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Abstract: Because of modern technology, product reliability has increased, making it more 

challenging to evaluate products in real-world settings and raising the cost of gathering sufficient data 

about a product's lifetime. Instead of using stress to accelerate failures, the most practical way to solve 

this problem is to use accelerated life tests, in which test units are subjected to varying degrees of stress. 

This paper deals with the analysis of stress-strength reliability when the strength variable has changed 

m levels at predetermined times. It is common for the observed failure time data of items to be partially 

unavailable in numerous reliability and life-testing studies. In statistical analyses where data is 

censored, lowering the time and expense involved is vital. Maximum likelihood estimation when the 

stress and strength variables follow the Gompertz distribution was introduced under type I censoring 

data. The bootstrap confidence intervals were deduced for stress-strength reliability under m levels of 

strength variable and applying the Gompertz distribution to model time. A simulation study was 

introduced to find the maximum likelihood estimates, bootstrapping, and credible intervals for stress-

strength reliability. Real data was presented to show the application of the model in real life. 
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τk: predetermined time points for the step strength levels; ϑj: scale parameter of the Gompertz 

distribution at strength level sj; λ: shape parameter of the Gompertz distribution; ϑy: scale parameter 

of the Gompertz distribution in case of the stress variable; R: stress-strength reliability; 𝑛: total 

number of the units in case of the strength variable; 𝑟: number of the censored units in case of the 

strength variable; 𝑙: total number of the units in case of the stress variable; ℎ: number of the censored 

units in case of the stress variable; L: likelihood function; log 𝐿: logarithm of the likelihood function; 

MLE: maximum likelihood estimate; MSE: mean squared error; MCMC: Markov chain Monte Carlo; 

�̂�𝑀𝐿𝐸: maximum likelihood estimate of the stress-strength reliability; �̃�𝐵𝑎𝑦𝑒𝑠: Bayesian estimate of 

the stress-strength reliability; P.B.I: parametric bootstrap interval; N.B.I: nonparametric bootstrap 

interval; AIC: Akaike information criterion; BIC: Bayesian information criterion; HQIC: Hannan-

Quinn information criterion; CAIC: consistent Akaike information criterion; K-S: Kolmogorov-

Smirnov test 

1. Introduction 

Stress-strength models are used in critical tasks in many fields, including engineering, mechanics, 

computer science, and quality control. The reliability of a component or system with strength X 

subjected to random stress Y can be defined as the probability of the strength exceeding the stress, i.e., 

X > Y. The estimation of a component’s reliability characteristics is critical in this setup, aiding in the 

evaluation of the efficiency of a product’s operation process and allowing to take precautions to avoid 

interruptions in the production process. Extensive work has been carried out in recent years related to 

the problem of estimating reliability with different sampling schemes and distributions for (X, Y). 

In survival analysis, there are tools to handle missing data in experiments. There are many 

approaches that deal with partial information or censored data, such as type I and type II censoring. In 

type I censoring, the experiment will end after a fixed time. On the other hand, in type II censoring, 

the experiment will stop after a predetermined number of failures. 

In systems with highly reliable components that have very long lifetimes under typical test 

conditions, it is difficult to observe the lifetime of these components since very few failures occur 

during the short period of time of testing. Testing the systems under normal conditions takes a long 

time, so the development of partially accelerated life tests and accelerated life testing is necessary. In 

these tests, units are subjected to a more severe environment (increased or decreased levels) than the 

normal operating environment in order to quickly induce failures. In this instance, higher stress levels 

can be controlled by experimenters using accelerated life tests or partially accelerated life tests. 

Çetinkaya [1] discussed the stress-strength reliability model with component strength under a 

partially accelerated life test. Yousef et al. [2] introduced a parametric inference on partially accelerated 

life testing for the inverted Kumaraswamy distribution based on Type II progressive censoring data. 

Yousef et al. [3] examined simulation techniques for the partially accelerated strength component to 

analyze the stress-strength model. Akgul et al. [4] examined classical and Bayesian estimations of step-

stress partially accelerated life testing in the case of inverse Weibull lifetime distribution based on 

type-I censoring. Pandey et al. [5] discussed the estimation procedure for step-stress partially 

accelerated life testing based on the generalized progressive hybrid censoring scheme. Pathak et al. [6] 

considered the estimation problem in step-stress partially accelerated life testing of Maxwell-

Boltzmann distribution in the presence of progressive type-II censoring with binomial removals. Abd-

Elfattah et al. [7] presented an estimation in step-stress partially accelerated life tests for the Burr type 

XII distribution using type I censoring. Rahman et al. [8] introduced a statistical analysis for type-I 
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progressive hybrid censored data from Burr type XII distribution under a step-stress partially 

accelerated life test model. Sarhan and Tolba [9] considered the inference of stress-strength reliability 

when X and Y are independent random variables from two-parameter Weibull distributions, and the 

strength variable X is subjected to step-stress partially accelerated life testing. El-Sagheer et al. [10] 

estimated the stress-strength reliability model when the strength variable is subjected to the step-stress 

partially accelerated life test based on the Weibull distribution. Kamal et al. [11] estimated the 

parameters in step-stress partially accelerated life testing under different types of censored data. Nassar 

et al. [12] presented an analysis of Burr type XII distribution under step-stress partially accelerated life 

tests with type I and adaptive type II progressively hybrid censoring schemes. Abd-Elfattah et al. [13] 

introduced the Bayesian estimation in step-stress partially accelerated life tests for the Burr type XII 

parameters using type I censoring. Alrashidi et al. [14] discussed the constant-stress partially 

accelerated life tests with unified hybrid censored data under exponentiated gamma distribution. 

Bhattacharyya and Soejoeti [15] proposed the tampered failure rate model, which generalized the 

simple two-step stress model to the multiple k-step (k > 2) stress model. In multiple-step-stress life 

testing experiments, n units are simultaneously put on test at a time 𝑡0 = 0 to a stress level 𝑠1. At 

time 𝑡1 > 0, the surviving units are subjected to a higher level of stress 𝑠2 in the time interval [𝑡1, 𝑡2). 

At time 𝑡2, the stress is increased on the surviving units to 𝑠3 over the time interval [𝑡2, 𝑡3) and so 

on until the k-th and last time interval [𝑡𝑘−1, ∞), where the remaining units are subjected to 𝑠𝑘 until 

they all fail (Madi [16]). Bobotas and Kateri [17] discussed the step-stress tampered failure rate model 

under interval monitoring. Koley et al. [18] presented a parametric analysis of a tampered random 

variable model for multiple-step-stress life test. 

The Gompertz distribution is a significant and commonly used lifetime distribution, which plays 

an important role in reliability engineering. Lv et al. [19] introduced a statistical inference for 

Gompertz distribution under adaptive type II progressive hybrid censoring. The probability density 

function and the cumulative distribution function of a random variable X following Gompertz 

distribution are, respectively, given by 

𝑓(𝑥) = 𝜗𝑒𝜆𝑥−(𝜗 𝜆⁄ )(𝑒𝜆𝑥−1), 𝑥 > 0, 𝜗, 𝜆 > 0. 

𝐹(𝑥) = 1 − 𝑒−(𝜗 𝜆⁄ )(𝑒𝜆𝑥−1), 𝑥 > 0, 𝜗, 𝜆 > 0. 

In this paper, an analysis of stress-strength reliability is presented, assuming that the strength 

variable is subjected to m-step levels. The stress and strength variables are assumed to be independent 

and follow a Gompertz distribution. The maximum likelihood estimation of the stress-strength 

reliability under m levels of strength is deduced under type I censoring data. Algorithms for the 

bootstrap and credible intervals for stress-strength reliability are introduced. A simulation study is 

introduced to find the maximum likelihood estimates, bootstrapping, and credible intervals for stress-

strength reliability. Real data is presented to show the application of the model in real life. 

2. Model assumption 

In a testing model with m levels of the strength variable, the units are put on an initial strength 

level, 𝑠1, and at a pre-specified time, 𝜏0. Then, strength levels are changed to 𝑠2 at the pre-specified 

point time 𝜏1 and so on, where 𝜏0 < 𝜏1 < ⋯ and 𝑠1 < 𝑠2 < ⋯. According to the considerations that 

the model will have m-step strength levels and assuming that 𝜏0, 𝜏1, 𝜏2, … , 𝜏𝑚−1, 𝜏𝑚, where 𝜏0 = 0 <
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𝜏1 < 𝜏2 < ⋯ < 𝜏𝑚−1 < 𝜏𝑚 = ∞ are the pre-specified times for the m-step strength levels, then the 

cumulative distribution function for the model will be given as follows: 

𝐹(𝑥) = {

𝐹1(𝑥), 𝑥 ≤ 𝜏1,                                                                                       

1 −∏
1− 𝐹𝑗(𝑥)

1 − 𝐹𝑗+1(𝑥)
(1 − 𝐹𝑘(𝑥))

𝑘−1

𝑗=1

, 𝜏𝑘−1 < 𝑥 < 𝜏𝑘, 2 ≤ 𝑘 ≤ 𝑚.
 

Now, using the Gompertz distribution to model the time, it yields: 

𝐹(𝑥) =

{
 
 

 
 1 − 𝑒

− 
𝜗1
𝜆
(𝑒𝜆𝑥−1), 𝑥 ≤ 𝜏1,                                                                          

1 −∏
𝑒− 

𝜗𝑗
𝜆
(𝑒
𝜆𝜏𝑗−1)

𝑒− 
𝜗𝑗+1
𝜆

(𝑒
𝜆𝜏𝑗−1)

𝑒− 
𝜗𝑘
𝜆
(𝑒𝜆𝑥−1)

𝑘−1

𝑗=1

, 𝜏𝑘−1 < 𝑥 < 𝜏𝑘, 2 ≤ 𝑘 ≤ 𝑚.
 

After simplifying, it yields: 

𝐹(𝑥) = {
1 − 𝑒− 

𝜗1
𝜆
(𝑒𝜆𝑥−1), 𝑥 ≤ 𝜏1,                                                                                 

1 − 𝑒
−[∑ (

𝜗𝑗−𝜗𝑗+1
𝜆

)(𝑒
𝜆𝜏𝑗−1)𝑘−1

𝑗=1  + 
𝜗𝑘
𝜆
(𝑒𝜆𝑥−1)]

, 𝜏𝑘−1 < 𝑥 < 𝜏𝑘, 2 ≤ 𝑘 ≤ 𝑚,

 

and hence, the probability density function can be obtained as: 

𝑓(𝑥) = {
1 − 𝑒− 

𝜗1
𝜆
(𝑒𝜆𝑥−1), 𝑥 ≤ 𝜏1,                                                                                 

1 − 𝑒
−[∑ (

𝜗𝑗−𝜗𝑗+1
𝜆

)(𝑒
𝜆𝜏𝑗−1)𝑘−1

𝑗=1  + 
𝜗𝑘
𝜆
(𝑒𝜆𝑥−1)]

, 𝜏𝑘−1 < 𝑥 < 𝜏𝑘, 2 ≤ 𝑘 ≤ 𝑚.

 

3. Stress-strength reliability with m-step strength levels 

The stress-strength reliability of the model under the m-step level of the strength variable will be 

deduced as follows: 

𝑅 = ∫ 𝑓𝑥(𝑥)𝐹𝑦(𝑥)𝑑𝑥

∞

0

 

= ∫ 𝑓1(𝑥)𝐹𝑦(𝑥)𝑑𝑥
𝜏1
0

+ ∫ 𝑓2(𝑥)𝐹𝑦(𝑥)𝑑𝑥
𝜏2
𝜏1

+⋯+ ∫ 𝑓𝑘(𝑥)𝐹𝑦(𝑥)𝑑𝑥
𝜏𝑘
𝜏𝑘−1

+⋯+ ∫ 𝑓2(𝑥)𝐹𝑦(𝑥)𝑑𝑥
∞

𝜏𝑚−1
. 

After calculations and since 𝑋  and 𝑌  follow the Gompertz distribution, stress-strength 

reliability will take the following formula: 

𝑅 = ∑𝑒
−∑ 𝛿𝑗(

𝜗𝑗−𝜗𝑗+1
𝜆

)(𝑒
𝜆𝜏𝑗−1)𝑘−1

𝑗=0 {𝑒− 
𝜗𝑘
𝜆
(𝑒𝜆𝜏𝑘−1−1) − 𝑒− 

𝜗𝑘
𝜆
(𝑒𝜆𝜏𝑘−1)

𝑚

𝑘=1

− (
𝜗𝑘

𝜗𝑘 + 𝜗𝑦
) [𝑒

− (
𝜗𝑘+𝜗𝑦
𝜆

)(𝑒𝜆𝜏𝑘−1−1)
− 𝑒

−(
𝜗𝑘+𝜗𝑦
𝜆

)(𝑒𝜆𝜏𝑘−1)
]} , 

(1) 

where 
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𝛿𝑗 = {
1, 𝑗 = 0,
0, 𝑗 ≠ 0,

 𝑓𝑜𝑟 𝜏0 = 0, 𝜗0 = 0, 𝜏𝑚 = ∞. 

4. Maximum likelihood estimation for the stress-strength reliability 

The likelihood function for the stress-strength variables 𝑋 and 𝑌 under type I censoring and in 

case of the step life testing on the strength variable can be formulated as follows: 

𝐿 =
𝑛!

(𝑛−𝑟)!
∏ 𝜗

𝑗

𝑛𝑗𝑚
𝑗=1 ∏ (∏ 𝑓𝑗(𝑥𝑖)

�̅�𝑗
𝑖=�̅�𝑗−1+1

)𝑚
𝑗=1 [1 − 𝐹𝑚(𝜏𝑚)]

𝑛−𝑟 𝑙!

(𝑙−ℎ)!
∏ 𝑓𝑦(𝑦𝑗)
ℎ
𝑗=1 [1 − 𝐹𝑦(𝜀)]

𝑙−ℎ
, 

where 

�̅�𝑗 =∑𝑛𝑖

𝑗

𝑖=1

, 0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑟 < 𝜏𝑚,     0 < 𝑦1 < 𝑦2 < ⋯ < 𝑦ℎ < 𝜀. 

After applying the Gompertz distribution, the following formula will be obtained: 

𝐿 =
𝑛!

(𝑛−𝑟)!
∏ 𝜗

𝑗

𝑛𝑗𝑚
𝑗=1 𝑒

−∑ ∑ [
𝜗𝑗

𝜆
(𝑒𝜆𝑥𝑘−1)−𝜆𝑥𝑘]

�̅�𝑗
𝑘=�̅�𝑗−1+1

𝑚
𝑗=1

𝑒−
∑

𝜗𝑗

𝜆
[(𝑛−�̅�𝑗)(𝑒

𝜆𝜏𝑗−1)−(𝑛−�̅�𝑗−1)(𝑒
𝜆𝜏𝑗−1−1)]𝑚

𝑗=1 , 

𝑙!

(𝑙−ℎ)!
𝜗𝑦
ℎ𝑒

−∑ [
𝜗𝑦

𝜆
(𝑒
𝜆𝑦𝑗−1)−𝜆𝑦𝑗]

ℎ
𝑗=1 𝑒−

(𝑙−ℎ)
𝜗𝑦

𝜆
(𝑒𝜆𝜀−1)

. 

The logarithm of the likelihood function is applied, and the result will be given by 

log 𝐿 = log
𝑛!

(𝑛 − 𝑟)!
+ 𝑛𝑗∑log𝜗𝑗

𝑚

𝑗=1

−∑ ∑ [
𝜗𝑗
𝜆
(𝑒𝜆𝑥𝑘 − 1) − 𝜆𝑥𝑘]

�̅�𝑗

𝑘=�̅�𝑗−1+1

𝑚

𝑗=1

−∑
𝜗𝑗
𝜆
[(𝑛 − �̅�𝑗)(𝑒

𝜆𝜏𝑗 − 1) − (𝑛 − �̅�𝑗−1)(𝑒
𝜆𝜏𝑗−1 − 1)]

𝑚

𝑗=1

+ log
𝑙!

(𝑙 − ℎ)!
+ ℎ log 𝜗𝑦 −∑[

𝜗𝑦
𝜆
(𝑒𝜆𝑦𝑗 − 1) − 𝜆𝑦𝑗]

ℎ

𝑗=1

− (𝑙 − ℎ)
𝜗𝑦
𝜆
(𝑒𝜆𝜀 − 1). 

Differentiating log 𝐿 with respect to the parameters 𝜗𝑗 , 𝑗 = 1,… ,𝑚, 𝜆, 𝜗𝑦 gives 

𝜕 log 𝐿

𝜕𝜗𝑗
=
𝑛𝑗
𝜗𝑗
−∑ ∑

1

𝜆
(𝑒𝜆𝑥𝑘 − 1)

�̅�𝑗

𝑘=�̅�𝑗−1+1

𝑚

𝑗=1

−∑
1

𝜆
[(𝑛 − �̅�𝑗)(𝑒

𝜆𝜏𝑗 − 1) − (𝑛 − �̅�𝑗−1)(𝑒
𝜆𝜏𝑗−1 − 1)]

𝑚

𝑗=1

, 

𝑗 = 1,…𝑚, 

𝜕 log 𝑙

𝜕𝜗𝑦
=

ℎ

𝜗𝑦
− ∑

1

𝜆
(𝑒𝜆𝑦𝑗 − 1)ℎ

𝑗=1 − (𝑙 − ℎ)
1

𝜆
(𝑒𝜆𝜀 − 1). 

After equating to zero, the following formulas are obtained: 
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�̂�𝑗 =
𝜆𝑛𝑗

∑ ∑ (𝑒𝜆𝑥𝑘−1)
�̅�𝑗
𝑘=�̅�𝑗−1+1

𝑚
𝑗=1 +∑ [(𝑛−�̅�𝑗)(𝑒

𝜆𝜏𝑗−1)−(𝑛−�̅�𝑗−1)(𝑒
𝜆𝜏𝑗−1−1)]𝑚

𝑗=1

, 𝑗 = 1,…𝑚,      (2) 

�̂�𝑦 =
𝜆ℎ

∑ (𝑒
𝜆𝑦𝑗−1)ℎ

𝑗=1 +(𝑙−ℎ)(𝑒𝜆𝜀−1)
,                            (3) 

𝜕 log 𝑙

𝜕𝜆
=∑ ∑ [

𝜗𝑗
𝜆2
(𝑒𝜆𝑥𝑘 − 1) − 𝑥𝑘 (

𝜗𝑗
𝜆
𝑒𝜆𝑥𝑘 − 1)]

�̅�𝑗

𝑘=�̅�𝑗−1+1

𝑚

𝑗=1

+∑{
𝜗𝑗
𝜆2
[(𝑛 − �̅�𝑗)(𝑒

𝜆𝜏𝑗 − 1) − (𝑛 − �̅�𝑗−1)(𝑒
𝜆𝜏𝑗−1 − 1)]

𝑚

𝑗=1

−
𝜗𝑗
𝜆
[(𝑛 − �̅�𝑗)𝜏𝑗(𝑒

𝜆𝜏𝑗 − 1) − (𝑛 − �̅�𝑗−1)𝜏𝑗−1(𝑒
𝜆𝜏𝑗−1 − 1)]}

+∑[
𝜗𝑦
𝜆2
(𝑒𝜆𝑦𝑗 − 1) − 𝑦𝑗 (

𝜗𝑦
𝜆
𝑒𝜆𝑦𝑗 − 1)]

ℎ

𝑗=1

+ (𝑙 − ℎ)
𝜗𝑦
𝜆2
(𝑒𝜆𝜀 − 1). 

(4) 

It can be noticed that no analytical solutions can be found for the parameter 𝜆; therefore, the 

Newton-Raphson method will be used with the aid of R software [20]. Then, the maximum likelihood 

estimate for the step-stress strength reliability of the model is obtained by substituting in Eq (1). 

5. Bootstrap intervals for the stress-strength reliability 

Efron and Tibshirani [21] presented an introduction to the bootstrap. The steps for calculating 

parametric and nonparametric bootstrap intervals for the stress-strength reliability with m-step level of 

the strength variable are explained in the following subsections. 

5.1. Parametric bootstrap interval 

To obtain the parametric bootstrap interval for the stress-strength reliability, the following steps 

can be followed: 

Step 1. From given samples (𝑥1, … , 𝑥𝑟)  and (𝑦1, … , 𝑦ℎ) , compute the estimates �̂�𝑗 , 𝑗 =

1,… ,𝑚, �̂�𝑦, �̂� of 𝜗𝑗 , 𝑗 = 1,… ,𝑚, 𝜆, 𝜗𝑦. 

Step 2. Generate a bootstrap sample of size r (𝑥1
∗, … , 𝑥𝑟

∗)  from the Gompertz distribution with 

parameters �̂�𝑗 , 𝑗 = 1,… ,𝑚, �̂� and generate a bootstrap sample of size h (𝑦1
∗, … , 𝑦ℎ

∗) from Gompertz 

distribution with parameters �̂�𝑦, �̂�. 

Step 3. Compute the estimates �̂�𝑗
∗(𝑓𝑜𝑟 𝑗 = 1,… ,𝑚), �̂�𝑦

∗ , �̂�∗  of 𝜗𝑗 , 𝑗 = 1,… ,𝑚, 𝜆, 𝜗𝑦  and then 

compute the bootstrap estimates �̂�∗ of 𝑅 using Eq (1). 

Step 4. Repeat Steps 2 and 3 10000 times to obtain a set of bootstrap samples of �̂�∗ 

{�̂�∗(𝑗), 𝑗 = 1,… ,10000}. 

Step 5. Rearrange �̂�∗(𝑗), 𝑗 = 1,… ,10000  in ascending order such that �̂�∗(1) < ⋯ < �̂�∗(10000).  A 
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100(1 − 𝛼)% bootstrap confidence interval will be given by: 

[�̂�∗10000(𝛼 2⁄ ), �̂�∗10000(1−𝛼 2⁄ )]. 

5.2. Nonparametric bootstrap interval 

To obtain the nonparametric bootstrap interval for the stress-strength reliability, the following 

steps can be followed: 

Step 1. From initial samples (𝑥1, … , 𝑥𝑟)  and (𝑦1, … , 𝑦ℎ) , generate new samples (𝑥1
∗, … , 𝑥𝑟

∗)  and 

(𝑦1
∗, … , 𝑦ℎ

∗) by sampling with replacement. 

Step 2. Compute the estimates �̂�𝑗
∗(𝑓𝑜𝑟 𝑗 = 1,… ,𝑚), �̂�𝑦

∗ , �̂�∗ and then compute the bootstrap estimates 

�̂�∗ of 𝑅 using Eq (1). 

Step 3. Repeat Steps 1 and 2, 10,000 times to obtain a set of bootstrap samples of 𝑅 

{�̂�∗(𝑗), 𝑗 = 1,… ,10000}. 

Step 4. Rearrange �̂�∗(𝑗), 𝑗 = 1,… ,10000  in ascending order such that �̂�∗(1) < ⋯ < �̂�∗(10000).  A 

100(1 − 𝛼)% bootstrap confidence interval will be given by: 

[�̂�∗10000(𝛼 2⁄ ), �̂�∗10000(1−𝛼 2⁄ )]. 

5.3. Bayesian credible interval 

Chen and Shao [22] introduced a Monte Carlo estimation of Bayesian credible and HPD intervals. 

Al-Babtain et al. [23] presented the Bayesian and non-Bayesian reliability estimation of stress-strength 

model for power-modified Lindley distribution. In order to obtain the Bayesian credible interval for 

the stress-strength reliability, the parameters 𝜗𝑗 , 𝑗 = 1,… ,𝑚, 𝜆, 𝜗𝑦  are assumed to be independent 

random variables with prior distributions that follow a gamma distribution, as follows: 

𝜗𝑗~𝐺𝑎𝑚𝑚𝑎(𝜌j, 𝜂𝑗), 𝑗 = 1,… ,𝑚, 

𝜗𝑦~𝐺𝑎𝑚𝑚𝑎(σ, 𝜐), 

𝜆~𝐺𝑎𝑚𝑚𝑎(𝜔, 𝜁). 

The joint prior density function of the parameters 𝜗𝑗 , 𝑗 = 1,… ,𝑚, 𝜆, 𝜗𝑦 can be written as: 

𝜋(𝜗𝑗 , 𝜆, 𝜗𝑦) ∝ ∏ (𝜗𝑗
𝜌j−1𝑒−𝜂𝑗𝜗𝑗)𝑚

𝑗=1 𝜗𝑦
σ−1𝑒−𝜐𝜗𝑦𝜆𝜔−1𝑒−𝜁𝜆. 

The joint posterior density function of 𝜗𝑗 , 𝑗 = 1,… ,𝑚, 𝜗𝑦 𝑎𝑛𝑑 𝜆 given the data (𝑥, 𝑦) is given by: 

𝜋(𝜗𝑗 , 𝜆, 𝜗𝑦|𝑥, 𝑦) ∝ 𝜋(𝜗𝑗 , 𝜆, 𝜗𝑦)𝐿(𝜗𝑗 , 𝜆, 𝜗𝑦|𝑥, 𝑦), 

𝜋(𝜗𝑗 , 𝜆, 𝜗𝑦|𝑥, 𝑦) ∝

∏ (𝜗𝑗
𝜌j−1𝑒−𝜂𝑗𝜗𝑗)𝑚

𝑗=1 𝜗𝑦
σ−1𝑒−𝜐𝜗𝑦𝜆𝜔−1𝑒−𝜁𝜆∏ 𝜗

𝑗

𝑛𝑗𝑚
𝑗=1 𝑒

−∑ ∑ [
𝜗𝑗

𝜆
(𝑒𝜆𝑥𝑘−1)−𝜆𝑥𝑘]

�̅�𝑗
𝑘=�̅�𝑗−1+1

𝑚
𝑗=1

, 

𝑒−
∑

𝜗𝑗
𝜆
[(𝑛−�̅�𝑗)(𝑒

𝜆𝜏𝑗−1)−(𝑛−�̅�𝑗−1)(𝑒
𝜆𝜏𝑗−1−1)]𝑚

𝑗=1 𝜗𝑦
ℎ𝑒

−∑ [
𝜗𝑦
𝜆
(𝑒
𝜆𝑦𝑗−1)−𝜆𝑦𝑗]

ℎ
𝑗=1 𝑒−

(𝑙−ℎ)
𝜗𝑦
𝜆
(𝑒𝜆𝜀−1)
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∝∏𝜗
𝑗

𝑛𝑗+𝜌j−1
𝑒

−∑ 𝜗𝑗{𝜂𝑗+
(𝑛−�̅�𝑗)(𝑒

𝜆𝜏𝑗−1)−(𝑛−�̅�𝑗−1)(𝑒
𝜆𝜏𝑗−1−1)+∑ (𝑒𝜆𝑥𝑘−1)

�̅�𝑗
𝑘=�̅�𝑗−1+1

𝜆
}𝑚

𝑗=1𝑚

𝑗=1

 

𝜗𝑦
ℎ+σ−1𝑒

−𝜗𝑦{𝜐+
∑ (𝑒

𝜆𝑦𝑗−1)+(𝑙−ℎ)(𝑒𝜆𝜀−1)ℎ
𝑗=1

𝜆
}

𝜆𝜔−1𝑒
−𝜆{𝜁−∑ ∑ 𝑥𝑘

�̅�𝑗
𝑘=�̅�𝑗−1+1

𝑚
𝑗=1 −∑ 𝑦𝑗

ℎ
𝑗=1 }

. 

It can be observed that the marginal posterior distributions of 𝜗𝑗 , 𝑗 = 1,… ,𝑚, 𝜗𝑦 𝑎𝑛𝑑 𝜆 are given as: 

𝜋(𝜗𝑗|𝜆, 𝑥) ∝ gamma(𝑛𝑗 + 𝜌j, 𝜂𝑗 +
(𝑛−�̅�𝑗)(𝑒

𝜆𝜏𝑗−1)−(𝑛−�̅�𝑗−1)(𝑒
𝜆𝜏𝑗−1−1)+∑ (𝑒𝜆𝑥𝑘−1)

�̅�𝑗
𝑘=�̅�𝑗−1+1

𝜆
), 

𝜋(𝜗𝑦|𝜆, 𝑦) ∝ gamma(ℎ + σ, 𝜐 +
∑ (𝑒

𝜆𝑦𝑗−1)+(𝑙−ℎ)(𝑒𝜆𝜀−1)ℎ
𝑗=1

𝜆
), 

𝜋(𝜆|𝑥, 𝑦) ∝ gamma (𝜔, 𝜁 − ∑ ∑ 𝑥𝑘
�̅�𝑗
𝑘=�̅�𝑗−1+1

𝑚
𝑗=1 − ∑ 𝑦𝑗

ℎ
𝑗=1 ). 

The Markov chain Monte Carlo simulation method will be given to obtain the Bayesian credible 

interval of stress-strength reliability as follows: 

Step 1. Set initial values 𝜗𝑗
0, 𝑗 = 1,… ,𝑚, 𝜗𝑦

0 𝑎𝑛𝑑 𝜆0 for the parameters 𝜗𝑗 , 𝑗 = 1,… ,𝑚, 𝜗𝑦 𝑎𝑛𝑑 𝜆. 

Step 2. Generate 𝜗𝑗 from 

gamma(𝑛𝑗 + 𝜌j, 𝜂𝑗 +
(𝑛−�̅�𝑗)(𝑒

𝜆𝜏𝑗−1)−(𝑛−�̅�𝑗−1)(𝑒
𝜆𝜏𝑗−1−1)+∑ (𝑒𝜆𝑥𝑘−1)

�̅�𝑗
𝑘=�̅�𝑗−1+1

𝜆
), for 𝑗 = 1,… ,𝑚. 

Step 3. Generate 𝜗𝑦 from gamma(ℎ + σ, 𝜐 +
∑ (𝑒

𝜆𝑦𝑗−1)+(𝑙−ℎ)(𝑒𝜆𝜀−1)ℎ
𝑗=1

𝜆
). 

Step 4. Generate 𝜆 from gamma (𝜔, 𝜁 − ∑ ∑ 𝑥𝑘
�̅�𝑗
𝑘=�̅�𝑗−1+1

𝑚
𝑗=1 − ∑ 𝑦𝑗

ℎ
𝑗=1 ). 

Step 5. Compute stress-strength reliability �̃�𝐵𝑎𝑦𝑒𝑠 using Eq (1). 

Step 6. Repeat Steps 2–5 10,000 times. 

Step 7. Sort the obtained values of �̃�𝐵𝑎𝑦𝑒𝑠 in an ascending order such that �̃�𝐵𝑎𝑦𝑒𝑠
∗(1) < ⋯ < �̃�𝐵𝑎𝑦𝑒𝑠

∗(10000)
. 

Step 8. The 100(1 − 𝛼)% credible interval for 𝑅 is given as [�̃�𝐵𝑎𝑦𝑒𝑠
∗(10000𝛼 2⁄ )

, �̃�𝐵𝑎𝑦𝑒𝑠
∗(10000(1−𝛼 2)⁄ )

]. 

6. Simulation study 

The steps that are used to make a simulation to calculate the maximum likelihood estimate for the 

stress-strength reliability of the model in the R software program are explained below: 

Step 1. Set the initial values for 𝑛, 𝑟, 𝑙, ℎ, 𝜀. 

Step 2. Set the initial values of parameters 𝜗𝑗 , 𝑗 = 1,… ,𝑚, 𝜆, 𝜗𝑦. 
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Step 3. Set the predetermined points 𝜏1, 𝜏2, … , 𝜏𝑚−1. 

Step 4. Choose 𝑛𝑗 , 𝑗 = 1,… ,𝑚, where ∑ 𝑛𝑗
𝑚
𝑗=1 = 𝑟. 

Step 5. Generate the random values of the random variables 𝑋𝑘 by applying the inversion formula as 

follows: 

𝑋𝑘 = 𝜏𝑘−1 +
ln[1−

𝜆

𝜗𝑘
ln(1−𝑢𝑘)]

𝜆
, 0 < 𝑢𝑘 < 1, 𝑘 = 1,2, … ,𝑚. 

Step 6. Generate the random values of the random variables 𝑌 by applying the inversion formula as 

follows: 

𝑌 =
ln[1−

𝜆

𝜗𝑦
ln(1−𝑢)]

𝜆
,     0 < 𝑢 < 1. 

Step 7. Use the Newton-Raphson method in R to solve Eqs (2)–(4) and find the estimates for the 

parameters 𝜗𝑗 , 𝑗 = 1,… ,𝑚, 𝜗𝑦 and 𝜆. 

Step 8. Substitute in Eq (1) to find the maximum likelihood estimate for the stress-strength reliability 

of the model. 

Step 9. Repeat Steps 5–8 10,000 times. 

Step 10. Calculate the bias and mean squared error (MSE) from the following relations: 

𝑏𝑖𝑎𝑠 =
∑ (�̂�𝑖 − 𝑅𝑡𝑟𝑢𝑒)
10000
𝑖=1

10000
, 

𝑀𝑆𝐸 =
∑ (�̂�𝑖−𝑅𝑡𝑟𝑢𝑒)

210000
𝑖=1

10000
. 

The simulation is performed where the experiment is repeated 10,000 times assuming five levels 

(𝑚 = 5) of strength. Different values for (𝑛, 𝑟) and (𝑙, ℎ) are assumed and the values for 𝑛𝑗 , 𝑗 =

1, 2, 3, 4, 5 will be given as follows: 

For 𝑛 = 10, 𝑟 = 5: 𝑛1 = 1, 𝑛2 = 1, 𝑛3 = 1, 𝑛4 = 1, 𝑛5 = 1. 

For 𝑛 = 30, 𝑟 = 15: 𝑛1 = 4, 𝑛2 = 3, 𝑛3 = 3, 𝑛4 = 2, 𝑛5 = 3. 

For 𝑛 = 50, 𝑟 = 30: 𝑛1 = 8, 𝑛2 = 7, 𝑛3 = 4, 𝑛4 = 6, 𝑛5 = 5. 

Tables 1 and 2 show the results for the maximum likelihood estimates �̂�𝑀𝐿𝐸, with bias and the 

MSE, and Bayesian estimates �̃�𝐵𝑎𝑦𝑒𝑠 for stress-strength reliability. Also, the results for the parametric 

(P.B.I), nonparametric bootstrap (N.B.I), and credible intervals for stress-strength reliability with m-

step levels of strength are obtained with the interval lengths. In Table 1, the following initial values for 

the parameters are assumed: 𝜗1 = 1.5,  𝜗2 = 2.5,  𝜗3 = 4.5, 𝜗4 = 1.5,  𝜗5 = 2.5, 𝜆 = 1.5,  𝜗𝑦 = 3.5. 

Also, the following predetermined points are assumed: 𝜏1 = 1.5,  𝜏2 = 3.5,  𝜏3 = 5, 𝜏4 = 10,  𝜏5 =
15  and 𝜀 = 10 . The true value of stress-strength reliability is obtained as 𝑅𝑡𝑟𝑢𝑒 = 0.70000. For 

Bayesian estimation, the following values are assumed: 𝜌j = 𝜂𝑗 = 0.5 (𝑓𝑜𝑟 𝑗 = 1,2,3,4,5), 𝜔 =

1000, 𝜁 = σ = 𝜐 = 0.5. 

In Table 2, the following initial values for the parameters are assumed: 𝜗1 = 0.01, 𝜗2 =
0.01, 𝜗3 = 0.04, 𝜗4 = 0.02, 𝜗5 = 0.05, 𝜆 = 0.05, 𝜗𝑦 = 0.03 . Also, the following predetermined 

points are assumed: 𝜏1 = 50, 𝜏2 = 100, 𝜏3 = 150, 𝜏4 = 200, 𝜏5 = 250 and 𝜀 = 100. The true value 

of stress-strength reliability is obtained as 𝑅𝑡𝑟𝑢𝑒 =0.75000. For Bayesian estimation, the following 

values are assumed: 𝜌j = 𝜂𝑗 = 1 (𝑓𝑜𝑟 𝑗 = 1,2,3,4,5), 𝜔 = 5000, 𝜁 = σ = 𝜐 = 1. 
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Table 1. Results for �̂�𝑀𝐿𝐸 (with bias and MSE), parametric and nonparametric bootstrap 

intervals, �̃�𝐵𝑎𝑦𝑒𝑠, and credible intervals. 

(𝒏, 𝒓) (𝒍, 𝒉) �̂�𝑴𝑳𝑬 Bias MSE P.B.I N.B.I �̃�𝑩𝒂𝒚𝒆𝒔 Credible 

interval 

(10, 5) 

(10, 5) 0.55837 -0.13570 0.01951 [0.51140, 

0.61522] 

(0.10382) 

[0.51840, 

0.62405] 

(0.10565) 

0.56277 [0.33955, 

0.76700] 

(0.42744) 

(30, 15) 0.54920 -0.11974 0.01514 [0.52902, 

0.62341] 

(0.09438) 

[0.52661, 

0.61136] 

(0.08474) 

0.61379 [0.37817, 

0.74349] 

(0.36532) 

(50, 30) 0.68997 -0.00521 0.00053 [0.65874, 

0.73055] 

(0.07180) 

[0.42389, 

0.47042] 

(0.04653) 

0.701835 [0.46673, 

0.79611] 

(0.32938) 

(30, 15) 

(10, 5) 0.53344 -0.16538 0.02892 [0.46417, 

0.59537] 

(0.13119) 

[0.47524, 

0.58896] 

(0.11371) 

0.58951 [0.40268, 

0.74675] 

(0.34407) 

(30, 15) 0.56225 -0.14830 0.02349 [0.48454, 

0.61203] 

(0.12749) 

[0.49921, 

0.60207] 

(0.10286) 

0.59599 [0.45900, 

0.72189] 

(0.26289) 

(50, 30) 0.67188 -0.03612 0.00169 [0.63037, 

0.69389] 

(0.06352) 

[0.69675, 

0.72519] 

(0.02844) 

0.74106 [0.55146, 

0.77515] 

(0.22369) 

(50, 30) 

(10, 5) 0.49790 -0.16735 0.04063 [0.39587, 

0.75281] 

(0.35693) 

[0.43598, 

0.68031] 

(0.24433) 

0.53423 [0.35848, 

0.68989] 

(0.33140) 

(30, 15) 0.44917 -0.16261 0.02828 [0.46520, 

0.60883] 

(0.14363) 

[0.46587, 

0.61032] 

(0.14444) 

0.54051 [0.41547, 

0.65437] 

(0.23889) 

(50, 30) 0.64868 -0.05131 0.00348 [0.59939, 

0.69709] 

(0.09770) 

[0.59800, 

0.69438] 

(0.09638) 

0.65250 [0.51476, 

0.71140] 

(0.19664) 
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Table 2. Results for �̂�𝑀𝐿𝐸 (with bias and MSE), parametric and nonparametric bootstrap 

intervals, �̃�𝐵𝑎𝑦𝑒𝑠, and credible intervals. 

(𝒏, 𝒓) (𝒍, 𝒉) �̂�𝑴𝑳𝑬 Bias MSE P.B.I N.B.I �̃�𝑩𝒂𝒚𝒆𝒔 Credible 

interval 

(10, 5) 

(10, 5) 0.52316 -0.18581 0.03675 [0.50221, 

0.64902] 

(0.14681) 

[0.50659, 

0.65212] 

(0.14552) 

0.67542 [0.44761, 

0.85734] 

(0.40973) 

(30, 15) 0.55960 -0.17929 0.03285 [0.53191, 

0.615036] 

(0.08312) 

[0.51090, 

0.61376] 

(0.10286) 

0.62406 [0.48694, 

0.81526] 

(0.32831) 

(50, 30) 0.67632 -0.08581 0.00799 [0.62353, 

0.70331] 

(0.07978) 

[0.60602, 

0.70801] 

(0.10199) 

0.78835 [0.58226, 

0.86349] 

(0.28122) 

(30, 15) 

(10, 5) 0.48638 -0.21426 0.05067 [0.45338, 

0.65881] 

(0.20542) 

[0.44763, 

0.68096] 

(0.23333) 

0.66799 [0.54292, 

0.86389] 

(0.32097) 

(30, 15) 0.61415 -0.18407 0.03556 [0.51074, 

0.63991] 

(0.12916) 

[0.50317, 

0.64186] 

(0.13869) 

0.716726 [0.58600, 

0.82707] 

(0.24106) 

(50, 30) 0.62683 -0.10142 0.01136 [0.59488, 

0.69984] 

(0.10496) 

[0.59547, 

0.70743] 

(0.11196) 

0.73061 [0.67918, 

0.86517] 

(0.18598) 

(50, 30) 

(10, 5) 0.55550 -0.16434 0.04781 [0.42957, 

0.90070] 

(0.47112) 

[0.55121, 

0.71645] 

(0.16523) 

0.76049 [0.51044, 

0.84084] 

(0.33040) 

(30, 15) 0.54872 -0.13861 0.02188 [0.51955, 

0.68331] 

(0.16375) 

[0.46701, 

0.63014] 

(0.16313) 

0.55126 [0.57270, 

0.79976] 

(0.22706) 

(50, 30) 0.60591 -0.05507 0.00548 [0.61033, 

0.76616] 

(0.15582) 

[0.59318, 

0.71200] 

(0.11882) 

0.71932 [0.67168, 

0.83758] 

(0.16589) 

From the results obtained in Tables 1 and 2, it can be observed that 

1) The mean squared errors of the stress-strength reliability decrease as the values of l and h increase. 

2) The lengths of parametric bootstrap intervals for the stress-strength reliability decrease as the 

values of l and h increase. 

3) The lengths of nonparametric bootstrap intervals for the stress-strength reliability decrease as the 

values of l and h increase. 

4) The lengths of credible intervals for the stress-strength reliability decrease as the values of l and h 

increase. 

7. Real data application 

We consider two data sets that were introduced by Badar and Priest [24]. The first data set (X) 
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represents the strength measured in GPA (Giga-Pascals) for single carbon fibers tested under tension 

at gauge lengths of 20 mm. The second data set (Y) represents the strength measured in GPA for single 

carbon fibers tested under tension at gauge lengths of 10 mm. These data were investigated in many 

papers in the literature. These datasets are listed below: 

Data set (X): 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 

2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 

2.301, 2.359, 2.382,2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 

2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 

2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585. 

Data set (Y): 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 

2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 

2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 

3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 

3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 

Results for Akaike information criterion (AIC), Bayesian information criterion (BIC), Hannan-

Quinn information criterion (HQIC), and consistent AIC (CAIC) for the two datasets (X) and (Y) are 

shown in Table 3 and given by the following formulas: 

AIC = 2𝜉 − 2 log 𝐿, 

BIC = 𝜉 log 𝑛 − 2 log 𝐿, 

HQIC = 2𝜉 log(log 𝑛) − 2 log 𝐿, 

CAIC = 𝜎AIC + (1 − 𝜎)BIC, 

where 𝜉 is the number of model parameters and 𝜎 is a weight factor between 0 and 1. 

Table 3. Results for AIC, BIC, HQIC, CAIC, and K-S test (with p-value) for different distributions. 

Distribution Dataset AIC BIC HQIC CAIC K-S p-value 

Gompertz X 111.2497 115.7179 113.0224 113.4838 0.08478 0.7041 

Y 142.2960 146.5823 143.9818 144.4391 0.13896 0.1754 

Chen (Kayal 

et al. [25]) 

X 114.1069 118.5751 115.8796 116.3410 0.09510 0.5605 

Y 144.0265 148.3128 145.7124 146.1696 0.15338 0.1032 

Lomax exponential 

(Ijaz et al. [26]) 

X 125.7011 130.1693 127.4738 255.8704 0.20465 0.0061 

Y 148.1101 152.3964 149.796 150.2532 0.16170 0.07416 

The results for the Kolmogorov-Smirnov (KS) test with the p-value and a comparison between 

the results obtained for the Gompertz distribution and other distributions discussed in the literature for 

the two datasets (X) and (Y) are shown in Table 3. From the results obtained in Table 3, it can be seen 

that the two datasets fit the Gompertz distribution well. The graphical representation of the probability 

density function by a histogram, the empirical and theoretical cumulative distribution function, the Q-

Q plot, and the P-P plot for the Gompertz distribution subject to dataset (X) and dataset (Y) are 

presented in Figures 1 and 2, respectively. The histogram of the stress-strength reliability, the MCMC 

output of the Bayesian stress-strength reliability with 10,000 iterations, and the plot of the stress-

strength reliability function are shown in Figures 3–5, respectively. 
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Empirical and theoretical densities Empirical and theoretical CDFs 

  

Q-Q plot P-P plot 

 
 

Figure 1. Density, CDF, Q-Q, and P-P plots of Gompertz distribution for dataset (X). 

Empirical and theoretical densities Empirical and theoretical CDFs 

 

 

Q-Q plot P-P plot 

  

Figure 2. Density, CDF, Q-Q, and P-P plots of Gompertz distribution for dataset (Y). 
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Figure 3. Histogram of R. 

 

Figure 4. MCMC output of R. 

 

Figure 5. Plot of R. 

Now, we consider the following data: 𝑛 = 69, 𝑟 = 30, 𝑙 = 63, ℎ = 40,𝑚 = 5, 𝑛1 = 𝑛2 = 𝑛3 =
𝑛4 = 𝑛5 = 6, 𝜀 = 3.2,  𝜏1 = 1.85, 𝜏2 = 2, 𝜏3 = 2.1, 𝜏4 = 2.271, 𝜏5 = 2.5, 𝜌j =  𝜂𝑗 = 0.5 (𝑓𝑜𝑟 𝑗 =

1, 2, 3, 4, 5), σ = 𝜐 = 0.5, 𝜔 = 1000, 𝜁 = 1. 

Then, the stress-strength reliability of the model is calculated as 0.4511373; bias is -0.2488611, 

and MSE is 0.06193185. The nonparametric bootstrap interval for the stress-strength reliability of the 

model is calculated as (0.2280663, 0.440059) with length 0.2119927. The credible interval of the 

stress-strength reliability of the model is calculated as (0.2906386, 0.5319297) with a length of 

0.2412911. 
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8. Conclusions 

The issue of analyzing stress-strength reliability with m levels of the strength variable was 

investigated. The units begin with an initial level of strength, which changes after a period of time 

when a number of units fail; this proceeds until all r units fail. The maximum likelihood estimation 

was introduced under type I censoring and applying the Gompertz distribution to model the lifetime 

of the system. Algorithms for obtaining bootstrap confidence intervals were introduced. The MCMC 

method was given to find the credible interval for stress-strength reliability. A simulation study was 

presented to apply the model to given data, and the numerical results for the estimates for stress-

strength reliability, bootstrap confidence intervals, and credible intervals were obtained. Real datasets 

were presented to obtain stress-strength reliability when applying m levels of the strength variable. 

Future research can deal with different distributions and more cases of stress and strength variables. 
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