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Abstract: Recently, in the field of periodic nonuniform sampling, researchers (Wang et al., 2019;
Asharabi, 2023) have investigated the incorporation of a Gaussian multiplier in the one-dimensional
series to improve its convergence rate. Building on these developments, this paper aimed to accelerate
the convergence of the two-dimensional periodic nonuniform sampling series by incorporating a
bivariate Gaussian multiplier. This approach utilized a complex-analytic technique and is applicable to
a wide range of functions. Specifically, it applies to the class of bivariate entire functions of exponential
type that satisfy a decay condition, as well as to the class of bivariate analytic functions defined on a
bivariate horizontal strip. The original convergence rate of the two-dimensional periodic nonuniform
sampling is given by O(N−p), where p ≥ 1. However, through the implementation of this acceleration
technique, the convergence rate improved drastically and followed an exponential order, specifically
e−αN , where α > 0. To validate the theoretical analysis presented, the paper conducted rigorous
numerical experiments.
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1. Introduction

The Bernstein space Bp
Ω

(R) is a set of functions in Lp(R) that can be extended to entire functions of
exponential type Ω. According to Schwartz’s theorem [1, 2], Bp

Ω
(R) can be defined as the collection of

functions f in Lp(R) such that the Fourier transform f̂ is supported in the interval [−Ω,Ω]. In simpler
terms, we can describe it as follows:

Bp
Ω

(R) =
{
f ∈ Lp(R) : supp f̂ ⊂ [−Ω,Ω]

}
, (1.1)
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where f̂ represents the Fourier transform of f in the sense of generalized functions. Consider a set of
arbitrary points 0 ≤ x1 < x2 < . . . < xJ < κJ in R, which are not necessarily equidistant. We define the
sampling points as follows:

τ j,n,κ := x j + nκJ, n ∈ Z, ; j = 1, . . . , J, (1.2)

where κ ∈ (0, π/Ω], Ω is a positive number, and J is a positive integer. In this sampling scheme, the
points are grouped into sets of J points. The one-dimensional periodic nonuniform sampling theorem
states that if f belongs to the space Bp

Ω
(R), where 1 ≤ p < ∞, then f can be expressed in the following

form, as proved in [3],

f (z) =

∞∑
n=−∞

J∑
j=1

f (τ j,n, π
Ω

)ψ j,n, π
Ω

(z), z ∈ C, (1.3)

where

ψ j,n,κ(z) := sinc
(
π

Jκ
(z − τ j,n,κ)

) J∏
k=1,k, j

sin
(
π
Jκ (z − τk,n,κ)

)
sin

(
π
Jκ (x j − xk)

) . (1.4)

The sinc function is defined by

sinc (x) :=


sin x

x
, x , 0,

1, x = 0.

The series on the right-hand side of (1.3) converges uniformly and absolutely over R as well as on
any compact subset of C, as stated in [4]. The series (1.3) has garnered significant interest in both the
fields of mathematics and engineering. It has been the subject of extensive attention, as evidenced by
works such as [4–8] and other related references. The authors in [9] introduced a periodic nonuniform
sampling approach that involves derivatives. In a different context, the authors of [6] extended the
expansion given in Eq (1.3) to bandlimited functions in the fractional Fourier transform domains. In
a related work, [10] modified the series presented in Eq (1.3) by incorporating a Gaussian function
using a Fourier-analytic method. Additionally, in [11], Asharabi accelerated the series in Eq (1.3) by
incorporating a Gaussian function based on a complex-analytic approach, specifically for two classes of
analytic functions. The work in [11] is generalized in [12] for periodic nonuniform sampling involving
higher-order derivatives.

Consider the class EΩ(ϕ), where Ω > 0, defined as follows:

EΩ(ϕ) :=
{
f : C→ C | is entire and | f (z)| ≤ φ

(∣∣∣<z
∣∣∣) exp

(
Ω|=z|

)
, z ∈ C

}
, (1.5)

where φ is a continuous, non-decreasing, and non-negative function defined on R+. It is worth noting
that the space EΩ(φ), introduced in [13], is larger than the Bernstein space Bp

Ω
(R). Consider the class

ELp(R), which consists of entire functions that belong to Lp(R) when restricted to the real line. In [11],
the first author introduced the nonuniform sinc-Gauss localization operator Gh,J,N : EΩ(φ)→ ELp(R) for
every 1 ≤ p ≤ ∞ as follows:

Gh,J,N[ f ](z) =
∑

n∈ZN (z)

J∑
j=1

f (τ j,n,h)ψ j,n,h(z) exp
(
−

α

NJh2

(
z − τ j,n,h

)2
)
, (1.6)
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where the function ψ j,n,h is defined in (1.4), α := (π − hΩ)/2, h ∈ (0, π/Ω], and

ZN(z) :=
{
n ∈ Z : |bJ−1h−1<z + 1/2c − n| ≤ N

}
.

Using the complex analytic technique presented in [13], the first author established in [11] that if
f ∈ EΩ(φ, then the following estimate is valid:

∣∣∣ f (z) − Gh,J,N[ f ](z)
∣∣∣ ≤ 2J−1

∣∣∣∣∣∣∣
J∏

k=1

sin
(
π

Jh
(z − xk)

)∣∣∣∣∣∣∣ φ (
|<z| + Jh(N + 2)

)
χN,J

(
=z

) e−αJN

√
παJN

, (1.7)

where |=z| < JhN, J is a positive integer, and h ∈ (xJ/J, π/Ω]. The function χJ,N is given by

χN,J(t) :=
2eαt2/N

h
√
παJN

(
1 − (t/JhN)2

) +
e−2αt

(1 − e−
2π
Jh (JhN+t))J

+
e2αt

(1 − e−
2π
Jh (JhN−t))J

= 2 cosh(2αt) + O(N−1/2), as N → ∞. (1.8)

The author in [11] relaxed the condition of f ∈ EΩ(φ) in the previous result and considered f to belong
to a class of analytic functions in an infinite horizontal strip Dd :=

{
z ∈ C :

∣∣∣=z
∣∣∣ < d

}
. This class is

denoted as Ad(φ) and is defined as follows:

Ad(φ) :=
{
f : Dd → C | is analytic in Dd and | f (z)| ≤ φ

(∣∣∣<z
∣∣∣) , z ∈ Dd

}
, (1.9)

where φ is a continuous, non-decreasing, and non-negative function on R+. This class was initially
introduced in [13] and has been utilized in various studies, such as [14, 15]. In [11], an estimation for
the error

∣∣∣ f (z) − Gh,J,N f
∣∣∣ was derived when f belongs to the class Ad(φ). If f ∈ Ad(φ), the following

estimate is valid:∣∣∣∣ f (z) − G d
N ,J,N

[ f ](z)
∣∣∣∣ ≤ 2J+1/2

∣∣∣∣∣∣∣
J∏

k=1

sin
(
πN
Jd

(z − xk)
)∣∣∣∣∣∣∣ φ (
|<z| + ρN)

)
γN,J

(
=z/d

) e−
π
2

(
JN− 2|=z|

d

)
π
√

N
, (1.10)

where z ∈ Dd/4 and ρN,J := Jd(1 + 2
N ). The function γN,J is given by

γN,J(t) :=
1

1 − t

 1(
1 − e−2πN)J +

2
√

2

π
√

JN(1 + t)

 =
1

1 − t

[
1 + O

(
N−1/2

)]
, as N → ∞.

The two-dimensional nonuniform periodic sampling series goes back to Butzer and Hinsen, as
mentioned in [16, 17]. First, we introduce the definition of the Bernstein space for functions of two
variables, denoted as Bp

Ω
(R2), where 1 ≤ p < ∞. This space encompasses all entire functions of two

variables that exhibit exponential type Ω and belong to Lp(R2) when their domain is restricted to R2.
Schwartz’s theorem, as presented in references such as [1, 2], provides further insights into this space.

Bp
Ω

(R2) =
{
f ∈ Lp(R2) : supp f̂ ⊂ [−Ω,Ω]2

}
, (1.11)

where f̂ is the Fourier transform of f in the sense of generalized functions. Let 0 ≤ x11 < x12 < . . . <

x1J1 < J1h and 0 ≤ x21 < x22 < . . . < x2J2 < J2h be arbitrary points that are not necessarily equidistant
in R. We define the sampling points (τ j,n,h, νk,m,h) in R2 as follows:(

τ j1,n1,h, τ j2,n2,h

)
:=

(
x1 j1 + n1J1h, x2 j2 + n2J2h

)
j1 = 1, . . . , J1, j2 = 1, . . . , J2, (1.12)
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where (n1, n2) ∈ Z2, h ∈ (0, π/Ω], Ω is a positive number, and Jl, l = 1, 2, are positive integers. Butzer
and Hinsen established the two-dimensional nonuniform sampling iterated expansion in [16, 17], and
the two-dimensional nonuniform periodic sampling series is a special case of this expansion. We can
express this special case in a new form as follows, as mentioned in [17, p. 78]. If f ∈ Bp

Ω
(R2) with

1 ≤ p < ∞, then f can be represented as follows:

f (z) =
∑
n∈Z2

J1∑
j1=1

J2∑
j2=1

f (τ jl,nl,
π
Ω
, τ j2,n2,

π
Ω

)
2∏

l=1

ψ jl,nl,
π
Ω

(zl), z = (z1, z2) ∈ C2, (1.13)

where n = (n1, n2) and the function ψ jl,nl,h is given in (1.4). The series on the right-hand side of (1.13)
converges uniformly and absolutely over R2 as well as on any compact subset of C2, as stated in [17].

The convergence rate of the expansion in (1.13) is relatively slow, on the order of O(N−p) with
p ≥ 1 (see Section 2 below). As far as we know, no previous research has focused on accelerating
the convergence of this expansion by incorporating a bivariate Gaussian kernel. By applying this
acceleration technique, the convergence rate significantly improves to an exponential order, specifically
e−αN , where α > 0. In this study, we build upon the technique proposed in [11] to accelerate the
convergence of the two-dimensional periodic nonuniform sampling series (1.13) by incorporating
a bivariate Gaussian multiplier. The approach employed in this paper utilizes complex-analytic
techniques and is applicable to a broad range of functions. Specifically, it applies to two classes of
functions. The first class includes bivariate entire functions of exponential type that satisfy a decay
condition. The second class comprises bivariate analytic functions defined on a bivariate horizontal
strip.

The remaining sections of this paper are structured as follows. In Section 2, we establish the
convergence rate of the two-dimensional periodic nonuniform sampling series (1.13). Section 3 is
dedicated to accelerating the convergence of the series (1.13) by incorporating a bivariate Gaussian
multiplier for a broader range of bivariate entire functions of exponential type that satisfy a decay
condition. We relax the condition imposed on f in the previous section and consider it to belong to
a class of bivariate analytic functions in a two-dimensional horizontal strip. In Section 5, we present
numerical examples to illustrate the applicability and effectiveness of the proposed approach. Finally,
Section 6 provides a summary and conclusion of the paper.

2. Convergence rate

This section is dedicated to examining the rate at which the sampling series (1.13) converges. We
demonstrate that the series in (1.13) has a slow convergence rate, which is of order O(N−1/p) where
P > 1. To illustrate our approach, we examine the truncation error of the series in (1.13) based on
localized sampling without a decay assumption. To achieve this, we truncate the series in (1.13) as
follows:

TJ1,J2,N[ f ](x) :=
∑

n∈Z2
N (x)

J1∑
j1=1

J2∑
j2=1

f (τ jl,nl,
π
Ω
, τ j2,n2,

π
Ω

)
2∏

l=1

ψ jl,nl,
π
Ω

(zl), x := (x1, x2) ∈ R2, (2.1)

where
Z2

N(x) :=
{
(n1, n2) ∈ Z2 : −N <

Ω xl

π
− nl ≤ N, l = 1, 2

}
. (2.2)
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That is, if we want to estimate f , we only sum over values of f on a part of (π/Ω)Z2 near x. In the
following two lemmas, we introduce auxiliary results that will be utilized to estimate the upper bound
of

∣∣∣ f (x) − TJ1,J2,N[ f ](x)
∣∣∣ for (x, y) ∈ R2.

Lemma 2.1. Let p, q > 1 such that 1
p + 1

q = 1 and let Ω > 0. Then, we have

 ∑
n∈Z2\Z2

N (x)

∣∣∣∣∣∣∣
2∏

l=1

ψ jl,nl,
π
Ω

(xl)

∣∣∣∣∣∣∣
q


1/q

≤ Cp,Ω

2∏
l=1

δJl N
−1/p, (2.3)

for all x = (x1, x2) ∈ R2. Here Cp,Ω is a positive constant dependent only on p,Ω and the constant δJl ,
l = 1, 2, is defined as

δJl :=
Jl∏

k=1,k, j

1∣∣∣∣sin
(

Ω
J (xl j − xlk)

)∣∣∣∣ . (2.4)

Proof. It is evident from definition (2.2) of Z2
N(x) that

∑
n∈Z2\Z2

N (x)

∣∣∣∣∣∣∣
2∏

l=1

ψ jl,nl,
π
Ω

(xl)

∣∣∣∣∣∣∣
q

≤

∞∑
n1=−∞

∣∣∣ψ j1,n1,
π
Ω

(x1)
∣∣∣q ∑

∣∣∣∣ Ωx2
π −n2

∣∣∣∣>N

∣∣∣ψ j2,n2,
π
Ω

(x2)
∣∣∣q

+
∑

∣∣∣∣ Ωx1
π −n1

∣∣∣∣>N

∣∣∣ψ j1,n1,
π
Ω

(x1)
∣∣∣q ∞∑

n2=−∞

∣∣∣ψ j2,n2,
π
Ω

(x2)
∣∣∣q . (2.5)

The following inequality was derived by the first author in [11, Eq (16)]:
∑

∣∣∣∣ Ωxl
π −nl

∣∣∣∣>N

∣∣∣ψ jl,nl,
π
Ω

(xl)
∣∣∣q


1/q

≤ cp,Ω δJl N−1/p, xl ∈ R, (2.6)

where cp,Ω is a positive constant dependent only on p and Ω, and the constant δJl , is defined in (2.4).
In [4, Lemma 2.2], the authors derived the subsequent inequality: ∞∑

nl=−∞

∣∣∣ψ jl,nl,
π
Ω

(xl)
∣∣∣q

1/q

≤ p δJl , xl ∈ R. (2.7)

Combining (2.7), (2.6), and (2.5), we get (2.3) and the proof is complete. �

Lemma 2.2. For f ∈ Bp
Ω

(R2) with 1 < p < ∞, we have the following inequality:

J1∑
j1=1

J2∑
j2=1

∑
n∈Z2

∣∣∣ f (τ jl,nl,
π
Ω
, τ j2,n2,

π
Ω

)
∣∣∣p

1/p

≤ Ap,Ω,J1,J2‖ f ‖p, (2.8)

where Ap,Ω,J1,J2 is a constant that depends only on p, Ω, J1, and J2.
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Proof. For g ∈ Bp
Ω

(R), defined as (1.1), and for any increasing sequence λn, with the condition λn−λn ≥

δ > 0, we have, as demonstrated in [18, Theorem 6.7.15], the following inequality:
∞∑

n=−∞

|g(λn|
p
≤ ap

p,Ω,δ‖g‖
p
p, (2.9)

where ap,Ω,δ is a constant that depends solely on p, Ω, and δ. As f ∈ Bp
Ω

(R2), the function g(y) :=
f (τ j1,n1,

π
Ω
, y) also belongs to the space Bp

Ω
(R). Consequently, we can utilize (2.9) to obtain the following

result:
∞∑

n2=−∞

∣∣∣ f (τ j1,n1,
π
Ω
, τ j2,n2,

π
Ω

)
∣∣∣p ≤ ap

p,Ω,J2
‖ f (τ j1,n1,

π
Ω
, ·)‖p

Lp(R), (2.10)

where we have employed λn := τ j2,n2,
π
Ω

. Given that f ∈ Bp
Ω

(R2), the function
(∫ ∞
−∞
| f (x, y)|pdy

)1/p
also

belongs to the space Bp
Ω

(R). By applying (2.9) once again to the function
(∫ ∞
−∞
| f (x, y)|pdy

)1/p
, we

obtain the following inequality:
∞∑

n1=−∞

∫ ∞

−∞

∣∣∣ f (τ j1,n1,
π
Ω
, y)

∣∣∣p dy ≤ ap
p,Ω,J1
‖ f ‖p

p, (2.11)

where ap,Ω,J1 is a constant that depends solely on p, Ω, and J1. By combining (2.11) and (2.9), we
arrive at the following inequality: ∞∑

n1=−∞

∞∑
n2=−∞

∣∣∣ f (τ j1,n1,
π
Ω
, τ j2,n2,

π
Ω

)
∣∣∣p

1/p

≤

2∏
l=1

ap,Ω,Jl‖ f ‖p. (2.12)

Finally, by summing over j1 and j2, we deduce (2.8). �

In the following theorem, we demonstrate that the convergence rate of the sampling series (1.13)
cannot be faster than O(1/N).

Theorem 2.3. Let f be a function in the Bernstein space Bp
Ω

(R2) with 1 < p < ∞. Then, the following
inequality holds: ∣∣∣ f (x) − TJ1,J2,N[ f ](x)

∣∣∣ ≤ Dp,Ω,J1,J2

2∏
l=1

δJl‖ f ‖p N−1/p, (2.13)

for all x ∈ R2, andDp,Ω,J1,J2 is a constant that depends only on p, Ω, J1, and J2.

Proof. Given that f belongs to the Bernstein space Bp
Ω

(R2), we can utilize the expansion (1.13). By
combining it with (2.1) and applying the triangle inequality, we derive the following expression:∣∣∣ f (x) − TJ1,J2,N[ f ](x)

∣∣∣ ≤ J1∑
j1=1

J2∑
j2=1

∑
n∈Z2\Z2

N (x)

∣∣∣∣∣∣∣ f (τ jl,nl,
π
Ω
, τ j2,n2,

π
Ω

)
2∏

l=1

ψ jl,nl,
π
Ω

(xl)

∣∣∣∣∣∣∣ . (2.14)

The reason for being able to interchange the sums in the last step is the absolute convergence of the
series in (1.13). By applying Hölder’s inequality, we acquire the following result:

∑
n∈Z2\Z2

N (x)

∣∣∣∣∣∣∣ f (τ jl,nl,
π
Ω
, τ j2,n2,

π
Ω

)
2∏

l=1

ψ jl,nl,
π
Ω

(xl)

∣∣∣∣∣∣∣ ≤
 ∑

n∈Z2\Z2
N (x)

∣∣∣ f (τ jl,nl,
π
Ω
, τ j2,n2,

π
Ω

)
∣∣∣p

1/p
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×

 ∑
n∈Z2\Z2

N (x)

∣∣∣∣∣∣∣
2∏

l=1

ψ jl,nl,
π
Ω

(xl)

∣∣∣∣∣∣∣
q


1/q

, (2.15)

with p, q > 1 and 1/p + 1/q = 1. Substituting from (2.3) and (2.8) into (2.15), we obtain the following:

∑
n∈Z2\Z2

N (x)

∣∣∣∣∣∣∣ f (τ jl,nl,
π
Ω
, τ j2,n2,

π
Ω

)
2∏

l=1

ψ jl,nl,
π
Ω

(xl)

∣∣∣∣∣∣∣ ≤ Cp,Ω

2∏
l=1

δJlap,Ω,Jl‖ f ‖pN−1/p. (2.16)

By combining (2.16) with (2.12), we obtain (2.13), and thus the proof is concluded. �

3. Bivariate nonuniform sinc-Gauss formula

In this section, we modify the two-dimensional periodic nonuniform sampling series (1.13) by
incorporating a bivariate Gaussian multiplier using the complex-analytic approach. We consider the
class E2

Ω
(ϕ) defined as follows:

E2
Ω(ϕ) :=

 f : C2 → C | is entire and | f (z)| ≤ ϕ
(∣∣∣<z1

∣∣∣ , ∣∣∣<z2

∣∣∣) exp

σ 2∑
l=1

|=zl|


 , (3.1)

where z := (z1, z2) ∈ C2. The function ϕ is continuous, non-negative, and non-decreasing in both
variables

∣∣∣<z j

∣∣∣, j = 1, 2. This class was first introduced in [15] and used in some studies, cf. e.g., [19].
It is important to note that the space E2

Ω
(ϕ), introduced in [15], is larger than the Bernstein space

Bp
Ω

(R2). The class E2
Ω

(C), with C being a constant, encompasses entire functions of exponential type
Ω that may not necessarily belong to Lp(R2) when restricted to R2. Additionally, we consider the class
ELp(R2), which consists of entire functions of two variables that belong to Lp(R2) when their real domain
is considered. Consider the bivariate localization sampling operatorGh,J1,J2,N : E2

Ω
(ϕ)→ ELp(R2) defined

as follows:

Gh,J1,J2,N[ f ](z) =
∑

n∈Z2
N (z)

J1∑
j1=1

J2∑
j2=1

f (τ j1,n1,h, τ j2,n2,h)
2∏

l=1

ψ jl,nl,h(zl) e
−
α(zl−τ jl ,nl ,h)

2

NJlh
2 , (3.2)

where n := (n1, n2) and z := (z1, z2) ∈ C2. The function ψ jl,nl,h is defined in (1.4), α := (π − hΩ)/2,
h ∈ (0, π/Ω], and

Z2
N(z) :=

{
n ∈ Z2 : |bJ−1

l h−1<zl + 1/2c − nl| ≤ N, l = 1, 2
}
.

On the class E2
Ω

(ϕ), the first author and Prestin introduced the following two-dimensional uniform
sampling operator, cf. [15]:

Gh,N[ f ](z) :=
∑

n∈Z2
N (z)

f (n1h, nnh)
2∏

j=1

sinc
(
πh−1z j − n jπ

)
exp

−α
(
z j − n jh

)2

Nh2

 . (3.3)

The operator (3.3) can be considered as a special case of the operator in (3.2) when J1 = J2 = 1 and
x11 = x21 = 0. Now, let us denote the periodic nonuniform sampling expansion (1.3) asLΩ,J1,J2 f , where
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LΩ,J1,J2 : Bp
Ω

(
R2

)
→ Bp

Ω

(
R2

)
. The key question here is: What is the relationship between the operators

LΩ,J1,J2 and Gh,J1,J2,N? The following lemma addresses this question and is specifically applicable to
the Bernstein space Bp

Ω

(
R2

)
.

Lemma 3.1. For any f ∈ Bp
Ω

(
R2

)
, we have

lim
N→∞
Gh,J1,J2,N f = LΩ,J1,J2 f = f .

Proof. By setting h = π/Ω in the operator (3.2) and taking the limit as N → ∞, we obtain the right-
hand side of the expansion (1.13) because α = 0 and limN→∞ Z

2
N(z) = Z2. Since f ∈ Bp

Ω

(
R2

)
, this

expansion converges uniformly on any compact subset of C2, and we have LΩ,J1,J2 f = f . �

Consider the kernel function

Kz(ζ) :=
Sz(ζ)

∏2
l=1 e

−
α(zl−ζl)2

NJlh
2∏2

l=1 (ζl − zl)
∏Jl

jl=1 sin
(
π

Jlh
(ζl − τ jl,nl,h)

) (3.4)

where ζ := (ζ1, ζ2), z := (z1, z2), z ∈ C2\{(τ j1,n1,h, τ j2,n2,h)}, jl = 1, . . . , Jl, l = 1, 1. The points(
τ j1,n1,h, τ j2,n2,h

)
are given in (1.12) and the function Sz is defined as

Sz(ζ) :=
J1∏

j1=1

sin
(
π

J1h
(z1 − τ j1,n1,h)

) J2∏
j2=1

sin
(
π

J2h
(ζ2 − τ j2,n2,h)

)

+

J1∏
j1=1

sin
(
π

J1h
(ζ1 − τ j1,n1,h)

) J2∏
j2=1

sin
(
π

J2h
(z2 − τ j2,n2,h)

)

−

J1∏
j1=1

sin
(
π

J1h
(z1 − τ j1,n1,h)

) J2∏
j2=1

sin
(
π

J2h
(z2 − τ j2,n2,h)

)
.

The kernel Kz(ζ), as a function of variables ζ1 and ζ2, has a singularity of order one at all points
belonging to the sets {(z1,C) , (C, z2) : z1, z2 ∈ C} and

{(
τ j1,n1,h,C

)
,
(
C, τ j2,n2,h

)
: (n1, n2) ∈ Z2

}
where

jl = 1, . . . , Jl, l = 1, 2. These sets are subsets of C2 and can be interpreted as the Cartesian product of
the ζl-planes for l = 1, 2.

In the following result, we demonstrate that the difference between a function f ∈ E2
Ω

(ϕ) and the
operator Gh,J1,J2,N[ f ] can be expressed as the integration of Kz f over a hyperrectangle

∏2
l=1 Rzl . Here,

Rzl is a rectangle in the ζl-plane, oriented positively and defined by its vertices at ±Jlh(N + 3/2) +

JlhNzl/Jh + i(=zl ± JlhN), where Nzl := b<zl + 1/2c and l = 1, 2. The hyperrectangle
∏2

l=1 Rzl depends
on the point z = (z1, z2).

Lemma 3.2. For all z ∈ C2 and f ∈ E2
Ω

(ϕ), we have

f (z) − Gh,J1,J2,N[ f ](z) =


1

(2πi)2

∮
Rz2

∮
Rz1

Kz(ζ) f (ζ) dζ, z ,
(
τ j1,n1,h, τ j2,n2,h

)
,

0, z =
(
τ j1,n1,h, τ j2,n2,h

)
,

(3.5)

where ζ = (ζ1, ζ2), and
∏2

l=1 Rzl represents the hyperrectangle described earlier.
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Proof. By replacing the values of τ jl,nl,h, as defined in Eq (1.12), in the function ψ jl,nl,h, we obtain

ψ jl,nl,h(τ jk ,nk ,h) :=

 0, k , l,

1, k = l.
(3.6)

Substituting z =
(
τ j1,n1,h, τ j2,n2,h

)
into (3.2) and using (3.6), we obtain Gh,J1,J2,N[ f ]

(
τ j1,n1,h, τ j2,n2,h

)
=

f
(
τ j1,n1,h, τ j2,n2,h

)
for all (n1, n2) ∈ Z2

N(z), jl = 1, . . . , Jl, j = 1, 2. Hence, the second part of the equality
in (3.5) holds. To establish the first part of the equality in (3.5), we will apply the residue theorem. For
convenience, let us define F(ζ) := Kz(ζ) f (ζ). We can denote the residue of the function ζ1 7→ F(ζ1, ζ2)
at ζ1 = λ1 ∈ C, where ζ2 is a complex parameter, as Res 1F(λ1, ζ2). Assuming that Res 1F(λ1, ζ2) has
already been defined, we can define the residue of the function ζ2 7→ Res 1F(λ1, ζ2) at ζ2 = λ2 ∈ C by
Res 2F(λ1, λ2). Calculating the residue Res 2F, we obtain, for all z := (z1, z2) ∈ C2,

Res 2F(z) = f (z), (3.7)

and for all (n1, n2) ∈ Z2
N(z),

Res 2F
(
τ j1,n1,h, τ j2,n2,h

)
= − f (τ j1,n1,h, τ j2,n2,h)

2∏
l=1

ψ jl,nl,h(zl) e
−
α(zl−τ jl ,nl ,h)

2

NJlh
2 . (3.8)

Therefore, we have

1
(2πi)2

∮
Rz2

∮
Rz1

Kz(ζ) f (ζ) dζ = Res 2F(z) +
∑

n∈Z2
N (z)

J1∑
j1=1

J2∑
j2=1

Res 2F
(
τ j1,n1,h, τ j2,n2,h

)
, (3.9)

where z ∈ C2\{(τ j1,n1,h, τ j2,n2,h)}, and jl = 1, . . . , Jl, l = 1, 2. By combining (3.7), (3.8), and (3.9), we
obtain the first part of the equality in (3.5). �

We can extend the condition of Lemma 3.2 by relaxing the requirement of f ∈ E2
Ω

(ϕ) to a broader
class of functions. Instead, we consider functions that belong to a class of analytic functions defined
in an infinite bivariate horizontal strip given by

S2
d :=

{
z ∈ C2 :

∣∣∣=zl

∣∣∣ < d, l = 1, 2
}
. (3.10)

In particular, let Ad(ϕ) be the class defined as

A2
d(ϕ) :=

{
f : S2

d → C | is analytic in S2
d and | f (z)| ≤ ϕ

(∣∣∣<z1

∣∣∣ , ∣∣∣<z2

∣∣∣) , z ∈ S2
d

}
, (3.11)

where ϕ is a continuous, non-negative, and non-decreasing function in both variables
∣∣∣<zl

∣∣∣, l = 1, 2.
The class A2

d(ϕ) was initially introduced in [15] and has been utilized in various studies, cf. e.g., [19].
Within the class A2

d(ϕ), we define the special case of the operator Gh,J1,J2,N with specific parameters,
where we set h := hl = d/JlN and α := π/2. In this case, the operator (3.2) takes the form:

G d
N ,J1,J2,N[ f ](z) =

∑
n∈Z2

N (z)

J1∑
j1=1

J2∑
j2=1

f (τ j1,n1,h1 , τ j2,n2,h2)
2∏

l=1

ψ jl,nl,hl(zl) e
−πN

(zl−τ jl ,nl ,hl)
2

2Jld
2 . (3.12)
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The general operator Gh,J1,J2,N allows for independent selection of parameters N and h. However,
in the specific case G d

N ,J1,J2,N , these parameters become correlated, implying that their values are
interdependent.

In the following result, we demonstrate that the difference between a function f ∈ A2
Ω

(ϕ) and
the operator G d

N ,J1,J2,N can be represented as the integration of Kz f over a hyperrectangle denoted as∏2
l=1 Rzl . Each Rzl corresponds to a rectangle in the ζl-plane and is positively oriented. The vertices of
Rzl are determined by the expressions ±Jlhl(N +3/2)+JlhlNzl/Jlhl +iJld and ±Jlhl(N +3/2)+JlhNzl/Jlhl +

i(dJl−=zl), where Nzl := b<zl +1/2c with l = 1, 2. The proof will not be presented because it is similar
to the proof of Lemma 3.2.

Lemma 3.3. For all z ∈ S2
d and f ∈ A2

d(ϕ), we have

f (z) − G d
N ,J1,J2,N[ f ](z) =


1

(2πi)2

∮
Rz2

∮
Rz1

Kz(ζ) f (ζ) dζ, z ,
(
τ j1,n1,h1 , ν j2,n2,h2

)
,

0, z =
(
τ j1,n1,h1 , ν j2,n2,h2

)
,

(3.13)

where ζ = (ζ1, ζ2), and
∏2

l=1 Rzl represents the hyperrectangle described earlier.

The operator Gh,J1,J2,N provides a piecewise analytic approximation for functions from the class
E2

Ω
(ϕ) or the class A2

d(ϕ) on each of the bivariate strips defined as follows:{
z ∈ C2 :

(
jl −

1
2

)
hlJl ≤ <zl ≤

(
jl +

1
2

)
hlJl, l = 1, 2

}
. (3.14)

4. Error bound for E2
Ω

(ϕ)-functions

In this section, we will derive bounds for the error
∣∣∣ f (z) − Gh,J1,J2,N f

∣∣∣ when f belongs to the
class E2

Ω
(ϕ). We will consider special cases based on the characteristics of ϕ, which are commonly

encountered in practical situations. These cases correspond to three familiar growth patterns of ϕ:
Constant, polynomial, and exponential. The main result of this section is presented in the following
theorem.

Theorem 4.1. For f ∈ E2
Ω

(ϕ) with Ω > 0, and |=zl| < JlhN for l = 1, 2, the error between f and
Gh,J1,J2,N[ f ] can be bounded as follows:

∣∣∣ f (z) − Gh,J1,J2,N[ f ](z)
∣∣∣ ≤ ϕ (η(z))

2∑
l=1

2Jl−1eΩ|=z3−l |ωh,Jl(zl)χN,Jl(=zl)
e−αJlN

√
παJlN

+ ϕ (η(z))
2∏

k=1

2Jk−1ωh,Jk(zk)χN,Jk(=zk)
e−αJkN

√
παJkN

, (4.1)

where η(z) :=
(
βJ1(z1), βJ2(z2)

)
and βJl(zl) = |<zl|+hJl(N +2), l = 1, 2. Here, ϕ is the previously defined

function, χN,Jl is given in (1.8), and ωh,Jl(zl) is defined as

ωh,Jl(zl) :=
Jl∏

jl=1

sin
(
π

Jlh
(zl − xl jl)

)
, l = 1, 2. (4.2)
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Proof. Expanding the integral in (3.5) using the definition of Kz in (3.4), we have the following
expression:

∮
Rz2

∮
Rz1

Kz(ζ) f (ζ) dζ = ωh,J1(z1)
∮

Rz2

∮
Rz1

f (ζ1, ζ2)
∏2

l=1 e
−
α(zl−ζl)2

NJlh
2 dζ∏2

l=1 (ζl − zl)
∏J1

j1=1 sin
(
π

J1h (ζ1 − x1 j1)
)

+ ωh,J2(z2)
∮

Rz2

∮
Rz1

f (ζ1, ζ2)
∏2

l=1 e
−
α(zl−ζl)2

NJlh
2 dζ∏2

l=1 (ζl − zl)
∏J2

j2=1 sin
(
π

J2h (ζ2 − x2 j2)
)

−

2∏
k=1

ωh,Jk(zk)
∮

Rz2

∮
Rz1

f (ζ1, ζ2)
∏2

l=1 e
−
α(zl−ζl)2

NJlh
2 dζ∏2

l=1 (ζl − zl)
∏Jl

jl=1 sin
(
π

Jlh
(ζl − xl jl)

) , (4.3)

where ωh,Jl is defined in (4.2), Rzl for l = 1, 2 denotes the rectangles that were described previously,
and dζ := dζ1dζ2. Applying the Cauchy integral formula in one dimension, we can express the integral
in (4.3) as follows:

∮
Rz2

∮
Rz1

Kz(ζ) f (ζ) dζ = ωh,J1(z1)
∮

Rz1

f (ζ1, z2) e
−
α(z1−ζ1)2

NJ1h2 dζ1

(ζ1 − z1)
∏J1

j1=1 sin
(
π

J1h (ζ1 − x1 j1)
)

+ ωh,J2(z2)
∮

Rz2

f (z1, ζ2) e
−
α(z2−ζ2)2

NJ2h2 dζ2

(ζ2 − z2)
∏J2

j2=1 sin
(
π

J2h (ζ2 − x2 j2)
)

−

2∏
k=1

ωh,Jk(zk)
∮

Rz2

∮
Rz1

f (ζ1, ζ2)
∏2

l=1 e
−
α(zl−ζl)2

NJlh
2 dζ∏2

l=1 (ζl − zl)
∏Jl

jl=1 sin
(
π

Jlh
(ζl − xl jl)

) . (4.4)

Given that f belongs to the class E2
Ω

(ϕ), according to (3.1), we can conclude that for any point (ζ1, ζ2)
within the hyperrectangle

∏2
l=1 Rzl , the following holds:

| f (ζ1, ζ2)| ≤ ϕ (η(z))
2∏

l=1

eΩ|=ζl |, (4.5)

where η(z) was defined earlier. Additionally, when either z1 or z2 is a fixed point, the following results
hold:

| f (z1, ζ2)| ≤ ϕ (η(z)) eΩ|=z1 | eΩ|=ζ2 |, z1 ∈ Rz1 , (4.6)

| f (ζ1, z2)| ≤ ϕ (η(z)) eΩ|=ζ1 | eΩ|=z2 |, z2 ∈ Rz2 . (4.7)

These results are derived from the assumption that the function ϕ is non-decreasing with respect to all
variables ζl, l = 1, 2. Substituting (4.5)–(4.7) into (4.4), we can deduce that:

∮
Rz2

∮
Rz1

|Kz(ζ) f (ζ)| | dζ | ≤ ϕ (η(z)) eΩ|=z2 |ωh,J1(z1)
∮

Rz1

∣∣∣∣∣∣∣∣∣
eΩ|=ζ1 | e

−
α(z1−ζ1)2

NJlh
2

(ζ1 − z1)
∏J1

j1=1 sin
(
π

J1h (ζ1 − x1 j1)
)
∣∣∣∣∣∣∣∣∣ |dζ1|
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+ ϕ (η(z)) eΩ|=z1 |ωh,J2(z2)
∮

Rz2

∣∣∣∣∣∣∣∣∣
eΩ|=ζ2 | e

−
α(z2−ζ2)2

NJ2h2

(ζ2 − z2)
∏J2

j2=1 sin
(
π

J2h (ζ2 − x2 j2)
)
∣∣∣∣∣∣∣∣∣ |dζ2|

+ ϕ (η(z))ωh,J1(z1)
∮

Rz1

∣∣∣∣∣∣∣∣∣
eΩ|=ζ1 | e

−
α(z1−ζ1)2

NJlh
2

(ζ1 − z1)
∏J1

j1=1 sin
(
π

J1h (ζ1 − x1 j1)
)
∣∣∣∣∣∣∣∣∣ |dζ1|

× ωh,J2(z2)
∮

Rz2

∣∣∣∣∣∣∣∣∣
eΩ|=ζ2 | e

−
α(z2−ζ2)2

NJ2h2

(ζ2 − z2)
∏J2

j2=1 sin
(
π

J2h (ζ2 − x2 j2)
)
∣∣∣∣∣∣∣∣∣ |dζ2|. (4.8)

The integrals in (4.8) can be approximated by dividing the contour integral over Rzl into four individual
integrals along line segments and converting them into ordinary integrals, using a similar approach as
demonstrated in [11, Eq (32)].

∮
Rzl

∣∣∣∣∣∣∣∣∣
eΩ|=ζl | e

−
α(zl−ζ1)2

NJlh
2

(ζl − zl)
∏Jl

jl=1 sin
(
π

Jlh
(ζl − xl jl)

)
∣∣∣∣∣∣∣∣∣ |dζl| ≤ 2JlπχN,Jl

(
=zl

) e−αJlN

√
παJlN

, (4.9)

where the function χN,Jl is defined in (1.8) and l = 1, 2. Substituting from (4.9) into (4.8) and using
Lemma 3.2, we finally get (4.1). �

The bound presented in inequality (4.1) exhibits an exponential order and is directly affected by
the characteristics of the functions χN,Jl , ωh,Jl , eΩ|=zl |, and ϕ. To illustrate how different characteristics
of ϕ can impact this bound, we present three specific cases based on its growth patterns: constant,
polynomial, and exponential. These cases are useful in practical applications and provide insights into
the behavior of the bound.
Case I. This corresponds to the case where the function ϕ exhibits constant growth, meaning
ϕ
(∣∣∣<z1

∣∣∣ , ∣∣∣<z2

∣∣∣) := C for all z ∈ C2. In this case, the growth condition in (3.1) becomes:

| f (z)| ≤ C
2∏

j=1

eΩ|=z j |, z ∈ C2,C > 0, (4.10)

which implies that f is an entire function of exponential type Ω. The space E2
Ω

(C) is more inclusive
than the Bernstein space Bp

Ω
(R2) because the functions defined in (4.10) are not necessarily required to

belong to Lp(R2) when restricted to R2. The following corollary illustrates this particular case.

Corollary 4.2. If f belongs to the space E2
Ω

(C) with C as a positive constant, then for all z ∈ C2 and
|=zl| < N for l = 1, 2, we have the following bound for the error:

| f (z) − Gh,J1,J2,N[ f ](z)| ≤ C
2∑

l=1

2Jl−1eΩ|=z3−l |ωh,Jl(zl)χN,Jl(=zl)
e−αJlN

√
παJlN

+

2∏
k=1

2Jk−1ωh,Jk(zk)χN,Jk(=zk)
e−αJkN

√
παJkN

, (4.11)

where the functions χN,Jl and ωh,Jl(zl) are given in (4.2) and (1.8), respectively.
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Proof. This result can be immediately deduced from Theorem 4.1. �

In the real domain, the bound in inequality (4.11) will be uniform. This is because χN,Jl and ωh,Jl

are bounded functions on the real domain. The following corollary provides a uniform bound for the
error

∣∣∣ f (x) − Gh,J1,J2,N[ f ](x)
∣∣∣ for all x ∈ R2.

Corollary 4.3. For all x ∈ R2 and f ∈ E2
Ω

(C) with C > 0, the following uniform bound holds:

∣∣∣ f (x) − Gh,J1,J2,N[ f ](x)
∣∣∣ ≤ C

2∑
l=1

2Jl−1χN,Jl(0)
e−αJlN

√
παJlN

+

2∏
k=1

2Jk−1χN,Jk(0)
e−αJkN

√
παJkN

, (4.12)

where the function χN,Jl is defined as previously mentioned.

Case II. This deals with the case where the function ϕ exhibits polynomial growth, which means that
ϕ
(∣∣∣<z1

∣∣∣ , ∣∣∣<z2

∣∣∣) = C
∏2

l=1
(
1 + |<zl|

)νl for all z ∈ C2. In this case, the growth condition specified
in (3.1) can be reformulated as follows:

| f (z)| ≤ C
2∏

l=1

(
1 + |<zl|

)νl eΩ|=zl |, (4.13)

where z := (z1, z2) ∈ C2, C > 0, and νl ∈ N◦. The subsequent corollary demonstrates this specific case.

Corollary 4.4. Let g belong to the space B∞
Ω′

(R2), and define f (z) :=
∏2

l=1(1 + zl)νlg(z), where z ∈ C2

and νl is a non-negative integer. Then f ∈ E2
Ω

(ϕ)(R2) for all Ω > Ω′ and the following estimate holds:

| f (z) − Gh,J1,J2,N[ f ](z)| ≤ C
2∑

l=1

2Jl−1eΩ|=z3−l |ωh,Jl(zl)AN,Jl(=zl)
e−αJlN

√
παJlN

+

2∏
k=1

2Jk−1ωh,Jk(zk)AN,Jk(=zk)
e−αJkN

√
παJkN

, (4.14)

where the function ωh,Jl(zl) is given in (4.2), and the functionAN,Jl is defined as

AN,Jl(z) :=
(
1 + |<zl| + Jlh(N + 2)

)νl . (4.15)

Proof. Considering f (z) =
∏2

l=1(1 + zl)νlg(z) and g ∈ B∞
Ω′

(R2), it is straightforward to find a positive
constant C such that:

| f (z)| ≤ ‖g‖∞
2∏

l=1

(1 + |zl|)νleΩ′ |=zl | ≤ ‖g‖∞
2∏

l=1

(1 + |<zl|)νl(1 + |=zl|)νleΩ′ |=zl |

≤ C
2∏

l=1

(1 + |<zl|)νleΩ|=zl |,

for all Ω > Ω′. Hence, f is an entire function of polynomial growth on the real domain, and f ∈
E2

Ω
(ϕ)(R2) with ϕ(x) =

∏2
l=1(1 + x2

l )νl , x := (x1, x2) ∈ R2
+. By substituting ϕ(x) =

∏2
l=1(1 + x2

l )νl

into (4.1), we obtain (4.14). �
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Case III. This pertains to the situation where the function ϕ exhibits exponential growth on the real
domain, which means ϕ

(
|<z1|, |<z2|

)
= C

∏2
j=1 eκ|<zl |, κ > 0, C > 0, for all z ∈ C2. In this situation,

the growth condition specified in (3.1) can be expressed as follows:

| f (z)| ≤ C
2∏

l=1

eκ|<zl |+Ω|=zl |, z ∈ C2,C > 0, (4.16)

where κ > 0 and Ω ≥ 0. The subsequent corollary addresses this particular case.

Corollary 4.5. Suppose f is an entire function that satisfies the exponential growth condition (4.16).
For h ∈ (0, π/(Ω + 2κ)) and |=zl| < JlhN with l = 1, 2, the following estimate holds:

| f (z) − Gh,J1,J2,N[ f ](z)| ≤ C

 2∏
j=1

eκ|<z j |

 2∑
l=1

2Jl−1ωh,Jl(zl)χN,Jl(=zl)
e−(α−κh)JlN

√
παJlN

+ C
2∏

k=1

2Jk−1eκ|<zk |ωh,Jk(zk)χN,Jk(=zk)
e−(α−κh)JkN

√
παJkN

, (4.17)

where the functions χJl,N and ωh,Jl are defined in (1.8) and (4.2), respectively.

Proof. By considering the function ϕ(x) = C
∏2

l=1 eκxl with x := (x1, x2) ∈ R2
+ in Theorem 4.1, we can

readily deduce (4.17) by restricting h to the interval (0, π/(Ω + 2κ)). �

5. Error bound for A2
d(ϕ)-functions

In this section, our main objective is to estimate the error
∣∣∣∣ f (z) − G d

N ,J1,J2,N[ f ]
∣∣∣∣ for functions f

belonging to the class A2
d(ϕ), as defined in (3.11). The operator G d

N ,J1,J2,N is precisely defined in (3.12).
In this section, we will represent the function ωh,Jl given in Eq (4.2) by the notation ω d

N ,Jl
when h is

equal to d/JlN.

Theorem 5.1. For f ∈ A2
d(ϕ), the following inequality holds:

∣∣∣∣ f (z) − G d
N ,J1,J2,N[ f ](z)

∣∣∣∣ ≤ ϕ (ρ(z))
2∑

l=1

2Jl+1/2ω d
N ,Jl

(zl)γN,l
(
=zl/d

) e−
π
2

(
JlN−

2|=zl |
d

)
π
√

N

+ ϕ (ρ(z))
2∏

l=1

2Jl+1/2ω d
N ,Jl

(zl)γN,l
(
=zl/d

) e−
π
2

(
JlN−

2|=zl |
d

)
π
√

N
, (5.1)

where z ∈ S2
d/4, and ρ(z) :=

(
|<z1| + J1d(1 + 2

N ), |<z2| + J2d(1 + 2
N )

)
. The function γN,Jl is defined

as (1.11).

Proof. By expanding the integral in (3.13) and utilizing the definition of Kz in (3.4) with α = π/2 and
h := hl = d/JlN, we can apply the Cauchy integral formula in one dimension, resulting in the following
expression:

∮
Rz2

∮
Rz1

|Kz(ζ) f (ζ)| |dζ | ≤ ω d
N ,J1

(z1)
∮

Rz1

∣∣∣∣∣∣∣∣∣
f (ζ1, z2) e

−
πN(zl−ζ1)2

2Jld
2 dζ1

(ζ1 − z1)
∏J1

j1=1 sin
(
πN
J1d (ζ1 − x1 j1)

)
∣∣∣∣∣∣∣∣∣
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+ ω d
N ,J1

(z2)
∮

Rz2

∣∣∣∣∣∣∣∣∣
f (z1, ζ2) e

−
πN(z2−ζ2)2

2Jld
2 dζ2

(ζ2 − z2)
∏J2

j2=1 sin
(
πN
J2d (ζ2 − x2 j2)

)
∣∣∣∣∣∣∣∣∣

+

2∏
k=1

ω d
N ,Jk

(zk)
∮

Rz2

∮
Rz1

∣∣∣∣∣∣∣∣∣
f (ζ1, ζ2)

∏2
l=1 e

−
πN(zl−ζl)2

2Jld
2 dζ∏2

l=1 (ζl − zl)
∏Jl

jl=1 sin
(
πN
Jld

(ζl − xl jl)
)
∣∣∣∣∣∣∣∣∣ .

(5.2)

Since f belongs to the space A2
d(ϕ), then f satisfies the growth condition in (3.11). Therefore, we have

| f (ζ)| ≤ ϕ (ρ(z)) , ζ ∈

2∏
l=1

Rzl . (5.3)

By combining (5.2) and (5.3), we get the following result:∮
Rz2

∮
Rz1

|Kz(ζ) f (ζ)| |dζ | ≤ ϕ (ρ(z))ω d
N ,J1

(‡1)
∮
Rz1

∣∣∣∣∣∣∣∣ e
− πN

2J1d2 (z1−ζ1)2

dζ1

(ζ1 − z1)
∏J1

j1=1 sin
(
πN
J1d (ζ1 − x1 j1)

)
∣∣∣∣∣∣∣∣

+ ϕ (ρ(z))ω d
N ,J1

(z2)
∮
Rz2

∣∣∣∣∣∣∣∣ e
− πN

2J2d2 (z2−ζ2)2

dζ2

(ζ2 − z2)
∏J2

j2=1 sin
(
πN
J2d (ζ2 − x2 j2)

)
∣∣∣∣∣∣∣∣

+ ϕ (ρ(z))ω d
N ,J1

(z1)
∮
Rz1

∣∣∣∣∣∣∣∣ e
− πN

2J1d2 (z1−ζ1)2

dζ1

(ζ1 − z1)
∏J1

j1=1 sin
(
πN
J1d (ζ1 − x1 j1)

)
∣∣∣∣∣∣∣∣

× ω d
N ,J1

(z2)
∮
Rz2

∣∣∣∣∣∣∣∣ e
− πN

2J2d2 (z2−ζ2)2

dζ2

(ζ2 − z2)
∏J2

j2=1 sin
(
πN
J2d (ζ2 − x2 j2)

)
∣∣∣∣∣∣∣∣ . (5.4)

The integrals in Eq (5.4) can be estimated by dividing the contour integral over Rzl into four separate
integrals along line segments and converting them into ordinary integrals, following a similar approach
as shown in [11, Eq (44)],

∮
Rzl

∣∣∣∣∣∣∣∣ e
− πN

2Jld
2 (zl−ζl)2

(ζl − zl)
∏Jl

jl=1 sin
(
πN
Jld

(ζl − xl jl)
)
∣∣∣∣∣∣∣∣ |dζl| ≤ 2Jl+3/2γN,l

(
=zl/d

) e−
π
2

(
JlN−

2|=zl |
d

)
√

N
, (5.5)

where the function γN,Jl is defined in (1.11) and l = 1, 2. By substituting the expression from (5.5)
into (5.4) and utilizing Lemma 3.3, we eventually arrive at Eq (5.1). �

The bound presented in inequality (5.1) in the complex domain is influenced by the behavior of the
functions wd,Jl(zl), γN,l

(
=zl/d

)
, and eπ|=zl |/d, as well as the growth of the function ϕ within the domain

S 2
d/4. However, in the real domain and ϕ is a constant function, the bound in inequality (5.1) will

be uniform. This is because wd,Jl(zl) and γN,l
(
=zl/d

)
are bounded functions on the real domain. It

is clear that the bound in (5.1) will be of an exponential order within the real domain and will only
depend on the growth of the function ϕ. The following corollary provides a uniform bound for the
error

∣∣∣∣ f (x) − G d
N ,J1,J2,N[ f ](x)

∣∣∣∣ for all x ∈ R2 and f ∈ A2
d(ϕ) where ϕ is a constant function.

AIMS Mathematics Volume 9, Issue 11, 30898–30921.



30913

Corollary 5.2. For all x ∈ R2 and f ∈ A2
d(C) with C > 0, the following uniform bound holds:

∣∣∣∣ f (x) − G d
N ,J1,J2,N[ f ](x)

∣∣∣∣ ≤ C
2∑

l=1

2Jl+1/2γN,l (0)
e−πJlN/2

π
√

N
+ C

2∏
l=1

2Jl+1/2γN,l (0)
e−πJlN/2

π
√

N
, (5.6)

where the function γN,l is defined as previously mentioned.

6. Numerical experiments

In this section, we utilize the bivariate nonuniform sinc-Gauss sampling operator Gh,J1,J2,N[ f ] to
approximate five different functions from diverse classes. In the first example, we compare the
approximations of a function belonging to the Bernstein space Bp

Ω
(R2). This comparison is made using

both the two-dimensional periodic nonuniform sampling series (1.13) and its modification in (3.2),
the sampling operator Gh,J1,J2,N . As expected from theoretical analysis, the sampling operator Gh,J1,J2,N

offers a substantial improvement over the original series (1.13). Achieving this improvement is one
of the main goals of this study. Each of the last four examples corresponds to a specific case that was
presented in Sections 4 and 5. The second example deals with Case I, where f is an entire function of
exponential type Ω and is bounded on the real domain R2. In the third example, we consider Case II,
where f is an entire function of exponential type with polynomial growth along both axes in R2. The
fourth example focuses on Case III, where f is an entire function satisfying a specific condition with
exponential growth along the axes of R2. Lastly, we approximate an analytic function f ∈ A2

d(ϕ) in
the fourth example. The numerical results are summarized in tables and illustrated using figures. It
is worth noting that the accuracy of our formula Gh,J1,J2,N[ f ] improves as we fix N and decrease h,
without incurring any additional cost, except for the fact that the step size hJ becomes smaller. All
computations were performed using Mathematica 13 on a personal computer. In the examples, we
denote the bound in Eq (5.1) by Bh,J1,J2,N and use the notation Rh,J1,J2,N to represent the relative bound
associated with the bound Bh,J1,J2,N , i.e.,

Rh,J1,J2,N[ f ](x) := Bh,J1,J2,N[ f ](x)/ f (x), x ∈ R2.

During this section, we let x[Jl] := (xl1, xl2, . . . , xlJl) where xl jl is defined as (1.12) and (ζk, ζ j) :=((
k − 1

2

)
hJ1,

(
j − 1

2

)
hJ2

)
where (k, j) ∈ N2. Let TJ1,J2,N[ f ] denote the truncated version of the classical

expansion in (1.13), defined as

TJ1,J2,N[ f ](z) =

N∑
n2=−N

N∑
n1=−N

J1∑
j1=1

J2∑
j2=1

f (τ jl,nl,
π
Ω
, τ j2,n2,

π
Ω

)
2∏

l=1

ψ jl,nl,
π
Ω

(zl), z = (z1, z2) ∈ C2. (6.1)

This truncated series will be applied in Example 6.1.

Example 6.1. Consider the function f (z) =
∏2

j=1 sinc
(√

1 + z2
j

)
, where z = (z1, z2) ∈ C2. This

function belongs to the Bernstein space B2
1(R2), which allows us to approximate f using both the two-

dimensional nonuniform periodic sampling series (1.13) and its modified version in (3.2), the sampling
operator Gh,J1,J2,N . Table 2 provides a comparison of the approximations of f at points

(
τ j1,n1,h, τ j2,n2,h

)
,

where x[J1] = (0.1, 0.6, 1.2) and x[J2] = (0.2, 0.8, 1.3) with h = 1 and N = 6, using both the truncated

AIMS Mathematics Volume 9, Issue 11, 30898–30921.



30914

original sampling series (6.1) and its modification in (3.2). Furthermore, Figures 1(a) and 1(b) as well
as Table 1 visually demonstrate the comparison of the approximations. The numerical results confirm
the substantial improvement achieved by the sampling operator Gh,J1,J2,N , aligning with our theoretical
predictions.

Table 1. The absolute errors associated with approximating f in Example 6.1 at the points
(ζ j, ζk) with parameters j, k = 1, 5, 9, h = 1, J1 = J2 = 3, and N = 6, using the truncated
series from (6.1) and its modification in (3.2).

(ζk, ζl)
∣∣∣ f (ζ) − T3,3,6[ f ](ζ)

∣∣∣ ∣∣∣ f (ζ) − G1,3,3,6[ f ](ζ)
∣∣∣

(ζ1, ζ1) 9.30909×10−5 1.19794×10−10

(ζ1, ζ5) 5.25264×10−4 3.88436×10−10

(ζ1, ζ9) 3.31706×10−4 2.29679×10−10

(ζ5, ζ1) 2.62136×10−4 2.70596×10−10

(ζ5, ζ5) 9.06053×10−5 7.28933×10−11

(ζ5, ζ9) 3.02992×10−5 1.88964×10−11

(ζ9, ζ1) 1.74133×10−4 1.55210×10−10

(ζ9, ζ5) 5.30675×10−6 7.25985×10−12

(ζ9, ζ9) 1.35891×10−5 1.06303×10−11

(a) (b)

Figure 1. Illustrations related to Example 6.1. The figure in (a) illustrates the error f (ζ) −
T3,3,6[ f ](ζ) with ζ ∈ [0, 10]2. The figure in (b) illustrates the error f (ζ) − G1,3,3,6[ f ](ζ) with
ζ ∈ [0, 10]2. We used the same parameters h = 1, J1 = J2 = 3, and N = 6, to generate the
figures in (a) and (b).

Example 6.2. Consider the function f (z1, z2) = cos(z1 + z2), where (z1, z2) ∈ C2. Obviously
| cos(z)| ≤ e|=z1 |+|=z2 | for every z = (z1, z2) ∈ C2. Thus the function belongs to the space E2

1(ϕ) and
has a growth constant with ϕ = 1. Therefore, we will apply Corollary 4.2 by employing the sampling
points

(
τ j1,n1,h, τ j2,n2,h

)
, where x[J1] = (0.1, 0.6, 1.2, 1.9) and x[J2] = (0.2, 0.8, 1.3, 1.8) with h = 3/2, 1 and

N = 6. Table 2 presents a comparison of the approximations of the function f at points (ζ j, ζk) using the
periodic sinc-Gauss sampling formula Gh,J1,J2,N with h = 3/2, 1, J1 = J2 = 4, and N = 6. Additionally,
Figures 2(a) and 2(b) illustrate the comparison of the approximations of the function f using Gh,J1,J2,N
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with h = 3/2 and h = 1, respectively, on the interval [0, 10]2. By chance, the values of the bound
Bh,J1,J2,N happen to be the same at the points (ζk, ζ j) for all k, j = 1, 5, 9 when h is held constant, as
shown in Table 2. This coincidence may lead to a misleading perception of the bound. Consequently,
Figures 3(a) and 3(b) demonstrate the accurate behavior of the bound to avoid any misconceptions. In
this example, we will denote the real-valued bound of Case I, expressed in Eq (4.11), as:

Bh,J1,J2,N[ f ](x) =

2∑
l=1

2Jl−1ωh,Jl(xl)χN,Jl(0)
e−αJlN

√
παJlN

+

2∏
l=1

2Jl−1ωh,Jl(xl)χN,Jl(0)
e−αJlN

√
παJlN

,

where x ∈ R2 and the functions χN,Jl , and ωh,Jl(zl) are provided in (1.8) and (4.2), respectively.

Table 2. Absolute errors associated with approximating f in Example 6.2 and their bounds
at the points (ζ j, ζk) with j, k = 1, 5, 9 and parameters N = 6 and h = 3/2, 1.

(ζk, ζl)
∣∣∣∣ f (ζ) − G 3

2 ,4,4,6
[ f ](ζ)

∣∣∣∣ B 3
2 ,4,4,6

(ζ)
∣∣∣ f (ζ) − G1,4,4,6[ f ](ζ)

∣∣∣ B1,4,4,6(ζ)
(ζ1, ζ1) 7.04519×10−10 5.1421 ×10−9 1.94289×10−13 1.1191×10−12

(ζ5, ζ1) 7.89457×10−10 5.1421 ×10−9 1.43774×10−13 1.1191×10−12

(ζ9, ζ1) 1.07908×10−9 5.1421 ×10−9 1.37446×10−13 1.1191×10−12

(ζ1, ζ5) 6.58279×10−10 5.1421 ×10−9 2.67564×10−13 1.1191×10−12

(ζ5, ζ5) 5.88276×10−11 5.1421 ×10−9 5.58442×10−14 1.1191×10−12

(ζ9, ζ5) 4.67437×10−11 5.1421×10−9 5.04041×10−14 1.1191×10−12

(ζ1, ζ9) 1.12024×10−9 5.1421×10−9 3.13416×10−13 1.1191×10−12

(ζ5, ζ9) 3.98303×10−11 5.1421 ×10−9 6.12843×10−14 1.1191×10−12

(ζ9, ζ9) 5.04961×10−11 5.1421 ×10−9 2.90878×10−14 1.1191×10−12

(a) (b)

Figure 2. Illustrations related to Example 6.2. The figure in (a) shows the error f (ζ) −
G3/2,4,4,6[ f ](ζ) with ζ ∈ [0, 10]2, while the figure in (b) depicts the error f (ζ) − G1,4,4,6[ f ](ζ),
also with ζ ∈ [0, 10]2. Both figures use the same parameters J1 = J2 = 4, and N = 6, except
that h = 3/2 in (a) and h = 1 in (b).
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(a) (b)

Figure 3. The figure in (a) illustrates the bound Bh,4,4,6(ζ) in Example 6.2, where ζ ∈ [0, 4]2,
with parameters J1 = J2 = 4, N = 6, and h = 3/2, while the figure in (b) presents the same
bound with identical values for J1, J2, and N, but with h = 1.

Example 6.3. Consider the function f (z1, z2) = (1 + z2
1)(1 + z2

2) cos(z1 + z2), where (z1, z2) ∈ C2.
This function exhibits polynomial growth along the axes of R2 and fulfills the conditions specified in
Corollary 4.4 with Ω

′

= 1, ν1 = ν1 = 1, and C = 1. In this example, we will denote the real-valued
bound of Case II, expressed in Eq (4.14), as:

Bh,J1,J2,N[ f ](x) =

2∑
l=1

2Jl−1ωh,Jl(xl)AN,Jl(0)
Nνl−1/2 e−αJlN

√
παJlN

+

2∏
l=1

2Jl−1ωh,Jl(xl)AN,Jl(0)
Nνl−1/2 e−αJlN

√
παJlN

,

where x ∈ R2 and the functionsAN,Jl , and ωh,Jl(zl) are provided in (4.15) and (4.2), respectively. Since
the function f is an increasing function on the axes of R2

+, we utilize the relative error and the bound
Rh,J1,J2,N[ f ](x) := Bh,J1,J2,N[ f ](x)/ f [x], where x ∈ R2 instead of the absolute error and the bound
Bh,J1,J2,N[ f ] to describe the approximation results. In this example, we will use the sampling points(
τ j1,n1,h, τ j2,n2,h

)
with x[J1] = (0.4, 1.6, 1.7) and x[J2] = (0.3, 0.9, 1.4), h = 1, Ω = 1.1, and N = 6, 9.

The numerical results are presented in Table 3 at the points (ζk, ζl), k, l = 1, 3, 5, and are illustrated in
Figures 4(a) and 4(b).
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(a) (b)

Figure 4. The figure in (a) illustrates the error f (ζ) − G1,3,3,6[ f ](ζ) in Example 6.3, where
ζ ∈ [0, 4]2, with parameters J1 = J2 = 3, N = 6, and h = 1, while the figure in (b) shows the
same relative error with identical values for J1, J2, and h, but with N = 8.

Table 3. Relative errors associated with approximating f in Example 6.3 and their relative
bounds at the points (ζ j, ζk) with j, k = 1, 3, 5 and parameters h = 1 and N = 6, 8.

(ζk, ζl)
∣∣∣∣ f (ζ)−G1,3,3,6[ f ](ζ)

f (ζ)

∣∣∣∣ R1,3,3,6(ζ)
∣∣∣∣ f (ζ)−G1,3,3,8[ f ](ζ)

f (ζ)

∣∣∣∣ R1,3,3,8(ζ)
(ζ1, ζ1) 6.64752×10−10 5.63904×10−9 1.15453×10−12 1.06100×10−11

(ζ3, ζ1) 7.04764×10−10 1.92038×10−9 1.30941×10−12 3.55420×10−12

(ζ5, ζ1) 9.82559×10−10 1.43331×10−9 1.83733 ×10−12 2.61379×10−12

(ζ1, ζ3) 1.50094×10−10 2.09183×10−9 1.29913×10−13 3.85316×10−12

(ζ3, ζ3) 2.36410×10−10 7.7962×10−10 3.75806×10−13 1.41688×10−12

(ζ5, ζ3) 3.79282×10−10 6.6780×10−10 6.41416×10−13 1.19889×10−12

(ζ1, ζ5) 2.41005×10−10 1.67440×10−9 6.36655×10−13 3.03417×10−12

(ζ3, ζ5) 5.91103×10−11 7.1697×10−10 1.07359×10−13 1.28464×10−12

(ζ5, ζ5) 2.50180×10−10 8.2529×10−10 3.33395×10−13 1.46346×10−12

Example 6.4. Consider the function f (z1, z2) = cosh(z1 + z2), where (z1, z2) ∈ C2. It is evident that
| cosh(z)| ≤ e|<z1 |+|<z2 | for all z = (z1, z2) ∈ C2. This function belongs to the space E2

0(ϕ) and satisfies the
exponential growth condition (4.16) on R2. Therefore, we apply the Corollary 4.5 with C = 1, κ = 1,
and Ω = 0. In this example, we will denote the real-valued bound of Case III, expressed in Eq (4.17),
as:

Bh,J1,J2,N[ f ](x) :=
2∏

k=1

eκ|xk |

2∑
l=1

2Jl−1ωh,Jl(xl)χN,Jl(0)
e−(α−κh)JlN

√
παJlN

+

2∏
l=1

2Jl−1eκ|xl |ωh,Jl(zl)χN,Jl(0)
e−(α−κh)JlN

√
παJlN

,

where the functions χJl,N and ωh,Jl are defined in (1.8) and (4.2), respectively. In this case, since
the function f is increasing on the positive axes of R2, we will use the relative error and the bound

AIMS Mathematics Volume 9, Issue 11, 30898–30921.
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Rh,J1,J2,N[ f ](x) := Bh,J1,J2,N[ f ](x)/ f [x], where x ∈ R2, to describe the approximation results. For this
example, we will utilize the sampling points

(
τ j1,n1,h, τ j2,n2,h

)
with x[J1] = (0.4, 1.2) and x[J2] = (0.4, 0.9)

and h = 1/2. The numerical results are presented in Table 4 at the points (xk, xl), k, l = 3, 5, 7, and are
illustrated in Figures 5(a) and 5(b).

Table 4. Relative errors associated with approximating f in Example 6.4 and their relative
bounds at the points (ζ j, ζk) with j, k = 3, 5, 7 and parameters h = 1/2, J1 = J2 = 2, and
N = 5, 8.

(ζk, ζl)
∣∣∣∣∣ f (ζ)−G 1

2 ,2,2,5
[ f ](ζ)

f (ζ)

∣∣∣∣∣ R 1
2 ,2,2,5

(ζ)
∣∣∣∣∣ f (ζ)−G 1

2 ,2,2,8
[ f ](ζ)

f (ζ)

∣∣∣∣∣ R 1
2 ,2,2,8

(ζ)

(ζ3, ζ3) 5.31600×10−8 1.63621×10−5 3.10988×10−12 1.99919×10−8

(ζ5, ζ3) 5.21026×10−8 1.63613×10−5 4.24068×10−12 1.99928×10−8

(ζ7, ζ3) 5.20833×10−8 1.63613×10−5 4.25930×10−12 1.99928×10−8

(ζ3, ζ5) 5.21026×10−8 1.63613×10−5 4.24068×10−12 1.99928×10−8

(ζ5, ζ5) 5.20833×10−8 1.63613×10−5 4.26155×10−12 1.99928×10−8

(ζ7, ζ5) 5.20829×10−8 1.63613×10−5 4.26076×10−12 1.99928×10−8

(ζ3, ζ7) 5.20833×10−8 1.63613×10−5 4.26133×10−12 1.99928×10−8

(ζ5, ζ7) 5.20829×10−8 1.63613×10−5 4.26149×10−12 1.99928×10−8

(ζ7, ζ7) 5.20829×10−8 1.63613×10−5 4.26071×10−12 1.99928×10−8

(a) (b)

Figure 5. The figure in (a) illustrates the relative error
(

f (ζ) − G 1
2 ,2,2,N

[ f ](ζ)
)
/ f (ζ) in

Example 6.4 with parameters J1 = J2 = 2, N = 5, and h = 1/2, while the figure in (b)
shows the same relative error with identical values for J1, J2, and h, but with N = 8.

Example 6.5. The function f (z) = 4
(z2

1+4)(z2
2+4) , where z = (z1, z2) ∈ C2, is an analytic function defined

on the 2-dimensional horizontal strip S2
2 as specified in Eq (3.10). Therefore, f belongs to the class

A2
2(ϕ), allowing us to utilize Theorem Theorem 5.1 with the parameters d = 2 and N = 6, 8, and the

sampling points
(
τ j1,n1,h, τ j2,n2,h

)
with x[J1] = (0.1, 0.2) and x[J2] = (0.1, 0.3). In this example, we will

denote the real-valued bound of Theorem 5.1, expressed in Eq (4.17), with ϕ = 4 as:

B d
N ,J1,J2,N[ f ](x) := 4

2∑
l=1

2Jl+1/2ω d
N ,J1

(xl)γN,l (0)
e−

πJlN
2

π
√

N
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+ 4
2∏

l=1

2Jl+1/2ω d
N ,J1

(xl)γN,l (0)
e−

πJlN
2

π
√

N
,

where the functions γN,Jl and ω d
N ,J1

are defined as (1.11) and (4.2), respectively. In this case, since the
function f is decreasing on the positive axes of R2, we will use the relative error and the bound the
bound R d

N ,J1,J2,N[ f ](x) := Bh,J1,J2,N[ f ](x)/ f [x], where x ∈ R2, to describe the approximation results. In
Table 5, we present a summary of the approximations of the function f at intermediate points (ζk, ζl),
where k, l = 1, 2, 3. Additionally, visual representations of the results are provided in Figures 6(a)
and 6(b).

Table 5. Relative errors associated with approximating f in Example 6.5 and their relative
bounds at the points (ζ j, ζk) with j, k = 1, 2, 3 and parameters d = 2, Jl = J2 = 2, and
N = 6, 8.

(ζk, ζl)
∣∣∣∣∣ f (ζ)−G 1

6 ,2,2,6
[ f ](ζ)

f (ζ)

∣∣∣∣∣ R 1
6 ,2,2,6

(ζ)
∣∣∣∣∣ f (ζ)−G 1

8 ,2,2,8
[ f ](ζ)

f (ζ)

∣∣∣∣∣ R 1
8 ,2,2,8

(ζ)

(ζ1, ζ1) 5.32426×10−9 3.55458×10−8 9.69024×10−12 7.64733×10−11

(ζ2, ζ1) 3.94306×10−9 3.75070×10−8 1.37515×10−11 7.88538×10−11

(ζ3, ζ1) 3.10719×10−9 4.14293×10−8 1.49181×10−11 8.36148×10−11

(ζ1, ζ2) 8.08044×10−9 3.75070×10−8 1.18241×10−11 7.88538×10−11

(ζ2, ζ2) 1.46201×10−9 3.95764×10−8 1.58860×10−11 8.13084×10−11

(ζ3, ζ2) 2.29787×10−9 4.37151×10−8 1.70515×10−11 8.62175×10−11

(ζ1, ζ3) 1.12048×10−9 4.14293×10−8 1.19993×10−11 8.36148×10−11

(ζ2, ζ3) 2.50168×10−9 4.37151×10−8 1.60607×10−11 8.62175×10−11

(ζ3, ζ3) 3.33754×10−9 4.82866×10−8 1.72268×10−11 9.14231×10−11

(a) (b)

Figure 6. The figure in (a) illustrates the relative error
(

f (ζ) − G 1
N ,2,2,N

[ f ](ζ)
)
/ f (ζ) in

Example 6.5 with parameters J1 = J2 = 2, N = 6, and d = 2, while the figure in (b)
shows the same relative error with identical values for J1, J2, and d, but with N = 8.
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7. Conclusions

In recent times, there has been significant exploration into enhancing the convergence rate of
the one-dimensional periodic nonuniform sampling series through the incorporation of a Gaussian
multiplier. Notable contributions in this field have been made by Wang et al. (2019) and Rasdad (2022).
Building upon these advancements, this paper takes it a step further and focuses on accelerating the
convergence of the two-dimensional periodic nonuniform sampling series by introducing a bivariate
Gaussian multiplier. The two-dimensional periodic nonuniform sampling series goes back to Butzer
and Hinsen (1989). The convergence rate of the Butzer-Hinsen expansion is relatively slow, on
the order of O(N−p) with p ≥ 1. By applying this acceleration technique, the convergence rate
significantly improves to an exponential order, specifically e−αN , where α > 0. The approach employed
in this paper utilizes complex-analytic techniques and is applicable to a broad range of functions.
Specifically, it applies to two classes of functions. The first class includes bivariate entire functions of
exponential type that satisfy a decay condition. The second class comprises bivariate analytic functions
defined on a bivariate horizontal strip. To support the theoretical analysis, numerical experiments are
conducted to validate the effectiveness of the approach. Moreover, this technique holds the potential for
future research in expediting the convergence rate of multidimensional classical and Hermite periodic
nonuniform sampling series, opening up promising possibilities for further enhancing the efficiency of
these sampling methods.
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