by NUM_QUBIT / 2 to calculate
init_entry. Conversely, if NUM_QUBIT is odd, the bit string ®x2D41_3CCE, representing 1/ V2, is
bit-shifted by (NUM_QUBIT - 1) / 2 to calculate init_entry.

ORACLE Before the Grover Accelerator starts executing the algorithm, the value of the basis
state s whose phase will be inverted by the Oracle is pre-set. When the set_oracle command is
received via the API, the input value is stored in the func_table register within the Accelerator, which
holds the value of s.

In the ORACLE state, the operation described by Equation (2.9) is performed using the value stored
in func_table. This process is illustrated in Figure 9b. As a result of this operation, the value of each
element in amp_state is set according to the following algorithm:

for(i = 0; i < NUM_STATE; i++){
if(i == func_table) amp_state[i] = -amp_state[i]
else amp_state[i] = amp_state[i]

DIFFUSION This state completes one G operation by performing the diffusion operation after the
Oracle operation. The Diffusion operation, as shown in Figure 4, involves three steps: 1) accumulation,
2) bit-shift, and 3) subtraction. We divided these operations into two stages: 1) and 2) are executed in
the DIFF_mac stage, while 3) is executed in the DIFF _sub stage.

More specifically, in the DIFF _mac stage, as illustrated in Figure 9c, all elements of amp_state are
accumulated, and then this value is multiplied by 27*! and stored in the acc_result register. The
multiplication by 27"*! is replaced by a bit-shift operation to reduce overhead. In the subsequent
DIFF_sub stage, each element of amp_state is subtracted from acc_result, and the results are updated
back into amp _state. This process is depicted in Figure 9d.

Ultimately, the Diffusion operation is represented by the following algorithm and is implemented in
the RTL design of the Grover Accelerator.

acc_result = 0;
// DIFF_mac

for(i = ®; i < NUM_STATE; i++)

acc_result = acc_result + amp_state[i];

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30962

acc_result >> NUM_QUBIT - 1;

// DIFF_sub
for(i = ®; i < NUM_STATE; i++)
amp_state[i] = acc_result - amp_state[i];

Iteration of ORACLE and DIFFUSION In Grover’s algorithm, the G operation is repeated a
specific number of times k, as defined in Equation (2.7). The Grover Accelerator includes a register,
iteration, to store the count of Oracle and Diffusion executions. The value of iteration is initialized to
0 and increments by 1 with each G operation. When this value equals the predefined local parameter
MAX_ITERATION, the G operations are completed, and the process moves to the MEASURE stage.

The MAX_ITERATION corresponds to the value of k in Eq (2.7). Calculating this requires a square
root computation with respect to N, similar to the init_entry in the INIT state. Hence, using a similar
approach to Equation (4.1), the value of k is expressed as a function of n as follows:

nVN _ {(;—T X 232) X 23732 if n is even, “42)

4 (22 %2%) x 272 ifnis odd.
In this equation, the constants Z x 2% and ’%ﬁ x 2% are represented as 0x0_C9OF DAA2 and
0x1_1C58_31AC, respectively. Based on these constants, we derive the algorithm for MAX_ ITERATION
as follows:

MAX_ITERATE = (NUM_QUBIT % 2 == Q) ?
0x0_C90F_DAA2 >> (32 - (NUM_QUBIT / 2)) :
0x1_1C58_31AC >> (32 - ((NUM_QUBIT - 1) / 2));

MEASURE To perform the measurement operation on amp_state after completing the G
operations for MAX_ITERATE iterations, we designed a weighted random number generator (WRNG)
module. This module takes amp _state as input, squares each element, and accumulates these values to
create a cumulative distribution of measurement probabilities for the basis states. The cumulative
distribution is then used as weights to generate a random number, i.e., the measurement result of the
quantum state.

The WRNG module calculates the measurement probabilities of the basis states using the
optimization techniques based on the two linear approximation formulas (3.2) and (3.5) introduced in
Section 3.4. To function correctly, the module must determine whether each element of amp_state
corresponds to the |s) state or the |w) state, based on the Oracle function f(x) defined in Eq (2.6),

where f(s) = 1 and f(w) = 0. The appropriate linear approximation formula is then applied to
calculate the measurement probability of each state, and these probabilities are stored in the acc_state
register.

To determine whether each element of amp _state is in the |s) or |w) state, we compare the coefficient
value stored in each element of amp _state to a fixed threshold value stored in the THRESHOLD constant.
For a given s € {0, 1,..., N — 1}, if the value stored in the s-th element of amp _state is greater than
THRESHOLD, the corresponding basis state is identified as the |s) state, and the value of s is stored in

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30963

the s_value register. The linear approximation formula (3.2) for the measurement probability of the |s)
state is then applied, using bit-shift and subtraction operations to compute the square of amp_state[s].
This value is stored in the s-th element of acc_state.

For all w(w = 0,1,...,N — 1 and w # s_value), the linear approximation formula (3.5) for the
measurement probability of the |w) state is applied, using bit-shift and subtraction operations to
approximate the square of amp_state[w]. This approximated value is then stored back in the w-th
element of amp _state. The degree of approximation p in the linear formulas is controlled by the
APRX_ORDER constant.

The process of determining whether each state is |s) or |w), approximating their measurement
probabilities, and storing them in acc _state is implemented in the WRNG module using the following
algorithm:

// calculate prob. for s-state
for(s = 0; s < NUM_STATE; s++) {
if(amp_state[s] > THRESHOLD) {
s_value = s;
acc_state[s] = (amp_state << 1) - 1;
}
}
// calculate prob. for omega-states
for(omega = 0; omega < NUM_STATE; omega++) {
if(omega !'= s_value) {
acc_state[omega] = (1 - acc_state[s_value]) >> NUM_STATE
+ (1 - acc_state[s_value]) >> (NUM_STATE * 2)
+ o
+ (1 - acc_state[s_value]) >> (NUM_STATE * APRX_ORDER);

}

By executing this algorithm, the measurement probabilities stored in acc_state are accumulated
and stored again in acc_state using the parallel accumulation technique described in Figure 6. In this
technique, at the k-th stage, the value of each element at index i (i = 2%,2¥ + 1,2 +2,...,N - 1) in
acc _state is incremented by the value of the element at index i — 2, progressively completing the values
of elements from index 0 to 2¢*! — 1 in acc_state. This process is repeated incrementally for k from
0 to NUM_QUBIT — 1, resulting in the final cumulative probability values stored in all elements of
acc_state. The series of processes to accumulate and store the values in acc_state is implemented as a
nested loop, with k and i serving as the indices of the outer and inner loops, respectively. The following
algorithm is implemented for the WRNG module’s cumulative probability calculation:

// accumulate prob.
for(k = 0; k < NUM_QUBIT; k++) {
for(i = 1 << k; i < NUM_STATE; i++) {

acc_state[i] = acc_state[i] + acc_state[i - 1 << k];

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30964

5. Evaluation

We designed and FPGA-prototyped emulators targeting various numbers of qubits, including the
Grover Accelerator, using the developed QEX. For FPGA prototyping, we selected the Kintex
Ultrascale+ board [40], representing resource-rich consumer FPGAs, and the Arty A7 board [41],
representing low-performance FPGAs suitable for IoT devices or embedded systems. Figure 10 shows
the emulators prototyped and operating on these boards.

Figure 10. Execution of the prototyped QC emulator on the Kintex Ultrascale+ FPGA board
(left), and on Arty A7 FPGA board (right).

To demonstrate the superiority of the proposed optimization techniques in terms of resource
consumption reduction, we designed baseline emulators using conventional matrix-vector
multiplication-based universal QC [18, 42] and prototyped them on the same FPGA boards. All
prototype emulators share the same core (i.e., RISC-V ORCA core), memory, NoC, etc., except for
the Grover Accelerator. For reference, Table 2 reports the resource consumption of these components
in the Kintex Ultrascale+ board-based prototype emulators.

Table 2. Resource usage of the basic components of the emulators on the Kintex Ultrascale+
FPGA board.

Components LUT FF
RISC-V ORCA Core 2225 2183
SRAM 175 314
micro-NoC 4070 6108
Peripheral 926 1055

etc. 1872 5073

In this study, we emphasize the importance of analyzing the differences in resource utilization
between the conventional method and our proposed approach based on actual synthesis results rather

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30965

than theoretical estimations. This is primarily due to the inherent challenges in theoretically analyzing
the resource usage of synthesized RTL code. As outlined in Section 3.3, the computational complexity
of matrix-vector multiplication is O(N?) = O(2*"), which means that for every increment of 1 in n, the
computational load increases fourfold. Consequently, the hardware resources required to handle this
load in parallel are expected to increase by the same factor. However, actual hardware resource usage
during synthesis is influenced by internal algorithms used by the synthesis tools to optimize resource
allocation, making it difficult to accurately predict resource consumption solely through theoretical
analysis. In this study, we generated the RTL code for the emulator’s basic components using RVX
and synthesized the entire emulator using Vivado [43]. Vivado optimally synthesizes RTL code while
considering timing constraints, power consumption, and available resources on the target FPGA
board. However, since the optimization algorithms used by Vivado are proprietary and play a crucial
role in determining the final resource usage, theoretical analysis alone is not sufficient. Therefore, we
developed emulators for various numbers of qubits, synthesized them on FPGA, and empirically
analyzed the actual resource consumption as the number of qubits in the quantum system increased.

Meanwhile, on the emulators synthesized with varying numbers of qubits, the application of the
proposed optimization techniques may cause errors in the amplitudes of the quantum states,
depending on the number of qubits. The maximum error for each case, with different numbers of
qubits, is presented in Table 3. The Real Number Representation and Matrix-Vector Multiplication
Decomposition techniques are optimizations that leverage the matrix operation characteristics of
Grover’s algorithm, ensuring that no errors occur as a result. In contrast, rounding errors may arise in
the Fixed-Point Expression due to the limited number of fractional bits, as discussed in Section 3.2,
with a rounding error value of 273 ~ 107°. However, this impact is negligible compared to the
approximation error resulting from the probability of measuring the state in Section 3.4.1, which is on
the order of N7 = 277, In the emulators targeting quantum systems with qubits ranging from n = 2
to n = 6, using an approximation order of p = 2 provides a reasonable approximation without
burdening the computation, and the approximation error is no greater than 27'2. In comparison, the
rounding error is insignificant. Furthermore, as the number of qubits increases, this approximation
error decreases exponentially, showing an acceptable error rate even as the scale of the quantum
system being emulated grows.

Table 3. Maximum error in the output quantum state caused by the approximation of
measurement probabilities with varying numbers of qubits.

#Qubits 2 3 4 5 6
Max. error 6.25 x1072 156 x 1072 390x 1073 9.77x10™* 244x10™

Table 4 shows the FPGA resource consumption results for the baseline emulators and the proposed
emulators prototyped on the Kintex Ultrascale+ board. The table indicates that for the baseline
emulator, when the target qubit count reaches five, the LUT consumption exceeds three times the
available FPGA resources, making synthesis infeasible. Thus, only emulators targeting up to four
qubits can be prototyped. In contrast, the proposed emulator, even targeting six qubits, consumes
resources within the FPGA’s capacity. This significant resource saving is attributed to the proposed
optimization techniques, achieving up to 95.48% reduction in LUT resource consumption.

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30966

Table 4. Comparison of Kintex Ultrascale+ FPGA resource (LUT, FF) usage between the
baseline emulators using conventional matrix-vector multiplication-based universal QC and
the resource-optimized Grover’s QC emulator proposed in this paper.

LUT
Qubit Baseline Proposed Resource
: : reduction
Count Ratio to Count Ratio to ratio
available available

2 16316 3.12% 10667 2.04% 34.62%

3 34578 6.62% 12006 2.30% 65.28%

4 244959 46.86% 15386 2.94% 93.72%

5 1833047 350.67% 82814 15.84% 95.48%

6 - - 303993 58.16% -

FF
Qubit Baseline Proposed Resource
.) reduction
Count Ratio to Count Ratio to ratio
available available

2 15580 1.49% 15662 1.50% -0.53%

3 16200 1.55% 15895 1.52% 1.88%

4 16696 1.60% 16606 1.59% 0.54%

5 18089 1.73% 17691 1.69% 2.20%

6 - - 19852 1.90% -

Next, Table 5 reports the resource consumption results for emulator prototypes using the Arty A7
board. For the baseline emulator, the LUT resource consumption exceeds the Arty A7’s capacity when
targeting three qubits, making implementation impossible. Therefore, only up to two-qubit emulators
can be prototyped. However, the proposed emulator can be synthesized for up to four qubits,
demonstrating that the proposed techniques yield excellent results even on low-performance FPGAs.

In addition, we also conducted additional experiments to evaluate the performance of the Grover
Accelerator, the core hardware IP of the emulator we developed. We performed experiments comparing
three cases: 1) executing the Grover’s algorithm using general QC with ORCA core only (sw_naive), ii)
executing the Grover’s algorithm with the proposed optimization techniques (sw_Grover_optimized),
and iii) executing the Grover’s algorithm using the Grover Accelerator (hw_Grover_Accelerator). All
software was coded in C language. Detailed descriptions of each case are as follows:

- sw_naive: Uses software-based matrix-vector multiplication to calculate state values on a
RISC-V based platform without the Grover Accelerator, employing the matrix
representation of H®" gates and performing the Grover’s algorithm.

- sw_Grover_optimized: Executes the Grover’s algorithm with the proposed optimization
techniques (Fixed-point expression, reduced matrix-vector multiplication) applied to
sw_naive.

- hw_Grover_Accelerator: Executes the Grover’s algorithm on an emulator equipped with
the Grover Accelerator, with all proposed optimization techniques applied.

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30967

We measured the execution time for each case on emulators targeting two to four qubits, with the
time measured as the number of clock cycles until emulation completion. Table 6 reports the results.
The table shows that sw_naive takes significantly longer than the other cases for all qubit counts,
indicating poor practicality for emulation due to hundreds to thousands of times longer execution
times compared to optimized versions. Examining hw_Grover_Accelerator, which is the main focus of
this paper, we see a substantial reduction in execution time compared to all sw_Grover_optimized
results. Unlike the substantial increase in execution time for sw_Grover_optimized as the qubit count
increases, hw_Grover_Accelerator shows less than double the increase. For four-qubit emulation,
hw_Grover_Accelerator performs 191 times faster than sw_Grover_optimized. This efficiency is
achieved by shifting the increased computational overhead from ’execution time’ to “hardware
resources’, allowing the Grover Accelerator to handle increased computations by increasing the
number of parallel operation units, thus preventing exponential increases in execution time. In
conclusion, these experimental results confirm that the proposed optimization techniques not only
reduce resource consumption but also significantly enhance performance through optimized hardware
design.

Table 5. Comparison of Arty A7 FPGA resource (LUT, FF) usage between the baseline
emulators using conventional matrix-vector multiplication-based universal QC and the
proposed resource-optimized Grover’s QC emulator.

LUT
Qubit Baseline Proposed Resource
) . reduction
Count Ratio to Count Ratio to ratio
ou available ou available
2 16166 77.72% 11701 56.25% 27.62%
3 27029 129.95% 13064 62.81% 51.67%
4 - - 16335 78.53% -
FF
Qubit Baseline Proposed Resource
- - reduction
Count Ratio to Count Ratio to ratio
available available
2 16179 38.89% 16078 38.65% 0.62%
3 16546 39.77% 16353 39.31% 1.17%
4 - - 16989 40.84% -

Table 6. Execution time (number of clock cycles) comparison for emulating Grover’s
algorithm using three different emulation methods.

NUM_QUBIT sw_naive sw_Grover_optimized hw_Grover_Accelerator

2 16730 10.21 3.65
3 113097 384.91 6.85
4 629452 1358.03 7.10

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

30968

6. Conclusions

Despite the significant interest in quantum computing (QC) and its vast potential across various
fields, the current state of research and development is constrained by the limited practicality of
large-scale quantum computers. To address the shortcomings of QC research and development based
on large-scale quantum computers, FPGA-based QC emulators were introduced. However, the high
resource demands of these emulators remain a significant barrier. To overcome this issue, we
proposed optimization techniques focused on Grover’s algorithm, one of the most well-known QC
algorithms, to significantly reduce resource requirements and enable standalone FPGA
implementations of QC emulators. We designed the Grover Accelerator that incorporates the
proposed resource optimization techniques and integrated it with a RISC-V SoC platform, achieving
significant performance enhancements and resource reductions. The optimized emulator was
implemented to operate standalone on both high-performance Kintex Ultrascale+ and
low-performance Arty A7 FPGAs. Through resource consumption and performance comparisons
with conventional QC emulators, we demonstrated the efficacy and superiority of our developed
emulator.

Author contributions

Seonghyun Choi: Conceptualization, Methodology, Software, Validation, Formal analysis,
Writing-original ~ draft, Writing-review and editing, Funding acquisition; Woojoo Lee:
Conceptualization, Methodology, Software, Validation, Writing-original draft, Writing-review and
editing, Supervision, Project administration, Funding acquisition. All authors have read and agreed to
the published version of the manuscript.

Acknowledgments

This work was supported in part by Korea Institute for Advancement of Technology(KIAT) grant
funded by the Korea Government(MOTIE) (PO017011, HRD Program for Industrial Innovation), in
part by the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. RS-2024-00345668), and in part by the Chung-Ang University Graduate Research
Scholarship Grants in 2024.

Contflict of interest

The authors declare no conflicts of interest.

References

1. T.D.Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, Quantum computers,
Nature, 464 (2010), 45-53. https://doi.org/10.1038/nature08812

2. Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. V. Den Berg, S. Rosenblatt, et al., Evidence
for the utility of quantum computing before fault tolerance, Nature, 618 (2023), 500-505.
https://doi.org/10.1038/s41586-023-06096-3

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

https://dx.doi.org/https://doi.org/10.1038/nature08812
https://dx.doi.org/https://doi.org/10.1038/s41586-023-06096-3

30969

10.

11.

12.

13.

14.

15.

16.

Y. Kikuchi, C. McKeever, L. Coopmans, M. Lubasch, M, Benedetti, Realization of
quantum signal processing on a noisy quantum computer, npj Quantum Inf., 9 (2023), 93.
https://doi.org/10.1038/s41534-023-00762-0

Developing a Topological Qubit, Microsoft Azure Quantum Team, 2018. Available from:
https://cloudblogs.microsoft.com/quantum/2018/09/06/
developing-a-topological-qubit.

Google AI Quantum, Hartree-fock on a superconducting qubit quantum computer, Science, 369
(2020), 1084—1089. https://doi.org/10.1126/science.abb9811

C. G. Almudever, L. Lao, R. Wille, G. G. Guerreschi, Realizing quantum algorithms on real
quantum computing devices, In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2020, 864—872. https://doi.org/10.23919/DATE48585.2020.9116240

W. Alosaimi, A. Alharbi, H. Alyami, B. Alouffi, A. Almulihi, M. Nadeem, et al., Analyzing the
impact of quantum computing on loT security using computational based data analytics techniques,
AIMS Math., 9 (2024), 7017-7039. https://doi.org/10.3934/math.2024342

F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, et al., Quantum
supremacy using a programmable superconducting processor, Nature, 574 (2019), 505-510.
https://doi.org/10.1038/s41586-019-1666-5

S. McArdle, A. Gilyén, M. Berta, A streamlined quantum algorithm for topological data analysis
with exponentially fewer qubits, preprint paper, 2022. https://doi.org/10.48550/arXiv.2209.12887

G. Zhu, T. Jochym-O’Connor, A. Dua, Topological order, quantum codes, and
quantum computation on fractal geometries, PRX Quantum, 3 (2022), 030338.
https://doi.org/10.1103/PRXQuantum.3.030338

A. Silva, O. G. Zabaleta, FPGA quantum computing emulator using high level design
tools, In: Eight Argentine Symposium and Conference on Embedded Systems (CASE), 2017.
https://doi.org/10.23919/SASE-CASE.2017.8115369

E. El-Araby, N. Mahmud, M. J. Jeng, A. MacGillivray, M. Chaudhary, M. A. L
Nobel, et al., Towards complete and scalable emulation of quantum algorithms on high-
performance reconfigurable computers, /[EEE Transact. Comput., 72 (2023), 2350-2364.
https://doi.org/10.1109/TC.2023.3248276

C. F Chen, A. M. Dalzell, M. Berta, F. G. S. L. Branddao, A. T. Joel, Sparse
random Hamiltonians are quantumly easy, Phys. Rev. X, 14 (2024), 011014.
https://doi.org/10.1103/PhysRevX.14.011014

I. M. Hezam, O. Abdul-Raof, A. Foul, F. Aglan, A quantum-inspired sperm motility algorithm,
AIMS Math., 7 (2022), 9057-9088. https://doi.org/10.3934/math.2022504

H. Li, Y. Pang, FPGA-accelerated quantum computing emulation and quantum key distillation,
IEEE Micro, 41 (2021), 49-57. https://doi.org/10.1109/MM.2021.3085431

H. S. Li, P. Fan, H. Xia, S. Song, X. He, The multi-level and multi-dimensional quantum wavelet
packet transforms, Sci. Rep., 8 (2018), 13884. https://doi.org/10.1038/s41598-018-32348-8

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

https://dx.doi.org/https://doi.org/10.1038/s41534-023-00762-0
https://cloudblogs.microsoft.com/quantum/2018/09/06/developing-a-topological-qubit
https://cloudblogs.microsoft.com/quantum/2018/09/06/developing-a-topological-qubit
https://dx.doi.org/https://doi.org/10.1126/science.abb9811
https://dx.doi.org/https://doi.org/10.23919/DATE48585.2020.9116240
https://dx.doi.org/https://doi.org/10.3934/math.2024342
https://dx.doi.org/https://doi.org/10.1038/s41586-019-1666-5
https://dx.doi.org/https://doi.org/10.48550/arXiv.2209.12887
https://dx.doi.org/https://doi.org/10.1103/PRXQuantum.3.030338
https://dx.doi.org/https://doi.org/10.23919/SASE-CASE.2017.8115369
https://dx.doi.org/https://doi.org/10.1109/TC.2023.3248276
https://dx.doi.org/https://doi.org/10.1103/PhysRevX.14.011014
https://dx.doi.org/https://doi.org/10.3934/math.2022504
https://dx.doi.org/https://doi.org/10.1109/MM.2021.3085431
https://dx.doi.org/https://doi.org/10.1038/s41598-018-32348-8

30970

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

J. M. Arrazola, V. Bergholm, K. Bradler, T. R. Bromley, M. J. Collins, I. Dhand, et al., Quantum
circuits with many photons on a programmable nanophotonic chip, Nature, 591 (2021), 54-60.
https://doi.org/10.1038/s41586-021-03202-1

J. Pilch, J. Dtugopolski, An FPGA-based real quantum computer emulator, J. Comput. Elect., 18
(2019), 329-342. https://doi.org/10.1007/s10825-018-1287-5

H. Shang, Y. Fan, L. Shen, C. Guo, J. Liu, X. Duan, et al., Towards practical and massively
parallel quantum computing emulation for quantum chemistry, npj Quantum Inf., 9 (2023), 33.
https://doi.org/10.1038/s41534-023-00696-7

Q. L. Kao, C. R. Lee, Preliminary performance evaluations of the determinant quantum Monte
Carlo simulations for multi-core CPU and many-core GPU, Int. J. Comput. Sci. Eng., 9 (2014),
34-43. https://doi.org/10.1504/IJCSE.2014.058695

L. K. Grover, A fast quantum mechanical algorithm for database search, In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, 1996, 212-219.

C. Zalka, Grover’s quantum searching algorithm is optimal, Phys. Rev. A, 60 (1999), 2746.
https://doi.org/10.1103/PhysRevA.60.2746

A. Mandviwalla, K. Ohshiro, B. Ji, Implementing Grover’s algorithm on the IBM
quantum computers, In: IEEE International Conference on Big Data, 2018, 2531-2537.
https://doi.org/10.1109/BigData.2018.8622457

S. Boettcher, S. Li, T. D. Fernandes, R. Portugal, Complexity bounds on quantum
search algorithms in finite-dimensional networks, Phys. Rev. A, 98 (2018), 012320.
https://doi.org/10.1103/PhysRevA.98.012320

D. Qiu, L. Luo, L. Xiao, Distributed Grover’s algorithm, Theoret. Comput. Sci., 993 (2024),
114461. https://doi.org/10.1016/j.tcs.2024.114461

J. R. Jiang, Y. J. Wang, Quantum circuit based on Grover’s algorithm to solve exact
cover problem, In: VTS Asia Pacific Wireless Communications Symposium (APWCS), 2023.
https://doi.org/10.1109/APWCS60142.2023.10234054

J. R. Jiang, T. H. Kao, Solving Hamiltonian cycle problem with Grover’s algorithm using
novel quantum circuit designs, In: IEEE 5th Eurasia Conference on 10T, Communication and
Engineering (ECICE), 2023, 796-801. https://doi.org/10.1109/ECICE59523.2023.10383125

M. A. Nielsen, L. L. Chuang, Quantum computation and quantum information, 10 Eds., Cambridge:
Cambridge University Press, 2010. https://doi.org/10.1017/CB0O9780511976667

L. M. Ionescu, A. G. Mazare, G. Serban, L. Ioan, D. Visan, A solution to implement Grover
quantum computation algorithm using the binary representation of the phase on the FPGA, In:
11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2019.
https://doi.org/10.1109/ECAI46879.2019.9042138

S. Du, Y. Yan, Y. Ma, Quantum-accelerated fractal image compression: an interdisciplinary
approach, IEEE Signal Proc. Lett., 22 (2014), 499-503. https://doi.org/10.1109/LSP.2014.2363689

K. Bag, M. Goswami, K. Kandpal, FPGA based resource efficient simulation and emulation Of
Grover’s search algorithm, In: IEEE 19th India Council International Conference (INDICON),
2022. https://doi.org/10.1109/INDICONS56171.2022.10040039

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

https://dx.doi.org/https://doi.org/10.1038/s41586-021-03202-1
https://dx.doi.org/https://doi.org/10.1007/s10825-018-1287-5
https://dx.doi.org/https://doi.org/10.1038/s41534-023-00696-7
https://dx.doi.org/https://doi.org/10.1504/IJCSE.2014.058695
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.60.2746
https://dx.doi.org/https://doi.org/10.1109/BigData.2018.8622457
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.98.012320
https://dx.doi.org/https://doi.org/10.1016/j.tcs.2024.114461
https://dx.doi.org/https://doi.org/10.1109/APWCS60142.2023.10234054
https://dx.doi.org/https://doi.org/10.1109/ECICE59523.2023.10383125
https://dx.doi.org/https://doi.org/10.1017/CBO9780511976667
https://dx.doi.org/https://doi.org/10.1109/ECAI46879.2019.9042138
https://dx.doi.org/https://doi.org/10.1109/LSP.2014.2363689
https://dx.doi.org/https://doi.org/10.1109/INDICON56171.2022.10040039

30971

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

ORCA Core, Vectorblox, 2024. Available from:
https://github.com/riscveval/orca-1.

K. Han, S. Lee, J. J. Lee, W. Lee, M. Prdram, TIP: A temperature effect inversion-aware ultra-
low power system-on-chip platform, In: IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), 2019. https://doi.org/10.1109/ISLPED.2019.8824925

K. Han, S. Lee, K. I. Oh, Y. Bae, H. Jang, J. J. Lee, et al., Developing TEI-aware
ultralow-power SoC platforms for IoT end nodes, IEEE Int. Things J., 8 (2021), 4642-4656.
https://doi.org/10.1109/J10T.2020.3027479

E. Choi, J. Park, K. Lee, J. J Lee, K. Han, W. Lee, Day-Night architecture: Development of an
ultra-low power RISC-V processor for wearable anomaly detection, J. Syst. Architect., 152 (2024),
103161. https://doi.org/10.1016/j.sysarc.2024.103161

J. Park, K. Han, E. Choi, J. J. Lee, K. Lee, W. Lee, et al., Designing low-power RISC-V multicore
processors with a shared lightweight floating point unit for IoT endnodes, IEEE Transact. Circ.
Syst. I: Regular Papers, 9 (2024), 4106—4119. https://doi.org/10.1109/TCS1.2024.3427681

S. Jeon, H. Kwak, W. Lee, A study of advancing ultralow-power 3D integrated circuits
with TEI-LP technology and Al-enhanced PID autotuning, Mathematics, 12 (2024), 543.
https://doi.org/10.3390/math 12040543

K. Lee, S. Jeon, K. Lee, W. Lee, M. Pedram, Radar-PIM: developing 10T processors utilizing
processing-in-memory architecture for ultra-wideband radar-based respiration detection, /[EEE Int.
Things J., 2024. https://doi.org/10.1109/J10T.2024.3466228

K. Han, H. Kwak, K. I. Oh, S. Lee, H. Jang, J. J. Lee, et al., STARC: crafting low-power
mixed-signal neuromorphic processors by bridging SNN frameworks and analog designs, In:
ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED °24), 2024.
https://doi.org/10.1145/3665314.3670803

Ultrascale+, Xilinx, 2024. Available from:
https://www.xilinx.com/products/silicon-devices/fpga/
kintex-ultrascale-plus.html.

Arty-A7, Digilent, 2024. Available from:
https://digilent.com/shop/arty-a7-artix-7-fpga-development-board/.

A. Kelly, Simulating quantum computers using OpenCL, preprint paper, 2018.
https://doi.org/10.48550/arXiv.1805.00988

Vivado, Xilinx, 2024. Available from:
https://www.amd.com/ko/products/software/adaptive-socs-and-fpgas/vivado.
html.

©2024 the Author(s), licensee AIMS Press. This

0 is an open access article distributed under the

atms A[MS Press

@ terms of the Creative Commons Attribution License

(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 11, 30939-30971.

https://github.com/riscveval/orca-1
https://dx.doi.org/https://doi.org/10.1109/ISLPED.2019.8824925
https://dx.doi.org/https://doi.org/10.1109/JIOT.2020.3027479
https://dx.doi.org/https://doi.org/10.1016/j.sysarc.2024.103161
https://dx.doi.org/https://doi.org/10.1109/TCSI.2024.3427681
https://dx.doi.org/https://doi.org/10.3390/math12040543
https://dx.doi.org/https://doi.org/10.1109/JIOT.2024.3466228
https://dx.doi.org/https://doi.org/10.1145/3665314.3670803
https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale-plus.html
https://digilent.com/shop/arty-a7-artix-7-fpga-development-board/
https://dx.doi.org/https://doi.org/10.48550/arXiv.1805.00988
https://www.amd.com/ko/products/software/adaptive-socs-and-fpgas/vivado.html
https://www.amd.com/ko/products/software/adaptive-socs-and-fpgas/vivado.html
https://creativecommons.org/licenses/by/4.0

	Introduction
	Quantum computing and quantum search algorithm: a preliminary
	Qubit and quantum gate
	Grover's quantum searching algorithm

	Resource optimization techniques for the Grover’s algorithm emulator
	Efficient real number representation
	Fixed-point expression
	Matrix-vector multiplication decomposition
	Resource-efficient measurement approximation
	Approximation of the probability of measuring the state
	Construction of cumulative probability distribution

	Emulator design and implementation
	Architecture and design automation
	Grover Accelerator

	Evaluation
	Conclusions

