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product fuzzy relation inequalities, as well as in solving the corresponding fuzzy relation optimization
problems. In this work, we propose a sufficient and necessary condition for checking whether a given
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1. Introduction

The fuzzy relation inequality is a concept in fuzzy set theory that generalizes the notion of inequality
from classical mathematics to the context of fuzzy sets. In classical mathematics, inequality is a
binary relation between two elements that describes the order or magnitude relationship between them.
However, in fuzzy set theory, where membership degrees quantify uncertainty, the notion of inequality
must be broadened.

In fuzzy set theory, a fuzzy relation is defined as a mapping from a Cartesian product of two sets
to the unit interval [0, 1]. It indicates a degree of compatibility or similarity between elements of the
two sets. A fuzzy relation inequality refers to a comparison of two fuzzy relations in terms of their
membership degrees.

To understand fuzzy relation inequalities, it is important to grasp the concept of composition of
fuzzy relations. The composition of two fuzzy relations combines their degrees of compatibility or
similarity to produce a new fuzzy relation. The commonly used composition in the fuzzy relation
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equations or inequalities is the max-t-norm. There are three elementary types of continuous t-norm,
i.e., minimum (min), product, and Łukasiewicz t-norm. The existence conditions for the max-t-norm
composition were presented in [1]. The first studied was the max-min composition in a fuzzy relation
system [2]. However, it was later discovered that the max-product one would be more suitable for
some specific situations [3,4]. The investigation of the max-product fuzzy relation equations would be
traced back to [5].

Whether it is an equations system or an inequalities system, the fuzzy relation system composed by
max-product composition could be completely solved [4,6,7]. Its complete solution set was generated
by a maximum solution and a finite number of minimal solutions [8]. Deriving all its minimal
solutions is equivalent to an NP-hard problem (exactly the set covering problem) [9]. The number
of minimal solutions increases exponentially associated with the number of variables and equations (or
inequalities) [7, 8]. As presented in [4], the proposed resolution approach should eliminate the non-
minimal solution for obtaining the complete set of minimal solutions. As a consequence, the method
for checking whether a solution is minimal becomes crucial in this procedure.

Since there may exist exponentially many minimal solutions, it can be difficult or even unnecessary
to find out all minimal solutions. Instead of solving all the minimal solutions, it is often more practical
to obtain some specific minimal solutions in some particular situations, such as the lexicographic
minimal solution [10] and the minimal solution with an upper bound [11, 12]. In these cases, it is
also important to check whether a solution is indeed minimal.

In fact, regarding the max-product fuzzy relation inequalities, one of the hottest research topics is
the associated optimization problems [13–15]. For most of the linear optimization problems subject to
the max-product fuzzy relation inequalities, there exists a minimal solution such that it is exactly an
optimal solution of the optimization problem [16]. As a result, one could find the optimal solution by
selecting it from the set of all minimal solutions, or quasi-minimal solutions [17–19].

The famous t-norms and s-norms (or, say, t-conorms, the dual norms of t-norms) were fully
discussed in [20–22]. The authors investigated some important properties of two kinds of triangular
norms. There were several kinds of classical t-norms, including minimum (∧), product (·), Łukasiewicz
TŁ and the Yager t-norm. It is well known that the minimum operator and the product operator are two
commonly used t-norms, due to their wide application. These composed operators play a key role in
the fuzzy relation systems, including the inequalities system and equations system [23–25].

Regarding the FRSs, there were two major research topics, i.e., (i) solving the complete solution set
of the FRS and (ii) solving the optimal solution of the optimization problems subject to the FRS [24].
Both these two research topics require the set of all minimal solutions. For the topic in (i), the minimal
solution set is indispensable due to the structure of the complete solution set. It is well known that the
solution set S for an FRS with max-t-norm composition could be written as [23, 26]

S =
⋃
x̌∈Š

{x|x̌ ≤ x̂}, (1.1)

where Š represents the set of all minimal solutions, while x̂ is the maximum solution. In Eq (1.1), the
minimal solution set Š could also be replaced by the set of all quasi-minimal solutions.

On the other hand, for the topic in (ii), the minimal solution set also plays a key role [27–29]. For
the optimization problems subject to an FRS, the optimal solution was obtained by selecting in the set
of all minimal solutions [30–32] or quasi-minimal solutions [33–35], or was generated by a series of
sub-problems derived by all the minimal solutions [36–38].

AIMS Mathematics Volume 9, Issue 11, 30667–30685.



30669

As a consequence, solving the minimal solution set is important in the investigation on the FRS.
Then another problem arises, which is how to obtain the minimal solution set. Unfortunately, as
pointed out in [7, 10, 39], for the fuzzy relation inequalities system with max-product composition, it
is incapable of computing all the minimal solutions directly. Hence, in this work we aim to propose an
effective approach for checking whether a vector (or a quasi-minimal solution) is a minimal solution.
This approach enables us to find the minimal solution set with a lower computational complexity.

In this work, we aim to address the problem of checking whether a solution is minimal in the
system of max-product fuzzy relation inequalities. We structure the remainder of our work as follows:
Section 2 provides some preliminaries on the max-product system. The major content is set in
Section 3, in which we develop the approach for checking whether a given solution is minimal. An
illustrative example is included in Section 4. In Section 5, we further discuss our proposed checking
approach by comparing it to some existing works. Finally, Section 6 presents the conclusion.

2. Max-product fuzzy relation inequalities

In this section, we present the max-product fuzzy relation inequalities and their related existing
concepts and results. The max-product fuzzy relation inequalities have been studied in [7, 23, 40].

In [7], the following max-product fuzzy relation inequalities were introduced for describing the
system of wireless communication emission base stations:

α11x1 ∨ α12x2 ∨ · · · ∨ α1nxn ≥ β1,

α21x1 ∨ α22x2 ∨ · · · ∨ α2nxn ≥ β2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

αm1x1 ∨ αm2x2 ∨ · · · ∨ αmnxn ≥ βm,

(2.1)

in which αi j, x j ∈ [0, 1], βi ∈ (0, 1], and

M = {1, 2, · · · ,m}, N = {1, 2, · · · , n}.

Here M and N are two index sets; “∨” means the maximum operation. The matrix form of (2.1) is
usually denoted by

α � x ≥ β, (2.2)

with α = (αi j)i∈M, j∈N , x = (x j) j∈N , β = (βi)i∈M. Following the formulae in (2.2), we could characterize
the complete solution set of (2.1) or (2.2) as follows:

S(α, β) = {x ∈ [0, 1]n|α � x ≥ β}.

Definition 1. [23, 40] We say system (2.1) is consistent if S(α, β) , ∅. Otherwise, it is said to be
inconsistent.

Definition 2. [23, 40] Let x̃ ∈ S(α, β) be a solution for (2.1). If x̃ ≥ x for any x ∈ S(α, β), we say x̃ a
minimal solution. If for any x ∈ S(α, β), x ≤ x̃ indicates x = x̃, we say x̃ a maximum solution.

Let
x̂ = (1, 1, · · · , 1)1×n. (2.3)

Theorem 1 below, presented in [7], is used to verify the consistency of (2.1) using the vector x̂
introduced above.
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Theorem 1. [23, 40] System (2.1) is consistent iff x̂ ∈ S(α, β). Moreover, when system (2.1) is
consistent, x̂ serves as the maximum solution.

In addition, we provide some related properties on system (2.1) as follows:

Proposition 1. [23, 40] Let x ∈ S(α, β) be a solution. Then x′ is also a solution, for any x′ ∈ [x, x̂].

Proposition 2. [23, 40] Let x′, x′′ ∈ S(α, β) be two solutions. Then x′ ∨ x′′ is also a solution.

If we denote the set of all minimal solutions by Š(α, β), then the complete solution set of (2.1) can
be represented in the form presented in Theorem 2 below.

Theorem 2. [23, 40] The complete solution set to system (2.1) is

S(α, β) =
⋃

x̌∈Š(α,β)

[x̌, x̂]. (2.4)

3. How to check whether a solution is minimal in the solution set S(α, β)

In this section, we always assume that y = (y1, · · · , yn) is a given solution in system (2.1), i.e.,
y ∈ S(α, β). We aim to propose an effective method for checking whether the solution y is a minimal
solution.

3.1. Properties on three index sets

Based on the given solution y, we first denote the following index sets:

N+ = { j ∈ N|y j > 0}, (3.1)

M= = {i ∈ M|αi1y1 ∨ αi2y2 ∨ · · · ∨ αinyn = βi}. (3.2)

Moreover, ifM= , ∅, we further set

Ni = { j ∈ N|αi jy j = βi}, (3.3)

for any i ∈ M=.
Next, we investigate some relevant properties on the above three index sets.

Proposition 3. If y is minimal in S(α, β), then there should be N+ , ∅ andM= , ∅.

Proof. (i) It is self-evident y ∈ S(α, β). Taking arbitrarily i ∈ M, we have∨
j∈N

αi jy j = αi1y1 ∨ αi2y2 ∨ · · · ∨ αinyn ≥ βi, (3.4)

according to system (2.1). Since αi j ∈ [0, 1] and βi > 0, there exists j′ ∈ N such that

y j′ ≥ αi j′y j′ =
∨
j∈N

αi jy j ≥ βi > 0. (3.5)

That is j′ ∈ N+ by (3.1). Thus N+ , ∅.
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(ii) (By contradiction) Assume thatM= = ∅. Then by (3.2) and (3.4),∨
j∈N

αi jy j > βi, ∀i ∈ M. (3.6)

Denote Υ =
∧

i∈M
(
∨
j∈N

αi jy j − βi). Then it is clear that Υ > 0.

Let j+ ∈ N+ be an arbitrary index in N+. Then by (3.1), y j+ > 0. Define y′ = (y′1, · · · , y
′
n) by

y′j =

y j+ − y j+ ∧ Υ, if j = j+,

y j, if j , j+.
(3.7)

It is clear that y′ ∈ [0, 1]n. Moreover, since Υ > 0 and y j+ > 0, we have

y′j+ = y j+ − y j+ ∧ Υ < y j+ . (3.8)

According to (3.7), it also holds that y′j ≤ y j, ∀ j ∈ N . This shows that y′ ≤ y and y′ , y.
Next, we check that y′ ∈ S(α, β). Take arbitrarily l ∈ M. We have

Υ =
∧
i∈M

(
∨
j∈N

αi jy j − βi) ≤
∨
j∈N

αl jy j − βl. (3.9)

Case 1. If αl j+y j+ =
∨
j∈N

αl jy j, then

∨
j∈N

αl jy′j ≥ αl j+y′j+ = αl j+(y j+ − y j+ ∧ Υ)

≥ αl j+(y j+ − Υ) = αl j+y j+ − αl j+Υ

≥ αl j+y j+ − Υ

=
∨
j∈N

αl jy j − Υ

≥
∨
j∈N

αl jy j − (
∨
j∈N

αl jy j − βl)

= βl.

(3.10)

Case 2. If αl j+y j+ ,
∨
j∈N

αl jy j, i.e., αl j+y j+ <
∨
j∈N

αl jy j, then there exists j′ ∈ N such that j′ , j+ and

αl j′y j′ =
∨
j∈N

αl jy j. By (3.6), we have αl j′y j′ =
∨
j∈N

αl jy j > βl. Since j′ , j+, it follows from (3.7) that

y′j′ = y j′ . As a result, ∨
j∈N

αl jy′j ≥ αl j′y′j′ = αl j′y j′ =
∨
j∈N

αl jy j > βl. (3.11)

Combining Cases 1 and 2, we have
∨
j∈N

αl jy′j ≥ βl, ∀l ∈ M. Hence y′ ∈ S(α, β). However, it has been

proved above that y′ ≤ y and y′ , y. This leads to a contradiction since y is minimal in S(α, β). �

Proposition 4. Let y be minimal in S(α, β). Then we haveNi , ∅, for any i ∈ M=. Moreover, it always
holds that

⋃
i∈M=

Ni ⊆ N
+.
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Proof. Take any index i ∈ M=. It follows from (3.2) that αi1y1 ∨ αi2y2 ∨ · · · ∨ αinyn = βi. There exists
j′ ∈ N such that

αi j′y j′ = αi1y1 ∨ αi2y2 ∨ · · · ∨ αinyn = βi.

Hence j′ ∈ Ni , ∅.
Arbitrarily choose i ∈ M= and j ∈ Ni. By (3.3), we have αi jy j = βi. Considering the given condition

that αi j, y j ∈ [0, 1] and βi ≥ 0, we further get y j ≥ αi jy j = βi > 0. Hence j ∈ N+ by (3.1). This means
Ni ⊆ N

+ for arbitrary i ∈ M=, i.e.,
⋃

i∈M=

Ni ⊆ N
+. �

3.2. Necessity and sufficiency for checking a minimal solution using the above index sets

Let ∆ = ∆1 ∧ ∆2, where

∆1 =
∧
j∈N+

y j, ∆2 =
∧

i∈M−M=

(
∨
j∈N

αi jy j − βi). (3.12)

Proposition 5. Suppose ∆ is defined as (3.12). Then we have ∆ > 0.

Proof. Since y ∈ S(α, β) is a solution, according to system (2.1), it holds

αi1y1 ∨ αi2y2 ∨ · · · ∨ αinyn ≥ βi, ∀i ∈ M.

Furthermore, according to (3.2), we have

αi1y1 ∨ αi2y2 ∨ · · · ∨ αinyn > βi, ∀i ∈ M −M=,

i.e.,
∨
j∈N

αi jy j − βi > 0, ∀i ∈ M −M=. Thus, ∆2 =
∧

i∈M−M=

(
∨
j∈N

αi jy j − βi) > 0.

On the other hand, according to (3.1), it is evident y j > 0, ∀ j ∈ N+. As a consequence, ∆1 =∧
j∈N+

y j > 0 and ∆ = ∆1 ∧ ∆2 > 0. �

Take an arbitrary index j+ in N+, i.e., j+ ∈ N+. Applying the above-obtained number ∆, we
construct a vector y−∆ = (y−∆

1 , y−∆
2 , · · · , y−∆

n ) as below.

y−∆
j =

y j+ − ∆, if j = j+,

y j, if j , j+.
(3.13)

Proposition 6. Suppose y−∆ is defined as (3.13). Then we have y−∆ ∈ [0, 1]n. Moreover, for any
i ∈ M −M=, it holds that

αi1y−∆
1 ∨ αi2y−∆

2 ∨ · · · ∨ αiny−∆
n ≥ βi. (3.14)

Proof. (i) To prove y−∆ ∈ [0, 1]n, we have to verify y−∆
j ∈ [0, 1], for any j ∈ N .

If j , j+, then by (3.13), y−∆
j = y j ∈ [0, 1]. If j = j+, then y−∆

j+ = y j+ − ∆. Note that ∆ = ∆1 ∧ ∆2 and
∆1 =

∧
j∈N+

y j. Since j+ ∈ N+, it is obvious

∆ ≤ ∆1 =
∧
j∈N+

y j ≤ y j+ .
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Hence, y−∆
j+ = y j+ − ∆ ≥ 0. On the other hand, since ∆ > 0 according to Proposition 5, it also holds

y−∆
j+ = y j+ − ∆ ≤ y j+ ≤ 1. Thus y−∆

j+ ∈ [0, 1].
(ii) Since y ∈ S(α, β), we have

αi1y1 ∨ αi2y2 ∨ · · · ∨ αinyn ≥ βi, ∀i ∈ M. (3.15)

Take an arbitrary indicator i′ ∈ M −M=.
Case 1. If αi′ j+y j+ =

∨
j∈N

αi′ jy j, then by (3.12),

∆2 ≤
∨
j∈N

αi jy j − βi, ∀i ∈ M −M=.

Hence, ∆2 ≤
∨
j∈N

αi′ jy j − βi′ . So we further have

∨
j∈N

αi′ jy−∆
j ≥ αi′ j+y−∆

j+ = αi′ j+(y j+ − ∆) = αi′ j+y j+ − αi′ j+∆

≥ αi′ j+y j+ − ∆

≥ αi′ j+y j+ − ∆2 =
∨
j∈N

αi′ jy j − ∆2

≥
∨
j∈N

αi′ jy j − (
∨
j∈N

αi′ jy j − βi′)

= βi′ .

(3.16)

Case 2. If αi′ j+y j+ ,
∨
j∈N

αi′ jy j, there should be αi′ j′y j′ =
∨
j∈N

αi′ jy j for some j′ ∈ N with j′ , j+. By

(3.13) and (3.15), ∨
j∈N

αi′ jy−∆
j ≥ αi′ j′y−∆

j′ = αi′ j′y j′ =
∨
j∈N

αi′ jy j ≥ βi′ . (3.17)

�

Proposition 7. For i ∈ M=, we have
(i) if there exists k ∈ N with k < Ni, then

∨
j,k
αi jy j = βi,

(ii) if |Ni| ≥ 2, then for any k ∈ Ni,
∨
j,k
αi jy j = βi.

Proof. (i) For i ∈ M=, by (3.2) it holds

(
∨
j,k

αi jy j) ∨ αikyk =
∨
j∈N

αi jy j = βi. (3.18)

Thus, either
∨
j,k
αi jy j = βi or αikyk = βi holds. Since k < Ni, we have αikyk , βi according to (3.3). Thus

there should be
∨
j,k
αi jy j = βi.

(ii) For k ∈ Ni, we can find another index l ∈ Ni with l , k, since |Ni| ≥ 2. According to (3.3), it
holds αilyl = βi. Thus ∨

j,k

αi jy j ≥ αilyl = βi. (3.19)
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On the other hand, according to (3.18), we also have∨
j,k

αi jy j ≤
∨
j∈N

αi jy j = βi. (3.20)

By (3.19) and (3.20), we find
∨
j,k
αi jy j = βi. �

Theorem 3. (Necessary condition) In system (2.1), if y is a minimal solution, then for any j ∈ N+,
there is i ∈ M=, such that Ni = { j}.

Proof. (By contradiction) Assume that there exists a j+ ∈ N+, such that for any i ∈ M=, it holds that
Ni , { j+}. Note that Ni , { j+} is equivalent to either

j+ < Ni, (3.21)

or
j+ ∈ Ni, |Ni| ≥ 2, (3.22)

holds.
Based on the above index j+ and the number ∆ = ∆1 ∧ ∆2 defined in (3.12), we construct the

corresponding vector y−∆ = (y−∆
1 , y−∆

2 , · · · , y−∆
n ) by (3.13). We first check y−∆ ∈ S(α, β). Suppose

i′ ∈ M is an arbitrary index inM.
Case 1. When i′ <M=, it follows from Proposition 6 that

αi′1y−∆
1 ∨ αi′2y−∆

2 ∨ · · · ∨ αi′ny−∆
n ≥ βi′ . (3.23)

Case 2. When i′ ∈ M=, we have either “ j+ < Ni′” or “ j+ ∈ Ni′ and |Ni′ | ≥ 2” by (3.21) and (3.22). If
j+ < Ni′ , then by (i) in Proposition 7, we have

∨
j, j+

αi′ jy j = βi′ . If j+ ∈ Ni′ and |Ni′ | ≥ 2, then by (ii)

in Proposition 7, we still have
∨
j, j+

αi′ jy j = βi′ . Observing (3.13), it is clear y−∆
j = y j for any j , j+.

Hence,
αi′1y−∆

1 ∨ αi′2y−∆
2 ∨ · · · ∨ αi′ny−∆

n ≥
∨
j, j+

αi′ jy−∆
j =

∨
j, j+

αi′ jy j = βi′ . (3.24)

Cases 1 and 2 imply that αi′1y−∆
1 ∨ αi′2y−∆

2 ∨ · · · ∨ αi′ny−∆
n ≥ βi′ , ∀i′ ∈ M. Hence y−∆ ∈ S(α, β), i.e.,

y−∆ is a solution of system (2.1). However, since ∆ > 0 as proved in Proposition 5, it could be easily
checked that y−∆ ≤ y and y−∆ , y according to (3.13). This is in conflict with the given condition that
y is a minimal solution. �

Take arbitrarily k ∈ N . Define a related vector yk,p = (yk,p
1 , · · · , yk,p

n ) as

yk,p
j =

p, if j = k,

y j, if j , k,
(3.25)

where p ∈ [0, 1] is a given number.

Proposition 8. For k ∈ N , if k < N+, then we have yk,p < S(α, β) for any p < yk.
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Proof. y ∈ S(α, β) indicates y j ≥ 0, ∀ j ∈ N . According to (3.1), k < N+ indicates yk = 0. Hence
yk,p

k = p < yk = 0. So we have yk,p < S(α, β) for any p < yk. �

Proposition 9. For k ∈ N+, if there exists i ∈ M=, such that Ni = {k}, then we have yk,p < S(α, β) for
any p < yk.

Proof. Since i ∈ M=, it holds
αi1y1 ∨ αi2y2 ∨ · · · ∨ αinyn = βi. (3.26)

For arbitrary j ∈ N with j , k, it turns out to be j < Ni since Ni = {k}. By (3.3), αi jy j , βi. On the
other hand, by (3.26), j ∈ N indicates αi jy j ≤ αi1y1 ∨ αi2y2 ∨ · · · ∨ αinyn = βi. So we have

αi jy j < βi, ∀ j ∈ N , j , k. (3.27)

For j = k ∈ {k} = Ni, by (3.3) we have αikyk = βi. Since βi > 0, it is obvious αik > 0. Hence, p < yk

implies
αik p < αikyk = βi. (3.28)

Considering (3.25), (3.27), and (3.28), we have∨
j∈N

αi jy
k,p
j = (

∨
j,k

αi jy
k,p
j ) ∨ αiky

k,p
k < βi ∨ βi = βi. (3.29)

As a result, yk,p is not a solution, i.e., yk,p < S(α, β). �

Theorem 4. (Sufficient condition) In system (2.1), let y be a solution. If for any j ∈ N+, there exists
i ∈ M=, such that Ni = { j}, then y should be a minimal solution.

Proof. (By contradiction) Assume that y is not a minimal solution. Then there exists a solution y′ ∈
S(α, β) such that

y′ ≤ y and y′ , y.

Thus, y′j ≤ y j, ∀ j ∈ N , and there is k ∈ N such that

y′k < yk.

Let
p = y′k.

Based on k, p, and y, construct the vector yk,p following (3.25). Then we have

yk,p
k = p = y′k < yk. (3.30)

and yk,p
j = y j ≥ y′j, ∀ j ∈ N , and j , k. Hence yk,p ≥ y′. It follows from Proposition 1 that yk,p ∈ S(α, β),

since y′ ∈ S(α, β).
On the other hand, next we will prove that yk,p < S(α, β), considering k in two cases.

Case 1. If k < N+, then by Proposition 8, we have yk,p < S(α, β) since p < yk.
Case 2. If k ∈ N+, according to the given condition, there exists i ∈ M= such that Ni = { j}. Following
Proposition 8, we have yk,p < S(α, β) since p < yk.

As a consequence, whatever the value of k takes, we always have yk,p < S(α, β). This is in conflict
with the above-obtained result that yk,p ∈ S(α, β). �
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Theorem 5. (Sufficient and necessary condition) In system (2.1), let y be a solution. Then y is a
minimal solution if and only if for any j ∈ N+, there exists i ∈ M=, such that Ni = { j}.

Proof. The proof is self-evident, following the results in Theorems 3 and 4. �

4. Illustrative example

In this section, we provide a numerical example for illustrating our proposed checking approach
indicated in Theorem 5.

Example 1. Assume that there is a system of max-product fuzzy relation inequalities as follows:

0.6x1 ∨ 0.5x2 ∨ 0.4x3 ∨ 0.9x4 ∨ 0.7x5 ≥ 0.54,
0.3x1 ∨ 0.2x2 ∨ 0.7x3 ∨ 0.8x4 ∨ 0.5x5 ≥ 0.45,
0.8x1 ∨ 0.3x2 ∨ 0.6x3 ∨ 0.4x4 ∨ 0.6x5 ≥ 0.4,
0.9x1 ∨ 0.6x2 ∨ 0.1x3 ∨ 0.2x4 ∨ 1x5 ≥ 0.6,
0.8x1 ∨ 0.4x2 ∨ 0.9x3 ∨ 0.6x4 ∨ 0.6x5 ≥ 0.4.

(4.1)

Now we provide three given solutions for the above system (4.1) as

y1 = (0, 0, 0.7, 0, 0.8), y2 = (0.5, 1, 0, 0.6, 0), y3 = (0.5, 0, 0, 0.6, 0.65).

Check whether y1, y2, y3 is a minimal solution, respectively.

Solution. For y1 = (0, 0, 0.7, 0, 0.8), it is clear N+ = {3, 5} by (3.1). Since

0.6 · 0 ∨ 0.5 · 0 ∨ 0.4 · 0.7 ∨ 0.9 · 0 ∨ 0.7 · 0.8 = 0.56 > 0.54,
0.3 · 0 ∨ 0.2 · 0 ∨ 0.7 · 0.7 ∨ 0.8 · 0 ∨ 0.5 · 0.8 = 0.49 > 0.45,
0.8 · 0 ∨ 0.3 · 0 ∨ 0.6 · 0.7 ∨ 0.4 · 0 ∨ 0.6 · 0.8 = 0.48 > 0.4,
0.9 · 0 ∨ 0.6 · 0 ∨ 0.1 · 0.7 ∨ 0.2 · 0 ∨ 1 · 0.8 = 0.8 > 0.6,
0.8 · 0 ∨ 0.4 · 0 ∨ 0.9 · 0.7 ∨ 0.6 · 0 ∨ 0.6 · 0.8 = 0.63 > 0.4,

(4.2)

according to (3.2), we find M= = ∅. Following Proposition 3, it could be concluded that y1 =

(0, 0, 0.7, 0, 0.8) is not a minimal solution.
For y2 = (0.5, 1, 0, 0.6, 0), it is clear N+ = {1, 2, 4} by (3.1). Since

0.6 · 0.5 ∨ 0.5 · 1 ∨ 0.4 · 0 ∨ 0.9 · 0.6 ∨ 0.7 · 0 = 0.54 = 0.54,
0.3 · 0.5 ∨ 0.2 · 1 ∨ 0.7 · 0 ∨ 0.8 · 0.6 ∨ 0.5 · 0 = 0.48 > 0.45,
0.8 · 0.5 ∨ 0.3 · 1 ∨ 0.6 · 0 ∨ 0.4 · 0.6 ∨ 0.6 · 0 = 0.4 = 0.4,
0.9 · 0.5 ∨ 0.6 · 1 ∨ 0.1 · 0 ∨ 0.2 · 0.6 ∨ 1 · 0 = 0.6 = 0.6,
0.8 · 0.5 ∨ 0.4 · 1 ∨ 0.9 · 0 ∨ 0.6 · 0.6 ∨ 0.6 · 0 = 0.4 = 0.4,

(4.3)

according to (3.2), we findM= = {1, 3, 4, 5}. For i = 1, by (3.3), we find N1 = {4}. In a similar way,
we also find N3 = {1}, N4 = {2}, and N5 = {1, 2}. Note that N+ = {1, 2, 4}. So we have

for j = 1, there exists i = 3 ∈ M=, such that N3 = {1},
for j = 2, there exists i = 4 ∈ M=, such that N4 = {2},
for j = 4, there exists i = 1 ∈ M=, such that N1 = {4}.

(4.4)
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Following Theorem 5, it could be concluded that y2 = (0.5, 1, 0, 0.6, 0) is a minimal solution.
For y3 = (0.5, 0, 0, 0.6, 0.65), it is clear N+ = {1, 4, 5} by (3.1). Since

0.6 · 0.5 ∨ 0.5 · 0 ∨ 0.4 · 0 ∨ 0.9 · 0.6 ∨ 0.7 · 0.65 = 0.54 = 0.54,
0.3 · 0.5 ∨ 0.2 · 0 ∨ 0.7 · 0 ∨ 0.8 · 0.6 ∨ 0.5 · 0.65 = 0.48 > 0.45,
0.8 · 0.5 ∨ 0.3 · 0 ∨ 0.6 · 0 ∨ 0.4 · 0.6 ∨ 0.6 · 0.65 = 0.4 = 0.4,
0.9 · 0.5 ∨ 0.6 · 0 ∨ 0.1 · 0 ∨ 0.2 · 0.6 ∨ 1 · 0.65 = 0.65 > 0.6,
0.8 · 0.5 ∨ 0.4 · 0 ∨ 0.9 · 0 ∨ 0.6 · 0.6 ∨ 0.6 · 0.65 = 0.4 = 0.4,

(4.5)

according to (3.2), we find M= = {1, 3, 5}. For i = 1, by (3.3), we find N1 = {4}. In a similar way,
we also find N3 = {1} and N5 = {1}. Note that N+ = {1, 4, 5}. For j = 5 ∈ N+, it is found that
there does not exist any i ∈ M= such that Ni = {5}. Following Theorem 5, it could be concluded that
y3 = (0.5, 0, 0, 0.6, 0.65) is not a minimal solution.

5. Discussion on our proposed checking approach

5.1. The merits of our proposed checking approach by comparing to the existing works

5.1.1. Avoid redundant subsets in the complete solution set

In the existing works, there were several feasible methods for obtaining the complete solution set to
system (2.1) [7,10,24,39,41–44], e.g., the solution-matrix approach [7,10] and the FRI path approach
in [44]. All these methods were not able to compute the minimal solution set directly. They were just
capable of computing the quasi-minimal solutions. Based on the set of all quasi-minimal solutions,
the complete solution set could be characterized (see in [41, Theorem 2.7] and in [44, Theorem 2.8]).
The approach presented in [41,44] might produce some redundant subsets in representing the complete
solution set. We list the following Example 2 to illustrate this situation.

Example 2. Consider the max-product fuzzy relation inequalities as follows:
0.8x1 ∨ 0.9x2 ∨ 0.625x3 ∨ 0.55x4 ≥ 0.5,
0.3x1 ∨ 0.7x2 ∨ 0.6x3 ∨ 0.6x4 ≥ 0.42,
0.8x1 ∨ 0.4x2 ∨ 0.85x3 ∨ 0.8x4 ≥ 0.48.

(5.1)

We aim to obtain the complete solution set to the above system (5.1).

Using the formula in Definition 2.4 in [44] as follows,

Gi = { j ∈ N|x̂ · αi j ≥ βi}, ∀i ∈ M, (5.2)

we have
Gi = { j ∈ N|αi j ≥ βi}, ∀i ∈ M. (5.3)

since x̂ = (1, 1, 1, 1) for system (5.1). According to Eq (5.3), it is easy to find the index sets as

G1 = {1, 2, 3, 4}, G2 = {2, 3, 4}, G3 = {1, 3, 4}.
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So, we obtain G = G1 ×G2 ×G3 = {1, 2, 3, 4} × {2, 3, 4} × {1, 3, 4}. It is clear that G has 36 elements,
i.e., |G| = 36. As a result, following Definition 2.5 in [44], one is able to calculate 36 quasi-minimal
solutions of system (5.1). Here we omit the calculation process. For each path e ∈ G, suppose the
quasi-minimal solution corresponding to e is denoted by ex. Then, by Theorem 2.7 in [44], the solution
set of (5.1) is

S 1 =
⋃
e∈G

{x|ex ≤ x ≤ x̂ = (1, 1, 1, 1)}. (5.4)

The above solution set S 1 is composed by 36 subsets, induced by 36 quasi-minimal solutions (as
shown in Table 1). Among these subsets, there are some redundant subsets, which could be deleted
without changing the solution set S 1. For example, since

e1
x = (0.625, 0.6, 0, 0) � (0.625, 0.6, 0.565, 0) = e2

x,

we have [e2
x, x̂] ⊆ [e1

x, x̂]. Thus, the subset [e2
x, x̂] is redundant in the union set (5.4).

Table 1. All quasi-minimal solutions of system (5.1).

e1
x (0.625, 0.6, 0, 0) e2

x (0.625, 0.6, 0.565, 0)
e3

x (0.625, 0.6, 0, 0.6) e4
x (0.625, 0, 0.7, 0)

e5
x (0.625, 0, 0.7, 0) e6

x (0.625, 0, 0.7, 0.6)
e7

x (0.625, 0, 0, 0.7) e8
x (0.625, 0, 0.565, 0.7)

e9
x (0.625, 0, 0, 0.7) e10

x (0.6, 0.6, 0, 0)
e11

x (0, 0.6, 0.565, 0) e12
x (0, 0.6, 0, 0.6)

e13
x (0.6, 0.556, 0.7, 0) e14

x (0, 0.556, 0.7, 0)
e15

x (0, 0.556, 0.7, 0.6) e16
x (0.6, 0.556, 0, 0.7)

e17
x (0, 0.556, 0.565, 0.7) e18

x (0, 0.556, 0, 0.7)
e19

x (0.6, 0.6, 0.8, 0) e20
x (0, 0.6, 0.8, 0)

e21
x (0, 0.6, 0.8, 0.6) e22

x (0.6, 0, 0.8, 0)
e23

x (0, 0, 0.8, 0) e24
x (0, 0, 0.8, 0.6)

e25
x (0.6, 0, 0.8, 0.7) e26

x (0, 0, 0.8, 0.7)
e27

x (0, 0, 0.8, 0.7) e28
x (0.6, 0.6, 0, 0.910)

e29
x (0, 0.6, 0.565, 0.910) e30

x (0, 0.6, 0, 0.910)
e31

x (0.6, 0, 0.7, 0.910) e32
x (0, 0, 0.7, 0.910)

e33
x (0, 0, 0.7, 0.910) e34

x (0.6, 0, 0, 0.910)
e35

x (0, 0, 0.565, 0.910) e36
x (0, 0, 0, 0.910)

The method proposed in this work could be used to check the minimality of a quasi-minimal
solution. As a result, the non-minimal solution will be deleted from the quasi-minimal solution set. By
this way, one could avoid the redundant subsets in characterizing the complete solution set.

5.1.2. Reduce computational complexity in deriving the complete solution set

For removing the redundant subsets in the complete solution set of (2.1), the pair-wise comparison
method was adopted in [7, 10, 24, 39, 42, 43]. In these existing works, the minimal solutions were
selected from the quasi-minimal solution set by pair-wise comparison. Furthermore, the complete
solution set was generated by the minimal solutions without redundant subsets.
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In this work, we propose the approach for checking whether a given solution is a minimal one.
Applying this checking approach, the minimal solutions could also be obtained from the quasi-minimal
solution set.

In fact, the pair-wise comparison method will cause the computation of factorial growth. However,
using our proposed checking approach, it just costs a polynomial computation complexity to derive
the minimal solutions from the quasi-minimal solution set. In other words, our proposed checking
approach will reduce the computational complexity in deriving the minimal solution set.

To reveal the computational complexities of the pair-wise comparison method and our proposed
checking approach in deriving the minimal solution set, we make the following assumption for
system (2.1).

m: The number of inequalities in (2.1).
n: The number of variables in (2.1).
p: The number of quasi-minimal solutions.
Then the pair-wise comparison method costs n(p − 1)! operations for deleting the non-minimal

solutions in the quasi-minimal solution set. However, using our proposed checking approach, it will
cost p(5mn + n) operations totally.

As the size of the problem increases and the number of quasi-minimal solutions grows, n(p − 1)! is
much more than p(5mn + n). Hence, by replacing the commonly used pair-wise comparison method
with our proposed checking approach, the computation complexity will drop sharply. Next, we use the
system (5.1) in Example 2 to illustrate the comparison of the computation complexity.

Example 3. Continue to consider system (5.1) in Example 2. Compute the minimal solutions of (5.1)
and characterize its solution set based on these minimal solutions.

As pointed out in Example 2, system (5.1) has 36 quasi-minimal solution. Using the pair-wise
comparison method to delete the non-minimal solution in the quasi-minimal solution set costs n(p −
1)! = 4 · 35! operations. However, using our proposed checking approach, it only costs p(5mn + n) =

36 · (5 ·3 ·4+4) = 2304. Obviously, 4 ·35! is much bigger than 2304. Our proposed checking approach
reduces 4 · 35! − 2304 operations.

After calculation, there are 9 minimal solutions, as shown in Table 2. The solution set is

S 1 = [e4
x, x̂] ∪ [e7

x, x̂] ∪ [e10
x , x̂] ∪ [e11

x , x̂] ∪ [e12
x , x̂] ∪ [e14

x , x̂] ∪ [e18
x , x̂] ∪ [e23

x , x̂] ∪ [e36
x , x̂].

Table 2. All minimal solutions of system (5.1).

e4
x (0.625, 0, 0.7, 0) e7

x (0.625, 0, 0, 0.7)
e10

x (0.6, 0.6, 0, 0) e11
x (0, 0.6, 0.565, 0)

e12
x (0, 0.6, 0, 0.6) e14

x (0, 0.565, 0.7, 0)
e18

x (0, 0.565, 0, 0.7) e23
x (0, 0, 0.8, 0)

e36
x (0, 0, 0, 0.910)

5.1.3. Reduce computational complexity in solving the fuzzy relation optimization problems

In the references [31–35, 44], the optimal solutions of the optimization problems subject to the
FRS were derived by selecting them from the quasi-minimal solution set. The selection process
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was implemented by pair-wise comparison on the objective value of the quasi-minimal solutions. If
we compute the minimal solution set using our proposed checking approach before implementing
the selection process, then the computational complexity might be reduced. Next, we provide an
illustrative example.

Example 4. Continue to consider system (5.1) in Example 2. Try to find the optimal solution of the
optimization problem as follows:

min f (x) = 0.5x1 + 0.2x2 + 0.3x3 + 0.8x4,

s.t. x ∈ S 1.
(5.5)

Note that for a given solution, it costs 4 operations to compute its objective value due to the objective
function f (x). As a consequence, using the method presented in [31–35, 44], the optimal solution
should be selected from the set of 36 quasi-minimal solutions. This cost

4 · 36 · 35! ≈ 1.488 × 1042

operations. However, using our proposed checking approach before the pair-wise comparison, it cost

2304 + 4 × 9! ≈ 1.454 × 106

operations for obtaining the optimal solution. Obviously, 1.454 × 106 is much less than 1.488 × 1042.
Hence, using our proposed checking approach helps to reduce computational complexity in solving the
above problem (5.5).

Replacing the objective function f (x) in problem (5.5), the corresponding computation complexities
are as shown in Table 3. The operations of the objective function f (x) are denoted by O( f (x)).

Table 3. Comparison on the computation complexity.

Operations of using our proposed
checking approach

Operations of using the method
in [31–35, 44]

O( f (x)) = 10 3.631 × 106 3.720 × 1042

O( f (x)) = 15 5.446 × 106 5.580 × 1042

O( f (x)) = 20 7.260 × 106 7.440 × 1042

O( f (x)) = 100 3.629 × 107 3.720 × 1043

O( f (x)) = 500 1.814 × 108 1.860 × 1044

O( f (x)) = 1000 3.629 × 108 3.720 × 1044

O( f (x)) = 10000 3.629 × 109 3.720 × 1045

5.2. Application in some decision-making problem

In the existing work [7], the FRS with max-product composed inequalities, i.e., system (2.1),
was introduced for describing the wireless communication base station system. In such a model,
any solution of system (2.1) represents a feasible scheme for arranging the radiation intensity of
the electromagnetic wave among the base stations. In order to reduce the radiation intensities of
electromagnetic waves, the authors constructed and investigated the following optimization problem:

min g(x) = x1 ∨ x2 ∨ · · · ∨ xn,

s.t. α � x ≥ β, x ∈ [0, 1]n.
(5.6)
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The constraint system problem (5.6) is exactly our studied system (2.1). Accordingly, any optimal
solution of problem (5.6) provides an optimal feasible scheme.

It could be easily verified that there exists a minimal solution x∗ of system (2.1), such that x∗

is exactly an optimal solution of problem (5.6). Thereby, the optimal solution of problem (5.6)
could be selected from the minimal solution set. As pointed out in Subsection 5.1, our proposed
checking approach would be helpful in deriving the minimal solution set. Therefore, our proposed
checking approach could also be applied to such an optimization management model in the wireless
communication base station system.

5.3. Demerit of our proposed checking approach and limitation of our studied problem

In the previous subsection, we have shown the merits of our proposed checking approach. However,
when the problem size of system (2.1) is small enough and it only has a few quasi-minimal solutions,
our proposed checking approach might be no longer superior to the commonly used pair-wise
comparison method. This would be the demerit of our proposed checking approach.

As presented above, our proposed approach is just capable of checking whether a given solution is
minimal. However, if one aims to find out all the minimal solutions, or the complete solution set, the
existing solution-matrix approach [7, 10] and the FRI path approach in [44] would be necessary. Our
proposed checking approach serves as a key auxiliary technique in solving system (2.1).

In future research, we will continue to explore the applications of our proposed checking approach
for verifying a minimal solution and try to further reduce the computational complexity.

6. Conclusions

Checking whether a given solution is minimal plays an important role in the studies on the max-
product fuzzy relation inequalities. In this work, we proposed an approach for checking the minimality
of a given solution. The effectiveness of our proposed approach was demonstrated through a simple
example. Moreover, our proposed checking approach is also helpful in deriving the minimal solution
set of system (2.1). Our proposed approach and the obtained results were compared to those in the
related existing works.
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