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Abstract: Linear mixed-effects models (LMEMs) are widely used in medical, engineering, and social
applications. The accurate specification of the covariance matrix structure within the error term is
known to impact the estimation and inference procedures. Thus, it is crucial to detect the source of
errors in LMEMs specifications. In this study, we propose combining a user-friendly computational
test with an analytical method to visualize the source of errors. Through statistical simulations under
different scenarios, we evaluate the performance of the proposed test in terms of the Power and Type
I error rate. Our findings indicate that as the sample size n increases, the proposed test effectively
detects misspecification in the systematic component, the number of random effects, the within-subject
covariance structure, and the covariance structure of the error term in the LMEM with high Power while
maintaining the nominal Type I error rate. Finally, we show the practical usefulness of our proposed
test with a real-world application.
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1. Introduction

In linear mixed-effects models (LMEMs), the assumptions that concern the structure of the
covariance matrix of the response variable are presumed to be adequately specified. This involves
specifying the mean structure, the covariance matrix structure, and the distribution pattern of the
covariance matrix. These elements define both the covariance among the individuals and those
associated with the vector of random effects. However, verifying these assumptions in LMEMs can be
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challenging due to the complexity of the data structure and the presence of two sources of error within
the model.

Diagnostic tests are crucial for detecting misspecifications errors in LMEMs, as they identify
potential model misrepresentations through analytical methods. Some authors have proposed tests to
detect misspecification when formulating LMEMs. For instance, [3] used a strategy to evaluate the
random effect distribution via a parametric Bootstrap for small samples in the case of mixed models,
generalized linear models, and non-linear mixed models. For this purpose, they used an asymptotic
test based on a gradient function

Through statistical simulations, [10] showed that the increase in Type II error was consistent with
the effect of specification error on the distribution of the random effect for generalized LMEMs. On
the other hand, [7] developed a diagnostic method by performing data reconstruction, to detect
misspecification for generalized LMEMs. The author proposed a theoretical justification of the
method and investigated the behavior of this method via a simulation in finite samples. In these
simulations, the author compared a model without a specification error with a model with a
misspecification in its fixed part.

Several techniques have emerged to discern errors in either the distribution of the error term or
the distribution of random effects within statistical models. These components have been assessed by
different researchers to ensure model integrity and draw accurate conclusions [5,9,16]. Specifically, [8]
proposed a test to analyze specification errors in the distribution of the random error term and the
random effects, while [7] presented a test that allowed them to identify errors in the specification of the
distribution of the random effects.

For LMEMs, exploratory techniques have also been proposed to identify the sources of errors. For
instance, [18] proposed a set of graphical and analytical techniques, based on three types of residuals
(i.e., marginal, conditional, and random effects) for the diagnosis of the intra-unit sample covariance
matrix in repeated measure studies, as well as graphical tools to analyze violations of the error structure
in LMEMs. To identify the number of random effects in an LMEM, the recommended exploratory
methods based on individual and mean profile analyses [15].

Despite their utility, the tests previously described fall short in pinpointing the origins or specific
sources of these errors. Hence, int his paper we propose combining a user-friendly computational
test with an analytical method to visualise the source of errors, while considering the methodology
suggested by [15]. However, our focus does not compare our approach with other approaches in
the literature to determine the superior power behaviour. Instead, we concentrate on integrating two
approaches: a formal test and a graphical diagnostic tool. This combination allows for the detection
of model misspecifications and the identification of source of errors within the model. Hence, the test
detects when the model is misspecified and the analytical method allows us to visualise the source of
the misspecification.

This article is organized as follows: in Section 2, the Gaussian LMEM is outlined; in Section 3, the
proposed test is described; in Section 4, the simulation study and the different scenarios are described in
detail, and in Section 5 the results are reported; subsequently, in Section 6, we illustrate the usefulness
of the proposed test using real data, and present the diagnostic graphical tools to visualize the source
of the misspecification; and finally, the conclusions are recommendations presented, and further areas
of research are discussed.
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2. The Gaussian linear-mixed effects model

A general form of the Gaussian LMEM is

yi = Xiβ + Zibi + ei, i = 1, . . . n, (2.1)

where yi = (yi1 , yi2 , ..., yimi
)> represents the vector of the mi observations recorded for the i-th sample

unit, β = (β1, . . . , βp)> denotes the vector of either the location parameters or the fixed effects, Xi is the
matrix corresponding to the specification of the fixed terms, bi = (b1i, . . . , bqi)> represents the vector
of random effects, Zi is the matrix corresponding to the specification of the vector of random effects
and ei represents the vector of random errors. By definition, bi ∼ Nmi[0,G(θ)] and ei ∼ Nmi[0, Ri(θ)]
are assumed to be independent.

The vector θ = (θ1, . . . θk)> contains all non-redundant components (parameters) of the covariance
matrix of vector bi. The vector φ = (β>, θ>)>(s× 1) represents the vector of all the parameters in (2.1).
It follows that the covariance matrix of the vector yi can be written as

Var(yi) = Vi(θ) = Vi = ZiGZ>i + Ri, (2.2)

where G = G(θ) and Ri = Ri(θ). In summary,

yi ∼ Nmi

[
Xiβ,Vi

]
. (2.3)

The most commonly used estimation methods for the parameters in model (2.1) are the Maximum
Likelihood Estimation (MLE) method and the Restricted MLE (RMLE). For additional details on the
MLE and the RMLE, see [12] and [14], respectively.

The maximum likelihood methodology yields unbiased estimators for the fixed effects, though it
introduces bias in the estimators for the random effects. This bias stems from disregarding the loss of
the degrees of freedom during the estimation of the fixed terms. Consequently, it also results in biased
estimators for the parameters of the intra-unit covariance matrix.

The random vectors y1, . . . , yn are independent with a distribution given by (2.3). The probability
density function associated to each vector yi is denoted as f (yi;φ). Considering the vector

y =
(
yT

i , ..., y
T
n

)T
,

and considering the probability density function of the random variables yi , the likelihood function of
φ is as follows:

L(φ; y) =
∏

1≤i≤n

f (yi;φ) =
∏

1≤i≤n

∫
Rqi

f (yi;φ |bi ) f (bi;φ)dbi. (2.4)

where Rqi is the qi-dimensional space of the vector bi. It follows that the logarithm of (2.4) is
represented by the following:

l(φ; y) = −
1
2

{
N log(2π) + log |V(θ)|+(y − Xβ)>[V(θ)]−1 (y − Xβ)

}
, (2.5)

where V(θ) is is the covariance matrix of y.
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To reduce the bias in the process of estimating the components of the vector θ by RMLE, [12]
and [6] proposed to use a linear transformation of the type y∗ = U>y with E (Uy∗) = 0. The considered
the matrix U, such that U>U = In and UU> = In − X(X>X)−1X>, with

X =
(
XT

i , ..., X
T
n

)T
,

so that,

y∗ ∼ NN−p
[
0,U>V(θ)U

]
, (2.6)

with

N =

n∑
i=1

mi.

The logarithm of the restricted marginal likelihood function is as follows:

lR(θ; y) = −
(N − p)

2
log(2π) −

1
2

log |V(θ)| −
1
2

log
∣∣∣X>[V(θ)]−1X

∣∣∣ − (N − p)
2

ê>[V(θ)]−1ê, (2.7)

where ê = y − Xβ̂(θ), and β̂(θ) =
(
X>[V(θ)]−1X

)−1
X>[V(θ)]−1y is the MLE of β assuming that θ is

known. The maximization of (2.7) generates the estimators θ̂R of maximum plausibility of θ. Hence,
θ̂R in conjunction with β̂R = β̂(̂θR) are the desired RMLEs [2].

The function (2.7) can also be written as follows:

lR(θ; y) = −
1
2

{
(N − p) log(2π) + log |V(θ)| + log

∣∣∣X>[V(θ)]−1X
∣∣∣ + y>Py

}
, (2.8)

with
P = [V(θ)]−1 − [V(θ)]−1X

(
X>[V(θ)]−1X

)−1
X>[V(θ)]−1.

In general, the process that generates the vector y is not known (i.e., the true probability density
g(y) is not known). An LMEM is usually proposed assuming that the distribution of both, the random
effects and the random error term are known. Here, we consider that f (y, φ) is the density function of
the random vector y. If there exists a vector φ0 ∈ Θ such that g(y) = f (y,φ0), with Θ being a compact
subset of a p-dimensional Euclidean space, it can be concluded that the model would be correctly
specified. Otherwise, the model would have a specification error. [20] illustrates that when the model
is correctly specified, φ̂n, which is obtained by either maximum likelihood or restricted maximum
likelihood, is a consistent estimator for φ0 [17, p.34], this is,

φ̂n
p
−→ φ0. (2.9)

When the model is incorrectly specified, there exists a vector φ∗ ∈ Θ, which minimizes the
information criterion using the Kullback − Leibler (KL) distance, that is,

KL(g : f ,φ) = Eg

[
log

g(y)
f (y,φ)

]
=

∫
RN

g(y) log
g(y)

f (y, φ)
dy. (2.10)
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However, when the model is properly specified, [19] proved that the only value that minimized the
KL criterion was φ∗=φ0.

Let us assume that the following matrices exist:

A(φ) = E

[(
∂2l(φ; y)
∂φk∂φl

)]
, B(φ) = E

[(
∂l(φ; y)
∂φk

∂l(φ; y)
∂φl

)]
,

An(φ) =
1
n

n∑
i=1

(
∂2li(φ; yi)
∂φk∂φl

)
, Bn(φ) =

1
n

n∑
i=1

(
∂li(φ; yi)
∂φk

∂li(φ; yi)
∂φl

)
,

A(φ0) = E

[(
∂2l(φ; y)
∂φk∂φl

)]
φ=φ0

, B(φ0) = E

[(
∂l(φ; y)
∂φk

∂l(φ; y)
∂φl

)]
φ=φ0

,

An(φ̂n) =
1
n

n∑
i=1

(
∂2li(φ; yi)
∂φk∂φl

)
φ=φ̂n

, Bn(φ̂n) =
1
n

n∑
i=1

(
∂li(φ; yi)
∂φk

∂li(φ; yi)
∂φl

)
φ=φ̂n

.

According to [19],

An(φ̂n)
as
−→ A(φ). (2.11)

Now, let

− H = −
∂2li(φ; yi)
∂φk∂φl

(2.12)

be the observed information matrix. If model (2.1) is correctly specified [19],

A(φ0) + B(φ0) = 0. (2.13)

The expression (2.13) is called an equality of the information matrix. Under appropriate conditions
[4], it is possible to demonstrate that

√
nφ̂n − φ0

d
−→ Ns

[
0,V(φ0)

]
, (2.14)

with
V(φ0) = [A(φ0)]−1B(φ0)[A(φ0)]−1. (2.15)

3. Proposed test

In this section, we describe in detail a new test designed to detect misspecification errors as and their
source in Gaussian LMEMs. Our proposed test is based on the “Sandwich” estimator of the covariance
matrix of φ̂n and in the equality of the information matrix given by (2.13), under the null hypothesis
H0 that the model (2.1) is correctly specified.

Considering the asymptotic distribution of the estimator φ̂n and under regularity conditions [19], it
is known that

√
n
(
φ̂n − φ0

) A
∼ Ns

[
0,V(φ0)

]
, (3.1)

where V(φ0) is as in (2.15).
Let us consider the vector
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d(φ) = diag
{
[A(φ)]−1B(φ)[A(φ)]−1 + [A(φ)]−1

}
, (3.2)

and assume that it is differentiable in φ0. Thus, we can build the following:

∇d(φ0) = ∇d(φ)
∣∣∣φ=φ0 , 0. (3.3)

Equation (3.3) is a condition necessary for the existence of the gradient. It follows that the vector

d∗n(φ̂n) =diag
{
[An(φ̂n)]−1Bn(φ̂n)[An(φ̂n)]−1 + [An(φ̂n)]−1

}
=diag

{
[An(φ̂n)]−1Bn(φ̂n)[An(φ̂n)]−1

}
+ diag

{
[An(φ̂n)]−1

}
=

1
n

n∑
i=1

d∗i (φ)
∣∣∣φ=φ̂n

(3.4)

is an estimator of (3.2), and a potential indicator for detecting specification errors in the model (2.1).
Let dn(φ) be the following:

dn(φ) = diag
{
[An(φ)]−1Bn(φ)[An(φ)]−1 + [An(φ)]−1

}
=


d11(φ)
...

dss(φ)

 . (3.5)

Then,

∇dn(φ) =∇
{
diag

[
An(φ)−1Bn(φ)[An(φ)]−1 + [An(φ)]−1

]}
(3.6)

=


∂d11(φ)
∂φ1

· · ·
∂d11(φ)
∂φs

...
. . .

...
∂dss(φ)
∂φ1

· · ·
∂dss(φ)
∂φs


s×s

. (3.7)

Using (3.1) under H0 and the Delta method [17, p.136], we obtain the following:

√
n
(
d∗n(φ̂n) − d(φ0)

) D
−→ Ns(0,∇d(φ0)V(φ0)∇d(φ0)>), n→ ∞. (3.8)

Now, if we consider (3.8) under H0 and use Cochran’s theorem [17, p.137], then the test statistic of
the alternative “Sandwich” estimator (ASEST) takes the following form

ASEST = nd∗n(φ̂n)>
[
∇dn(φ̂n)V̂(φ̂n)∇dn(φ̂n)

>]−1
d∗n(φ̂n) (3.9)

where

V̂(φ̂n) = [An(φ̂n)]−1Bn(φ̂n)[An(φ̂n)]−1 (3.10)

is an unbiased and consistent estimator of the covariance matrix of the “Sandwich” estimator for φ̂ [19].
It is straightforward to show that, under H0, ASEST ∼ χ2

s as n → ∞. Thus, the Type I error of the test
can be calculated as follows:
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Type I error = P(ASEST > χ2
α,s |H0 ). (3.11)

Similarly, under the alternative hypothesis H1, the power of the test can be calculated as

Power = 1 − P(ASEST < χ2
α,s |H1 ). (3.12)

4. Simulation study

We conducted numerical experiments to study the behavior of our proposed test in terms of the
Type I error rate and the Power to identify potential misspecifications in LMEMs. The structure in all
models is the same as in (2.1).

In order to reflect particular situations we commonly encounter in practical contexts, five different
cases were considered:

• Case I: Misspecification of the systematic component;
• Case II: Misspecification of the number of random effects; and
• Case III: Random effects are considered independent;
• Case IVa: Misspecification of the within-subject covariance structure;
• Case IVb: Misspecification of the within-subject covariance structure.

We simulated data following a previously published structure of a Gaussian LMEM [1], and
considered [15] to identify a correctly specified model. In particular, the individuals’ profiles were
used to identify both the structure of the mean response and of the random effects of the LMEM. The
identified model, shown as Case I in Table 1, is a second-degree polynomial in the fixed part, and a
first-degree polynomial in the random part. This model can be written as follows:

yi j = β0 + β1xi j + β2x2
i j + b0i + b1ixi j + ei j, (4.1)

where yi j represents a j-th observation of the i-th the individual, xi j is the j-th time registered for the
i-th individual, β = (β0, β1, β2) are the location parameters, θ = (b0i, b1i) represents the intercept, and
random slope, and ei j is the random error term.

Model (4.1) can be written in a compact form where Xi =


1 xi1 x2

i1
...

...
...

1 ximi
x2

imi

 and Zi =


1 xi1
...

...

1 ximi

.
Assuming that G =

(
σ2

0 σ01

σ01 σ2
1

)
, Ri = σ2In, bi ∼ N2[0,G], ei ∼ Nmi[0, Ri], and that bi and ei are

independent (i = 1, . . . n), it follows that

yi ∼ Nmi(Xiβ,Vi), Vi = ZiGZ>i + Ri. (4.2)

AIMS Mathematics Volume 9, Issue 11, 30710–30727.
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Let φ =
(
β>, θ>

)> be the vector of all model parameters for model (4.1). Using LME, the parameter
estimates φ̂n of model (4.1) are as follows:

β̂ =
(

2.451 1.390 0.548
)>
, Ĝ =

(
0.536 0.569
0.569 0.888

)
, and σ̂2 = 0.404, (4.3)

where Ĝ is the estimated covariance matrix of the vector of random effects, G. These values are
considered to be the true values of the parameters in the simulation process. Hence, we subsequently
simulate B data sets of size n and fit a model according to Table 1. The next step is to calculate the
power and the Type I error rate of the proposed test. For the former, we simulated data from the
identified model (that is, Case I) and fit a model in accordance with Table 1. Similarly, to calculate the
Type I error rate, we simulate data of the identified model and fit a different model.

Table 1. Structure, fixed effects, random effects, and error term considered in the numerical
experiments.

Case Model G Ri

I yi j = β0 + β1 xi j + β2 x2
i j︸               ︷︷               ︸

Fixed effects

+ b0i + b1i︸   ︷︷   ︸ xi j

Random effects

+ ei j︸︷︷︸
Error term

 σ2
0 σ01

σ01 σ2
1

 σ2 In

II yi j = β0 + β1 xi j︸     ︷︷     ︸
Fixed effects

+ b0i + b1i︸   ︷︷   ︸ xi j

Random effects

+ ei j︸︷︷︸
Error term

 σ2
0 σ01

σ01 σ2
1

 σ2 In

III yi j = β0 + β1 xi j︸     ︷︷     ︸
Fixed effects

+ b0i︸︷︷︸
Random effect

+ ei j︸︷︷︸
Error term

σ2
0 σ2 In

IVa As in Case I

 σ2
0 σ01

σ01 σ2
1

 σ2



1 ρ ρ2 · · · ρmi−1

1 ρ · · · ρmi−2

1 ρ
.
.
.

. . . ρ

1


, |ρ| < 1

IVb As in Case I

σ
2
0 0

0 σ2
1

 σ2 In

VI yi j = β0 + β1 xi j + β2 x2
i j︸               ︷︷               ︸

Fixed effects

+ b0i︸︷︷︸
Random effect

+ ei j︸︷︷︸
Error term

σ2
0 σ2



1 ρ ρ2 · · · ρmi−1

1 ρ · · · ρmi−2

1 ρ
.
.
.

. . . ρ

1


, |ρ| < 1

5. Results

5.1. Case I: Misspecification of the systematic component

Here, we generated B = 10, 000 data sets from Model I in Table 1 using the estimates β̂, Ĝ, and σ̂2

in (4.3). Thus, the response vector is such that yi ∼ Nmi(Xiβ,Vi), where Vi = ZiGZ>i + Ri.
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In order to assess the misspecification of the systematic component, we fitted Model II in Table
1 to the simulated data. Note that, in this model, the quadratic term is omitted; hence, the model is
misspecified. The Type I error rate and Power, as a function of n, are reported in Figure 1. Overall, our
results for Case I indicate that as n → ∞, the Type I error of the test gets closer to the nominal Type
I error rate of 5% and the Power increases, suggesting that our proposed test is capable of correctly
detecting a misspecificacion in the systematic component of the LMEM model as n increases.

5.2. Case II: Misspecification of the number of random effects

To assess the Type I error and Power of the proposed test in this specific instance, we created B =

10, 000 datasets based on Model I of Table 1, utilizing the estimates provided in (4.3). Subsequently,
we fitted Model III from the same table. By design, here we omit the random slope that induces
the specification error in the number of random effects; therefore, the covariance matrix generated by
this model induces a uniform structure, in which the variances are constant over time. Our results,
presented in Figure 1, show that as n → ∞, the Type I error of the test gets closer to the nominal
level and the Power increases, suggesting that the proposed test is capable of correctly detecting the
misspecification in the number of the random effects as the sample size increases.

5.3. Case III: Random effects are considered independent

Using a simulation strategy similar to that previously discussed in Case I and Case II, we simulated
B = 10, 000 data sets from Model I and fitted Model III (see Table 1 for more details) to reflect
a misspecification error in the covariance matrix of the random effects. In particular, we wrongly
considered that the random effects were independent and assessed the performance of the proposed
test to detect such misspecifications. Figure 1 shows the results. Overall, our findings suggest that the
Type I error of the proposed test gets closer to the nominal level of 5% as n increases, suggesting that
our test controls the probability of wrongly identifying a misspecification of the covariance structure
of the random effects. In addition, the Power of the proposed test in Case III is > 0.95 regardless of n,
and increases to 1 for n > 300. This result indicates that the proposed test is highly likely to detect a
misspecification error in the covariance structure of the random effects when it actually exists.

5.4. Case IVa: Misspecification of the within-subject covariance structure

Here, we assess the performance of the proposed test when the covariance matrix of the response
vector is misspecified. In particular, we consider that the random error term follows an autoregressive
(AR) process of order 1 with ρ = 0.9. Following (3.9), the test statistic is χ2

calculated = 1233.4 and the
associated p-value is < 1 × 10−16, indicating that the LMEM is misspecified.

Following a similar simulation strategy to that previously described, we assessed the Type I error
rate and the Power of the proposed test when a misspecification of the within-subject covariance
structure exists. The results are presented in Figure 1. As seen for the other cases, for Case IVa, the
Type I error of the proposed test gets closer to the nominal level as n increases, and the Power of the
proposed test is > 0.9 regardless of n and increases to 1 for n > 500. Overall, these results indicate
that the proposed test performs reasonably well for detecting a misspecification error in the
within-subject covariance structure when it actually exists, and controls the Type I error when it does
not.

AIMS Mathematics Volume 9, Issue 11, 30710–30727.



30719

a b

C
as

e 
I

C
as

e 
II

C
as

e 
III

C
as

e 
IV

a
C

as
e 

IV
b

Fi
gu

re
1.

(a
)T

yp
e

Ie
rr

or
an

d
(b

)P
ow

er
of

th
e

pr
op

os
ed

te
st

fo
re

ac
h

C
as

e
in

Ta
bl

e
1

as
a

fu
nc

tio
n

of
th

e
sa

m
pl

e
si

ze
,n

.T
he

bl
ue

lin
e

re
pr

es
en

ts
a

Ty
pe

Ie
rr

or
of

5%
.

AIMS Mathematics Volume 9, Issue 11, 30710–30727.



30720

5.5. Case IVb: Misspecification in the within-subject covariance structure

This case is similar to Case IVa. However, there is a specification error in the number of random
effects and in the within-subject covariance matrix. In particular, we simulated B = 10, 000 data sets
from a model that has an intercept, slope, and quadratic effect in the fixed part, and only an intercept
in the random part. In addition, the random error term follows an AR(1) process. With the simulated
data, we fitted a Model I of 1, which includes an intercept, slope, and square effect in the fixed part,
and an intercept and slope in the random part. We subsequently fitted Model IVb, which includes an
intercept and a slope in the fixed part, and considers that the random effects are homoscedastic with a
conditional independence. Figure 1 displays the results.

6. An illustration with real data

Nagle (2018) [11] presented a dataset that analyzed the temporal shift in the production of stop
consonants by a group of 24 English learners (Figure 2). The phonetic context is controlled with
4 dummy characters: ‘Pafo’, ‘Bafo’, ‘Pamuso’, and ‘Bamuso’. With the first two characters, the
occlusion occurs on a stressed syllable, while with the other two, the occlusion occurs on an unstressed
syllable. The outcome variable was voice onset time (VOT), which is an acoustic measure representing
the time elapsed between the onset of vocalisation and the release of an occlusion closure. Five sessions
were conducted for each student. Two stress categories were analysed, as well as each participant’s
age and stress, among other variables. In this study, it was of interest in the study to differentiate the
VOT variation from the individuals’ variations.

25

50

75

100

0 1 2 3 4
Session

V
O

T

Figure 2. Individuals’ profiles (in gray) around the loess profile (dashed line).

Figure 2 suggests that introducing sessions as a random effect may be appropriate. Thus, an LMEM
will allow us to analyze the individuals’ and the global behavior, even with incomplete data for some
individuals, as shown in Figure 2. In addition, we illustrate the proposed test to identify the source of
error, if there is a misspecification in the model.
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6.1. Model specification, estimation and proposed test

Given the behavior of the profiles in Figure 2, we can suggest an LMEMs with intercept, slope,
and quadratic effect in the fixed part, and an intercept and slope in the random part. To model the
observed heteroscedasticity, we propose a homoscedastic LMEM with a conditional independence for
simplicity. The general form of this model was previously described and is given in (4.1). Table 2
shows the MLEs of φ =

(
β>, θ>

)>, and the vector of all model parameters in (4.1).

Table 2. MLEs for the (a) Fixed and (b) Random part of model (4.1).

(a) Fixed part
Term Estimate SE df t P−value
β0 46.24 4.16 24.22 11.12 0.00
β1 -10.22 1.33 28.69 -7.66 0.00
β2 1.98 0.16 4356.48 12.34 0.00

(b) Random part
Term Variance Estimate
b0 405.96
b1 33.55
e 15.984

Note: SE: Standard Error; df : degrees of freedom; t: test statistic.

Under the null hypothesis that the model (4.1) is correctly specified, the ASEST test statistic is
χ2

calculated = 1.279 × 10−9 and the associated p-value is > 0.05. Thus, no misspecification is detected.
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Figure 3. Modified Lesaffre–Verbeke unit index plot for model (4.1). Dashed line represents
the Q3 + 1.5 IQR. Q3: 3rd quatile; IQR: interquartile range.

6.2. Graphical diagnostic tests

As a complement to the ASEST proposed test for identifying misspecification errors in model (4.1)
for the VOT data set [11], here we employed several graphical diagnostic tests on the fitted model. Our
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results are presented in Figures 3–8.

Figure 3 presents the residual diagnostic plot for the modified Lesaffre–Verbeke index. The plot
suggests that the proposed covariance structure may be suitable for the 24 units, as our results do not
indicate any significant deviations from the expected behavior if the model were incorrectly specified.

Our interest in this section is to illustrate the graphical diagnostic methodology that allows us to
identify and locate the source of the specification error, if it exists. In this case, the model is incorrectly
specified in the sources identified.

On the other hand, Figure 4 shows the standard raw residual Q-Q plot for the fitted model. This
result, which is in line with the findings of the proposed test, suggests that the error distribution for the
adopted LMEMs does not seem to have heavy tails.

−2 0 2

−4
−2

0
2

N(0,1) quantiles

St
an

da
rd

ize
dd

 le
as

t c
on

fo
un

de
d 

re
si

du
al

s

Std least confounded residuals

D
en

si
ty

−6 −2 2 6

0.
00

0.
10

0.
20

0.
30

−2 0 2

−4
−2

0
2

N(0,1) quantiles

St
an

da
rd

ize
dd

 le
as

t c
on

fo
un

de
d 

re
si

du
al

s

Std least confounded residuals

D
en

si
ty

−6 −2 2 6

0.
00

0.
10

0.
20

0.
30

Std least confounded residuals

Figure 4. Q-Q plot (left) and histogram (right) for the standardized conditional residuals.

Additionally, we analyzed the potential influential observations based on the Mahalanobis distance
(Figure 5). Notably, it is critical to identify observations may be crucial for a subsequent analysis in the
context LMEMs; however, this cannot be achieved using our ASEST test. Therefore, the relevance of
this plot lies in its ability to visualize and potentially highlight influential observations. Interestingly,
we identified that two possible observations (i.e., observations #5 and #6) may be influential. Although
this result warrants a further investigation to detect potential outliers or inconsistent values based on
the findings, we can statistically treat them as possible influential values.

Another important aspect that cannot be addressed using the analytical version of the ASEST test,
is the identification of patterns in the fixed effects of the LMEM. Figure 6 shows the diagnostic plot
for such a suggestion when model (4.1) is fitted to the VOT data (Figure 2), which suggests that there
is no evidence to illustrate the omission of any fixed effect.
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Figure 5. Mahalanobis distance as a function of the unit index for identifying influential
observations.
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Figure 6. Standardized vs. marginal fitted residuals (left) and histogram of the standardized
residuals (right) for the VOT data set based on model (4.1).

Consequently, we should check whether the adopted Gaussian assumption for the random effect in
model (4.1) is not suitable through the ASEST test. Thus, we propose the use of a Q-Q plot for the
Mahalanobis distance, as shown in Figure 7. Overall, these results suggest no evidence against the
adopted Gaussian assumption for the random effects.
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Figure 7. Q-Q plot for the Mahalanobis distance.

Finally, the vector of conditional errors was assumed to have a homoscedastic structure in model
(4.1). However, the ASEST test cannot be directly used to validate such an assumption. Thus, we
encourage the use of the standardized minimally confounded residuals, shown in Figure 8, as a suitable
alternative for such a purpose. When applied to the VOT data set, the plot indicates that the assumption
holds, which is in line with the assumption made while proposing the LMEM model given in (4.1).
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Figure 8. Standardized residuals vs. predicted values (left) and histogram of the standardized
residuals (right) for the VOT data set based on model (4.1).
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7. Discussion and conclusions

LMEMs are widely used to analyze complex data structures; however, they are susceptible to
various types of misspecification errors that can lead to biased or inconsistent estimates. Hence,
detecting misspecification errors in LMEMs is crucial to ensure the accuracy and reliability of
statistical inferences. These errors can arise from incorrect assumptions about the systematic
component, random effects, within-subject covariance structure, or error term covariance structure.

In this study, we developed ASEST, a novel test specifically designed to identify misspecifications
within LMEMs and accurately identifying their sources. Our approach applied the Delta method to
leverage the asymptotic behavior of the test. The construction methodology was outlined in Sections 2
and 3, followed by a comprehensive analysis of diverse scenarios explained in detail in Section 4, and
the associated results in Section 5.

One of the main advantages of our proposed test is its computational efficiency. We developed
and implemented functions that exhibited rapid responsiveness, which ensures their applicability for
real-world use. In the future, we plan to contribute the implementation of the ASEST test to the
Comprehensive R Archive Network (CRAN) [13] repository to facilitate its accessibility and wider
use.

An intriguing aspect of our methodology lies in its compatibility with models that feature no
missing data, as displayed in Figure 2. Furthermore, we complement our analytical framework with a
graphical methodology. This combined approach not only discerns erroneous model specifications,
but also visually elucidates the origins of misspecification within the model structure. Notably, few
methodologies are specifically designed to achieve this goal, particularly when it is of interest to
identify the source of the misspecification. However, the integration of a robust statistical test,
methodological clarity, computational efficiency, and the potential for future repository integration
underscore the substantive contributions of our study. Our approach holds promise for a widespread
adoption, offering a comprehensive toolkit to accurately assess and rectifying misspecification errors
within LMEMs. Hence, the integration of statistical testing and graphical diagnostics in our
methodology will significantly expand the diagnostic capabilities of LMEMs.

Future studies should be aimed at investigating additional scenarios to first assess the impact of
simultaneous changes in the distribution of random effects and random errors. In this complex setting,
it is crucial to analyse its feasibility to simultaneously detect the origin of both errors. This is
particularly important as it is challenging to distinguish between the two. Identifying the sources of
these errors in this scenario poses significant computational challenges, which require innovative
methods and advanced statistical techniques to effectively address this issue.

Second, the performance of our test must be assessed in cases where the vector of random effects
does not follow a Normal distribution. Although preliminary numerical experiments showed that the
results presented in this study seemed to hold when this was the case, a more comprehensive
evaluation has yet to be explored and completed. Third, here we considered a homoscedastic
conditional independence structure for the covariance of the random error term. Further lines of
research could explore AR(p), non-constant, and not homogeneous covariance structures for the error
term.

Finally, in our numerical experiments (see Section 4 for further details), the number of predictors or
features p were small compared to the sample size n. However, in many fields, the number of features
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in the data are typically larger than the sample size (i.e., p >>> n). Therefore, the performance of our
proposed test must be evaluated in these settings to ensure its effectiveness in real-world applications.

Code availability

The R code for generating the plots and results in this paper is available from the first author upon
request.
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