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Abstract: In this work, we present a comprehensive analysis of the spatio-temporal SEIR epidemic
model of fractional order. The infection dynamics in the proposed fractional order model (FOM)
are described by a system of partial differential equations (PDEs) within a time-fractional order and
diffusion operator in one-dimensional space, considering that the total population is split into four
compartments: Susceptible, exposed, infected, and recovered individuals denoted as S, E, I and R,
respectively. Our contributions commence by establishing the existence and uniqueness of positively
bounded solutions for the proposed FOM. Moreover, we determined all equilibrium points (EPs) and
investigated their local stability based on the basic reproduction number (BRN) R0, which is calculated
by the next-generation matrix (NGM) method. Additionally, we demonstrated global stability using an
appropriate Lyapunov function with fractional LaSalle’s invariance principle (LIP). Sensitivity analysis
of the FOM parameters was discussed to identify the most critical parameters by which the volume
of disease propagation can be measured. The theoretical findings were corroborated by numerical
simulations of solutions that are displayed in 3D and 2D graphs. Graphical simulations highlight the
effect of vaccination on infection severity. Changing the fractional order α in the proposed FOM has an
influence on the speed of convergence to the steady state as a result of the memory effect. Furthermore,
vaccination emerges as an effective strategy for disease control.
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1. Introduction

The history of infectious diseases has witnessed various epidemics, causing significant global
health problems. The World Health Organization (WHO) indicates that infectious diseases cause
the death of more than 17 million people annually [1, 2]. Experimental challenges in epidemiology,
exacerbated by underreporting and the infeasibility of conducting experiments, require the use of
mathematical modeling and numerical simulation [3]. Since 1760 [4], the pioneering work of
Daniel Bernoulli demonstrated that mathematical models (MMs) are useful tools in understanding
the spread of infectious diseases. Subsequent literature, including Roland Ross’s study of malaria
dynamics [5] and the classic SIR epidemic model proposed by Kermack and McKendrick in 1927 [6],
laid the foundation for modeling disease transmission. In the context of recent global challenges,
such as COVID-19 pandemic, the use of MMs has proven essential to estimate parameters that have
a significant influence on disease behavior, help to understand disease dynamics and guide public
health interventions. Answering all the following questions about the persistence or elimination of
the epidemic, its duration, its impact on population density, and finally, how to control it requires
considering spatial factors [7,8]. The SEIR model was introduced to account for asymptomatic infected
individuals (such as SARS, tuberculosis, and flu), i.e., the exposed individuals E. In fact, the SEIR
model is more suitable for diseases that have a latent period, such as influenza A(H1N1), measles, and
AIDS [9, 10]. Those SEIR models are governed by a system of ODEs, where they focus only on the
temporal variable t. However, it is clearly evident that the infection propagation is affected not only by
time but also by spatial variables, denoted as x [11–13]. This effect of spatial dynamics plays a pivotal
role in saturated incidence rates, influencing effective contacts between I and S. In general, introducing
spatial variables as diffusion terms enhances the realism of the modeling, as demonstrated in [14].
Researchers have tried to inculcate spatial aspects by delving into reaction-diffusion models, such as
the generalized reaction-diffusion rumor propagation model based on a multiplex network [15], the
spatio-temporal SIR model with diffusion that describes the transmission of diseases (e.g., whooping
cough) [16, 17], and the asymptotic analysis of the SIR model with reaction-diffusion operator and
linear source [18].

Fractional derivatives (FDs), which are non-integer derivatives, have become essential in MMs
where the state depends on its history due to the hereditary and memory effects accompanied by the
FDs. These properties are useful in modeling infectious diseases and other ecological models. In
addition, the FDs possess a higher degree of freedom than the classic derivative, allowing for a more
accurate and suitable description of the proposed FOM’s dynamics. Therefore, the MMs involving
the FDs have been observed in diverse fields such as modeling the infectious diseases [19–22],
mechanics [23], physical systems [24,25], control theory [26–28], biology [29,30], viscoelasticity [31],
and engineering [32]. Of this overview, the major features of FOMs can be summarized as follows:
Anomalous diffusion phenomena, innate memory effects, fractal capture, better data fit, and multi-
scale nature. Furthermore, FOMs provide a powerful tool for integrating the impact of memory and
the hereditary features of the infectious disease models compared to their integer-order counterparts,
where these features cannot be displayed because they do not have non-local interactions. The study
of fractional calculus (FC) has gained popularity, leading to more definitions of FDs with some
additional advantages and properties [33–35], but the Caputo and Riemann–Liouville FDs are the
most popular [36, 37]. MMs within FDs have gained prominence in describing disease progression,
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providing enhanced precision compared to classical derivatives [38]. Generally, the discontinuous
nature of disease spread, not well-described by ODEs, is effectively captured by FOMs [39]. Modeling
epidemics within FDEs greatly benefits from the use of Caputo FD [36, 40]. This inclusion in MMs
allows for a more accurate and realistic analysis of infectious disease dynamics. Moreover, due to
extensive human mobility within a country or even worldwide, models that assume spatial uniformity
are insufficient to describe disease spread accurately. More precisely, the advantages of using fractional
PDEs than fractional ODEs to characterize the SEIR model are that it enables the incorporation of
spatial variables and realistic disease transmission patterns. The spatial approach found in fractional
PDEs enhances the accuracy and realism of the dynamic of epidemiological models, making fractional
PDEs a valuable tool for understanding the spread and elimination of infectious diseases. For this
reason, spatial effects of S, E, I, and R must be taken into account to understand the spread of
epidemics comprehensively. Motivated by the discussion mentioned above, we introduce the following
FOM:



C
0D
α
t S(t, x) − dS ∆S(t, x) = Π −

γS(t, x)I(t, x)
1 + ϵI(t, x)

− (u + η)S(t, x),

C
0D
α
t E(t, x) − dE∆E(t, x) =

γS(t, x)I(t, x)
1 + ϵI(t, x)

− (η + δ)E(t, x),

C
0D
α
t I(t, x) − dI∆I(t, x) = δE(t, x) − (η + µ + β)I(t, x),

C
0D
α
t R(t, x) − dR∆R(t, x) = uS(t, x) + µI(t, x) − ηR(t, x),

(1.1)

subject to the following positive initial conditions (ICs):

S(0, x) = S0, E(0, x) = E0, I(0, x) = I0, R(0, x) = R0; x ∈ ℧, (1.2)

where C
0D
α
t is Caputo fractional partial derivative (CFPD) of order α ∈ (0, 1] and ℧ is bounded set in

R2 with smooth boundary ∂℧. For the biologically feasible region, we mean that the total population
remains within the studied domain and this leads us to the following no-flux homogeneous Neumann
boundary conditions (BCs):

∂nS(t, x) = ∂nE(t, x) = ∂nI(t, x) = ∂nR(t, x) = 0, (t, x) ∈ [0,T ] × ∂℧, (1.3)

where n, ∂n =
∂
∂n = n.∇ represent the outward unit normal vector on ∂℧ and the normal derivative,

respectively. The following diagram illustrates the dynamics of the FOM (1.1) that we proposed (see
Figure 1).
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Figure 1. Transformation dynamics diagram for FOM (1.1).

The total population N(t, x) is comprised of the following compartments: S(t, x), E(t, x), I(t, x) and
R(t, x), which denote susceptible, exposed, infected, removed individuals at spatial location x, and time
t, respectively. The positive constants dS, dE, dI, and dR denote the corresponding diffusion rates for
S, E, I, and R, respectively. It assumed that susceptible individuals are recruited at rate Π, η is the
natural death rate, δ is the transmission rate from E(t, x) to I(t, x), µ is the human recovery rate and β
is the disease mortality rate. The vaccination rate per unit of time is denoted by u and ∆ represents
the Laplacian operator. Several authors have recommended the saturation rate as an important factor
in modeling epidemic dynamics [41–43]. In [6], the bilinear incidence rate (g(I)S = γSI, where g is
the incidence function and γ is the transmission rate) is incorporated with the classical SIR epidemic
model. This simpler saturation form of the infection have been utilized in many works to model
infectious diseases, see e.g., [44, 45] and references therein. It is more suitable for communicable
diseases like influenza etc., but not for sexually transmitted diseases. In 1973, Capasso and Serio [46]
proposed a generalization of previous incidence by introducing a saturated incidence rate (g(I)S =
γSI/(1 + ϵI), ϵ is the human saturation constant of I) into epidemic models, where considered to be of
Michaelis–Menten form [47] and g(I) tends to a saturation level when I gets large. This incidence rate
is more reasonable than the bilinear incidence rate (γSI) because it takes into account the behavioral
change and crowding effect of infected individuals. It also prevents the transmission rate from being
unbounded by choosing appropriate parameters [48, 49].

The primary contribution of our work is to provide a comprehensive analysis of the SEIR epidemic
model of fractional order that is characterized by a saturated incidence function. Through a system of
PDEs within CFPD, the FOM integrates the E(t, x) component and spatial diffusion, which enhances its
realism in tracking the behavior of disease dynamics. We determine the suitability of FOM, performs
the stability analysis of all possible EPs as well as computes R0, and explores the influence of changing
α on the model dynamics. The sensitivity analysis of FOM shows which parameters have a significant
impact on R0. Numerical simulations demonstrate the validity of our theoretical results and emphasize
the critical role of vaccination in mitigating the severity of infection. The proposed FOM is a valuable
tool for understanding and predicting the spatio-temporal transmission dynamics of SEIR, with a
suggestion to apply control strategies and guide public health interventions. Finally, one of the most
important recommendations we reached in this work is to integrate the time FDs into infectious disease
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models in order to examine disease dynamics before reaching equilibrium states.
This work is organized as follows: Section 2 is dedicated to outlining some fundamental definitions

and theorems for FC that lay the groundwork for our subsequent analysis. In Subsection 3.1, we
examine the existence, boundedness, and positivity of the projected solution, which are crucial aspects
for understanding the dynamics of our model. In Subsection 3.2, we focus on investigating the stability
of all possible EPs in order to provide insight into the projected solution behavior, and Subsection 3.3
is devoted to discussing the results of sensitivity analysis of FOM parameters. In Section 4, graphical
simulations of the numerical solutions are displayed. Concluding remarks are given in Section 5.

2. Preliminaries

Now, we recall the definitions of CFPD, Laplace transform (LT) and Mittag–Leffler function (see,
e.g., [50–52]).

Definition 2.1. For a function g(t) ∈ L1(R+), the Riemann-Liouville fractional integral is expressed as:

I
α
t g(t) =

1
Γ(α)

∫ t

0
(t − ζ)α−1g(ζ)dζ, t > 0, α > 0,

I
0
t g(t) = g(t).

Definition 2.2. For a function g(x, t) ∈ ACn([0,+∞),R+), the CFPD of order α is defined as follows:

C
D
α
t g(x, t) =


1

Γ(n − α)

∫
t

0
(t − ζ)n−α−1∂

ng(x, ζ)
∂ζn dζ, n − 1 < α < n,

∂ng(x, t)
∂tn , α = n ∈ N.

(2.1)

Definition 2.3. Let G(s) be the LT of the function g(t). Then, the LT of CFPD is given by the following
formula [51]:

L{CDαt g(x, t); s} = sαG(x, s) −
n−1∑
i=0

sα−i−1g(i)(x, 0),

where α ∈ (n − 1, n]; n ∈ N.

Definition 2.4. The two-parameter Mittag-Leffler functionMa,b(x) is defined as

Ma,b(x) =
∞∑

m=0

xm

Γ(am + b)
, x ∈ R, a > 0, b > 0.

We now introduce the following properties ofMa,b(x) [50]:

Ma,b(x) = xMa,a+b(x) +
1
Γ(b)
. (2.2)

L
[
tb−1Ma,b(±κta)

]
=

sa−b

sa ∓ κ
. (2.3)
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Proposition 2.1. (Green formula [52]) Let D be a domain of Rn and ν(x) its exterior normal, then
Green formula for the two regular functions v and w is given by∫

D
(∆v) w dx = −

∫
D
∇v · ∇w dx +

∫
∂D

∂v
∂n

w dσ, (2.4)

where ∂D is the boundary of region D.

We now state the following definition of the Lyapunov function and some lemmas [53–57] in order
to prove the stability of EPs.

Definition 2.5. LetΘ(Ξ) be a neighborhood of Ξ, then the real-valued differentiable functionV defined
on Θ(Ξ) is said to be the Lyapunov function for (1.1) if

(1) V(Ξ) = 0; and

(2) V(Ξ1) > 0 in Θ(Ξ), ∀ Ξ , Ξ1.

Lemma 2.1. Let Ω be a positively invariant subset of Π where Π ⊆ Rn and the function y : Π → R is
continuously differentiable such that y(x) > 0, CDαt y(x(t)) ≤ 0 in Ω for the solutions x(t). Suppose the
set 𭟋 contains all points in Ω where CDαt y(x(t)) = 0 and Σ is the largest invariant set in 𭟋. Then, every
bounded solution starting in Ω→ Σ as t → ∞.

Lemma 2.2. Let y(t) ∈ R+ be a continuous differentiable function. Then, ∀ t ≥ 0 and α ∈ (0, 1)

C
D
α
t

[
y∗Φ
(y(t)

y∗

)]
≤

(
1 −

y∗

y(t)

)
C
D
α
t y(t), y∗ ∈ R+,

where Φ(y) = (y − 1 − ln(y)) ≥ 0 for any y > 0.

3. Qualitative analysis of model dynamics

Here, we examine the behavior of the proposed FOM (1.1) in order to understand its general
characteristics. These analyses allow us to establish the theory of positivity and boundedness of the
solutions. Moreover, it helps us describe solution trends by evaluating EPs, investigating the stability
of these EPs and demonstrating the results of sensitivity analysis states.

3.1. Existence, positivity, and boundedness of solutions

We now begin our analysis by stating the positivity and boundedness theorem to ensure that the
projected solutions of FOM (1.1) reflect biological reality. Letting X = C(℧̄,R) be a Banach space
equipped with usual norms. The system (1.1)–(1.2) can be rewritten as:

C
0D
α
t λ(t, x) − Aλ(t, x) = F(t, x),

λ(0, x) = λ0,

(3.1)

where λ = (S,E, I,R)T , the initial values λ0 = (S0,E0, I0,R0)T , Aλ(t, x) = (dS∆S, dE∆E, dI∆I, dR∆R)T

such that A : D(A) ⊂ X4 −→ X4 is linear diffusion operator with D(A) = {λ ∈ X4 : ∆λ ∈ X4,
∂λ

∂n
=
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0R4
+

for x ∈ ∂℧} and the function F : [0,T ] × X4 −→ X4 defined as

F(λ(t, x)) = ( f1, f2, f3, f4)T =


Π −
γS(t, x)I(t, x)
1 + ϵI(t, x)

− (η + u)S(t, x)

γS(t, x)I(t, x)
1 + ϵI(t, x)

− (η + δ)E(t, x)

δE(t, x) − (η + µ + β)I(t, x)
uS(t, x) + µI(t, x) − ηR(t, x)


.

Theorem 3.1. The problem (3.1) has a unique positive solution for all α ∈ (0, 1].

Proof. Obviously, A is an operator from a dense set D(A) into itself and F is Lipschitz continuous in
X. Following Theorem 3.1 in [58], the unique non-negative solution of the FOM (1.1)–(1.2) can be
achieved. □

Theorem 3.2. The solution of FOM (1.1) is bounded on ℧ × [0,+∞) ∀ t ≥ 0.

Proof. In order to show boundedness of the solution, we write the total number of population as the
following equation:

N(t) =
∫
℧

[S(t, x) + E(t, x) + I(t, x) + R(t, x)]dx. (3.2)

We now add Eq (1.1) and integrate both sides of the result over ℧. Thus, we have∫
℧

[ C
0D
α
t S(t, x) + C

0D
α
t E(t, x) + C

0D
α
t I(t, x) + C

0D
α
t R(t, x)]dx

=

∫
℧

[dS∆S(t, x) + dE∆E(t, x) + dI∆I(t, x) + dR∆R(t, x)]dx

+

∫
℧

[Π − η(S(t, x) + E(t, x) + I(t, x) + R(t, x)) − βI(t, x)]dx.

According to Green’s formula (2.4) and applying BCs (1.3), then∫
℧

[dS∆S(t, x) + dE∆E(t, x) + dI∆I(t, x) + dR∆I(t, x)]dx = 0.

From Eq (3.2) with the linear property of CFPD, we get

C
0D
α
t N + ηN ≤ Π||℧||.

Taking LT of the above equation as follows:

sαL{N} − sα−1N(0) + ηL{N} ≤
Π

s
.

Then, we have

N̄(s) ≤
Π

s(sα + η)
+

sα−1

sα + η
N(0).
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Using Eq (2.2), Eq (2.3) and the positivity of ICs, we obtain

N(t) ≤ Π tαMα,α+1(−ηtα) +Mα,1(−ηtα) N(0)

≤ max
{
Π

η
,N(0)

}[
ηtαMα,α+1(−ηtα) + Mα,1(−ηtα)

]
=

K
Γ(1)

= K, (3.3)

where K = max
{
Π

η
,N(0)

}
. From Theorem 3.1 and Eq (3.3), we conclude that 0 ≤ N(t, x) ≤ Π

η
, which

means that the solution is positive and bounded. Hence, our proposed FOM (1.1) is meaningful both
mathematically and epidemiologically. □

3.2. Local and global stability of EPs

Certainly, in the mathematical modeling of infectious diseases, evaluating EPs, R0, investigating
local and global stability, and discussing sensitivity analysis of FOM parameters are important tools
for analyzing such diseases. These analyses allow a good understanding of how such diseases spread
and develop in a population. We begin by evaluating EPs that provide insights into the behavioral
dynamics of an outbreak, as well as calculating R0 as a key threshold for predicting the spread of
disease (R0 > 1) or die out (R0 < 1), which is essential for public health experts. Now, let E be the EP
of (3.1), then F(E) = 0, 

Π −
γSI

1 + ϵI
− (η + u)S = 0,

γSI
1 + ϵI

− (η + δ)E = 0,

δE − (η + µ + β)I = 0,

uS + µI − ηR = 0.

(3.4)

Thus, 

S =
Π

γI
1+ϵI + η + u

,[
γS

1 + ϵI
−

(η + δ)(η + µ + β)
δ

]
I = 0,

E =
η + µ + β

δ
I,

R =
uS + µI
η
.

(3.5)

Before proceeding to determine the EPs, we introduce the following lemma.

Lemma 3.1. [59] The EP E for the system (3.1) is local asymptotically stable (LAS) if all eigenvalues
λi (i = 1, 2, ..., n) of the Jacobian matrix (JM) at E satisfy |arg(λi)| > απ2 .
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Figure 2 shows the stability region of a fractional order system (where ℑ(λ) andℜ(λ) represent the
imaginary and real parts of the eigenvalues, respectively). By observing this figure, the advantages of
fractional order models are that such systems have wider stability margins and can accurately detect
the behavior of many phenomena.

Figure 2. Stability regions of a fractional order system α ∈ (0, 1).

By solving Eq (3.5), we get the following two EPs.

• A disease-free equilibrium (DFE) point (I = 0): There is no infection Ξ f = (S f ,E f , I f ,R f ) =(
Π

η + u
, 0, 0,

uΠ
η(η + u)

)
. Using NGM method [60], the BRN can be given by ρ(FV−1) where ρ

is the spectral radius, F andV−1 are defined as follows:

F =


0
γΠ

η + u

0 0

 , V−1 =


1
η + δ

0

δ

(η + δ)(η + µ + β)
1

η + µ + β

 .
Hence, the BRN is expressed as

R0 =
γΠδ

(η + u)(η + δ)(η + µ + β)
. (3.6)

Next, we establish the theorems of local and global stability of Ξ f based on the expression of
BRN (3.6) and using the following subsystem:

C
0D
α
t S − dS ∆S = Π −

γSI
1 + ϵI

− (η + u)S,

C
0D
α
t E − dE∆E =

γSI
1 + ϵI

− (η + δ)E,

C
0D
α
t I − dI∆I = δE − (η + µ + β)I,

(3.7)
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with the general Jacobian matrix (JM) of Eq (3.7) at Ξeq = (Seq,Eeq, Ieq,Req):

JΞeq =



−(η + u) −
γIeq

1 + ϵIeq
0 −

γSeq

(1 + ϵIeq)2

γIeq

1 + ϵIeq
−(η + δ)

γSeq

(1 + ϵIeq)2

0 δ −(η + µ + β)


. (3.8)

Theorem 3.3. Whenever R0 < 1, then the DFE Ξ f is LAS and unstable if R0 > 1.

Proof. At Ξ f the JM Eq (3.8) becomes

JΞ f =



−(η + u) 0
−γΠ

η + u

0 −(η + δ)
γΠ

η + u

0 δ −(η + µ + β)


. (3.9)

The eigenvalues for JΞ f are
χ1 = −(η + u) < 0,

χ2 =
−(2η + δ + µ + β) +

√
(2η + δ + µ + β)2 − 4(η + δ)(η + µ + β)(1 − R0)

2
,

χ3 =
−(2η + δ + µ + β) −

√
(2η + δ + µ + β)2 − 4(η + δ)(η + µ + β)(1 − R0)

2
.

This shows that χ2 < 0, χ3 < 0 whenever R0 < 1. Hence, the DFE Ξ f for the FOM (1.1) is LAS.
However, if R0 > 1, it becomes unstable. □

Theorem 3.4. Whenever R0 < 1, then the DFE Ξ f is globally asymptotically stable (GAS).

Proof. Suppose the positive Lyapunov function has the following form

V1(t, x) =
∫
℧

[S f

k1
Φ

( S
S f

)
+

1
k1

E +
1
δ

I
]
dx,

where k1 = η + δ. Calculating the CFPD of V1 with Lemma 2.2 and substituting from Eq (3.7),
we get

C
0D
α
tV1(t, x) =

∫
℧

[ 1
k1

C
0D
α
t

[
S fΦ

( S
S f

)]
+

1
k1

C
0D
α
t E +

1
δ

C
0D
α
t I
]
dx

≤

∫
℧

1
k1

(
1 −

S f

S

)[
Π −

γSI
1 + ϵI

− (η + u)S
]
dx

+

∫
℧

[ 1
k1

γSI
1 + ϵI

−
η + µ + β

δ
I
]
dx
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+

∫
℧

[ 1
k1

dS∆S −
dS

k1

S f∆S
S
+

1
k1

dE∆E +
1
δ

dI∆I
]
dx.

Applying formula (2.4) and BCs (1.3) with Π = (η + u)S f , we can write

C
0D
α
tV1(t, x) ≤ −

dSS f

k1

∫
℧

|∇S|2

S2 dx −
η + u

k1

∫
℧

(S − S f )2

S
dx

+
η + µ + β

δ

∫
℧

(
R0 − 1 − ϵI

1 + ϵI

)
dx.

Now, we observe that:

– If R0 ≤ 1, then C
0D
α
tV1(t, x) ≤ 0.

– If C
0D
α
tV1(t, x) = 0, then S = S f and R0 − 1 − ϵI = 0, I = 0, E = 0, whenever R0 = 1.

As a result, {(S,E, I) ∈ R3
+ : C

0D
α
tV1(t, x) = 0} = {Ξ f } and by using fractional LIP (Lemma 2.1),

then the EP Ξ f is LAS. □

• An endemic equilibrium (EE) point ( I , 0 ): Here, the disease persists among the population.
Let Ξ∗ = (S∗,E∗, I∗,R∗) represents EE point and from Eq (3.5)

S∗ =
Π(1 + ϵI∗)

γI∗ + (η + u)(1 + ϵI∗)
,

I∗ =
(R0 − 1)(η + u)
γ + ϵ(η + u)

,

E∗ =
η + µ + β

δ
I∗,

R∗ =
uS∗ + µI∗

η
.

(3.10)

Then we can summarize the results of the existence of Ξ f and Ξ∗ as follows:

Theorem 3.5. The DFE Ξ f always exists, and the unique positive EE Ξ∗ exists whenever R0 > 1.

Finally, in this subsection, we clarify the local and global stability of Ξ∗.

Theorem 3.6. The unique positive point Ξ∗ (3.10) is LAS if R0 > 1.

Proof. The JM of Eq (3.7) corresponding to Ξ∗ (3.10) is given by

JΞ∗ =


−Q1 0 −Q2

Q1 − (η + u) −(η + δ) Q2

0 δ −(η + µ + β)


, (3.11)

where Q1 = η + u +
γI∗

1 + ϵI∗
, Q2 =

γS∗

(1 + ϵI∗)2 . Then, the characteristic polynomial of the matrix

JΞ∗ is

ω3 +A2ω
2 +A1ω +A0 = 0, (3.12)
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with the coefficientsAi; i = 0, 1, 2

A2 = Q1 + 2η + δ + µ + β > 0,

A1 = Q1(2η + δ + µ + β) + (η + δ)(η + µ + β) − δQ2,

A0 = Q1(η + δ)(η + µ + β) − (η + u)δQ2.

(3.13)

Hence, A1, A0 are positive values if R0 > 1, this implies that the eigenvalues ω j ( j = 1, 2, 3) of
Eq (3.12) have negative real parts, and using the condition stated in Lemma 3.1, i.e., |arg(ω j)| > απ2
for each j = 1, 2, 3, then EE point Ξ∗ is LAS. □

Theorem 3.7. The EE point Ξ∗ (3.10) is GAS if R0 > 1.

Proof. Assuming the Lyapunov function as follows:

V2(t, x) =
∫
℧

[
S∗Φ
( S
S∗

)
+ E∗Φ

( E
E∗

)
+
η + δ

δ
I∗Φ
( I
I∗

)]
dx.

Using Lemma 2.2 and from Eq (1.1), we have

C
0D
α
tV2(t, x) =

∫
℧

[
C
0D
α
t

[
S∗Φ
( S
S∗

)]
+ C

0D
α
t

[
E∗Φ
( E
E∗

)]
+
η + δ

δ
C
0D
α
t

[
I∗Φ
( I
I∗

)]]
dx

≤

∫
℧

(
1 −

S∗

S

)[
dS∆S + Π −

γSI(t, x)
1 + ϵI

− (η + u)S
]
dx

+

∫
℧

(
1 −

E∗

E

)[
dE∆E +

γSI
1 + ϵI

− (η + δ)E
]
dx

+
η + δ

δ

∫
℧

(
1 −

I∗

I

)[
dI∆I + δE − (η + µ + β)I

]
dx

≤

∫
℧

[
Π − (η + u)S −

ΠS∗

S
+
γS∗I

1 + ϵI
+ (η + u)S∗ −

γSI
1 + ϵI

E∗

E

+ (η + δ)E∗ − (η + δ)E
I∗

I

]
dx +

∫
℧

[
dS∆S + dE∆E +

η + δ

δ
dI∆I

− dSS∗
∆S
S
− dEE∗

∆E
E
−
η + δ

δ
dII∗
∆I
I

]
dx.

Applying formula (2.4) with BCs (1.3) and using Π = (η+u)S∗+ (η+ δ)E∗,
E∗

I∗
=
η + µ + β

δ
, then

C
0D
α
tV2(t, x) ≤ −

∫
℧

[
dSS∗
|∇S|2

S2 + dEE∗
|∇E|2

E2 +
η + δ

δ
dII∗
|∇I|2

I2

]
dx

+

∫
℧

[
− (η + u)S − (η + u)

(S∗)2

S
− (η + δ)E∗

S∗

S
+
γS∗I

1 + ϵI

−
γSI

1 + ϵI
E∗

E
− (η + δ)E∗

I
I∗
− (η + δ)E∗

EI∗

E∗I

]
dx.
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From Eq (3.4), we have
γS∗I

1 + ϵI
= (η + δ)E∗

I
I∗

, then

C
0D
α
tV2(t, x) ≤ −

∫
℧

(
dSS∗
|∇S|2

S2 + dEE∗
|∇E|2

E2 +
η + δ

δ
dII∗
|∇I|2

I2

)
dx

−(η + u)S∗
∫
℧

(
−2 +

S
S∗
+

S∗

S︸           ︷︷           ︸
≥ 0

)
dx − (η + δ)E∗

∫
℧

(
−3 +

S∗

S
+

SIE∗

EI∗S∗
+

EI∗

E∗I︸                        ︷︷                        ︸
≥ 0

)
dx,

where, for example
[
− 2 +

S
S∗
+

S∗

S

]
=

[ S
S∗
− 1 − ln

( S
S∗

)
+

S∗

S
− 1 − ln

(S∗
S

)]
≥ 0, from the

definition of function Φ in Lemma 2.2. Therefore, C
0D
α
tV2(t, x) ≤ 0 and if C

0D
α
tV2(t, x) = 0, then

S = S∗, E = E∗ and I = I∗. This means that {(S,E, I) ∈ R3
+ : C

0D
α
tV2(t, x) = 0} is singleton set {Ξ∗}

and from fractional LIP (Lemma 2.1), whenever R0 > 1, then Ξ∗ is GAS. □

3.3. Sensitivity analysis of FOM parameters

Here, we investigate the sensitivity analysis of the FOM (1.1) parameters. The initial disease
transmission is directly related to BRN. Therefore, a sensitivity analysis will be performed on R0

to find the parameters that have a high effect on disease transmission. Following Chitnis et al. [61], the
forward sensitivity index formula is given by:

ΥR0
p =

∂R0

∂p
×

p
R0
, (3.14)

where ΥR0
p is the sensitivity index of R0 in relation to parameter p. For instance, the sensitivity index

for parameters η, u, and δ are given as follows:

ΥR0
η = −

η[η(3η + 2δ + 2u + 2µ + 2β) + u(δ + µ + β) + δ(µ + β)]
(η + u)(η + δ)(η + µ + β)

< 0,

ΥR0
u = −

u
η + u

< 0,

Υ
R0
δ =

η

η + δ
> 0.

For other parameters in R0 (3.6), the sensitivity indices of R0 and their parameter values are shown in
Figure 3a. From Figure 3a,b, we note that the value of BRN increases with the increase of ΥR0

p with a
positive sign, while this value decreases with the increase of ΥR0

p with a negative sign.
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Figure 3. (a) Sensitivity index for the parameters in R0. (b) Tendency of R0 with vaccination
rate u and ΥR0

u .

From the above results of sensitivity analysis, we observe that the most sensitive parameters are
η,Π, γ, δ, and so on (see Figure 3a). Figure 3b shows the effect of u on R0 and ΥR0

u , which means that
the most effective way in order to control disease transmission is to provide more vaccinations so that
R0 less than one.

4. Numerical results and discussion

In this section, we illustrate the outcomes of our numerical simulations that aim to validate the
theoretical findings discussed in Section 3. The fractional order system (1.1)–(1.3) is integrated
numerically by applying the centered and forward finite difference approaches in order to discretize
the diffusion operator and CFPD, respectively [62, 63], as follows: let ℧ = [0, L] and ht =

T
N and

hx =
L
n be the times and space time step, respectively, ti = iht for i = 0, 1, ...,N and x j = jhx for

j = 0, 1, ..., n. This approach gives an accuracy of order (2 − α) in time and order 2 in space [64].
For simplicity, we denote the approximate solutions of S(ti, x j),E(ti, x j), I(ti, x j),R(ti, x j) by Si

j,E
i
j, I

i
j

and Ri
j, respectively. We can write, for example, the approximation of C

0D
α
t S(ti, x j) and ∆S(ti, x j),

respectively, as follows:

C
0D
α
t S(ti, x j) ≈

1
Γ(2 − α)

i∑
l=0

(l + 1)1−α − l1−α

hαt
(Si+1−l

j − Si−l
j ),

and

∆S(ti, x j) ≈
Si

j+1 − 2Si
j + Si

j−1

h2
x

.

The same applies to the other compartments E(ti, x j), I(ti, x j) and R(ti, x j). Then, we have the following
scheme for the FOM (1.1):

Si+1
j = Si

j −

i∑
l=1

((l + 1)1−α − l1−α)(Si+1−l
j − Si−l

j ) +
dSΓ(2 − α)hαt

h2
x

(Si
j+1 − 2Si

j + Si
j−1)
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30852

+Γ(2 − α)hαt
[
Π −

γSi
jI

i
j

1 + ϵIi
j

− (η + u)Si
j

]
,

Ei+1
j = Ei

j −

i∑
l=1

((l + 1)1−α − l1−α)(Ei+1−l
j − Ei−l

j ) +
dEΓ(2 − α)hαt

h2
x

(Ei
j+1 − 2Ei

j + Ei
j−1)

+Γ(2 − α)hαt
[ γSi

jI
i
j

1 + ϵIi
j

− (η + δ)Ei
j

]
,

Ii+1
j = Ii

j −

i∑
l=1

((l + 1)1−α − l1−α)(Ii+1−l
j − Ii−l

j ) +
dIΓ(2 − α)hαt

h2
x

(Ii
j+1 − 2Ii

j + Ii
j−1)

+Γ(2 − α)hαt
[
δEi

j − (η + µ + β)Ii
j

]
,

Ri+1
j = Ri

j −

i∑
l=1

((l + 1)1−α − l1−α)(Ii+1−l
j − Ii−l

j ) +
dIΓ(2 − α)hαt

h2
x

(Ii
j+1 − 2Ii

j + Ii
j−1)

+Γ(2 − α)hαt
[
uSi

j + µI
i
j − ηR

i
j

]
.

In the following numerical simulations, the model parameter values are given in Table 1 [65, 66], with
these ICs S0 = 10, E0 = 20, I0 = 20, and R0 = 30. We use the one-dimensional interval 0 ≤ x ≤ L,
0 ≤ t ≤ T , and dS = dE = dI = dR = 0.2 (km per day).

Table 1. Values of FOM parameters.
Parameters Π (day−1) γ (per contact) ϵ (per contact) η (day−1) u(day−1) δ(day−1) µ(day−1) β × 10−6(day−1)
Stability of Ξ f (R0 < 1) 0.6 0.001 0.5 0.05 0.01 0.00053 0.01 1.03
Stability of Ξ∗(R0 > 1) 6 0.01 0.5 0.05 0 0.053 0.001 1.03

Now we focus on the behavior of obtained solutions related to the stability of Ξ f , Ξ∗ and the effect
of changing α, ϵ and u as follows: Figure 4 shows the dynamics of S, E, I, and R, in which case
the disease will become extinct (where R0 = 0.001748 << 1) within the period of infection. The
main observation from Figure 4a,b is that the solutions converge towards the DFE point Ξ f . This is
consistent with Theorem 3.4, which illustrates that Ξ f is GAS. Moreover, the dynamics of S, E, I, and
R for the parameters corresponding to the second row in Table 1 are determined in Figures 5 and 6.
These parameters, give R0 = 12.107 > 1 (where u = 0), R0 = 0.9313 < 1 (where u = 0.6), and
we observe from Figures 5 and 6 the tendency of the solutions towards convergence to the endemic
equilibrium. Therefore, according to Theorem 3.7, the EE point Ξ∗ is GAS, and the disease will persist
in the population (see Figure 5), while Figure 6 displays the impact of vaccination on the behavior
of solutions and how their states change based on the value of u. From Figures 7a and 8a, we can
observe the effect of α on the behavior dynamics of S, E, I and R. Moreover, for low values of
α indicative of a “long memory effect”, the solutions converge more rapidly toward the steady state
(see, e.g., dash-dotted line (α = 0.7) and dotted line (α = 0.5)). Consequently, we deduce from
this numerical experiment that the Caputo fractional operator solely affects the speed of convergence
toward the steady states.
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Figure 4. The behavior of S, E, I, and R shows the stability of Ξ f with α = 1, 0.6.
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Figure 5. The behavior of S, E, I, and R shows the stability of Ξ∗ with α = 1, 0.6 and u = 0
(without vaccination).
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Figure 6. The behavior of S, E, I and R shows the stability of Ξ∗ with α = 1, 0.6 and u = 0.6
(with vaccination).

Therefore, it is recommended to incorporate FDs into infectious disease models in order to examine
disease dynamics before reaching equilibrium states. Figures 7b and 8b show the influence of saturated
infection rate ϵ on the dynamics of S, E, I, and R. For the DFE Ξ f , it is evident from Figure 7b that
variations in the values of ϵ have a very slight effect on E, I, and R, while their effect is clearly shown
on S. On the other hand, for EE Ξ∗, increasing in the values of ϵ leads to a decrease in the number of
E and I, as well as an increase in the number of S and R as shown in Figure 8b.
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Figure 7. Effect of different values of α, ϵ and u on the behavior of S, E, I, and R at Ξ f .
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Figure 8. Effect of different values of α, ϵ,and u on the behavior of S, E, I, and R at Ξ∗.

AIMS Mathematics Volume 9, Issue 11, 30838–30863.



30858

As a result, we deduce that maintaining a high value for ϵ is crucial for controlling disease spread.
Figures 7c and 8c show the impact of changing the vaccination rate u on the behavior of S, E, I, and
R. It is evident that as the vaccine concentration increases, the number of I decreases dramatically,
and the number of R increases to a maximum at the expense of S, especially concerning the EE (see
Figure 8c). Finally, in Figure 9, the extent of the influence of u on R0 is evident, where u ranges from
0 (no vaccination) to 1 (high rate of u). We consider only the case of EE for α = 0.9 in which R0

decreases with increasing u, as depicted in Figure 9. This highlights the crucial role of vaccination in
reducing infections.

Figure 9. The behavior of R0 according to vaccination variation for EE point Ξ∗.

5. Conclusions

In this study, we analyze the spatio-temporal SEIR epidemic model, described by a system of PDEs
involving CFPD and featuring diffusion operators for its components S, E, I and R. The incorporation
of the exposed component E(t, x) and spatial propagation ∆ (Laplacian operator) alongside the CFPD
enhances the realism of the model in tracking disease dynamics. The existence, uniqueness, positivity,
and boundedness of the solutions are demonstrated, ensuring the suitability of the proposed FOM.
Furthermore, the spreading behavior of the disease has been elucidated by evaluation of all EPs
and establishing their local and global stability theorems based on BRN and Lyapunov functions.
A sensitivity analysis of the proposed FOM has been conducted to identify the parameters that
have a significant effect on R0 and lead to outbreaks of infection in the population. Additionally,
numerical simulations have been presented to illustrate the theoretical results and show the importance
of vaccination strategies in reducing the severity of infection. The proposed FOM has not only
contributed to stability analysis but also provided insights into disease evolution as well as, in some
cases, influenced the time required to reach stable states “memory effects” (as has been reported in
Figures 7a and 8a). In future work, we can include the vaccination term u in an optimal control
problem within Caputo FD or other FDs having non-singular kernels.
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