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Abstract: We examined intraspecific infectious rivalry in a dynamic contagious disease model. A non-
linear dynamic model that considers multiple individual categories was used to study the transmission
of infectious diseases. The combined effect of parameter sensitivities on the model was simulated using
system sensitivities. To investigate the dynamic behavior and complexity of the model, the Caputo-
Fabrizio (C-F) fractional derivative was utilized. The behavior of the proposed model around the
parameters was examined using sensitivity analysis, and fractional solutions included more information
than the classical model. Fixed point theory was used to analyze the existence and uniqueness of the
solution. The Ulam-Hyers (U-H) criterion was used to examine the stability of the system. A numerical
approach based on the C-F fractional operator was utilized to improve comprehension and treatment of
the infectious disease model. A more precise and valuable technique for solving the infectious disease
model was used in MATLAB numerical simulations to demonstrate. Time series and phase diagrams
with different orders and parameters were generated. We aimed to expedite patient recovery while
reducing the frequency of disease transmission in the community.
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1. Introduction

The term “infectious diseases” refers to illnesses caused by living organisms, usually parasites and
microorganisms, that spread from one host to another either directly or indirectly. Infectious diseases
have been a significant concern in our society. These illnesses can sometimes pose severe threats and
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lead to epidemics. Medical research has rapidly advanced in identifying and controlling three primary
characteristics: Infectivity, epidemic potential, and uncertainty, which have helped reduce the burden
of such diseases. Infectious diseases are modelled mathematically as a dynamic transmission cycle
involving interactions between susceptible and diseased hosts. These interactions are usually expressed
as a coupled ordinary differential equation. The SIR model takes into account several variables while
examining infectious disease systems. Several models that examine significant aspects in the research
of infectious diseases include SIS, SIRV, SEIR, SVEIRS, SIQR, SEIRV, SEIQS, and others [1–7].
Understanding disease dynamics is complex due to factors like environmental fluctuations, making it
challenging to collect precise data. For example, temperature variations can significantly impact the
reproduction rate of disease-spreading bacteria, influencing the disease’s dynamics. As a result, it’s
essential to consider how uncertainty in biological parameters affects disease behavior. If incorrect
parameter values are used, model outputs may be biased, so sensitivity analysis is necessary for
understanding how model outputs change in response to parameter variations. When studying the
transmission of infectious diseases, sensitivity analysis is often used to develop strategies for slowing
infection spread by targeting key model parameters, such as the primary reproduction number R0. The
literature provides information on dynamic parameter sensitivities in infectious spread for traditional
SIR and SEIR models to maximize the usefulness of observed data, with the primary source of
uncertainty being the random variability of the included parameters.

Interactions between species can impact the quality of life for all involved. These interactions
are crucial for an organism’s survival since its primary objective is to stay alive. Without these
relationships, life as we know it would be impossible. It’s remarkable how fascinating organism
interactions can be and can be studied using mathematical models, an exciting field within ecology
research [5, 7]. Different factors, such as environmental conditions, impact the growth and balance
of living populations, and modeling can be an invaluable tool for understanding their dynamics.
Organisms, typically proto-microorganisms and parasites can cause infectious illnesses through direct
or indirect transmission from one host to another. Due to their reason to periodically spread like
epidemics and cause serious problems, infectious diseases have recently become a significant worry
in our culture. The three major components that lessen the severity of these disorders are infectivity,
epidemic potential, and uncertainty. The medical community has made great strides in recognising and
managing these components. The dynamic transmission cycle is a mathematical model of an infectious
illness that involves interactions between susceptible and infected hosts. Typically, these interactions
are expressed as a linked set of ordinary differential equations.

Fractional calculus is a mathematical analysis that extends beyond differentiation and integration
conventions. Fractional calculus concerns derivatives and integrals of non-integer orders, such as
fractions or decimals, while classical calculus concentrates on the powers of integers. The Caputo
operator is a valuable tool for problem-solving and is commonly used to handle real-world challenges.
The main difference between the Riemann-Liouville operator and other fractional operators is the
singularity quality of the kernels. They are applied in roughly related ways to observe different
model dynamics. It follows that using these operations would inevitably result in better outcomes.
Researchers attempting to understand better a model’s dynamics advise using fractional operators with
non-singular kernels. Establishing the C-F derivative has addressed certain standard limits on fractional
derivatives [8]. The C-F derivative outperforms the most commonly used techniques for assessing
human knowledge [9]. The operator’s performance and its benefits were validated using various
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approaches. Studies on numerous scientific, engineering, and mathematical models have proved their
usefulness. However, experts from real-world cases are a more meaningful example [10,11]. Atangana
and Baleanu introduced a derivative operator with a non-singular kernel. It utilizes the Mittag-Leffer
function and is in a convenient area for modellers of real-world situations because of its non-local and
non-singular kernel. Over the past few decades, the Atangana-Baleanu variant has obtained strong
research value and applicability in diverse fields, particularly in biological models [12]. This fractional
derivative introduced non-local and complex dynamic behavior and numerous natural results. In
addition, since biological models are expected to have a memory effect and hereditary features, which
can be defined more precisely using fractional calculus, the solution of the fractional order system is
expected to obtain how to control epidemic diseases [13]. The authors of this study investigated the
sensitivity of the model solution in delay differential systems using variational and direct methods [14].
Corruption and terrorism have become significant issues in many nations worldwide. However, more
needs to be written about the relationship between the two. To address this, the author has developed a
novel fractional-order mathematical model to explore the coexistence of terrorism and corruption [15].
This article examines the authors’ mathematical model of COVID-19, which incorporates a fractional-
order system and considers the effectiveness of vaccination [16].

Fractional-order models have become increasingly popular in control engineering, physics, neural
networks, and medicine. They can predict the condition of a system at any future moment by
considering its current state and all of its past states. Due to its practicality, researchers are interested
in fractional-order calculus. The concept of fractional-order differentiation and integration was first
introduced by two prominent figures in mathematics history, Riemann and Liouville. The R-L
and Caputo fractional derivatives are examples of fractional differential operators that use a power
law kernel. These operators have precise definitions and have been widely researched and applied
across various disciplines [17]. However, their limited applicability and inability to represent other
natural and artificial systems have hindered their development. To overcome these limitations, novel
C-F fractional-order derivatives have been developed based on the exponential kernel, successfully
describing various real-world events [18]. Several mathematical models with C-F fractional order have
been discussed in the literature.

Numerous numerical techniques have been developed to solve biological models and fractional-
order differential equations [19]. The Newton interpolation formula, the Toufik-Atangana approach,
the Adam-Bashforth method, the predictor-corrector method, and the Runge-Kutta technique are a few
of the numerous numerical algorithms that have been the subject of extensive literature [17–23]. To
solve non-linear systems numerically, the Toufik-Atangana approach is widely used [24,25]. Recently,
a novel numerical system called the Toufik-Atangana numerical system has emerged as a potential
solution to the problems with the Adams-Bashforth approach [26, 27]. Combining the fundamental
theorem of fractional calculus with the two-step Lagrange polynomial, this new methodology develops
a novel and very efficient numerical method [26]. Using this approach, problems can be resolved
quickly and accurately. A biological model has been subjected to many fractional operators using the
Toufik-Atangana numerical framework to get the required findings. Stability analysis is an essential
method in numerical analysis that yields effective results. When expressed mathematically, stability
is necessary for spectrum analysis of real-world problems [28]. Hyers expounded on Ulam’s 1940
introduction of the U-H stability hypothesis in 1941. As previously stated, the optimal approximation
or exact solution to the issue is the basis for computing the stability. Furthermore, it is simple to
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implement and evaluate the recommended stability ideas [28, 29].
The following subjects in this work: The definitions and basic ideas of fractional calculus are

covered in Section 2. We examine a non-integer C-F model for infectious diseases in Section 3. The
positivity and sensitivity analysis of the model under discussion is covered in detail in Section 4. In
Section 5, we focuses on the proposed model solution’s existence, uniqueness, and stability in the
U-H. In Section 6, we present the numerical method for the C-F operator Adams-Bashforth scheme.
Section 7 features numerical findings and a graphic analysis. Finally, in Section 8, we discuss the
findings of the investigation.

2. Definitions and basic concepts

The essential definitions and theorems relevant to the C-F have been provided in this section.

Definition 2.1. [18, 30] Suppose that ϑ ∈ H1(q1, q2), q1 < q2, and ς ∈ (0, 1), so the C-F fractional
differential operator. Then, we have

CF
q1 Dς

k
[ϑ(k)] =

B(ς)
1 − ς

∫ k

q1

ϑ
′

(z)exp
[
−ς
k − z

1 − ς

]
dz, (2.1)

where B(ς) is the normalization function with B(0) = B(1) = 1.
However, if ϑ < H1(q1, q2), then we have

CF
q1 Dς

k
[ϑ(k)] =

B(ς)
1 − ς

∫ k

q1

(ϑ(k) − ϑ(z)) exp
[
−ς
k − z

1 − ς

]
dz. (2.2)

Definition 2.2. [18, 31] Suppose that ϑ ∈ H1(q1, q2), q1 < q2, and ς ∈ (0, 1), so the C-F fractional
differential operator. Then, we have

CF
q1 Dς

k
[ϑ(k)] =

(2 − ς)B(ς)
2(1 − ς)

∫ k

q1

ϑ
′

(z)exp
[
−ς
k − z

1 − ς

]
dz. (2.3)

Definition 2.3. [18, 32] Suppose that ς is the order of integral in the C-F integral operator. Then,
we have

CFIς
k
[ϑ(k)] =

2(1 − ς)
(2 − ς)B(ς)

ϑ(k) +
2ς

(2 − ς)B(ς)

∫ k

q1

ϑ(z)dz. (2.4)

3. Fractional order of infectious diseases model

This section presents the generalized form of the infectious spread transmission dynamics with
specific parameter values for a given population. In this paper, we build upon the fundamental
SEIR contagious disease model by expanding it to the SEQIRDV model [33], which considers
different disease stages and traits. There are seven subpopulations within the overall population N:
susceptible (S ), infected (I), exposed (E), recovered (R), quarantined (Q), dead (D), and
vaccinated (V). Realistically, the natural death rate caused for each subpopulation is represented by a
value µ. A second parameter, Π, indicates the recruitment of susceptible individuals in any infected
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population at any time k. At the disease transmission rate β, susceptible people can be exposed and
become members of the diseased class. We assume that specific individuals receive vaccinations
for a particular infectious disease at a rate of ν. The rate at which people contract the disease
is β, and they move on to the affected group after a latent period of γ. Based on the vaccination’s
efficiency measure σ, the interaction of those who have had vaccinations falls into this category. With
a predetermined period until death ρ, the infected population is confined for a proposed average length
of δ, either entering the dead population with a disease mortality rate of τ or the recovered class with
a recovery rate of ω. Depending on the availability of vaccines for the particular condition, the class
“vaccinated” is added. The flowchart of the infectious dynamical disease system (3.1) is represented
by Figure 1. After accounting for these variables, the dynamical system that results is as follows [33]:

dS
dk
= Π − βS I − υS − µS ,

dE
dk
= βS I − γE + σβVI − µE,

dI
dk
= γE − δI − µI,

dQ
dk
= δI − (1 − τ)ωQ − τρQ − µQ, (3.1)

dR
dk
= (1 − τ)ωQ − µR,

dD
dk
= τρQ,

dV
dk
= υS − σβVI − µV,

with initial conditions S (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0 and V(0) ≥ 0.

Figure 1. A diagrammatic graph that illustrates the transmission of the disease.
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Fractional derivatives in mathematical biology offer a versatile framework for modeling various
biological phenomena, including vaccination processes and recovery dynamics. By extending beyond
traditional epidemic and noninfectious disease models, researchers gain a deeper understanding of the
complex behaviors exhibited by biological systems. This enables them to develop innovative solutions
to critical vaccination research and healthcare issues by incorporating fractional calculus into their
mathematical models. Initially, we transformed the model with integer order into one with fractional
order. We apply the C-F derivative in the system (3.1), and then we get

CF
0Dς
k
S = Π − βS I − υS − µS ,

CF
0Dς
k
E = βS I − γE + σβVI − µE,

CF
0Dς
k
I = γE − δI − µI,

CF
0Dς
k
Q = δI − (1 − τ)ωQ − τρQ − µQ, (3.2)

CF
0Dς
k
R = (1 − τ)ωQ − µR,

CF
0Dς
k
D = τρQ,

CF
0Dς
k
V = υS − σβVI − µV.

4. Preliminary analysis of the model

4.1. Positivity and boundedness

In fractional order modeling of biological systems, the population remains positive and bounded
over time to represent biological constraints accurately. Positivity and boundedness are essential in
fractional order models to ensure stability, realistic behavior, and relevance to real-world situations.
These features are necessary due to the complex dynamics introduced by fractional calculus. Positive
states play a crucial role in maintaining a system’s stability and meaningful behavior. In contrast,
positive outputs are vital for applying and understanding the model’s results in practical applications.
Boundedness ensures that the system does not exhibit unlimited growth, which is essential for stability
and control. Furthermore, boundedness guarantees that the behavior of a system remains predictable
and controllable, thus facilitating the analysis of system performance and reaction. The proposed
model has a built-in feature where its solutions are always positive and bounded. We ensure that all
state variables have non-negative values for any time k > 0. This [34] means a trajectory starting with
a positive initial condition will stay favorable for k > 0. Therefore, system (3.2) provides that

CF
0Dς
k
S |S=0 = Π ≥ 0, CF

0Dς
k
E|E=0 = σβVI ≥ 0,

CF
0Dς
k
I|I=0 = γE ≥ 0, CF

0Dς
k
Q|Q=0 = δI ≥ 0, (4.1)

CF
0Dς
k
R|R=0 = (1 − τ)ωQ ≥ 0, CF

0Dς
k
D|D=0 = τρQ ≥ 0,

CF
0Dς
k
V |V=0 = υS ≥ 0.

Since N(t) = S (k) + I(k) + E(k) + Q(k) + D(k) + R(k) + V(k) is total population, we have

CF
0Dς
k
N(k) = Π − µS − µE − µI − µQ − µR − µV
≤ Π − µS ,
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then one has

N(k) ≤
(
N(0) −

Π

µ

)
Eς(−µk) +

Π

µ
.

Therefore, we have

Ω =

{
(S (k), I(k), E(k),Q(k),D(k),R(k),V(k)) ∈ ℜ7

+ : 0 ≤ N(k) ≤
Π

µ

}
,

which provides the feasible region for the infectious diseases model, and Ω is positively invariant.
Thus, the proposed model (3.2) is well-posed mathematically.

4.2. Sensitivity analysis

This study gives us insights into each parameter’s importance in the disease’s spread. This
information is crucial not only for planning experiments but also for integrating data and simplifying
complex models. Sensitivity analysis is often used to assess the resilience of model predictions to
changes in parameter values, as there are sometimes errors in data collection and assumed parameter
values. This tool helps identify the characteristics that significantly impact the threshold R0 and should
be the focus of intervention strategies. Sensitivity indices provide a way to measure the proportional
change in a variable resulting from a change in the parameter. We use a variable’s normalized forward
sensitivity index concerning a specific parameter to achieve this objective. This index is defined as the
ratio of the relative change in the variable to the relative change in the parameter. The sensitivity index
can be determined using partial derivatives if a variable is differentiable concerning the parameter. We
conducted a sensitivity study in this section to determine the impact of each parameter on the R0. A
sensitivity analysis can also determine the critical parameters vital to illness management. This method
ascertains the relative contribution of each parameter value to the R0. Therefore, we have

R0 =
γβΠ(µ + σν)

µ(ν + µ)(δ + µ)(γ + µ)
.

The system’s qualitative characteristics are being considered while organising the relevant
parameters based on their impact on the value of R0, which is quite beneficial. The results of this
investigation will help identify the most crucial disease control factors. We can utilize sensitivity
indices to determine the effect of a parameter change on the state variable. These indices are calculated
using the definition provided in the paper [34, 35]. To estimate the sensitivity index, we use partial
derivatives, as shown below:

Λ
R0
⨿
=
∂R0

∂⨿
×
⨿

R0
. (4.2)

The sensitivity indices for different parameters are present in Table 1. These indices have been
calculate using the starting values, except for σ. Figure 2 shows the sensitivity indices of R0 for
the considered parameters of interest. The results indicate that Π, β, δ, and µ are highly significant
characteristics, as seen in Table 1 and Figure 2.
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Table 1. Sensitivity indices.

Parameters Sensitivity index
Π 1
β 1
σ 0.1429
δ −0.9444
µ −1.2506
γ 0.0556
ν 0.1395

Parameters
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Figure 2. Sensitivity plot for the basic reproduction number R0.

Based on the sensitivity analysis results, it was found that the R0 values increase or decrease in
direct proportion to changes in the values of Π, β, σ, δ, µ, ν and γ. The reproduction number within
the defined limits has been analyzed, considering the following factors. After reviewing the analyses
and graphs, it is evident that precautionary measures should be taken to prevent the spread of the
disease by improving adverse conditions and reducing factors that contribute to increased reproduction
numbers. Figure 3(a) is the plot of R0 versus the β andΠ. Figure 3(b) is the plot of R0 versus the γ and δ.
Figure 3(c) is the plot of R0 versus theΠ and µ. Figure 3(d) is the plot of R0 versus theσ and ν. Notably,
we have observed that µ is quite sensitive, and raising this parameter could result in a notable drop in
the R0 value. Consequently, limiting these factors can aid in the prevention of the spread of illness.
The variables are considered when examining the relevant reproduction number within the specified
limits. Based on the evaluations and visual representations, it is concluded that appropriate measures
should be implemented to prevent the spread of the disease. This can be achieved by decreasing the
factors that contribute to the positive growth rate of reproduction numbers and raising the factors that
have a detrimental effect on it. Hence, it can be concluded that increasing awareness about quarantine
and vaccination among affected individuals can significantly reduce the spread of infection within the
population.
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(a) (b)

(c) (d)

Figure 3. Sensitivity analysis of R0 according to the model parameters for (a) β and Π, (b) γ
and δ (c) Π and µ, (d) σ and ν.

5. Essential existence and uniqueness of the solutions

Here, we examine the uniqueness and existence of solutions using the fixed point theorem, which
is essential for the proposed model [31, 36]. The C-F fractional integral operator, when applied to
system (3.2), yields

S (k) − S (0) =
2(1 − ς)

(2 − ς)B(ς)
[
Π − βS I − υS − µS

]
+

2ς
(2 − ς)B(ς)

∫ k

0

[
Π − βS (Y)I(Y) − υS (Y) − µS (Y)

]
d(Y),

E(k) − E(0) =
2(1 − ς)

(2 − ς)B(ς)
[
βS I − γE + σβVI − µE

]
+

2ς
(2 − ς)B(ς)

∫ k

0

[
βS (Y)I(Y) − γE(Y) + σβV(Y)I(Y) − µE(Y)

]
d(Y),
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I(k) − I(0) =
2(1 − ς)

(2 − ς)B(ς)
[
γE − δI − µI

]
+

2ς
(2 − ς)B(ς)

∫ k

0

[
γE(Y) − δI(Y) − µI(Y)

]
d(Y),

Q(k) − Q(0) =
2(1 − ς)

(2 − ς)B(ς)
[
δI − (1 − τ)ωQ − τρQ − µQ

]
+

2ς
(2 − ς)B(ς)

∫ k

0

[
δI(Y) − (1 − τ)ωQ(Y) − τρQ(Y) − µQ(Y)

]
d(Y), (5.1)

R(k) − R(0) =
2(1 − ς)

(2 − ς)B(ς)
[
γE − δI − µI

]
+

2ς
(2 − ς)B(ς)

∫ k

0

[
γE(Y) − δI(Y) − µI(Y)

]
d(Y),

D(k) − D(0) =
2(1 − ς)

(2 − ς)B(ς)
[
τρQ

]
+

2ς
(2 − ς)B(ς)

∫ k

0

[
τρQ(Y)

]
d(Y),

V(k) − V(0) =
2(1 − ς)

(2 − ς)B(ς)
[
υS − σβVI − µV

]
+

2ς
(2 − ς)B(ς)

∫ k

0

[
υS (Y) − σβV(Y)I(Y) − µV(Y)

]
d(Y).

Define the following kernels:

M1(k, S ) = Π − βS I − υS − µS ,

M2(k, E) = βS I − γE + σβVI − µE,

M3(k, I) = γE − δI − µI,
M4(k,Q) = δI − (1 − τ)ωQ − τρQ − µQ, (5.2)
M5(k,R) = (1 − τ)ωQ − µR,

M6(k,D) = τρQ,
M7(k,V) = υS − σβVI − µV,

then we have

S (k) − S (0) =
2(1 − ς)

(2 − ς)B(ς)
[M1(k, S )] +

2ς
(2 − ς)B(ς)

∫ k

0
[M1(Y, S )] dY,

E(k) − E(0) =
2(1 − ς)

(2 − ς)B(ς)
[M2(k, E)] +

2ς
(2 − ς)B(ς)

∫ k

0
[M2(Y, E)] dY,

I(k) − I(0) =
2(1 − ς)

(2 − ς)B(ς)
[M3(k, I)] +

2ς
(2 − ς)B(ς)

∫ k

0
[M3(Y, I)] dY,

Q(k) − Q(0) =
2(1 − ς)

(2 − ς)B(ς)
[M4(k,Q)] +

2ς
(2 − ς)B(ς)

∫ k

0
[M4(Y,Q)] dY, (5.3)

R(k) − R(0) =
2(1 − ς)

(2 − ς)B(ς)
[M5(k,R)] +

2ς
(2 − ς)B(ς)

∫ k

0
[M5(Y,R)] dY,

D(k) − D(0) =
2(1 − ς)

(2 − ς)B(ς)
[M6(k,D)] +

2ς
(2 − ς)B(ς)

∫ k

0
[M6(Y,D)] dY,

V(k) − V(0) =
2(1 − ς)

(2 − ς)B(ς)
[M7(k,V)] +

2ς
(2 − ς)B(ς)

∫ k

0
[M7(Y,V)] dY.

AIMS Mathematics Volume 9, Issue 11, 30864–30897.



30874

Theorem 5.1. If the dissimilarity listed below holds:

0 ≤ βϖ2 + υ + µ < 1.

Afterwards, the contraction mapping and Lipschitz condition are convinced by the kernel M1.

Proof. Assume that S and S 1 are any two functions, then we get

∥M1(k, S ) − M1(k, S 1)∥ = ∥(Π − βS (k)I(k) − υS (k) − µS (k)) − (Π − βS 1(k)I(k) − υS 1(k) − µS 1(k))∥
≤ (βϖ2 + υ + µ) ∥S (k) − S 1(k)∥
≤ Υ1 ∥S (k) − S 1(k)∥ .

Let Υ1 = βϖ2 + υ+ µ, we do suppose that S , E, I,Q,R,D and V is bounded functions, i.e., ∥S (k)∥ ≤
ϖ1, ∥E(k)∥ ≤ ϖ2, ∥I(k)∥ ≤ ϖ3, ∥Q(k)∥ ≤ ϖ4, ∥R(k)∥ ≤ ϖ5, ∥D(k)∥ ≤ ϖ6 and ∥V(k)∥ ≤ ϖ7.

∥M1(k, S ) − M1(k, S 1)∥ ≤ Υ1 ∥S (k) − S 1(k)∥ . (5.4)

Hence, kernel M1 satisfies the Lipschitz condition and since

0 ≤ βϖ2 + υ + µ < 1,

then it is also a contraction for M1.
Similarly, kernels M2, M3, M4, M5, M6, and M7 satisfy the Lipschitz condition, respectively,

as follows:

∥M2(k, E) − M2(k, E1)∥ ≤ Υ2 ∥E(k) − E1(k)∥ ,
∥M3(k, I) − M3(k, I1)∥ ≤ Υ3 ∥I(k) − I1(k)∥ ,
∥M4(k,Q) − M4(k,Q1)∥ ≤ Υ4 ∥Q(k) − Q1(k)∥ , (5.5)
∥M5(k,R) − M5(k,R1)∥ ≤ Υ5 ∥R(k) − R1(k)∥ ,
∥M6(k,D) − M6(k,D1)∥ ≤ Υ6 ∥D(k) − D1(k)∥ ,
∥M7(k,V) − M7(k,V1)∥ ≤ Υ7 ∥V(k) − V1(k)∥ .

Equations (5.4) and (5.5) are used to apply the previously described kernels, which transform
system (5.1) into

S (k) = S (0) +
2(1 − ς)

(2 − ς)B(ς)
M1(k, S ) +

2(1 − ς)
(2 − ς)B(ς)

∫ k

0
M1(Y, S )dY,

E(k) = E(0) +
2(1 − ς)

(2 − ς)B(ς)
M2(k, E) +

2(1 − ς)
(2 − ς)B(ς)

∫ k

0
M2(Y, E)dY,

I(k) = I(0) +
2(1 − ς)

(2 − ς)B(ς)
M3(k, I) +

2(1 − ς)
(2 − ς)B(ς)

∫ k

0
M3(Y, I)dY,

Q(k) = Q(0) +
2(1 − ς)

(2 − ς)B(ς)
M4(k, S ) +

2(1 − ς)
(2 − ς)B(ς)

∫ k

0
M4(Y,Q)dY, (5.6)

R(k) = R(0) +
2(1 − ς)

(2 − ς)B(ς)
M5(k,R) +

2(1 − ς)
(2 − ς)B(ς)

∫ k

0
M5(Y,R)dY,
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D(k) = D(0) +
2(1 − ς)

(2 − ς)B(ς)
M6(k,D) +

2(1 − ς)
(2 − ς)B(ς)

∫ k

0
M6(Y,D)dY,

V(k) = V(0) +
2(1 − ς)

(2 − ς)B(ς)
M7(k,V) +

2(1 − ς)
(2 − ς)B(ς)

∫ k

0
M7(Y,V)dY.

We now introduce the following recursive formulas:

S r(k) =
2(1 − ς)

(2 − ς)B(ς)
M1(k, S r−1) +

2ς
(2 − ς)B(ς)

∫ k

0
M1(Y, S r−1)dY,

Er(k) =
2(1 − ς)

(2 − ς)B(ς)
M2(k, Er−1) +

2ς
(2 − ς)B(ς)

∫ k

0
M2(Y, Er−1)dY,

Ir(k) =
2(1 − ς)

(2 − ς)B(ς)
M3(k, Ir−1) +

2ς
(2 − ς)B(ς)

∫ k

0
M3(Y, Ir−1)dY,

Qr(k) =
2(1 − ς)

(2 − ς)B(ς)
M4(k,Qr−1) +

2ς
(2 − ς)B(ς)

∫ k

0
M4(Y,Qr−1)dY, (5.7)

Rr(k) =
2(1 − ς)

(2 − ς)B(ς)
M5(k,Rr−1) +

2ς
(2 − ς)B(ς)

∫ k

0
M5(Y,Rr−1)dY,

Dr(k) =
2(1 − ς)

(2 − ς)B(ς)
M6(k,Dr−1) +

2ς
(2 − ς)B(ς)

∫ k

0
M6(Y,Dr−1)dY,

Vr(k) =
2(1 − ς)

(2 − ς)B(ς)
M7(k,Vr−1) +

2ς
(2 − ς)B(ς)

∫ k

0
M7(Y,Vr−1)dY,

where the initial condition are

S 0(k) = S (0), E0(k) = E(0), I0(k) = I(0), Q0(k) = Q(0),
R0(k) = R(0), D0(k) = D(0), V0(k) = V(0).

With regard to the recursive formulas, the differences between successive terms can be represented as

χ1,r(k) = S r(k) − S r−1(k)

=
2(1 − ς)

(2 − ς)B(ς)
[M1(k, S r−1) − M1(k, S r−2)]

+
2ς

(2 − ς)B(ς)

∫ k

0
[M1(Y, S r−1) − M1(Y, S r−2)] dY,

χ2,r(k) = Er(k) − Er−1(k)

=
2(1 − ς)

(2 − ς)B(ς)
[M2(k, Er−1) − M2(k, Er−2)]

+
2ς

(2 − ς)B(ς)

∫ k

0
[M2(Y, Er−1) − M2(Y, Er−2)] dY,

AIMS Mathematics Volume 9, Issue 11, 30864–30897.



30876

χ3,r(k) = Ir(k) − Ir−1(k)

=
2(1 − ς)

(2 − ς)B(ς)
[M3(k, Ir−1) − M3(k, Ir−2)]

+
2ς

(2 − ς)B(ς)

∫ k

0
[M3(Y, Ir−1) − M3(Y, Ir−2)] dY,

χ4,r(k) = Qr(k) − Qr−1(k)

=
2(1 − ς)

(2 − ς)B(ς)
[M4(k,Qr−1) − M4(k,Qr−2)]

+
2ς

(2 − ς)B(ς)

∫ k

0
[M4(Y,Qr−1) − M4(Y,Qr−2)] dY, (5.8)

χ5,r(k) = Rr(k) − Rr−1(k)

=
2(1 − ς)

(2 − ς)B(ς)
[M5(k,Rr−1) − M5(k,Rr−2)]

+
2ς

(2 − ς)B(ς)

∫ k

0
[M5(Y,Rr−1) − M5(Y,Rr−2)] dY,

χ6,r(k) = Dr(k) − Dr−1(k)

=
2(1 − ς)

(2 − ς)B(ς)
[M6(k,Dr−1) − M6(k,Dr−2)]

+
2ς

(2 − ς)B(ς)

∫ k

0
[M6(Y,Dr−1) − M6(Y,Dr−2)] dY,

χ7,r(k) = Vr(k) − Vr−1(k)

=
2(1 − ς)

(2 − ς)B(ς)
[M7(k,Vr−1) − M7(k,Vr−2)]

+
2ς

(2 − ς)B(ς)

∫ k

0
[M7(Y,Vr−1) − M7(Y,Vr−2)] dY.

Note that

S r(k) =
r∑

j=1

χ1, j, Er(k) =
r∑

j=1

χ2, j, Ir(k) =
r∑

j=1

χ3, j, Qr(k) =
r∑

j=1

χ4, j, (5.9)

Rr(k) =
r∑

j=1

χ5, j, Dr(k) =
r∑

j=1

χ6, j, Vr(k) =
r∑

j=1

χ7, j.

After solving system (5.8), we apply the usual supremum norm to both sides of the first equation of
system (5.8), then we obtain
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∥∥∥χ1,r(k)
∥∥∥ = ∥S r(k) − S r−1(k)∥

=

∥∥∥∥∥ 2(1 − ς)
(2 − ς)B(ς)

[M1(k, S r−1) − M1(k, S r−2)]

+
2ς

(2 − ς)B(ς)

∫ k

0
[M1(Y, S r−1) − M1(Y, S r−2)] dY

∥∥∥∥∥∥ . (5.10)

Using Eq (5.10) and the triangle inequality, we get

∥S r(k) − S r−1(k)∥ ≤
2(1 − ς)

(2 − ς)B(ς)
∥[M1(k, S r−1) − M1(k, S r−2)]∥

+
2ς

(2 − ς)B(ς)

∥∥∥∥∥∥
∫ k

0
[M1(Y, S r−1) − M1(Y, S r−2)] dω

∥∥∥∥∥∥ . (5.11)

Thus, using the Lipschitz constant Υ1 to propitiate the Lipschitz condition, the kernel M1 enables us to
determine

∥S r(k) − S r−1(k)∥ ≤
2(1 − ς)

(2 − ς)B(ς)
Υ1 ∥S r−1 − S r−2∥ +

2ς
(2 − ς)B(ς)

Υ1

∫ k

0
∥S r−1 − S r−2∥ dY. (5.12)

Thus, we obtain

∥χ1,r(k)∥ ≤
2(1 − ς)

(2 − ς)B(ς)
Υ1∥χ1,r−1(k)∥ +

2ς
(2 − ς)B(ς)

Υ1

∫ k

0
∥χ1,r−1(Y)∥dY. (5.13)

In a similar manner, we get

∥χ2,r(k)∥ ≤
2(1 − ς)

(2 − ς)B(ς)
Υ2∥χ2,r−1(k)∥ +

2ς
(2 − ς)B(ς)

Υ2

∫ k

0
∥χ2,r−1(Y)∥dY,

∥χ3,r(k)∥ ≤
2(1 − ς)

(2 − ς)B(ς)
Υ3∥χ3,r−1(k)∥ +

2ς
(2 − ς)B(ς)

Υ3

∫ k

0
∥χ3,r−1(Y)∥dY,

∥χ4,r(k)∥ ≤
2(1 − ς)

(2 − ς)B(ς)
Υ4∥χ4,r−1(k)∥ +

2ς
(2 − ς)B(ς)

Υ4

∫ k

0
∥χ4,r−1(Y)∥dY, (5.14)

∥χ5,r(k)∥ ≤
2(1 − ς)

(2 − ς)B(ς)
Υ5∥χ5,r−1(k)∥ +

2ς
(2 − ς)B(ς)

Υ5

∫ k

0
∥χ5,r−1(Y)∥dY,

∥χ6,r(k)∥ ≤
2(1 − ς)

(2 − ς)B(ς)
Υ6∥χ6,r−1(k)∥ +

2ς
(2 − ς)B(ς)

Υ6

∫ k

0
∥χ6,r−1(Y)∥dY,

∥χ7,r(k)∥ ≤
2(1 − ς)

(2 − ς)B(ς)
Υ7∥χ7,r−1(k)∥ +

2ς
(2 − ς)B(ς)

Υ7

∫ k

0
∥χ7,r−1(Y)∥dY.

Theorem 5.2. If there ∃ a time k0 > 0, then the ensuing disparities are valid:

2(1 − ς)
(2 − ς)B(ς)

Υ1 +
2ς

(2 − ς)B(ς)
Υ1k0 < 1, (5.15)

solutions exist for the infectious disease system.
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Proof. Let S (k), E(k), I(k), Q(k), R(t), D(k), and V(k) be bounded functions and use the Lipschitz
condition. Now, in Eqs (5.13) and (5.14), using the recursive method, we obtain

∥∥∥χ1,r(k)
∥∥∥ ≤ ∥S r(0)∥

[
2(1 − ς)

(2 − ς)B(ς)
Υ1 +

2ς
(2 − ς)B(ς)

Υ1k

]r

,

∥∥∥χ2,r(k)
∥∥∥ ≤ ∥Er(0)∥

[
2(1 − ς)

(2 − ς)B(ς)
Υ2 +

2ς
(2 − ς)B(ς)

Υ2k

]r

,

∥∥∥χ3,r(k)
∥∥∥ ≤ ∥Ir(0)∥

[
2(1 − ς)

(2 − ς)B(ς)
Υ3 +

2ς
(2 − ς)B(ς)

Υ3k

]r

,

∥∥∥χ4,r(k)
∥∥∥ ≤ ∥Qr(0)∥

[
2(1 − ς)

(2 − ς)B(ς)
Υ4 +

2ς
(2 − ς)B(ς)

Υ4k

]r

, (5.16)

∥∥∥χ5,r(k)
∥∥∥ ≤ ∥Rr(0)∥

[
2(1 − ς)

(2 − ς)B(ς)
Υ5 +

2ς
(2 − ς)B(ς)

Υ5k

]r

,

∥∥∥χ6,r(k)
∥∥∥ ≤ ∥Dr(0)∥

[
2(1 − ς)

(2 − ς)B(ς)
Υ6 +

2ς
(2 − ς)B(ς)

Υ6k

]r

,

∥∥∥χ7,r(k)
∥∥∥ ≤ ∥Vr(0)∥

[
2(1 − ς)

(2 − ς)B(ς)
Υ7 +

2ς
(2 − ς)B(ς)

Υ7k

]r

.

Thus, it is proven that the aforementioned solutions exist and continue to exist. To demonstrate the
function is a solution of system (3.2), we make the following assumptions:

S (k) − S (0) = S r(k) − A1,r(k),
E(k) − E(0) = Er(k) − A2,r(k),

I(k) − I(0) = Ir(k) − A3,r(k),
Q(k) − Q(0) = Qr(k) − A4,r(k), (5.17)
R(k) − R(0) = Rr(k) − A5,r(k),
D(k) − D(0) = Dr(k) − A6,r(k),
V(k) − V(0) = Vr(k) − A7,r(k).

Then, we have ∥∥∥A1,r(k)
∥∥∥ = ∥∥∥∥∥ 2(1 − ς)

(2 − ς)B(ς)
[M1(k, S ) − M1(k, S r−1)]

+
2ς

(2 − ς)B(ς)

∫ k

0
[M1(Y, S ) − M1(Y, S r−1)] dY

∥∥∥∥∥∥
≤

2(1 − ς)
(2 − ς)B(ς)

∥M1(k, S ) − M1(k, S r−1)∥

+
2ς

(2 − ς)B(ς)

∫ k

0
∥M1(Y, S ) − M1(Y, S r−1)∥ dY

≤
2(1 − ς)

(2 − ς)B(ς)
Υ1 ∥S − S r−1∥ +

2ς
(2 − ς)B(ς)

Υ1 ∥S − S r−1∥ k. (5.18)
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Repeating this process recursively, it becomes

∥∥∥A1,r(k)
∥∥∥ ≤ [

2(1 − ς)
(2 − ς)B(ς)

+
2ς

(2 − ς)B(ς)
k

]r+1

Υr+1
1 a. (5.19)

At the point k0, we get

∥∥∥A1,r(k)
∥∥∥ ≤ [

2(1 − ς)
(2 − ς)B(ς)

+
2ς

(2 − ς)B(ς)
k0

]r+1

Υr+1
1 a. (5.20)

As r→ ∞ in Eq (5.20), then we get
∥A1,r(k)∥ → 0.

Similarly, we get

∥A2,r(k)∥ → 0, ∥A3,r(k)∥ → 0, ∥A4,r(k)∥ → 0, ∥A5,r(k)∥ → 0, ∥A6,r(k)∥ → 0, ∥A7,r(k)∥ → 0.

We establish that a system of system (3.2) solutions is unique. Consider the possibility that there is
another set of model (3.2) to determine the uniqueness of the solution. We have S 1(k), E1(k), I1(k),
Q1(k), R1(k), D1(k), and V1(k); then

S (k) − S 1(k) =
2(1 − ς)

(2 − ς)B(ς)
[M1(k, S ) − M1(k, S 1)]

+
2ς

(2 − ς)B(ς)

∫ k

0
[M1(Y, S ) − M1(Y, S 1)] dY. (5.21)

When we apply the norm to Eq (5.21), we obtain

∥S (k) − S 1(k)∥ ≤
2(1 − ς)

(2 − ς)B(ς)
∥[M1(k, S ) − M1(k, S 1)]∥

+
2ς

(2 − ς)B(ς)

∫ k

0
∥M1(Y, S ) − M1(Y, S 1)∥ dY. (5.22)

Using the kernel’s Lipschitz condition, one can achieve

∥S (k) − S 1(k)∥ ≤
2(1 − ς)

(2 − ς)B(ς)
Υ1 ∥S (k) − S 1(k)∥ +

2ς
(2 − ς)B(ς)

Υ1k ∥S (k) − S 1(k)∥ . (5.23)

By reducing the complexity of Eq (5.23), we get

∥S (k) − S 1(k)∥
[
1 −

2(1 − ς)
(2 − ς)B(ς)

Υ1 −
2ς

(2 − ς)B(ς)
Υ1k

]
≤ 0. (5.24)

Theorem 5.3. The proposed model has a unique solution if the following conditions are hold:

∥S (k) − S 1(k)∥
[
1 −

2(1 − ς)
(2 − ς)B(ς)

Υ1 −
2ς

(2 − ς)B(ς)
Υ1k

]
> 0. (5.25)
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Proof. Using Eq (5.24), we have

∥S (k) − S 1(k)∥
[
1 −

2(1 − ς)
(2 − ς)B(ς)

Υ1 −
2ς

(2 − ς)B(ς)
Υ1k

]
≤ 0. (5.26)

Implying that

∥S (k) − S 1(k)∥ = 0, (5.27)

we obtain

S (k) = S 1(k). (5.28)

Continuing in the same manner, we have

E(k) = E1(k), I(k) = I1(k), Q(k) = Q1(k),
R(k) = R1(k), D(k) = D1(k), V(k) = V1(k).

(5.29)

As a result, we proved that system (3.2)’s system of solutions is unique.

Stability analysis

We employ nonlinear functional analysis to investigate the Ulam-Hyers (U-H) stability [28, 37] of
the proposed fractional model (3.2). Eighty-four years have passed since Professor Ulam presented the
stability problem to the University of Wisconsin Mathematics Club. Ulam asked whether a proposition
remains valid or approximately valid when the hypothesis is slightly modified [28, 38]. This subject is
intriguing and significant in multiple scientific disciplines, motivating numerous individuals to pursue
its investigation. The current name for this topic is the U-H stability problem. Initially, the focus was
on the stability of group homomorphisms. One year later, Hyers resolved the inquiry of the additive
mappings across Banach spaces using the “contraction mapping theorem”. After this significant
advancement, numerous investigations were conducted on Ulam’s challenge using diverse approaches
and variations. Rassias extended the findings of Hyers [39]. Instead of using a positive constant, he
employed a dominating function to regulate the estimate. This problem is commonly referred to as the
Ulam-Hyers-Rassias stability problem or the generalized U-H stability problem.

In recent decades, numerous research articles have been published on U-H stability, focusing on
ordinary differential equations (ODEs) [40, 41]. ODEs result in productive outcomes, encompassing
both linear and nonlinear equations [42, 43]. Many recent studies have focused on the U-H stability
concerning fractional systems [44]. The concepts of existence, uniqueness, and U-H stability have
been established in various functional systems. U-H stability measures the difference in solutions of
differential equations with fractional order. This stability ensures that controlled systems remain stable
and perform predictably, even with slight variations in the system dynamics. When modeling physical
processes with fractional-order dynamics, U-H stability guarantees that the model stays accurate even
when minor changes or approximations are made to the governing equations. U-H stability is used
to analyze the sensitivity of solutions to small changes in boundary data for fractional differential
equations with boundary conditions. This analysis ensures the reliability of the solutions in practical
applications. The concept of U-H stability is beneficial for analyzing and implementing fractional-
order systems. It provides a framework to ensure that solutions remain stable even when subjected to
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minor disturbances, which is essential in numerous practical situations. For simplicity, we consider the
proposed model (3.2) to be as follows:

CF
0Dς
k
U(k) = V(k,U(k)),
U(0) = U0 ≥ 0, (5.30)

where

U(k) = (S (k), E(k), I(k),Q(k),R(k),D(k),V(k))T ,

V(k,U(k)) = (M1,M2,M3,M4,M5,M6,M7)T .

Applying the fractional integral on (6.13), we obtain

U(k) − U(0) =
2(1 − ς)

(2 − ς)B(ς)
V(k,U(k)) +

2ς
(2 − ς)B(ς)

∫ k

0
V(Y,U(Y))dY. (5.31)

Definition 5.1. The proposed model (3.2) is UH stable if there exists ς > 0 and along with the condition
for any ϵ > 0 and Ū ∈ B, if ∣∣∣CF

0Dς
k
U(k) −V(k,U(k))

∣∣∣ ≤ ϵ, (5.32)

then ∃ U ∈ B, and B in the model (3.2),

U(0) = Ū(0) = Ū0,

such that ∥∥∥Ū − U∥∥∥ ≤ ςϵ,
where 

Ū(k) =
(
S̄ (k), Ē(k), Ī(k), Q̄(k), R̄(k), D̄(k), V̄(k)

)T
,

V(k, Ū(k)) =
(
M̄1, M̄2, M̄3, M̄4, M̄5, M̄6, M̄7

)T
,

ϵ = max(ϵi)T ; i = 1, 2, ..., 7,
ς = max(ςi)T ; i = 1, 2, ..., 7.

Remark 5.1. Let a small perturbation κ ∈ C[0,T], such that κ(0) = 0 with the following condition:
∥κ(k)∥ ≤ ϵ̄, for k ∈ [0,T] and ϵ̄ > 0.

Lemma 5.1. Let the solution Ūκ(k) of the perturbed system
CF

0Dς
k
Ū(k) = V(k, Ū(k)) + κ(k),
Ū(0) = Ū0 (5.33)

hold the condition ∥∥∥Ūκ(k) − Ū(k)
∥∥∥ ≤ Φϵ̄,

where

Φ =
2(1 − ς)

(2 − ς)B(ς)
+

2ς
(2 − ς)B(ς)

T,

κ(k) = (κ1(k), κ2(k), κ3(k), κ4(k), κ5(k), κ6(k), κ7(k))T .
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Proof. Applying the fractional integral in Eq (5.33), we obtain

Ūκ(k) − Ū(0) =
2(1 − ς)

(2 − ς)B(ς)
V(k, Ū(k)) +

2ς
(2 − ς)B(ς)

∫ k

0
V(Y, Ū(Y))dY

+
2(1 − ς)

(2 − ς)B(ς)
κ(k) +

2ς
(2 − ς)B(ς)

∫ k

0
κ(Y)dY. (5.34)

Also,

Ū(k) = Ū(0) +
2(1 − ς)

(2 − ς)B(ς)
V(k, Ū(k)) +

2ς
(2 − ς)B(ς)

∫ k

0
V(Y, Ū(Y))dY. (5.35)

Using Remark 5.1, we obtain

∥∥∥Ūκ(k) − Ū(k)
∥∥∥ ≤ 2(1 − ς)

(2 − ς)B(ς)
|κ(k)| +

2ς
(2 − ς)B(ς)

∫ k

0
|κ(Y)| dY

≤

(
2(1 − ς)

(2 − ς)B(ς)
+

2ς
(2 − ς)B(ς)

T

)
ϵ̄

≤ Φϵ̄.

This completes the proof.

Theorem 5.4. The proposed model (3.2) is UM stable if∥∥∥Ū(k) − U(k)
∥∥∥ ≤ ς̄ϵ.

Proof. Let Ū be the solution of Eq (5.32) and with help of uniqueness, U be a unique solution of the
system (6.13), then we have

∥∥∥Ū(k) − U(k)
∥∥∥ ≤ Φϵ̄ + 2(1 − ς)

(2 − ς)B(ς)

∥∥∥V(k, Ū(k)) −V(k,U(k))
∥∥∥

+
2ς

(2 − ς)B(ς)

∫ k

0

∥∥∥V(Y, Ū(Y)) −V(Y,U(Y))
∥∥∥ dY + Φϵ̄

≤ 2Φϵ̄ + Φδ̄
∥∥∥Ū(k) − U(k)

∥∥∥ .
Simplifying the above equation, we obtain

∥∥∥Ū(k) − U(k)
∥∥∥ 2Φϵ̄

1 − Φδ̄
= ς̄ϵ,

where

ς =
2Φ

1 − Φδ̄
.

Hence, the proposed model (3.2) is UM stable.
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6. Numerical scheme

We present a numerical solution for the model (3.2) using the Adams-Bashforth (A-B) technique.
Owolabi and Atangana et al. [45] introduced a three-step A-B technique with the C-F fractional
derivative, which we used to determine the numerical scheme for the fractional-order system (3.2).
Take into consideration the C-F derivative of the fractional differential equation

CF
0Dς
k
E(k) = F(k,E(k)). (6.1)

By utilising the C-F fractional integral on both sides of Eq (6.1), we obtain

E(k) − E(0) =
(1 − ς)

B(ς)
F(k,E(k)) +

ς

B(ς)

∫ k

0
F(Y,E(Y))dY. (6.2)

We have divided the time interval into smaller intervals with steps of h, then we get ke+1 = ke+h, k0 = 0,
e = 0, 1, 2, ..., e− 1.We put k = ke+1 and k = ke in Eq (6.2). We have found the difference in the resulting
equations by performing a computation, then we get

E(ke+1) − E(ke) =
(1 − ς)

B(ς)
[F(ke+1,E(ke+1)) − F(ke,E(ke))] +

ς

B(ς)

∫ ke+1

ke

F(Y,E(Y))dY. (6.3)

We are estimated the integral
∫ ke+1

ke
F(Y,E(Y))dYwith the approximation of

∫ ke+1

ke
Q2(Y)dY,whereQ2(Y)

is the Lagrange polynomial of points (ke−2,F(ke−2,E(ke−2))), (ke−1,F(ke−1,E(ke−1))) and (ke,F(ke,E(ke))).
Thus,

Q2(Y) =
j=2∑
j=0

F(ke− j,E(ke− j))L j(Y), (6.4)

where L j(Y) is the Lagrange basis polynomials on the point ke, ke−1, ke−2.

Let Ee = E(ke), and v = ke+1−Y
h , after replacing the Lagrange basis polynomials and performing

integration, we obtain the following result:∫ ke+1

ke

F(Y,E(Y))dY = h
∫ 1

0

(
F(ke,Ee)

(v − 2)(v − 3)
(1 − 2)(1 − 3)

+F(ke−1,Ee−1)
(v − 1)(v − 3)
(2 − 1)(2 − 3)

+ F(ke−2,Ee−2)
(v − 2)(v − 1)
(3 − 2)(3 − 1)

)
dv

=
23h
12
F(ke,Ee) −

16h
12
F(ke−1,Ee−1) +

5h
12
F(ke−2,Ee−2). (6.5)

Using Eq (6.5) in Eq (6.3), we have

E(ke+1) − E(ke) =
(
(1 − ς)

B(ς)
+

23hς
12B(ς)

)
F(ke,E(ke))

−

(
(1 − ς)

B(ς)
+

16hς
12B(ς)

)
F(ke−1,E(ke−1)) +

(
5hς

12B(ς)

)
F(ke−2,E(ke−2)). (6.6)
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The error with this technique is

R
ς
e(k) =

ς

B(ς)

∫ ke+1

ke

3h3

8
F

4(s)ds =
3ςh3

8B(ς)
F

3(xe,E(xe)), xe ∈ (ke, ke+1). (6.7)

The proposed model’s numerical simulations are generated using the three-step A-B approach for the
C-F fractional derivative in Eq (6.6).

Let the vectors
E(k) = [S (k), E(k), I(k)Q(k),R(k),D(k),V(k)] ,

and

F(k,E(k)) = [F1(k,E(k)),F2(k,E(k)),F3(k,E(k)),F4(k,E(k)),F5(k,E(k)),F6(k,E(k)),F7(k,E(k))] ,

where the following are the functions specified by system (3.2), we have

F1(k,E(k)) = Π − βS I − υS − µS ,

F2(k,E(k)) = βS I − γE + σβVI − µE,

F3(k,E(k)) = γE − δI − µI,

F4(k,E(k)) = δI − (1 − τ)ωQ − τρQ − µQ,

F5(k,E(k)) = (1 − τ)ωQ − µR,

F6(k,E(k)) = τρQ,

F7(k,E(k)) = υS − σβVI − µV.

(6.8)

We can express model (3.2) in vector form as shown below:

CF
0Dς
k
E(k) = F(k,E(k)). (6.9)

Equation (6.6) is utilized to obtain the solution of model (3.2), which is expressed through the iterative
formula given below:

E(ke+1) =E(ke) +
(
(1 − ς)

B(ς)
+

23hς
12B(ς)

)
F(ke,Ee)

−

(
(1 − ς)

B(ς)
+

16hς
12B(ς)

)
F(ke−1,Ee−1) +

(
5hς

12B(ς)

)
F(ke−2,Ee−2). (6.10)

Let E0 = E(k0) = [S (k0), E(k0), I(k0),Q(k0),R(k0),D(k0),V(k0)]T , Ee−2 = E(ke−2), Ee−1 = E(ke−1), Ee =

E(ke) and Ee+1 = E(ke+1), then

Ee+1 =Ee +

(
(1 − ς)

B(ς)
+

23hς
12B(ς)

)
F(ke,Ee)

−

(
(1 − ς)

B(ς)
+

16hς
12B(ς)

)
F(ke−1,Ee−1) +

(
5hς

12B(ς)

)
F(ke−2,Ee−2). (6.11)

We have obtained the iterative formula:
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S e+1 =S e +

(
(1 − ς)

B(ς)
+

23hς
12B(ς)

)
F1(S e, Ee, Ie,Qe,Re,De,Ve)

−

(
(1 − ς)

B(ς)
+

16hς
12B(ς)

)
F1(S e−1, Ee−1, Ie−1,Qe−1,Re−1,De−1,Ve−1)

+

(
5hς

12B(ς)

)
F1(S e−2, Ee−2, Ie−2,Qe−2,Re−2,De−2,Ve−2),

Ee+1 =Ee +

(
(1 − ς)

B(ς)
+

23hς
12B(ς)

)
F2(S e, Ee, Ie,Qe,Re,De,Ve)

−

(
(1 − ς)

B(ς)
+

16hς
12B(ς)

)
F2(S e−1, Ee−1, Ie−1,Qe−1,Re−1,De−1,Ve−1)

+

(
5hς

12B(ς)

)
F2(S e−2, Ee−2, Ie−2,Qe−2,Re−2,De−2,Ve−2),

Ie+1 =Ie +

(
(1 − ς)

B(ς)
+

23hς
12B(ς)

)
F3(S e, Ee, Ie,Qe,Re,De,Ve)

−

(
(1 − ς)

B(ς)
+

16hς
12B(ς)

)
F3(S e−1, Ee−1, Ie−1,Qe−1,Re−1,De−1,Ve−1)

+

(
5hς

12B(ς)

)
F3(S e−2, Ee−2, Ie−2,Qe−2,Re−2,De−2,Ve−2),

Qe+1 =Qe +

(
(1 − ς)

B(ς)
+

23hς
12B(ς)

)
F4(S e, Ee, Ie,Qe,Re,De,Ve)

−

(
(1 − ς)

B(ς)
+

16hς
12B(ς)

)
F4(S e−1, Ee−1, Ie−1,Qe−1,Re−1,De−1,Ve−1)

+

(
5hς

12B(ς)

)
F4(S e−2, Ee−2, Ie−2,Qe−2,Re−2,De−2,Ve−2), (6.12)

Re+1 =Re +

(
(1 − ς)

B(ς)
+

23hς
12B(ς)

)
F5(S e, Ee, Ie,Qe,Re,De,Ve)

−

(
(1 − ς)

B(ς)
+

16hς
12B(ς)

)
F5(S e−1, Ee−1, Ie−1,Qe−1,Re−1,De−1,Ve−1)

+

(
5hς

12B(ς)

)
F5(S e−2, Ee−2, Ie−2,Qe−2,Re−2,De−2,Ve−2),

De+1 =De +

(
(1 − ς)

B(ς)
+

23hς
12B(ς)

)
F6(S e, Ee, Ie,Qe,Re,De,Ve)

−

(
(1 − ς)

B(ς)
+

16hς
12B(ς)

)
F6(S e−1, Ee−1, Ie−1,Qe−1,Re−1,De−1,Ve−1)

+

(
5hς

12B(ς)

)
F6(S e−2, Ee−2, Ie−2,Qe−2,Re−2,De−2,Ve−2),
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Ve+1 =Ve +

(
(1 − ς)

B(ς)
+

23hς
12B(ς)

)
F7(S e, Ee, Ie,Qe,Re,De,Ve)

−

(
(1 − ς)

B(ς)
+

16hς
12B(ς)

)
F7(S e−1, Ee−1, Ie−1,Qe−1,Re−1,De−1,Ve−1)

+

(
5hς

12B(ς)

)
F7(S e−2, Ee−2, Ie−2,Qe−2,Re−2,De−2,Ve−2).

Stability analysis of numerical scheme

Here, we are analysing the stability of the fractional A-B scheme

CF
0Dς
k
E(k) = F(k,E(k)). (6.13)

Now, rewrite Eq (6.11), then we have

Ee+1 = Ee +

(
(1 − ς)

B(ς)
+

23hς
12B(ς)

)
F(ke,Ee)

−

(
(1 − ς)

B(ς)
+

16hς
12B(ς)

)
F(ke−1,Ee−1) +

(
5hς

12B(ς)

)
F(ke−2,Ee−2)

= Ee + AF(ke,Ee) − BF(ke−1,Ee−1) +CF(ke−2,Ee−2). (6.14)

Using Eq (6.13), we have

Ee+1 = (1 + A)Ee − BEe−1 +CEe−2. (6.15)

Afterward, we apply the Von-Neumann stability analysis for the terms in the aforementioned equation.

Ee+1 = ¯Ee+1e
(e+1)i∆k, Ee = Ēee

(e)i∆k, (6.16)
Ee−1 = ¯Ee−1e

(e−1)i∆k, Ee−2 = ¯Ee−2e
(e−2)i∆k.

So that

¯Ee+1e
(e+1)i∆k = (1 + A)Ēee

ei∆k − B ¯Ee−1e
(e−1)i∆k +C ¯Ee−2e

(e−2)i∆k, (6.17)

which reduces to

¯Ee+1e
i∆k = (1 + A)Ēe − B ¯Ee−1e

−i∆k +C ¯Ee−2e
−2i∆k. (6.18)

A recursive formula is applied, when e = 0, we have

Ē1e
i∆k = (1 + A)Ē0. (6.19)

Simplifying the previous equation (6.15), we have∥∥∥Ē1e
i∆k

∥∥∥ = ∥∥∥(1 + A)Ē0

∥∥∥ ,
=⇒

∥∥∥Ē1

∥∥∥ = (1 + A)
∥∥∥Ē0

∥∥∥ .
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If

h ≤ 0.55 and ς >
1

1 − 1.9167h
,

then, we suppose that

∀e ≥ Ēe < Ē0,

we have ∣∣∣ ¯Ee+1

∣∣∣ ≤ (1 + A)
∣∣∣Ēe

∣∣∣ ∣∣∣e−i∆k
∣∣∣ − B

∣∣∣ ¯Ee−1

∣∣∣ ∣∣∣e−2i∆k
∣∣∣ +C

∣∣∣ ¯Ee−2

∣∣∣ ∣∣∣e−3i∆k
∣∣∣

< (1 + A)
∣∣∣Ēe

∣∣∣ − B
∣∣∣ ¯Ee−1

∣∣∣ +C
∣∣∣ ¯Ee−2

∣∣∣ . (6.20)

Simplifying the previous equation (6.15), we have∣∣∣ ¯Ee+1

∣∣∣ < (1 + A)
∣∣∣Ē0

∣∣∣ − B
∣∣∣Ē0

∣∣∣ +C
∣∣∣Ē0

∣∣∣
< (1 + A − B +C)

∣∣∣Ē0

∣∣∣
< (1 + A − B +C) < 1. (6.21)

Hence, when applied to Eq (6.13), the three-step A-B method with the C-F derivative is
conditionally stable.

7. Numerical results and graphical analysis

In this section, we simulate the non-linear fractional proposed model using a novel numerical
technique that uses the C-F non-integer operator. We displayed graphical findings for various fractional
orders and infection rates during the simulation. To comprehend the system’s behavior and operation,
tracking and controlling the infection rate is imperative. Utilizing the numerical approach outlined in
Section 6, we followed the instructions and finished the simulation results. We examined numerical
findings for various fractional orders and time intervals using MATLAB R2016a. As such, we can
see how adjusting the parameters and starting conditions affects the model’s predictions through the
simulations and improves our grasp of the dynamics of the model. The fractional order analysis’s
graphical results have been more illuminating and broadly applicable than other related efforts. The
following parameter values have been applied to the simulation: S (0) = 100, E(0) = 50, I(0) = 30,
Q(0) = 20, R(0) = 18, D(0) = 2, V(0) = 60, Π = 20, β = 2 × 10−4, ν = 1 × 10−3, µ = 0.3, γ = 5.1,
σ = 0.05, δ = 5.1, τ = 0.04, ω = 0.03 and ρ = 15.

For this study, we have chosen specific orders to represent the complex nature of the system under
examination, as arbitrary order derivatives offer greater degrees of freedom and provide a wide range
of geometries. Figure 4 depicts the state variable plots of time graphically in the suggested model
using the ABM method for different orders (ς): 0.99, 0.96, 0.93 and 0.90. The fractional suggested
model (3.2) for various values of ς has been numerically simulated and shown in Figures 5 and 6.

When we place a classical order, the infected population is higher, but when we place an order with
ς = 0.85, the infected population is smaller, as illustrated in Figure 5. When placing a classical order,
the recovered and quarantined population is smaller. However, when placing an order with ς = 0.85,
the recovered and quarantined population is more significant.
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Figure 4. Solution trajectories for the proposed model (3.2) when the derivative order varies.
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Figure 5. The plots for the proposed model (3.2) when varies values of ς.

AIMS Mathematics Volume 9, Issue 11, 30864–30897.



30889

0 2 4 6 8 10

Time

60

65

70

75

80

85

90

95

100
S

u
sc

ep
ti

b
le

 p
o

p
u

la
ti

o
n

 = 1
 = 0.90
 = 0.80
 = 0.70

(a)
0 2 4 6 8 10

Time

0

2

4

6

8

10

12

14

16

18

R
ec

o
ve

re
d

 p
o

p
u

la
ti

o
n

 = 1
 = 0.90
 = 0.80
 = 0.70

(b)

0 1 2 3 4 5

Time

0

10

20

30

40

50

60

70

D
ea

d
 p

o
p

u
la

ti
o

n

 = 1
 = 0.90
 = 0.80
 = 0.70

(c)
0 2 4 6 8 10

Time

0

10

20

30

40

50

60

V
ac

ci
n

at
ed

 p
o

p
u

la
ti

o
n

 = 1
 = 0.90
 = 0.80
 = 0.70

(d)

Figure 6. The plots for the proposed model (3.2) when varies values of ς.

We consider a small order, leading to a more significant impact on the dead population than a more
substantial higher order. Figure 7 depicts the 3D phase trajectory of the system (3.2) as the order of
derivative = 1 and µ varies. Figure 8 depicts the time series graph of the system (3.2) when the order of
derivative (ς) = 0.99 and µ varies. When we place the value of µ = 0.45, the susceptible, quarantined,
and vaccinated population is smaller. However, when we set µ = 0.30, the susceptible, quarantined, and
vaccinated population is more significant, as shown in Figure 8. If we choose the smaller value for µ,
we have large populations of these populations. The dead population becomes more extensive if we
choose the smaller value for µ. Figure 9 depicts the time series graph of the system (3.2) when the order
of derivative (ς) = 0.99, δ varies and ν varies. The infected and quarantined populations are sensitive
to parameter δ increasing order. The exposed and infected populations are sensitive to parameter ν.
Figure 10 depicts the 3D phase trajectory of the system (3.2) as the order of derivative = 1 and β varies.
Figure 11 depicts the time series graph of the system (3.2) when the order of derivative (ς) = 0.99
and β varies. When we place the value of β is small, we get the susceptible, infected, and recovered
population is more significant compared to the more considerable value of β. The dead population
becomes more extensive if we choose the smaller value for β. Figure 12 depicts the 3D phase trajectory
of the system (3.2) as the order of derivative = 1 and τ varies. Figure 13 depicts the time series graph
of the system (3.2) when the order of derivative (ς) = 0.99 and τ varies. The exposed and recovered
populations are not very sensitive to parameter τ. We consider a small value for τ, leading to a more
significant impact on the quarantined population than a more substantial value of τ.

The numerical simulation suggests we gain more reliable insights into behavior within specific
ranges with more precise parameter information. We can explore the model’s behavior under different
input parameter values. Therefore, this study highlights the advantages of using numerical techniques
in real-world disease models.
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(a) (b)

(c) (d)

Figure 7. Three-dimensional numerical results for proposed model (3.2) when µ varies and
ς = 1.
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Figure 8. The plots for the proposed model (3.2) when µ varies and ς = 0.99.
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Figure 9. The plots for the proposed model (3.2) when δ and ν are varies and ς = 0.99.
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Figure 10. Three-dimensional numerical results for proposed model (3.2) when β varies and
ς = 1.
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Figure 11. The plots for the proposed model (3.2) when β varies and ς = 0.99.

(a) (b)

(c) (d)

Figure 12. Three-dimensional numerical results for proposed model (3.2) when τ varies and
ς = 1.
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Figure 13. The plots for the proposed model (3.2) when τ varies and ς = 0.99.

8. Conclusions

In this paper, we discuss the SEIQRDV model, which focuses on the spread of infectious diseases
and considers positivity, boundedness, and sensitivity. We have created a fractional order model
based on a described integer order contagious disease model. Using fixed-point theory, we have
proven the uniqueness and existence of solutions to this model under specific circumstances. We
have also used a novel numerical technique supported by the A-B scheme to find the numerical
solution. By plotting the model’s output at different fractional orders and parameter values, we have
observed how the population curves respond to these variations. However, it is important to note
that the uncertainty resulting from random fluctuations in the model parameters cannot be eliminated.
Additionally, determining which parameters are essential in the model can be challenging, causing
sensitivity analysis for such a model to be difficult. The sensitivity analysis of the basic reproduction
number has shown that the model’s parameters have a significant impact. The results indicate that the
recruitment and transmission rates are the most influential factors contributing to a substantial increase
in the R0. These findings provide valuable insights into the mechanisms that affect the dynamics of
infectious disease transmission and offer strategies for reducing disease transmission.

We observe that even slight changes in parameters such as β, δ, µ, ν, and τ result in different
population dynamics. These efforts will enhance our understanding of this paradigm and enable
us to obtain more information successfully. Moreover, the results indicate that as the number of
infectious individuals in the community decreases, the number of recovered individuals in the system
increases. This suggests a correlation between the decrease in the number of sick individuals and the
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increase in the number of those who have effectively recuperated from the illness. The proposed model
provides valuable insights into disease transmission dynamics using fractional-order derivatives. The
results of our investigation are crucial for improving the accuracy of the infectious disease model and
formulating successful strategies. Furthermore, our investigation indicated that meaningful parameters
can be found and examined even in uncertainty. These research results suggest expanding this work to
encompass control theory and other fractional operators.
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